mmu.c 74 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/types.h>
  22. #include <linux/string.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/module.h>
  26. #include <linux/swap.h>
  27. #include <linux/hugetlb.h>
  28. #include <linux/compiler.h>
  29. #include <asm/page.h>
  30. #include <asm/cmpxchg.h>
  31. #include <asm/io.h>
  32. #include <asm/vmx.h>
  33. /*
  34. * When setting this variable to true it enables Two-Dimensional-Paging
  35. * where the hardware walks 2 page tables:
  36. * 1. the guest-virtual to guest-physical
  37. * 2. while doing 1. it walks guest-physical to host-physical
  38. * If the hardware supports that we don't need to do shadow paging.
  39. */
  40. bool tdp_enabled = false;
  41. #undef MMU_DEBUG
  42. #undef AUDIT
  43. #ifdef AUDIT
  44. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  45. #else
  46. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  47. #endif
  48. #ifdef MMU_DEBUG
  49. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  50. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  51. #else
  52. #define pgprintk(x...) do { } while (0)
  53. #define rmap_printk(x...) do { } while (0)
  54. #endif
  55. #if defined(MMU_DEBUG) || defined(AUDIT)
  56. static int dbg = 0;
  57. module_param(dbg, bool, 0644);
  58. #endif
  59. static int oos_shadow = 1;
  60. module_param(oos_shadow, bool, 0644);
  61. #ifndef MMU_DEBUG
  62. #define ASSERT(x) do { } while (0)
  63. #else
  64. #define ASSERT(x) \
  65. if (!(x)) { \
  66. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  67. __FILE__, __LINE__, #x); \
  68. }
  69. #endif
  70. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  71. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  72. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  73. #define PT64_LEVEL_BITS 9
  74. #define PT64_LEVEL_SHIFT(level) \
  75. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  76. #define PT64_LEVEL_MASK(level) \
  77. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  78. #define PT64_INDEX(address, level)\
  79. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  80. #define PT32_LEVEL_BITS 10
  81. #define PT32_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  83. #define PT32_LEVEL_MASK(level) \
  84. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  85. #define PT32_INDEX(address, level)\
  86. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  87. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  88. #define PT64_DIR_BASE_ADDR_MASK \
  89. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  90. #define PT32_BASE_ADDR_MASK PAGE_MASK
  91. #define PT32_DIR_BASE_ADDR_MASK \
  92. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  93. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  94. | PT64_NX_MASK)
  95. #define PFERR_PRESENT_MASK (1U << 0)
  96. #define PFERR_WRITE_MASK (1U << 1)
  97. #define PFERR_USER_MASK (1U << 2)
  98. #define PFERR_FETCH_MASK (1U << 4)
  99. #define PT_DIRECTORY_LEVEL 2
  100. #define PT_PAGE_TABLE_LEVEL 1
  101. #define RMAP_EXT 4
  102. #define ACC_EXEC_MASK 1
  103. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  104. #define ACC_USER_MASK PT_USER_MASK
  105. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  106. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  107. struct kvm_rmap_desc {
  108. u64 *shadow_ptes[RMAP_EXT];
  109. struct kvm_rmap_desc *more;
  110. };
  111. struct kvm_shadow_walk_iterator {
  112. u64 addr;
  113. hpa_t shadow_addr;
  114. int level;
  115. u64 *sptep;
  116. unsigned index;
  117. };
  118. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  119. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  120. shadow_walk_okay(&(_walker)); \
  121. shadow_walk_next(&(_walker)))
  122. struct kvm_unsync_walk {
  123. int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
  124. };
  125. typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
  126. static struct kmem_cache *pte_chain_cache;
  127. static struct kmem_cache *rmap_desc_cache;
  128. static struct kmem_cache *mmu_page_header_cache;
  129. static u64 __read_mostly shadow_trap_nonpresent_pte;
  130. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  131. static u64 __read_mostly shadow_base_present_pte;
  132. static u64 __read_mostly shadow_nx_mask;
  133. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  134. static u64 __read_mostly shadow_user_mask;
  135. static u64 __read_mostly shadow_accessed_mask;
  136. static u64 __read_mostly shadow_dirty_mask;
  137. static u64 __read_mostly shadow_mt_mask;
  138. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  139. {
  140. shadow_trap_nonpresent_pte = trap_pte;
  141. shadow_notrap_nonpresent_pte = notrap_pte;
  142. }
  143. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  144. void kvm_mmu_set_base_ptes(u64 base_pte)
  145. {
  146. shadow_base_present_pte = base_pte;
  147. }
  148. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  149. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  150. u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 mt_mask)
  151. {
  152. shadow_user_mask = user_mask;
  153. shadow_accessed_mask = accessed_mask;
  154. shadow_dirty_mask = dirty_mask;
  155. shadow_nx_mask = nx_mask;
  156. shadow_x_mask = x_mask;
  157. shadow_mt_mask = mt_mask;
  158. }
  159. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  160. static int is_write_protection(struct kvm_vcpu *vcpu)
  161. {
  162. return vcpu->arch.cr0 & X86_CR0_WP;
  163. }
  164. static int is_cpuid_PSE36(void)
  165. {
  166. return 1;
  167. }
  168. static int is_nx(struct kvm_vcpu *vcpu)
  169. {
  170. return vcpu->arch.shadow_efer & EFER_NX;
  171. }
  172. static int is_present_pte(unsigned long pte)
  173. {
  174. return pte & PT_PRESENT_MASK;
  175. }
  176. static int is_shadow_present_pte(u64 pte)
  177. {
  178. return pte != shadow_trap_nonpresent_pte
  179. && pte != shadow_notrap_nonpresent_pte;
  180. }
  181. static int is_large_pte(u64 pte)
  182. {
  183. return pte & PT_PAGE_SIZE_MASK;
  184. }
  185. static int is_writeble_pte(unsigned long pte)
  186. {
  187. return pte & PT_WRITABLE_MASK;
  188. }
  189. static int is_dirty_pte(unsigned long pte)
  190. {
  191. return pte & shadow_dirty_mask;
  192. }
  193. static int is_rmap_pte(u64 pte)
  194. {
  195. return is_shadow_present_pte(pte);
  196. }
  197. static pfn_t spte_to_pfn(u64 pte)
  198. {
  199. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  200. }
  201. static gfn_t pse36_gfn_delta(u32 gpte)
  202. {
  203. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  204. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  205. }
  206. static void set_shadow_pte(u64 *sptep, u64 spte)
  207. {
  208. #ifdef CONFIG_X86_64
  209. set_64bit((unsigned long *)sptep, spte);
  210. #else
  211. set_64bit((unsigned long long *)sptep, spte);
  212. #endif
  213. }
  214. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  215. struct kmem_cache *base_cache, int min)
  216. {
  217. void *obj;
  218. if (cache->nobjs >= min)
  219. return 0;
  220. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  221. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  222. if (!obj)
  223. return -ENOMEM;
  224. cache->objects[cache->nobjs++] = obj;
  225. }
  226. return 0;
  227. }
  228. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  229. {
  230. while (mc->nobjs)
  231. kfree(mc->objects[--mc->nobjs]);
  232. }
  233. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  234. int min)
  235. {
  236. struct page *page;
  237. if (cache->nobjs >= min)
  238. return 0;
  239. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  240. page = alloc_page(GFP_KERNEL);
  241. if (!page)
  242. return -ENOMEM;
  243. set_page_private(page, 0);
  244. cache->objects[cache->nobjs++] = page_address(page);
  245. }
  246. return 0;
  247. }
  248. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  249. {
  250. while (mc->nobjs)
  251. free_page((unsigned long)mc->objects[--mc->nobjs]);
  252. }
  253. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  254. {
  255. int r;
  256. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  257. pte_chain_cache, 4);
  258. if (r)
  259. goto out;
  260. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  261. rmap_desc_cache, 4);
  262. if (r)
  263. goto out;
  264. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  265. if (r)
  266. goto out;
  267. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  268. mmu_page_header_cache, 4);
  269. out:
  270. return r;
  271. }
  272. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  273. {
  274. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  275. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  276. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  277. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  278. }
  279. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  280. size_t size)
  281. {
  282. void *p;
  283. BUG_ON(!mc->nobjs);
  284. p = mc->objects[--mc->nobjs];
  285. return p;
  286. }
  287. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  288. {
  289. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  290. sizeof(struct kvm_pte_chain));
  291. }
  292. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  293. {
  294. kfree(pc);
  295. }
  296. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  297. {
  298. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  299. sizeof(struct kvm_rmap_desc));
  300. }
  301. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  302. {
  303. kfree(rd);
  304. }
  305. /*
  306. * Return the pointer to the largepage write count for a given
  307. * gfn, handling slots that are not large page aligned.
  308. */
  309. static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
  310. {
  311. unsigned long idx;
  312. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  313. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  314. return &slot->lpage_info[idx].write_count;
  315. }
  316. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  317. {
  318. int *write_count;
  319. gfn = unalias_gfn(kvm, gfn);
  320. write_count = slot_largepage_idx(gfn,
  321. gfn_to_memslot_unaliased(kvm, gfn));
  322. *write_count += 1;
  323. }
  324. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  325. {
  326. int *write_count;
  327. gfn = unalias_gfn(kvm, gfn);
  328. write_count = slot_largepage_idx(gfn,
  329. gfn_to_memslot_unaliased(kvm, gfn));
  330. *write_count -= 1;
  331. WARN_ON(*write_count < 0);
  332. }
  333. static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
  334. {
  335. struct kvm_memory_slot *slot;
  336. int *largepage_idx;
  337. gfn = unalias_gfn(kvm, gfn);
  338. slot = gfn_to_memslot_unaliased(kvm, gfn);
  339. if (slot) {
  340. largepage_idx = slot_largepage_idx(gfn, slot);
  341. return *largepage_idx;
  342. }
  343. return 1;
  344. }
  345. static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
  346. {
  347. struct vm_area_struct *vma;
  348. unsigned long addr;
  349. int ret = 0;
  350. addr = gfn_to_hva(kvm, gfn);
  351. if (kvm_is_error_hva(addr))
  352. return ret;
  353. down_read(&current->mm->mmap_sem);
  354. vma = find_vma(current->mm, addr);
  355. if (vma && is_vm_hugetlb_page(vma))
  356. ret = 1;
  357. up_read(&current->mm->mmap_sem);
  358. return ret;
  359. }
  360. static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  361. {
  362. struct kvm_memory_slot *slot;
  363. if (has_wrprotected_page(vcpu->kvm, large_gfn))
  364. return 0;
  365. if (!host_largepage_backed(vcpu->kvm, large_gfn))
  366. return 0;
  367. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  368. if (slot && slot->dirty_bitmap)
  369. return 0;
  370. return 1;
  371. }
  372. /*
  373. * Take gfn and return the reverse mapping to it.
  374. * Note: gfn must be unaliased before this function get called
  375. */
  376. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
  377. {
  378. struct kvm_memory_slot *slot;
  379. unsigned long idx;
  380. slot = gfn_to_memslot(kvm, gfn);
  381. if (!lpage)
  382. return &slot->rmap[gfn - slot->base_gfn];
  383. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  384. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  385. return &slot->lpage_info[idx].rmap_pde;
  386. }
  387. /*
  388. * Reverse mapping data structures:
  389. *
  390. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  391. * that points to page_address(page).
  392. *
  393. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  394. * containing more mappings.
  395. */
  396. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
  397. {
  398. struct kvm_mmu_page *sp;
  399. struct kvm_rmap_desc *desc;
  400. unsigned long *rmapp;
  401. int i;
  402. if (!is_rmap_pte(*spte))
  403. return;
  404. gfn = unalias_gfn(vcpu->kvm, gfn);
  405. sp = page_header(__pa(spte));
  406. sp->gfns[spte - sp->spt] = gfn;
  407. rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
  408. if (!*rmapp) {
  409. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  410. *rmapp = (unsigned long)spte;
  411. } else if (!(*rmapp & 1)) {
  412. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  413. desc = mmu_alloc_rmap_desc(vcpu);
  414. desc->shadow_ptes[0] = (u64 *)*rmapp;
  415. desc->shadow_ptes[1] = spte;
  416. *rmapp = (unsigned long)desc | 1;
  417. } else {
  418. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  419. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  420. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  421. desc = desc->more;
  422. if (desc->shadow_ptes[RMAP_EXT-1]) {
  423. desc->more = mmu_alloc_rmap_desc(vcpu);
  424. desc = desc->more;
  425. }
  426. for (i = 0; desc->shadow_ptes[i]; ++i)
  427. ;
  428. desc->shadow_ptes[i] = spte;
  429. }
  430. }
  431. static void rmap_desc_remove_entry(unsigned long *rmapp,
  432. struct kvm_rmap_desc *desc,
  433. int i,
  434. struct kvm_rmap_desc *prev_desc)
  435. {
  436. int j;
  437. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  438. ;
  439. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  440. desc->shadow_ptes[j] = NULL;
  441. if (j != 0)
  442. return;
  443. if (!prev_desc && !desc->more)
  444. *rmapp = (unsigned long)desc->shadow_ptes[0];
  445. else
  446. if (prev_desc)
  447. prev_desc->more = desc->more;
  448. else
  449. *rmapp = (unsigned long)desc->more | 1;
  450. mmu_free_rmap_desc(desc);
  451. }
  452. static void rmap_remove(struct kvm *kvm, u64 *spte)
  453. {
  454. struct kvm_rmap_desc *desc;
  455. struct kvm_rmap_desc *prev_desc;
  456. struct kvm_mmu_page *sp;
  457. pfn_t pfn;
  458. unsigned long *rmapp;
  459. int i;
  460. if (!is_rmap_pte(*spte))
  461. return;
  462. sp = page_header(__pa(spte));
  463. pfn = spte_to_pfn(*spte);
  464. if (*spte & shadow_accessed_mask)
  465. kvm_set_pfn_accessed(pfn);
  466. if (is_writeble_pte(*spte))
  467. kvm_release_pfn_dirty(pfn);
  468. else
  469. kvm_release_pfn_clean(pfn);
  470. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
  471. if (!*rmapp) {
  472. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  473. BUG();
  474. } else if (!(*rmapp & 1)) {
  475. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  476. if ((u64 *)*rmapp != spte) {
  477. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  478. spte, *spte);
  479. BUG();
  480. }
  481. *rmapp = 0;
  482. } else {
  483. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  484. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  485. prev_desc = NULL;
  486. while (desc) {
  487. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  488. if (desc->shadow_ptes[i] == spte) {
  489. rmap_desc_remove_entry(rmapp,
  490. desc, i,
  491. prev_desc);
  492. return;
  493. }
  494. prev_desc = desc;
  495. desc = desc->more;
  496. }
  497. BUG();
  498. }
  499. }
  500. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  501. {
  502. struct kvm_rmap_desc *desc;
  503. struct kvm_rmap_desc *prev_desc;
  504. u64 *prev_spte;
  505. int i;
  506. if (!*rmapp)
  507. return NULL;
  508. else if (!(*rmapp & 1)) {
  509. if (!spte)
  510. return (u64 *)*rmapp;
  511. return NULL;
  512. }
  513. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  514. prev_desc = NULL;
  515. prev_spte = NULL;
  516. while (desc) {
  517. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
  518. if (prev_spte == spte)
  519. return desc->shadow_ptes[i];
  520. prev_spte = desc->shadow_ptes[i];
  521. }
  522. desc = desc->more;
  523. }
  524. return NULL;
  525. }
  526. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  527. {
  528. unsigned long *rmapp;
  529. u64 *spte;
  530. int write_protected = 0;
  531. gfn = unalias_gfn(kvm, gfn);
  532. rmapp = gfn_to_rmap(kvm, gfn, 0);
  533. spte = rmap_next(kvm, rmapp, NULL);
  534. while (spte) {
  535. BUG_ON(!spte);
  536. BUG_ON(!(*spte & PT_PRESENT_MASK));
  537. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  538. if (is_writeble_pte(*spte)) {
  539. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  540. write_protected = 1;
  541. }
  542. spte = rmap_next(kvm, rmapp, spte);
  543. }
  544. if (write_protected) {
  545. pfn_t pfn;
  546. spte = rmap_next(kvm, rmapp, NULL);
  547. pfn = spte_to_pfn(*spte);
  548. kvm_set_pfn_dirty(pfn);
  549. }
  550. /* check for huge page mappings */
  551. rmapp = gfn_to_rmap(kvm, gfn, 1);
  552. spte = rmap_next(kvm, rmapp, NULL);
  553. while (spte) {
  554. BUG_ON(!spte);
  555. BUG_ON(!(*spte & PT_PRESENT_MASK));
  556. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  557. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  558. if (is_writeble_pte(*spte)) {
  559. rmap_remove(kvm, spte);
  560. --kvm->stat.lpages;
  561. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  562. spte = NULL;
  563. write_protected = 1;
  564. }
  565. spte = rmap_next(kvm, rmapp, spte);
  566. }
  567. return write_protected;
  568. }
  569. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
  570. {
  571. u64 *spte;
  572. int need_tlb_flush = 0;
  573. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  574. BUG_ON(!(*spte & PT_PRESENT_MASK));
  575. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  576. rmap_remove(kvm, spte);
  577. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  578. need_tlb_flush = 1;
  579. }
  580. return need_tlb_flush;
  581. }
  582. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  583. int (*handler)(struct kvm *kvm, unsigned long *rmapp))
  584. {
  585. int i;
  586. int retval = 0;
  587. /*
  588. * If mmap_sem isn't taken, we can look the memslots with only
  589. * the mmu_lock by skipping over the slots with userspace_addr == 0.
  590. */
  591. for (i = 0; i < kvm->nmemslots; i++) {
  592. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  593. unsigned long start = memslot->userspace_addr;
  594. unsigned long end;
  595. /* mmu_lock protects userspace_addr */
  596. if (!start)
  597. continue;
  598. end = start + (memslot->npages << PAGE_SHIFT);
  599. if (hva >= start && hva < end) {
  600. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  601. retval |= handler(kvm, &memslot->rmap[gfn_offset]);
  602. retval |= handler(kvm,
  603. &memslot->lpage_info[
  604. gfn_offset /
  605. KVM_PAGES_PER_HPAGE].rmap_pde);
  606. }
  607. }
  608. return retval;
  609. }
  610. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  611. {
  612. return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  613. }
  614. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
  615. {
  616. u64 *spte;
  617. int young = 0;
  618. /* always return old for EPT */
  619. if (!shadow_accessed_mask)
  620. return 0;
  621. spte = rmap_next(kvm, rmapp, NULL);
  622. while (spte) {
  623. int _young;
  624. u64 _spte = *spte;
  625. BUG_ON(!(_spte & PT_PRESENT_MASK));
  626. _young = _spte & PT_ACCESSED_MASK;
  627. if (_young) {
  628. young = 1;
  629. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  630. }
  631. spte = rmap_next(kvm, rmapp, spte);
  632. }
  633. return young;
  634. }
  635. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  636. {
  637. return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
  638. }
  639. #ifdef MMU_DEBUG
  640. static int is_empty_shadow_page(u64 *spt)
  641. {
  642. u64 *pos;
  643. u64 *end;
  644. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  645. if (is_shadow_present_pte(*pos)) {
  646. printk(KERN_ERR "%s: %p %llx\n", __func__,
  647. pos, *pos);
  648. return 0;
  649. }
  650. return 1;
  651. }
  652. #endif
  653. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  654. {
  655. ASSERT(is_empty_shadow_page(sp->spt));
  656. list_del(&sp->link);
  657. __free_page(virt_to_page(sp->spt));
  658. __free_page(virt_to_page(sp->gfns));
  659. kfree(sp);
  660. ++kvm->arch.n_free_mmu_pages;
  661. }
  662. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  663. {
  664. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  665. }
  666. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  667. u64 *parent_pte)
  668. {
  669. struct kvm_mmu_page *sp;
  670. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  671. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  672. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  673. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  674. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  675. INIT_LIST_HEAD(&sp->oos_link);
  676. ASSERT(is_empty_shadow_page(sp->spt));
  677. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  678. sp->multimapped = 0;
  679. sp->parent_pte = parent_pte;
  680. --vcpu->kvm->arch.n_free_mmu_pages;
  681. return sp;
  682. }
  683. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  684. struct kvm_mmu_page *sp, u64 *parent_pte)
  685. {
  686. struct kvm_pte_chain *pte_chain;
  687. struct hlist_node *node;
  688. int i;
  689. if (!parent_pte)
  690. return;
  691. if (!sp->multimapped) {
  692. u64 *old = sp->parent_pte;
  693. if (!old) {
  694. sp->parent_pte = parent_pte;
  695. return;
  696. }
  697. sp->multimapped = 1;
  698. pte_chain = mmu_alloc_pte_chain(vcpu);
  699. INIT_HLIST_HEAD(&sp->parent_ptes);
  700. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  701. pte_chain->parent_ptes[0] = old;
  702. }
  703. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  704. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  705. continue;
  706. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  707. if (!pte_chain->parent_ptes[i]) {
  708. pte_chain->parent_ptes[i] = parent_pte;
  709. return;
  710. }
  711. }
  712. pte_chain = mmu_alloc_pte_chain(vcpu);
  713. BUG_ON(!pte_chain);
  714. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  715. pte_chain->parent_ptes[0] = parent_pte;
  716. }
  717. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  718. u64 *parent_pte)
  719. {
  720. struct kvm_pte_chain *pte_chain;
  721. struct hlist_node *node;
  722. int i;
  723. if (!sp->multimapped) {
  724. BUG_ON(sp->parent_pte != parent_pte);
  725. sp->parent_pte = NULL;
  726. return;
  727. }
  728. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  729. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  730. if (!pte_chain->parent_ptes[i])
  731. break;
  732. if (pte_chain->parent_ptes[i] != parent_pte)
  733. continue;
  734. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  735. && pte_chain->parent_ptes[i + 1]) {
  736. pte_chain->parent_ptes[i]
  737. = pte_chain->parent_ptes[i + 1];
  738. ++i;
  739. }
  740. pte_chain->parent_ptes[i] = NULL;
  741. if (i == 0) {
  742. hlist_del(&pte_chain->link);
  743. mmu_free_pte_chain(pte_chain);
  744. if (hlist_empty(&sp->parent_ptes)) {
  745. sp->multimapped = 0;
  746. sp->parent_pte = NULL;
  747. }
  748. }
  749. return;
  750. }
  751. BUG();
  752. }
  753. static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  754. mmu_parent_walk_fn fn)
  755. {
  756. struct kvm_pte_chain *pte_chain;
  757. struct hlist_node *node;
  758. struct kvm_mmu_page *parent_sp;
  759. int i;
  760. if (!sp->multimapped && sp->parent_pte) {
  761. parent_sp = page_header(__pa(sp->parent_pte));
  762. fn(vcpu, parent_sp);
  763. mmu_parent_walk(vcpu, parent_sp, fn);
  764. return;
  765. }
  766. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  767. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  768. if (!pte_chain->parent_ptes[i])
  769. break;
  770. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  771. fn(vcpu, parent_sp);
  772. mmu_parent_walk(vcpu, parent_sp, fn);
  773. }
  774. }
  775. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  776. {
  777. unsigned int index;
  778. struct kvm_mmu_page *sp = page_header(__pa(spte));
  779. index = spte - sp->spt;
  780. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  781. sp->unsync_children++;
  782. WARN_ON(!sp->unsync_children);
  783. }
  784. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  785. {
  786. struct kvm_pte_chain *pte_chain;
  787. struct hlist_node *node;
  788. int i;
  789. if (!sp->parent_pte)
  790. return;
  791. if (!sp->multimapped) {
  792. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  793. return;
  794. }
  795. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  796. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  797. if (!pte_chain->parent_ptes[i])
  798. break;
  799. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  800. }
  801. }
  802. static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  803. {
  804. kvm_mmu_update_parents_unsync(sp);
  805. return 1;
  806. }
  807. static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
  808. struct kvm_mmu_page *sp)
  809. {
  810. mmu_parent_walk(vcpu, sp, unsync_walk_fn);
  811. kvm_mmu_update_parents_unsync(sp);
  812. }
  813. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  814. struct kvm_mmu_page *sp)
  815. {
  816. int i;
  817. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  818. sp->spt[i] = shadow_trap_nonpresent_pte;
  819. }
  820. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  821. struct kvm_mmu_page *sp)
  822. {
  823. return 1;
  824. }
  825. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  826. {
  827. }
  828. #define KVM_PAGE_ARRAY_NR 16
  829. struct kvm_mmu_pages {
  830. struct mmu_page_and_offset {
  831. struct kvm_mmu_page *sp;
  832. unsigned int idx;
  833. } page[KVM_PAGE_ARRAY_NR];
  834. unsigned int nr;
  835. };
  836. #define for_each_unsync_children(bitmap, idx) \
  837. for (idx = find_first_bit(bitmap, 512); \
  838. idx < 512; \
  839. idx = find_next_bit(bitmap, 512, idx+1))
  840. int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  841. int idx)
  842. {
  843. int i;
  844. if (sp->unsync)
  845. for (i=0; i < pvec->nr; i++)
  846. if (pvec->page[i].sp == sp)
  847. return 0;
  848. pvec->page[pvec->nr].sp = sp;
  849. pvec->page[pvec->nr].idx = idx;
  850. pvec->nr++;
  851. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  852. }
  853. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  854. struct kvm_mmu_pages *pvec)
  855. {
  856. int i, ret, nr_unsync_leaf = 0;
  857. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  858. u64 ent = sp->spt[i];
  859. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  860. struct kvm_mmu_page *child;
  861. child = page_header(ent & PT64_BASE_ADDR_MASK);
  862. if (child->unsync_children) {
  863. if (mmu_pages_add(pvec, child, i))
  864. return -ENOSPC;
  865. ret = __mmu_unsync_walk(child, pvec);
  866. if (!ret)
  867. __clear_bit(i, sp->unsync_child_bitmap);
  868. else if (ret > 0)
  869. nr_unsync_leaf += ret;
  870. else
  871. return ret;
  872. }
  873. if (child->unsync) {
  874. nr_unsync_leaf++;
  875. if (mmu_pages_add(pvec, child, i))
  876. return -ENOSPC;
  877. }
  878. }
  879. }
  880. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  881. sp->unsync_children = 0;
  882. return nr_unsync_leaf;
  883. }
  884. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  885. struct kvm_mmu_pages *pvec)
  886. {
  887. if (!sp->unsync_children)
  888. return 0;
  889. mmu_pages_add(pvec, sp, 0);
  890. return __mmu_unsync_walk(sp, pvec);
  891. }
  892. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  893. {
  894. unsigned index;
  895. struct hlist_head *bucket;
  896. struct kvm_mmu_page *sp;
  897. struct hlist_node *node;
  898. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  899. index = kvm_page_table_hashfn(gfn);
  900. bucket = &kvm->arch.mmu_page_hash[index];
  901. hlist_for_each_entry(sp, node, bucket, hash_link)
  902. if (sp->gfn == gfn && !sp->role.direct
  903. && !sp->role.invalid) {
  904. pgprintk("%s: found role %x\n",
  905. __func__, sp->role.word);
  906. return sp;
  907. }
  908. return NULL;
  909. }
  910. static void kvm_unlink_unsync_global(struct kvm *kvm, struct kvm_mmu_page *sp)
  911. {
  912. list_del(&sp->oos_link);
  913. --kvm->stat.mmu_unsync_global;
  914. }
  915. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  916. {
  917. WARN_ON(!sp->unsync);
  918. sp->unsync = 0;
  919. if (sp->global)
  920. kvm_unlink_unsync_global(kvm, sp);
  921. --kvm->stat.mmu_unsync;
  922. }
  923. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  924. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  925. {
  926. if (sp->role.glevels != vcpu->arch.mmu.root_level) {
  927. kvm_mmu_zap_page(vcpu->kvm, sp);
  928. return 1;
  929. }
  930. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  931. kvm_flush_remote_tlbs(vcpu->kvm);
  932. kvm_unlink_unsync_page(vcpu->kvm, sp);
  933. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  934. kvm_mmu_zap_page(vcpu->kvm, sp);
  935. return 1;
  936. }
  937. kvm_mmu_flush_tlb(vcpu);
  938. return 0;
  939. }
  940. struct mmu_page_path {
  941. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  942. unsigned int idx[PT64_ROOT_LEVEL-1];
  943. };
  944. #define for_each_sp(pvec, sp, parents, i) \
  945. for (i = mmu_pages_next(&pvec, &parents, -1), \
  946. sp = pvec.page[i].sp; \
  947. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  948. i = mmu_pages_next(&pvec, &parents, i))
  949. int mmu_pages_next(struct kvm_mmu_pages *pvec, struct mmu_page_path *parents,
  950. int i)
  951. {
  952. int n;
  953. for (n = i+1; n < pvec->nr; n++) {
  954. struct kvm_mmu_page *sp = pvec->page[n].sp;
  955. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  956. parents->idx[0] = pvec->page[n].idx;
  957. return n;
  958. }
  959. parents->parent[sp->role.level-2] = sp;
  960. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  961. }
  962. return n;
  963. }
  964. void mmu_pages_clear_parents(struct mmu_page_path *parents)
  965. {
  966. struct kvm_mmu_page *sp;
  967. unsigned int level = 0;
  968. do {
  969. unsigned int idx = parents->idx[level];
  970. sp = parents->parent[level];
  971. if (!sp)
  972. return;
  973. --sp->unsync_children;
  974. WARN_ON((int)sp->unsync_children < 0);
  975. __clear_bit(idx, sp->unsync_child_bitmap);
  976. level++;
  977. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  978. }
  979. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  980. struct mmu_page_path *parents,
  981. struct kvm_mmu_pages *pvec)
  982. {
  983. parents->parent[parent->role.level-1] = NULL;
  984. pvec->nr = 0;
  985. }
  986. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  987. struct kvm_mmu_page *parent)
  988. {
  989. int i;
  990. struct kvm_mmu_page *sp;
  991. struct mmu_page_path parents;
  992. struct kvm_mmu_pages pages;
  993. kvm_mmu_pages_init(parent, &parents, &pages);
  994. while (mmu_unsync_walk(parent, &pages)) {
  995. int protected = 0;
  996. for_each_sp(pages, sp, parents, i)
  997. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  998. if (protected)
  999. kvm_flush_remote_tlbs(vcpu->kvm);
  1000. for_each_sp(pages, sp, parents, i) {
  1001. kvm_sync_page(vcpu, sp);
  1002. mmu_pages_clear_parents(&parents);
  1003. }
  1004. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1005. kvm_mmu_pages_init(parent, &parents, &pages);
  1006. }
  1007. }
  1008. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1009. gfn_t gfn,
  1010. gva_t gaddr,
  1011. unsigned level,
  1012. int direct,
  1013. unsigned access,
  1014. u64 *parent_pte)
  1015. {
  1016. union kvm_mmu_page_role role;
  1017. unsigned index;
  1018. unsigned quadrant;
  1019. struct hlist_head *bucket;
  1020. struct kvm_mmu_page *sp;
  1021. struct hlist_node *node, *tmp;
  1022. role = vcpu->arch.mmu.base_role;
  1023. role.level = level;
  1024. role.direct = direct;
  1025. role.access = access;
  1026. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1027. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1028. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1029. role.quadrant = quadrant;
  1030. }
  1031. pgprintk("%s: looking gfn %lx role %x\n", __func__,
  1032. gfn, role.word);
  1033. index = kvm_page_table_hashfn(gfn);
  1034. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1035. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1036. if (sp->gfn == gfn) {
  1037. if (sp->unsync)
  1038. if (kvm_sync_page(vcpu, sp))
  1039. continue;
  1040. if (sp->role.word != role.word)
  1041. continue;
  1042. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1043. if (sp->unsync_children) {
  1044. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1045. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1046. }
  1047. pgprintk("%s: found\n", __func__);
  1048. return sp;
  1049. }
  1050. ++vcpu->kvm->stat.mmu_cache_miss;
  1051. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1052. if (!sp)
  1053. return sp;
  1054. pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
  1055. sp->gfn = gfn;
  1056. sp->role = role;
  1057. sp->global = role.cr4_pge;
  1058. hlist_add_head(&sp->hash_link, bucket);
  1059. if (!direct) {
  1060. if (rmap_write_protect(vcpu->kvm, gfn))
  1061. kvm_flush_remote_tlbs(vcpu->kvm);
  1062. account_shadowed(vcpu->kvm, gfn);
  1063. }
  1064. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1065. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1066. else
  1067. nonpaging_prefetch_page(vcpu, sp);
  1068. return sp;
  1069. }
  1070. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1071. struct kvm_vcpu *vcpu, u64 addr)
  1072. {
  1073. iterator->addr = addr;
  1074. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1075. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1076. if (iterator->level == PT32E_ROOT_LEVEL) {
  1077. iterator->shadow_addr
  1078. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1079. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1080. --iterator->level;
  1081. if (!iterator->shadow_addr)
  1082. iterator->level = 0;
  1083. }
  1084. }
  1085. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1086. {
  1087. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1088. return false;
  1089. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1090. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1091. return true;
  1092. }
  1093. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1094. {
  1095. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1096. --iterator->level;
  1097. }
  1098. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1099. struct kvm_mmu_page *sp)
  1100. {
  1101. unsigned i;
  1102. u64 *pt;
  1103. u64 ent;
  1104. pt = sp->spt;
  1105. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1106. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1107. if (is_shadow_present_pte(pt[i]))
  1108. rmap_remove(kvm, &pt[i]);
  1109. pt[i] = shadow_trap_nonpresent_pte;
  1110. }
  1111. return;
  1112. }
  1113. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1114. ent = pt[i];
  1115. if (is_shadow_present_pte(ent)) {
  1116. if (!is_large_pte(ent)) {
  1117. ent &= PT64_BASE_ADDR_MASK;
  1118. mmu_page_remove_parent_pte(page_header(ent),
  1119. &pt[i]);
  1120. } else {
  1121. --kvm->stat.lpages;
  1122. rmap_remove(kvm, &pt[i]);
  1123. }
  1124. }
  1125. pt[i] = shadow_trap_nonpresent_pte;
  1126. }
  1127. }
  1128. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1129. {
  1130. mmu_page_remove_parent_pte(sp, parent_pte);
  1131. }
  1132. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1133. {
  1134. int i;
  1135. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  1136. if (kvm->vcpus[i])
  1137. kvm->vcpus[i]->arch.last_pte_updated = NULL;
  1138. }
  1139. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1140. {
  1141. u64 *parent_pte;
  1142. while (sp->multimapped || sp->parent_pte) {
  1143. if (!sp->multimapped)
  1144. parent_pte = sp->parent_pte;
  1145. else {
  1146. struct kvm_pte_chain *chain;
  1147. chain = container_of(sp->parent_ptes.first,
  1148. struct kvm_pte_chain, link);
  1149. parent_pte = chain->parent_ptes[0];
  1150. }
  1151. BUG_ON(!parent_pte);
  1152. kvm_mmu_put_page(sp, parent_pte);
  1153. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  1154. }
  1155. }
  1156. static int mmu_zap_unsync_children(struct kvm *kvm,
  1157. struct kvm_mmu_page *parent)
  1158. {
  1159. int i, zapped = 0;
  1160. struct mmu_page_path parents;
  1161. struct kvm_mmu_pages pages;
  1162. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1163. return 0;
  1164. kvm_mmu_pages_init(parent, &parents, &pages);
  1165. while (mmu_unsync_walk(parent, &pages)) {
  1166. struct kvm_mmu_page *sp;
  1167. for_each_sp(pages, sp, parents, i) {
  1168. kvm_mmu_zap_page(kvm, sp);
  1169. mmu_pages_clear_parents(&parents);
  1170. }
  1171. zapped += pages.nr;
  1172. kvm_mmu_pages_init(parent, &parents, &pages);
  1173. }
  1174. return zapped;
  1175. }
  1176. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1177. {
  1178. int ret;
  1179. ++kvm->stat.mmu_shadow_zapped;
  1180. ret = mmu_zap_unsync_children(kvm, sp);
  1181. kvm_mmu_page_unlink_children(kvm, sp);
  1182. kvm_mmu_unlink_parents(kvm, sp);
  1183. kvm_flush_remote_tlbs(kvm);
  1184. if (!sp->role.invalid && !sp->role.direct)
  1185. unaccount_shadowed(kvm, sp->gfn);
  1186. if (sp->unsync)
  1187. kvm_unlink_unsync_page(kvm, sp);
  1188. if (!sp->root_count) {
  1189. hlist_del(&sp->hash_link);
  1190. kvm_mmu_free_page(kvm, sp);
  1191. } else {
  1192. sp->role.invalid = 1;
  1193. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1194. kvm_reload_remote_mmus(kvm);
  1195. }
  1196. kvm_mmu_reset_last_pte_updated(kvm);
  1197. return ret;
  1198. }
  1199. /*
  1200. * Changing the number of mmu pages allocated to the vm
  1201. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1202. */
  1203. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1204. {
  1205. /*
  1206. * If we set the number of mmu pages to be smaller be than the
  1207. * number of actived pages , we must to free some mmu pages before we
  1208. * change the value
  1209. */
  1210. if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
  1211. kvm_nr_mmu_pages) {
  1212. int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
  1213. - kvm->arch.n_free_mmu_pages;
  1214. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  1215. struct kvm_mmu_page *page;
  1216. page = container_of(kvm->arch.active_mmu_pages.prev,
  1217. struct kvm_mmu_page, link);
  1218. kvm_mmu_zap_page(kvm, page);
  1219. n_used_mmu_pages--;
  1220. }
  1221. kvm->arch.n_free_mmu_pages = 0;
  1222. }
  1223. else
  1224. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1225. - kvm->arch.n_alloc_mmu_pages;
  1226. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1227. }
  1228. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1229. {
  1230. unsigned index;
  1231. struct hlist_head *bucket;
  1232. struct kvm_mmu_page *sp;
  1233. struct hlist_node *node, *n;
  1234. int r;
  1235. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1236. r = 0;
  1237. index = kvm_page_table_hashfn(gfn);
  1238. bucket = &kvm->arch.mmu_page_hash[index];
  1239. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1240. if (sp->gfn == gfn && !sp->role.direct) {
  1241. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1242. sp->role.word);
  1243. r = 1;
  1244. if (kvm_mmu_zap_page(kvm, sp))
  1245. n = bucket->first;
  1246. }
  1247. return r;
  1248. }
  1249. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1250. {
  1251. unsigned index;
  1252. struct hlist_head *bucket;
  1253. struct kvm_mmu_page *sp;
  1254. struct hlist_node *node, *nn;
  1255. index = kvm_page_table_hashfn(gfn);
  1256. bucket = &kvm->arch.mmu_page_hash[index];
  1257. hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
  1258. if (sp->gfn == gfn && !sp->role.direct
  1259. && !sp->role.invalid) {
  1260. pgprintk("%s: zap %lx %x\n",
  1261. __func__, gfn, sp->role.word);
  1262. kvm_mmu_zap_page(kvm, sp);
  1263. }
  1264. }
  1265. }
  1266. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1267. {
  1268. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  1269. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1270. __set_bit(slot, sp->slot_bitmap);
  1271. }
  1272. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1273. {
  1274. int i;
  1275. u64 *pt = sp->spt;
  1276. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1277. return;
  1278. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1279. if (pt[i] == shadow_notrap_nonpresent_pte)
  1280. set_shadow_pte(&pt[i], shadow_trap_nonpresent_pte);
  1281. }
  1282. }
  1283. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  1284. {
  1285. struct page *page;
  1286. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1287. if (gpa == UNMAPPED_GVA)
  1288. return NULL;
  1289. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1290. return page;
  1291. }
  1292. /*
  1293. * The function is based on mtrr_type_lookup() in
  1294. * arch/x86/kernel/cpu/mtrr/generic.c
  1295. */
  1296. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1297. u64 start, u64 end)
  1298. {
  1299. int i;
  1300. u64 base, mask;
  1301. u8 prev_match, curr_match;
  1302. int num_var_ranges = KVM_NR_VAR_MTRR;
  1303. if (!mtrr_state->enabled)
  1304. return 0xFF;
  1305. /* Make end inclusive end, instead of exclusive */
  1306. end--;
  1307. /* Look in fixed ranges. Just return the type as per start */
  1308. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1309. int idx;
  1310. if (start < 0x80000) {
  1311. idx = 0;
  1312. idx += (start >> 16);
  1313. return mtrr_state->fixed_ranges[idx];
  1314. } else if (start < 0xC0000) {
  1315. idx = 1 * 8;
  1316. idx += ((start - 0x80000) >> 14);
  1317. return mtrr_state->fixed_ranges[idx];
  1318. } else if (start < 0x1000000) {
  1319. idx = 3 * 8;
  1320. idx += ((start - 0xC0000) >> 12);
  1321. return mtrr_state->fixed_ranges[idx];
  1322. }
  1323. }
  1324. /*
  1325. * Look in variable ranges
  1326. * Look of multiple ranges matching this address and pick type
  1327. * as per MTRR precedence
  1328. */
  1329. if (!(mtrr_state->enabled & 2))
  1330. return mtrr_state->def_type;
  1331. prev_match = 0xFF;
  1332. for (i = 0; i < num_var_ranges; ++i) {
  1333. unsigned short start_state, end_state;
  1334. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1335. continue;
  1336. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1337. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1338. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1339. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1340. start_state = ((start & mask) == (base & mask));
  1341. end_state = ((end & mask) == (base & mask));
  1342. if (start_state != end_state)
  1343. return 0xFE;
  1344. if ((start & mask) != (base & mask))
  1345. continue;
  1346. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1347. if (prev_match == 0xFF) {
  1348. prev_match = curr_match;
  1349. continue;
  1350. }
  1351. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1352. curr_match == MTRR_TYPE_UNCACHABLE)
  1353. return MTRR_TYPE_UNCACHABLE;
  1354. if ((prev_match == MTRR_TYPE_WRBACK &&
  1355. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1356. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1357. curr_match == MTRR_TYPE_WRBACK)) {
  1358. prev_match = MTRR_TYPE_WRTHROUGH;
  1359. curr_match = MTRR_TYPE_WRTHROUGH;
  1360. }
  1361. if (prev_match != curr_match)
  1362. return MTRR_TYPE_UNCACHABLE;
  1363. }
  1364. if (prev_match != 0xFF)
  1365. return prev_match;
  1366. return mtrr_state->def_type;
  1367. }
  1368. static u8 get_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1369. {
  1370. u8 mtrr;
  1371. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1372. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1373. if (mtrr == 0xfe || mtrr == 0xff)
  1374. mtrr = MTRR_TYPE_WRBACK;
  1375. return mtrr;
  1376. }
  1377. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1378. {
  1379. unsigned index;
  1380. struct hlist_head *bucket;
  1381. struct kvm_mmu_page *s;
  1382. struct hlist_node *node, *n;
  1383. index = kvm_page_table_hashfn(sp->gfn);
  1384. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1385. /* don't unsync if pagetable is shadowed with multiple roles */
  1386. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1387. if (s->gfn != sp->gfn || s->role.direct)
  1388. continue;
  1389. if (s->role.word != sp->role.word)
  1390. return 1;
  1391. }
  1392. ++vcpu->kvm->stat.mmu_unsync;
  1393. sp->unsync = 1;
  1394. if (sp->global) {
  1395. list_add(&sp->oos_link, &vcpu->kvm->arch.oos_global_pages);
  1396. ++vcpu->kvm->stat.mmu_unsync_global;
  1397. } else
  1398. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1399. mmu_convert_notrap(sp);
  1400. return 0;
  1401. }
  1402. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1403. bool can_unsync)
  1404. {
  1405. struct kvm_mmu_page *shadow;
  1406. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1407. if (shadow) {
  1408. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1409. return 1;
  1410. if (shadow->unsync)
  1411. return 0;
  1412. if (can_unsync && oos_shadow)
  1413. return kvm_unsync_page(vcpu, shadow);
  1414. return 1;
  1415. }
  1416. return 0;
  1417. }
  1418. static int set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  1419. unsigned pte_access, int user_fault,
  1420. int write_fault, int dirty, int largepage,
  1421. int global, gfn_t gfn, pfn_t pfn, bool speculative,
  1422. bool can_unsync)
  1423. {
  1424. u64 spte;
  1425. int ret = 0;
  1426. u64 mt_mask = shadow_mt_mask;
  1427. struct kvm_mmu_page *sp = page_header(__pa(shadow_pte));
  1428. if (!global && sp->global) {
  1429. sp->global = 0;
  1430. if (sp->unsync) {
  1431. kvm_unlink_unsync_global(vcpu->kvm, sp);
  1432. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1433. }
  1434. }
  1435. /*
  1436. * We don't set the accessed bit, since we sometimes want to see
  1437. * whether the guest actually used the pte (in order to detect
  1438. * demand paging).
  1439. */
  1440. spte = shadow_base_present_pte | shadow_dirty_mask;
  1441. if (!speculative)
  1442. spte |= shadow_accessed_mask;
  1443. if (!dirty)
  1444. pte_access &= ~ACC_WRITE_MASK;
  1445. if (pte_access & ACC_EXEC_MASK)
  1446. spte |= shadow_x_mask;
  1447. else
  1448. spte |= shadow_nx_mask;
  1449. if (pte_access & ACC_USER_MASK)
  1450. spte |= shadow_user_mask;
  1451. if (largepage)
  1452. spte |= PT_PAGE_SIZE_MASK;
  1453. if (mt_mask) {
  1454. if (!kvm_is_mmio_pfn(pfn)) {
  1455. mt_mask = get_memory_type(vcpu, gfn) <<
  1456. kvm_x86_ops->get_mt_mask_shift();
  1457. mt_mask |= VMX_EPT_IGMT_BIT;
  1458. } else
  1459. mt_mask = MTRR_TYPE_UNCACHABLE <<
  1460. kvm_x86_ops->get_mt_mask_shift();
  1461. spte |= mt_mask;
  1462. }
  1463. spte |= (u64)pfn << PAGE_SHIFT;
  1464. if ((pte_access & ACC_WRITE_MASK)
  1465. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1466. if (largepage && has_wrprotected_page(vcpu->kvm, gfn)) {
  1467. ret = 1;
  1468. spte = shadow_trap_nonpresent_pte;
  1469. goto set_pte;
  1470. }
  1471. spte |= PT_WRITABLE_MASK;
  1472. /*
  1473. * Optimization: for pte sync, if spte was writable the hash
  1474. * lookup is unnecessary (and expensive). Write protection
  1475. * is responsibility of mmu_get_page / kvm_sync_page.
  1476. * Same reasoning can be applied to dirty page accounting.
  1477. */
  1478. if (!can_unsync && is_writeble_pte(*shadow_pte))
  1479. goto set_pte;
  1480. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1481. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1482. __func__, gfn);
  1483. ret = 1;
  1484. pte_access &= ~ACC_WRITE_MASK;
  1485. if (is_writeble_pte(spte))
  1486. spte &= ~PT_WRITABLE_MASK;
  1487. }
  1488. }
  1489. if (pte_access & ACC_WRITE_MASK)
  1490. mark_page_dirty(vcpu->kvm, gfn);
  1491. set_pte:
  1492. set_shadow_pte(shadow_pte, spte);
  1493. return ret;
  1494. }
  1495. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  1496. unsigned pt_access, unsigned pte_access,
  1497. int user_fault, int write_fault, int dirty,
  1498. int *ptwrite, int largepage, int global,
  1499. gfn_t gfn, pfn_t pfn, bool speculative)
  1500. {
  1501. int was_rmapped = 0;
  1502. int was_writeble = is_writeble_pte(*shadow_pte);
  1503. pgprintk("%s: spte %llx access %x write_fault %d"
  1504. " user_fault %d gfn %lx\n",
  1505. __func__, *shadow_pte, pt_access,
  1506. write_fault, user_fault, gfn);
  1507. if (is_rmap_pte(*shadow_pte)) {
  1508. /*
  1509. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1510. * the parent of the now unreachable PTE.
  1511. */
  1512. if (largepage && !is_large_pte(*shadow_pte)) {
  1513. struct kvm_mmu_page *child;
  1514. u64 pte = *shadow_pte;
  1515. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1516. mmu_page_remove_parent_pte(child, shadow_pte);
  1517. } else if (pfn != spte_to_pfn(*shadow_pte)) {
  1518. pgprintk("hfn old %lx new %lx\n",
  1519. spte_to_pfn(*shadow_pte), pfn);
  1520. rmap_remove(vcpu->kvm, shadow_pte);
  1521. } else {
  1522. if (largepage)
  1523. was_rmapped = is_large_pte(*shadow_pte);
  1524. else
  1525. was_rmapped = 1;
  1526. }
  1527. }
  1528. if (set_spte(vcpu, shadow_pte, pte_access, user_fault, write_fault,
  1529. dirty, largepage, global, gfn, pfn, speculative, true)) {
  1530. if (write_fault)
  1531. *ptwrite = 1;
  1532. kvm_x86_ops->tlb_flush(vcpu);
  1533. }
  1534. pgprintk("%s: setting spte %llx\n", __func__, *shadow_pte);
  1535. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1536. is_large_pte(*shadow_pte)? "2MB" : "4kB",
  1537. is_present_pte(*shadow_pte)?"RW":"R", gfn,
  1538. *shadow_pte, shadow_pte);
  1539. if (!was_rmapped && is_large_pte(*shadow_pte))
  1540. ++vcpu->kvm->stat.lpages;
  1541. page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
  1542. if (!was_rmapped) {
  1543. rmap_add(vcpu, shadow_pte, gfn, largepage);
  1544. if (!is_rmap_pte(*shadow_pte))
  1545. kvm_release_pfn_clean(pfn);
  1546. } else {
  1547. if (was_writeble)
  1548. kvm_release_pfn_dirty(pfn);
  1549. else
  1550. kvm_release_pfn_clean(pfn);
  1551. }
  1552. if (speculative) {
  1553. vcpu->arch.last_pte_updated = shadow_pte;
  1554. vcpu->arch.last_pte_gfn = gfn;
  1555. }
  1556. }
  1557. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1558. {
  1559. }
  1560. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1561. int largepage, gfn_t gfn, pfn_t pfn)
  1562. {
  1563. struct kvm_shadow_walk_iterator iterator;
  1564. struct kvm_mmu_page *sp;
  1565. int pt_write = 0;
  1566. gfn_t pseudo_gfn;
  1567. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1568. if (iterator.level == PT_PAGE_TABLE_LEVEL
  1569. || (largepage && iterator.level == PT_DIRECTORY_LEVEL)) {
  1570. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1571. 0, write, 1, &pt_write,
  1572. largepage, 0, gfn, pfn, false);
  1573. ++vcpu->stat.pf_fixed;
  1574. break;
  1575. }
  1576. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1577. pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1578. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1579. iterator.level - 1,
  1580. 1, ACC_ALL, iterator.sptep);
  1581. if (!sp) {
  1582. pgprintk("nonpaging_map: ENOMEM\n");
  1583. kvm_release_pfn_clean(pfn);
  1584. return -ENOMEM;
  1585. }
  1586. set_shadow_pte(iterator.sptep,
  1587. __pa(sp->spt)
  1588. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1589. | shadow_user_mask | shadow_x_mask);
  1590. }
  1591. }
  1592. return pt_write;
  1593. }
  1594. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1595. {
  1596. int r;
  1597. int largepage = 0;
  1598. pfn_t pfn;
  1599. unsigned long mmu_seq;
  1600. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1601. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1602. largepage = 1;
  1603. }
  1604. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1605. smp_rmb();
  1606. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1607. /* mmio */
  1608. if (is_error_pfn(pfn)) {
  1609. kvm_release_pfn_clean(pfn);
  1610. return 1;
  1611. }
  1612. spin_lock(&vcpu->kvm->mmu_lock);
  1613. if (mmu_notifier_retry(vcpu, mmu_seq))
  1614. goto out_unlock;
  1615. kvm_mmu_free_some_pages(vcpu);
  1616. r = __direct_map(vcpu, v, write, largepage, gfn, pfn);
  1617. spin_unlock(&vcpu->kvm->mmu_lock);
  1618. return r;
  1619. out_unlock:
  1620. spin_unlock(&vcpu->kvm->mmu_lock);
  1621. kvm_release_pfn_clean(pfn);
  1622. return 0;
  1623. }
  1624. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1625. {
  1626. int i;
  1627. struct kvm_mmu_page *sp;
  1628. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1629. return;
  1630. spin_lock(&vcpu->kvm->mmu_lock);
  1631. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1632. hpa_t root = vcpu->arch.mmu.root_hpa;
  1633. sp = page_header(root);
  1634. --sp->root_count;
  1635. if (!sp->root_count && sp->role.invalid)
  1636. kvm_mmu_zap_page(vcpu->kvm, sp);
  1637. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1638. spin_unlock(&vcpu->kvm->mmu_lock);
  1639. return;
  1640. }
  1641. for (i = 0; i < 4; ++i) {
  1642. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1643. if (root) {
  1644. root &= PT64_BASE_ADDR_MASK;
  1645. sp = page_header(root);
  1646. --sp->root_count;
  1647. if (!sp->root_count && sp->role.invalid)
  1648. kvm_mmu_zap_page(vcpu->kvm, sp);
  1649. }
  1650. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1651. }
  1652. spin_unlock(&vcpu->kvm->mmu_lock);
  1653. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1654. }
  1655. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1656. {
  1657. int i;
  1658. gfn_t root_gfn;
  1659. struct kvm_mmu_page *sp;
  1660. int direct = 0;
  1661. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1662. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1663. hpa_t root = vcpu->arch.mmu.root_hpa;
  1664. ASSERT(!VALID_PAGE(root));
  1665. if (tdp_enabled)
  1666. direct = 1;
  1667. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1668. PT64_ROOT_LEVEL, direct,
  1669. ACC_ALL, NULL);
  1670. root = __pa(sp->spt);
  1671. ++sp->root_count;
  1672. vcpu->arch.mmu.root_hpa = root;
  1673. return;
  1674. }
  1675. direct = !is_paging(vcpu);
  1676. if (tdp_enabled)
  1677. direct = 1;
  1678. for (i = 0; i < 4; ++i) {
  1679. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1680. ASSERT(!VALID_PAGE(root));
  1681. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1682. if (!is_present_pte(vcpu->arch.pdptrs[i])) {
  1683. vcpu->arch.mmu.pae_root[i] = 0;
  1684. continue;
  1685. }
  1686. root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
  1687. } else if (vcpu->arch.mmu.root_level == 0)
  1688. root_gfn = 0;
  1689. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1690. PT32_ROOT_LEVEL, direct,
  1691. ACC_ALL, NULL);
  1692. root = __pa(sp->spt);
  1693. ++sp->root_count;
  1694. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1695. }
  1696. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1697. }
  1698. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1699. {
  1700. int i;
  1701. struct kvm_mmu_page *sp;
  1702. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1703. return;
  1704. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1705. hpa_t root = vcpu->arch.mmu.root_hpa;
  1706. sp = page_header(root);
  1707. mmu_sync_children(vcpu, sp);
  1708. return;
  1709. }
  1710. for (i = 0; i < 4; ++i) {
  1711. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1712. if (root) {
  1713. root &= PT64_BASE_ADDR_MASK;
  1714. sp = page_header(root);
  1715. mmu_sync_children(vcpu, sp);
  1716. }
  1717. }
  1718. }
  1719. static void mmu_sync_global(struct kvm_vcpu *vcpu)
  1720. {
  1721. struct kvm *kvm = vcpu->kvm;
  1722. struct kvm_mmu_page *sp, *n;
  1723. list_for_each_entry_safe(sp, n, &kvm->arch.oos_global_pages, oos_link)
  1724. kvm_sync_page(vcpu, sp);
  1725. }
  1726. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1727. {
  1728. spin_lock(&vcpu->kvm->mmu_lock);
  1729. mmu_sync_roots(vcpu);
  1730. spin_unlock(&vcpu->kvm->mmu_lock);
  1731. }
  1732. void kvm_mmu_sync_global(struct kvm_vcpu *vcpu)
  1733. {
  1734. spin_lock(&vcpu->kvm->mmu_lock);
  1735. mmu_sync_global(vcpu);
  1736. spin_unlock(&vcpu->kvm->mmu_lock);
  1737. }
  1738. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1739. {
  1740. return vaddr;
  1741. }
  1742. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1743. u32 error_code)
  1744. {
  1745. gfn_t gfn;
  1746. int r;
  1747. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1748. r = mmu_topup_memory_caches(vcpu);
  1749. if (r)
  1750. return r;
  1751. ASSERT(vcpu);
  1752. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1753. gfn = gva >> PAGE_SHIFT;
  1754. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1755. error_code & PFERR_WRITE_MASK, gfn);
  1756. }
  1757. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1758. u32 error_code)
  1759. {
  1760. pfn_t pfn;
  1761. int r;
  1762. int largepage = 0;
  1763. gfn_t gfn = gpa >> PAGE_SHIFT;
  1764. unsigned long mmu_seq;
  1765. ASSERT(vcpu);
  1766. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1767. r = mmu_topup_memory_caches(vcpu);
  1768. if (r)
  1769. return r;
  1770. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1771. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1772. largepage = 1;
  1773. }
  1774. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1775. smp_rmb();
  1776. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1777. if (is_error_pfn(pfn)) {
  1778. kvm_release_pfn_clean(pfn);
  1779. return 1;
  1780. }
  1781. spin_lock(&vcpu->kvm->mmu_lock);
  1782. if (mmu_notifier_retry(vcpu, mmu_seq))
  1783. goto out_unlock;
  1784. kvm_mmu_free_some_pages(vcpu);
  1785. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1786. largepage, gfn, pfn);
  1787. spin_unlock(&vcpu->kvm->mmu_lock);
  1788. return r;
  1789. out_unlock:
  1790. spin_unlock(&vcpu->kvm->mmu_lock);
  1791. kvm_release_pfn_clean(pfn);
  1792. return 0;
  1793. }
  1794. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1795. {
  1796. mmu_free_roots(vcpu);
  1797. }
  1798. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1799. {
  1800. struct kvm_mmu *context = &vcpu->arch.mmu;
  1801. context->new_cr3 = nonpaging_new_cr3;
  1802. context->page_fault = nonpaging_page_fault;
  1803. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1804. context->free = nonpaging_free;
  1805. context->prefetch_page = nonpaging_prefetch_page;
  1806. context->sync_page = nonpaging_sync_page;
  1807. context->invlpg = nonpaging_invlpg;
  1808. context->root_level = 0;
  1809. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1810. context->root_hpa = INVALID_PAGE;
  1811. return 0;
  1812. }
  1813. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1814. {
  1815. ++vcpu->stat.tlb_flush;
  1816. kvm_x86_ops->tlb_flush(vcpu);
  1817. }
  1818. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1819. {
  1820. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1821. mmu_free_roots(vcpu);
  1822. }
  1823. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1824. u64 addr,
  1825. u32 err_code)
  1826. {
  1827. kvm_inject_page_fault(vcpu, addr, err_code);
  1828. }
  1829. static void paging_free(struct kvm_vcpu *vcpu)
  1830. {
  1831. nonpaging_free(vcpu);
  1832. }
  1833. #define PTTYPE 64
  1834. #include "paging_tmpl.h"
  1835. #undef PTTYPE
  1836. #define PTTYPE 32
  1837. #include "paging_tmpl.h"
  1838. #undef PTTYPE
  1839. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1840. {
  1841. struct kvm_mmu *context = &vcpu->arch.mmu;
  1842. ASSERT(is_pae(vcpu));
  1843. context->new_cr3 = paging_new_cr3;
  1844. context->page_fault = paging64_page_fault;
  1845. context->gva_to_gpa = paging64_gva_to_gpa;
  1846. context->prefetch_page = paging64_prefetch_page;
  1847. context->sync_page = paging64_sync_page;
  1848. context->invlpg = paging64_invlpg;
  1849. context->free = paging_free;
  1850. context->root_level = level;
  1851. context->shadow_root_level = level;
  1852. context->root_hpa = INVALID_PAGE;
  1853. return 0;
  1854. }
  1855. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1856. {
  1857. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1858. }
  1859. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1860. {
  1861. struct kvm_mmu *context = &vcpu->arch.mmu;
  1862. context->new_cr3 = paging_new_cr3;
  1863. context->page_fault = paging32_page_fault;
  1864. context->gva_to_gpa = paging32_gva_to_gpa;
  1865. context->free = paging_free;
  1866. context->prefetch_page = paging32_prefetch_page;
  1867. context->sync_page = paging32_sync_page;
  1868. context->invlpg = paging32_invlpg;
  1869. context->root_level = PT32_ROOT_LEVEL;
  1870. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1871. context->root_hpa = INVALID_PAGE;
  1872. return 0;
  1873. }
  1874. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1875. {
  1876. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1877. }
  1878. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1879. {
  1880. struct kvm_mmu *context = &vcpu->arch.mmu;
  1881. context->new_cr3 = nonpaging_new_cr3;
  1882. context->page_fault = tdp_page_fault;
  1883. context->free = nonpaging_free;
  1884. context->prefetch_page = nonpaging_prefetch_page;
  1885. context->sync_page = nonpaging_sync_page;
  1886. context->invlpg = nonpaging_invlpg;
  1887. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  1888. context->root_hpa = INVALID_PAGE;
  1889. if (!is_paging(vcpu)) {
  1890. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1891. context->root_level = 0;
  1892. } else if (is_long_mode(vcpu)) {
  1893. context->gva_to_gpa = paging64_gva_to_gpa;
  1894. context->root_level = PT64_ROOT_LEVEL;
  1895. } else if (is_pae(vcpu)) {
  1896. context->gva_to_gpa = paging64_gva_to_gpa;
  1897. context->root_level = PT32E_ROOT_LEVEL;
  1898. } else {
  1899. context->gva_to_gpa = paging32_gva_to_gpa;
  1900. context->root_level = PT32_ROOT_LEVEL;
  1901. }
  1902. return 0;
  1903. }
  1904. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  1905. {
  1906. int r;
  1907. ASSERT(vcpu);
  1908. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1909. if (!is_paging(vcpu))
  1910. r = nonpaging_init_context(vcpu);
  1911. else if (is_long_mode(vcpu))
  1912. r = paging64_init_context(vcpu);
  1913. else if (is_pae(vcpu))
  1914. r = paging32E_init_context(vcpu);
  1915. else
  1916. r = paging32_init_context(vcpu);
  1917. vcpu->arch.mmu.base_role.glevels = vcpu->arch.mmu.root_level;
  1918. return r;
  1919. }
  1920. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  1921. {
  1922. vcpu->arch.update_pte.pfn = bad_pfn;
  1923. if (tdp_enabled)
  1924. return init_kvm_tdp_mmu(vcpu);
  1925. else
  1926. return init_kvm_softmmu(vcpu);
  1927. }
  1928. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  1929. {
  1930. ASSERT(vcpu);
  1931. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  1932. vcpu->arch.mmu.free(vcpu);
  1933. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1934. }
  1935. }
  1936. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1937. {
  1938. destroy_kvm_mmu(vcpu);
  1939. return init_kvm_mmu(vcpu);
  1940. }
  1941. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  1942. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  1943. {
  1944. int r;
  1945. r = mmu_topup_memory_caches(vcpu);
  1946. if (r)
  1947. goto out;
  1948. spin_lock(&vcpu->kvm->mmu_lock);
  1949. kvm_mmu_free_some_pages(vcpu);
  1950. mmu_alloc_roots(vcpu);
  1951. mmu_sync_roots(vcpu);
  1952. spin_unlock(&vcpu->kvm->mmu_lock);
  1953. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  1954. kvm_mmu_flush_tlb(vcpu);
  1955. out:
  1956. return r;
  1957. }
  1958. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  1959. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  1960. {
  1961. mmu_free_roots(vcpu);
  1962. }
  1963. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  1964. struct kvm_mmu_page *sp,
  1965. u64 *spte)
  1966. {
  1967. u64 pte;
  1968. struct kvm_mmu_page *child;
  1969. pte = *spte;
  1970. if (is_shadow_present_pte(pte)) {
  1971. if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
  1972. is_large_pte(pte))
  1973. rmap_remove(vcpu->kvm, spte);
  1974. else {
  1975. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1976. mmu_page_remove_parent_pte(child, spte);
  1977. }
  1978. }
  1979. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1980. if (is_large_pte(pte))
  1981. --vcpu->kvm->stat.lpages;
  1982. }
  1983. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1984. struct kvm_mmu_page *sp,
  1985. u64 *spte,
  1986. const void *new)
  1987. {
  1988. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  1989. if (!vcpu->arch.update_pte.largepage ||
  1990. sp->role.glevels == PT32_ROOT_LEVEL) {
  1991. ++vcpu->kvm->stat.mmu_pde_zapped;
  1992. return;
  1993. }
  1994. }
  1995. ++vcpu->kvm->stat.mmu_pte_updated;
  1996. if (sp->role.glevels == PT32_ROOT_LEVEL)
  1997. paging32_update_pte(vcpu, sp, spte, new);
  1998. else
  1999. paging64_update_pte(vcpu, sp, spte, new);
  2000. }
  2001. static bool need_remote_flush(u64 old, u64 new)
  2002. {
  2003. if (!is_shadow_present_pte(old))
  2004. return false;
  2005. if (!is_shadow_present_pte(new))
  2006. return true;
  2007. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2008. return true;
  2009. old ^= PT64_NX_MASK;
  2010. new ^= PT64_NX_MASK;
  2011. return (old & ~new & PT64_PERM_MASK) != 0;
  2012. }
  2013. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2014. {
  2015. if (need_remote_flush(old, new))
  2016. kvm_flush_remote_tlbs(vcpu->kvm);
  2017. else
  2018. kvm_mmu_flush_tlb(vcpu);
  2019. }
  2020. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2021. {
  2022. u64 *spte = vcpu->arch.last_pte_updated;
  2023. return !!(spte && (*spte & shadow_accessed_mask));
  2024. }
  2025. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2026. const u8 *new, int bytes)
  2027. {
  2028. gfn_t gfn;
  2029. int r;
  2030. u64 gpte = 0;
  2031. pfn_t pfn;
  2032. vcpu->arch.update_pte.largepage = 0;
  2033. if (bytes != 4 && bytes != 8)
  2034. return;
  2035. /*
  2036. * Assume that the pte write on a page table of the same type
  2037. * as the current vcpu paging mode. This is nearly always true
  2038. * (might be false while changing modes). Note it is verified later
  2039. * by update_pte().
  2040. */
  2041. if (is_pae(vcpu)) {
  2042. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2043. if ((bytes == 4) && (gpa % 4 == 0)) {
  2044. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  2045. if (r)
  2046. return;
  2047. memcpy((void *)&gpte + (gpa % 8), new, 4);
  2048. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  2049. memcpy((void *)&gpte, new, 8);
  2050. }
  2051. } else {
  2052. if ((bytes == 4) && (gpa % 4 == 0))
  2053. memcpy((void *)&gpte, new, 4);
  2054. }
  2055. if (!is_present_pte(gpte))
  2056. return;
  2057. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2058. if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
  2059. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  2060. vcpu->arch.update_pte.largepage = 1;
  2061. }
  2062. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2063. smp_rmb();
  2064. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2065. if (is_error_pfn(pfn)) {
  2066. kvm_release_pfn_clean(pfn);
  2067. return;
  2068. }
  2069. vcpu->arch.update_pte.gfn = gfn;
  2070. vcpu->arch.update_pte.pfn = pfn;
  2071. }
  2072. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2073. {
  2074. u64 *spte = vcpu->arch.last_pte_updated;
  2075. if (spte
  2076. && vcpu->arch.last_pte_gfn == gfn
  2077. && shadow_accessed_mask
  2078. && !(*spte & shadow_accessed_mask)
  2079. && is_shadow_present_pte(*spte))
  2080. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2081. }
  2082. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2083. const u8 *new, int bytes,
  2084. bool guest_initiated)
  2085. {
  2086. gfn_t gfn = gpa >> PAGE_SHIFT;
  2087. struct kvm_mmu_page *sp;
  2088. struct hlist_node *node, *n;
  2089. struct hlist_head *bucket;
  2090. unsigned index;
  2091. u64 entry, gentry;
  2092. u64 *spte;
  2093. unsigned offset = offset_in_page(gpa);
  2094. unsigned pte_size;
  2095. unsigned page_offset;
  2096. unsigned misaligned;
  2097. unsigned quadrant;
  2098. int level;
  2099. int flooded = 0;
  2100. int npte;
  2101. int r;
  2102. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2103. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  2104. spin_lock(&vcpu->kvm->mmu_lock);
  2105. kvm_mmu_access_page(vcpu, gfn);
  2106. kvm_mmu_free_some_pages(vcpu);
  2107. ++vcpu->kvm->stat.mmu_pte_write;
  2108. kvm_mmu_audit(vcpu, "pre pte write");
  2109. if (guest_initiated) {
  2110. if (gfn == vcpu->arch.last_pt_write_gfn
  2111. && !last_updated_pte_accessed(vcpu)) {
  2112. ++vcpu->arch.last_pt_write_count;
  2113. if (vcpu->arch.last_pt_write_count >= 3)
  2114. flooded = 1;
  2115. } else {
  2116. vcpu->arch.last_pt_write_gfn = gfn;
  2117. vcpu->arch.last_pt_write_count = 1;
  2118. vcpu->arch.last_pte_updated = NULL;
  2119. }
  2120. }
  2121. index = kvm_page_table_hashfn(gfn);
  2122. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2123. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2124. if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
  2125. continue;
  2126. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  2127. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2128. misaligned |= bytes < 4;
  2129. if (misaligned || flooded) {
  2130. /*
  2131. * Misaligned accesses are too much trouble to fix
  2132. * up; also, they usually indicate a page is not used
  2133. * as a page table.
  2134. *
  2135. * If we're seeing too many writes to a page,
  2136. * it may no longer be a page table, or we may be
  2137. * forking, in which case it is better to unmap the
  2138. * page.
  2139. */
  2140. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2141. gpa, bytes, sp->role.word);
  2142. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2143. n = bucket->first;
  2144. ++vcpu->kvm->stat.mmu_flooded;
  2145. continue;
  2146. }
  2147. page_offset = offset;
  2148. level = sp->role.level;
  2149. npte = 1;
  2150. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  2151. page_offset <<= 1; /* 32->64 */
  2152. /*
  2153. * A 32-bit pde maps 4MB while the shadow pdes map
  2154. * only 2MB. So we need to double the offset again
  2155. * and zap two pdes instead of one.
  2156. */
  2157. if (level == PT32_ROOT_LEVEL) {
  2158. page_offset &= ~7; /* kill rounding error */
  2159. page_offset <<= 1;
  2160. npte = 2;
  2161. }
  2162. quadrant = page_offset >> PAGE_SHIFT;
  2163. page_offset &= ~PAGE_MASK;
  2164. if (quadrant != sp->role.quadrant)
  2165. continue;
  2166. }
  2167. spte = &sp->spt[page_offset / sizeof(*spte)];
  2168. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  2169. gentry = 0;
  2170. r = kvm_read_guest_atomic(vcpu->kvm,
  2171. gpa & ~(u64)(pte_size - 1),
  2172. &gentry, pte_size);
  2173. new = (const void *)&gentry;
  2174. if (r < 0)
  2175. new = NULL;
  2176. }
  2177. while (npte--) {
  2178. entry = *spte;
  2179. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2180. if (new)
  2181. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  2182. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2183. ++spte;
  2184. }
  2185. }
  2186. kvm_mmu_audit(vcpu, "post pte write");
  2187. spin_unlock(&vcpu->kvm->mmu_lock);
  2188. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2189. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2190. vcpu->arch.update_pte.pfn = bad_pfn;
  2191. }
  2192. }
  2193. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2194. {
  2195. gpa_t gpa;
  2196. int r;
  2197. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  2198. spin_lock(&vcpu->kvm->mmu_lock);
  2199. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2200. spin_unlock(&vcpu->kvm->mmu_lock);
  2201. return r;
  2202. }
  2203. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2204. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2205. {
  2206. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
  2207. struct kvm_mmu_page *sp;
  2208. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2209. struct kvm_mmu_page, link);
  2210. kvm_mmu_zap_page(vcpu->kvm, sp);
  2211. ++vcpu->kvm->stat.mmu_recycled;
  2212. }
  2213. }
  2214. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2215. {
  2216. int r;
  2217. enum emulation_result er;
  2218. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2219. if (r < 0)
  2220. goto out;
  2221. if (!r) {
  2222. r = 1;
  2223. goto out;
  2224. }
  2225. r = mmu_topup_memory_caches(vcpu);
  2226. if (r)
  2227. goto out;
  2228. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  2229. switch (er) {
  2230. case EMULATE_DONE:
  2231. return 1;
  2232. case EMULATE_DO_MMIO:
  2233. ++vcpu->stat.mmio_exits;
  2234. return 0;
  2235. case EMULATE_FAIL:
  2236. kvm_report_emulation_failure(vcpu, "pagetable");
  2237. return 1;
  2238. default:
  2239. BUG();
  2240. }
  2241. out:
  2242. return r;
  2243. }
  2244. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2245. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2246. {
  2247. vcpu->arch.mmu.invlpg(vcpu, gva);
  2248. kvm_mmu_flush_tlb(vcpu);
  2249. ++vcpu->stat.invlpg;
  2250. }
  2251. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2252. void kvm_enable_tdp(void)
  2253. {
  2254. tdp_enabled = true;
  2255. }
  2256. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2257. void kvm_disable_tdp(void)
  2258. {
  2259. tdp_enabled = false;
  2260. }
  2261. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2262. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2263. {
  2264. struct kvm_mmu_page *sp;
  2265. while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2266. sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
  2267. struct kvm_mmu_page, link);
  2268. kvm_mmu_zap_page(vcpu->kvm, sp);
  2269. cond_resched();
  2270. }
  2271. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2272. }
  2273. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2274. {
  2275. struct page *page;
  2276. int i;
  2277. ASSERT(vcpu);
  2278. if (vcpu->kvm->arch.n_requested_mmu_pages)
  2279. vcpu->kvm->arch.n_free_mmu_pages =
  2280. vcpu->kvm->arch.n_requested_mmu_pages;
  2281. else
  2282. vcpu->kvm->arch.n_free_mmu_pages =
  2283. vcpu->kvm->arch.n_alloc_mmu_pages;
  2284. /*
  2285. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2286. * Therefore we need to allocate shadow page tables in the first
  2287. * 4GB of memory, which happens to fit the DMA32 zone.
  2288. */
  2289. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2290. if (!page)
  2291. goto error_1;
  2292. vcpu->arch.mmu.pae_root = page_address(page);
  2293. for (i = 0; i < 4; ++i)
  2294. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2295. return 0;
  2296. error_1:
  2297. free_mmu_pages(vcpu);
  2298. return -ENOMEM;
  2299. }
  2300. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2301. {
  2302. ASSERT(vcpu);
  2303. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2304. return alloc_mmu_pages(vcpu);
  2305. }
  2306. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2307. {
  2308. ASSERT(vcpu);
  2309. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2310. return init_kvm_mmu(vcpu);
  2311. }
  2312. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2313. {
  2314. ASSERT(vcpu);
  2315. destroy_kvm_mmu(vcpu);
  2316. free_mmu_pages(vcpu);
  2317. mmu_free_memory_caches(vcpu);
  2318. }
  2319. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2320. {
  2321. struct kvm_mmu_page *sp;
  2322. spin_lock(&kvm->mmu_lock);
  2323. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2324. int i;
  2325. u64 *pt;
  2326. if (!test_bit(slot, sp->slot_bitmap))
  2327. continue;
  2328. pt = sp->spt;
  2329. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2330. /* avoid RMW */
  2331. if (pt[i] & PT_WRITABLE_MASK)
  2332. pt[i] &= ~PT_WRITABLE_MASK;
  2333. }
  2334. kvm_flush_remote_tlbs(kvm);
  2335. spin_unlock(&kvm->mmu_lock);
  2336. }
  2337. void kvm_mmu_zap_all(struct kvm *kvm)
  2338. {
  2339. struct kvm_mmu_page *sp, *node;
  2340. spin_lock(&kvm->mmu_lock);
  2341. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2342. if (kvm_mmu_zap_page(kvm, sp))
  2343. node = container_of(kvm->arch.active_mmu_pages.next,
  2344. struct kvm_mmu_page, link);
  2345. spin_unlock(&kvm->mmu_lock);
  2346. kvm_flush_remote_tlbs(kvm);
  2347. }
  2348. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  2349. {
  2350. struct kvm_mmu_page *page;
  2351. page = container_of(kvm->arch.active_mmu_pages.prev,
  2352. struct kvm_mmu_page, link);
  2353. kvm_mmu_zap_page(kvm, page);
  2354. }
  2355. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  2356. {
  2357. struct kvm *kvm;
  2358. struct kvm *kvm_freed = NULL;
  2359. int cache_count = 0;
  2360. spin_lock(&kvm_lock);
  2361. list_for_each_entry(kvm, &vm_list, vm_list) {
  2362. int npages;
  2363. if (!down_read_trylock(&kvm->slots_lock))
  2364. continue;
  2365. spin_lock(&kvm->mmu_lock);
  2366. npages = kvm->arch.n_alloc_mmu_pages -
  2367. kvm->arch.n_free_mmu_pages;
  2368. cache_count += npages;
  2369. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2370. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  2371. cache_count--;
  2372. kvm_freed = kvm;
  2373. }
  2374. nr_to_scan--;
  2375. spin_unlock(&kvm->mmu_lock);
  2376. up_read(&kvm->slots_lock);
  2377. }
  2378. if (kvm_freed)
  2379. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2380. spin_unlock(&kvm_lock);
  2381. return cache_count;
  2382. }
  2383. static struct shrinker mmu_shrinker = {
  2384. .shrink = mmu_shrink,
  2385. .seeks = DEFAULT_SEEKS * 10,
  2386. };
  2387. static void mmu_destroy_caches(void)
  2388. {
  2389. if (pte_chain_cache)
  2390. kmem_cache_destroy(pte_chain_cache);
  2391. if (rmap_desc_cache)
  2392. kmem_cache_destroy(rmap_desc_cache);
  2393. if (mmu_page_header_cache)
  2394. kmem_cache_destroy(mmu_page_header_cache);
  2395. }
  2396. void kvm_mmu_module_exit(void)
  2397. {
  2398. mmu_destroy_caches();
  2399. unregister_shrinker(&mmu_shrinker);
  2400. }
  2401. int kvm_mmu_module_init(void)
  2402. {
  2403. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2404. sizeof(struct kvm_pte_chain),
  2405. 0, 0, NULL);
  2406. if (!pte_chain_cache)
  2407. goto nomem;
  2408. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2409. sizeof(struct kvm_rmap_desc),
  2410. 0, 0, NULL);
  2411. if (!rmap_desc_cache)
  2412. goto nomem;
  2413. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2414. sizeof(struct kvm_mmu_page),
  2415. 0, 0, NULL);
  2416. if (!mmu_page_header_cache)
  2417. goto nomem;
  2418. register_shrinker(&mmu_shrinker);
  2419. return 0;
  2420. nomem:
  2421. mmu_destroy_caches();
  2422. return -ENOMEM;
  2423. }
  2424. /*
  2425. * Caculate mmu pages needed for kvm.
  2426. */
  2427. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2428. {
  2429. int i;
  2430. unsigned int nr_mmu_pages;
  2431. unsigned int nr_pages = 0;
  2432. for (i = 0; i < kvm->nmemslots; i++)
  2433. nr_pages += kvm->memslots[i].npages;
  2434. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2435. nr_mmu_pages = max(nr_mmu_pages,
  2436. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2437. return nr_mmu_pages;
  2438. }
  2439. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2440. unsigned len)
  2441. {
  2442. if (len > buffer->len)
  2443. return NULL;
  2444. return buffer->ptr;
  2445. }
  2446. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2447. unsigned len)
  2448. {
  2449. void *ret;
  2450. ret = pv_mmu_peek_buffer(buffer, len);
  2451. if (!ret)
  2452. return ret;
  2453. buffer->ptr += len;
  2454. buffer->len -= len;
  2455. buffer->processed += len;
  2456. return ret;
  2457. }
  2458. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2459. gpa_t addr, gpa_t value)
  2460. {
  2461. int bytes = 8;
  2462. int r;
  2463. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2464. bytes = 4;
  2465. r = mmu_topup_memory_caches(vcpu);
  2466. if (r)
  2467. return r;
  2468. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2469. return -EFAULT;
  2470. return 1;
  2471. }
  2472. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2473. {
  2474. kvm_x86_ops->tlb_flush(vcpu);
  2475. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  2476. return 1;
  2477. }
  2478. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2479. {
  2480. spin_lock(&vcpu->kvm->mmu_lock);
  2481. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2482. spin_unlock(&vcpu->kvm->mmu_lock);
  2483. return 1;
  2484. }
  2485. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2486. struct kvm_pv_mmu_op_buffer *buffer)
  2487. {
  2488. struct kvm_mmu_op_header *header;
  2489. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2490. if (!header)
  2491. return 0;
  2492. switch (header->op) {
  2493. case KVM_MMU_OP_WRITE_PTE: {
  2494. struct kvm_mmu_op_write_pte *wpte;
  2495. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2496. if (!wpte)
  2497. return 0;
  2498. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2499. wpte->pte_val);
  2500. }
  2501. case KVM_MMU_OP_FLUSH_TLB: {
  2502. struct kvm_mmu_op_flush_tlb *ftlb;
  2503. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2504. if (!ftlb)
  2505. return 0;
  2506. return kvm_pv_mmu_flush_tlb(vcpu);
  2507. }
  2508. case KVM_MMU_OP_RELEASE_PT: {
  2509. struct kvm_mmu_op_release_pt *rpt;
  2510. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2511. if (!rpt)
  2512. return 0;
  2513. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2514. }
  2515. default: return 0;
  2516. }
  2517. }
  2518. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2519. gpa_t addr, unsigned long *ret)
  2520. {
  2521. int r;
  2522. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2523. buffer->ptr = buffer->buf;
  2524. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2525. buffer->processed = 0;
  2526. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2527. if (r)
  2528. goto out;
  2529. while (buffer->len) {
  2530. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2531. if (r < 0)
  2532. goto out;
  2533. if (r == 0)
  2534. break;
  2535. }
  2536. r = 1;
  2537. out:
  2538. *ret = buffer->processed;
  2539. return r;
  2540. }
  2541. #ifdef AUDIT
  2542. static const char *audit_msg;
  2543. static gva_t canonicalize(gva_t gva)
  2544. {
  2545. #ifdef CONFIG_X86_64
  2546. gva = (long long)(gva << 16) >> 16;
  2547. #endif
  2548. return gva;
  2549. }
  2550. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2551. gva_t va, int level)
  2552. {
  2553. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2554. int i;
  2555. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2556. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2557. u64 ent = pt[i];
  2558. if (ent == shadow_trap_nonpresent_pte)
  2559. continue;
  2560. va = canonicalize(va);
  2561. if (level > 1) {
  2562. if (ent == shadow_notrap_nonpresent_pte)
  2563. printk(KERN_ERR "audit: (%s) nontrapping pte"
  2564. " in nonleaf level: levels %d gva %lx"
  2565. " level %d pte %llx\n", audit_msg,
  2566. vcpu->arch.mmu.root_level, va, level, ent);
  2567. audit_mappings_page(vcpu, ent, va, level - 1);
  2568. } else {
  2569. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  2570. hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
  2571. if (is_shadow_present_pte(ent)
  2572. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2573. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2574. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2575. audit_msg, vcpu->arch.mmu.root_level,
  2576. va, gpa, hpa, ent,
  2577. is_shadow_present_pte(ent));
  2578. else if (ent == shadow_notrap_nonpresent_pte
  2579. && !is_error_hpa(hpa))
  2580. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2581. " valid guest gva %lx\n", audit_msg, va);
  2582. kvm_release_pfn_clean(pfn);
  2583. }
  2584. }
  2585. }
  2586. static void audit_mappings(struct kvm_vcpu *vcpu)
  2587. {
  2588. unsigned i;
  2589. if (vcpu->arch.mmu.root_level == 4)
  2590. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2591. else
  2592. for (i = 0; i < 4; ++i)
  2593. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2594. audit_mappings_page(vcpu,
  2595. vcpu->arch.mmu.pae_root[i],
  2596. i << 30,
  2597. 2);
  2598. }
  2599. static int count_rmaps(struct kvm_vcpu *vcpu)
  2600. {
  2601. int nmaps = 0;
  2602. int i, j, k;
  2603. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2604. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  2605. struct kvm_rmap_desc *d;
  2606. for (j = 0; j < m->npages; ++j) {
  2607. unsigned long *rmapp = &m->rmap[j];
  2608. if (!*rmapp)
  2609. continue;
  2610. if (!(*rmapp & 1)) {
  2611. ++nmaps;
  2612. continue;
  2613. }
  2614. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2615. while (d) {
  2616. for (k = 0; k < RMAP_EXT; ++k)
  2617. if (d->shadow_ptes[k])
  2618. ++nmaps;
  2619. else
  2620. break;
  2621. d = d->more;
  2622. }
  2623. }
  2624. }
  2625. return nmaps;
  2626. }
  2627. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  2628. {
  2629. int nmaps = 0;
  2630. struct kvm_mmu_page *sp;
  2631. int i;
  2632. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2633. u64 *pt = sp->spt;
  2634. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2635. continue;
  2636. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2637. u64 ent = pt[i];
  2638. if (!(ent & PT_PRESENT_MASK))
  2639. continue;
  2640. if (!(ent & PT_WRITABLE_MASK))
  2641. continue;
  2642. ++nmaps;
  2643. }
  2644. }
  2645. return nmaps;
  2646. }
  2647. static void audit_rmap(struct kvm_vcpu *vcpu)
  2648. {
  2649. int n_rmap = count_rmaps(vcpu);
  2650. int n_actual = count_writable_mappings(vcpu);
  2651. if (n_rmap != n_actual)
  2652. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  2653. __func__, audit_msg, n_rmap, n_actual);
  2654. }
  2655. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2656. {
  2657. struct kvm_mmu_page *sp;
  2658. struct kvm_memory_slot *slot;
  2659. unsigned long *rmapp;
  2660. gfn_t gfn;
  2661. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2662. if (sp->role.direct)
  2663. continue;
  2664. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2665. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2666. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2667. if (*rmapp)
  2668. printk(KERN_ERR "%s: (%s) shadow page has writable"
  2669. " mappings: gfn %lx role %x\n",
  2670. __func__, audit_msg, sp->gfn,
  2671. sp->role.word);
  2672. }
  2673. }
  2674. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2675. {
  2676. int olddbg = dbg;
  2677. dbg = 0;
  2678. audit_msg = msg;
  2679. audit_rmap(vcpu);
  2680. audit_write_protection(vcpu);
  2681. audit_mappings(vcpu);
  2682. dbg = olddbg;
  2683. }
  2684. #endif