iop-adma.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774
  1. /*
  2. * offload engine driver for the Intel Xscale series of i/o processors
  3. * Copyright © 2006, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  17. *
  18. */
  19. /*
  20. * This driver supports the asynchrounous DMA copy and RAID engines available
  21. * on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
  22. */
  23. #include <linux/init.h>
  24. #include <linux/module.h>
  25. #include <linux/delay.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/platform_device.h>
  30. #include <linux/memory.h>
  31. #include <linux/ioport.h>
  32. #include <linux/raid/pq.h>
  33. #include <mach/adma.h>
  34. #define to_iop_adma_chan(chan) container_of(chan, struct iop_adma_chan, common)
  35. #define to_iop_adma_device(dev) \
  36. container_of(dev, struct iop_adma_device, common)
  37. #define tx_to_iop_adma_slot(tx) \
  38. container_of(tx, struct iop_adma_desc_slot, async_tx)
  39. /**
  40. * iop_adma_free_slots - flags descriptor slots for reuse
  41. * @slot: Slot to free
  42. * Caller must hold &iop_chan->lock while calling this function
  43. */
  44. static void iop_adma_free_slots(struct iop_adma_desc_slot *slot)
  45. {
  46. int stride = slot->slots_per_op;
  47. while (stride--) {
  48. slot->slots_per_op = 0;
  49. slot = list_entry(slot->slot_node.next,
  50. struct iop_adma_desc_slot,
  51. slot_node);
  52. }
  53. }
  54. static void
  55. iop_desc_unmap(struct iop_adma_chan *iop_chan, struct iop_adma_desc_slot *desc)
  56. {
  57. struct dma_async_tx_descriptor *tx = &desc->async_tx;
  58. struct iop_adma_desc_slot *unmap = desc->group_head;
  59. struct device *dev = &iop_chan->device->pdev->dev;
  60. u32 len = unmap->unmap_len;
  61. enum dma_ctrl_flags flags = tx->flags;
  62. u32 src_cnt;
  63. dma_addr_t addr;
  64. dma_addr_t dest;
  65. src_cnt = unmap->unmap_src_cnt;
  66. dest = iop_desc_get_dest_addr(unmap, iop_chan);
  67. if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  68. enum dma_data_direction dir;
  69. if (src_cnt > 1) /* is xor? */
  70. dir = DMA_BIDIRECTIONAL;
  71. else
  72. dir = DMA_FROM_DEVICE;
  73. dma_unmap_page(dev, dest, len, dir);
  74. }
  75. if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  76. while (src_cnt--) {
  77. addr = iop_desc_get_src_addr(unmap, iop_chan, src_cnt);
  78. if (addr == dest)
  79. continue;
  80. dma_unmap_page(dev, addr, len, DMA_TO_DEVICE);
  81. }
  82. }
  83. desc->group_head = NULL;
  84. }
  85. static void
  86. iop_desc_unmap_pq(struct iop_adma_chan *iop_chan, struct iop_adma_desc_slot *desc)
  87. {
  88. struct dma_async_tx_descriptor *tx = &desc->async_tx;
  89. struct iop_adma_desc_slot *unmap = desc->group_head;
  90. struct device *dev = &iop_chan->device->pdev->dev;
  91. u32 len = unmap->unmap_len;
  92. enum dma_ctrl_flags flags = tx->flags;
  93. u32 src_cnt = unmap->unmap_src_cnt;
  94. dma_addr_t pdest = iop_desc_get_dest_addr(unmap, iop_chan);
  95. dma_addr_t qdest = iop_desc_get_qdest_addr(unmap, iop_chan);
  96. int i;
  97. if (tx->flags & DMA_PREP_CONTINUE)
  98. src_cnt -= 3;
  99. if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP) && !desc->pq_check_result) {
  100. dma_unmap_page(dev, pdest, len, DMA_BIDIRECTIONAL);
  101. dma_unmap_page(dev, qdest, len, DMA_BIDIRECTIONAL);
  102. }
  103. if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  104. dma_addr_t addr;
  105. for (i = 0; i < src_cnt; i++) {
  106. addr = iop_desc_get_src_addr(unmap, iop_chan, i);
  107. dma_unmap_page(dev, addr, len, DMA_TO_DEVICE);
  108. }
  109. if (desc->pq_check_result) {
  110. dma_unmap_page(dev, pdest, len, DMA_TO_DEVICE);
  111. dma_unmap_page(dev, qdest, len, DMA_TO_DEVICE);
  112. }
  113. }
  114. desc->group_head = NULL;
  115. }
  116. static dma_cookie_t
  117. iop_adma_run_tx_complete_actions(struct iop_adma_desc_slot *desc,
  118. struct iop_adma_chan *iop_chan, dma_cookie_t cookie)
  119. {
  120. struct dma_async_tx_descriptor *tx = &desc->async_tx;
  121. BUG_ON(tx->cookie < 0);
  122. if (tx->cookie > 0) {
  123. cookie = tx->cookie;
  124. tx->cookie = 0;
  125. /* call the callback (must not sleep or submit new
  126. * operations to this channel)
  127. */
  128. if (tx->callback)
  129. tx->callback(tx->callback_param);
  130. /* unmap dma addresses
  131. * (unmap_single vs unmap_page?)
  132. */
  133. if (desc->group_head && desc->unmap_len) {
  134. if (iop_desc_is_pq(desc))
  135. iop_desc_unmap_pq(iop_chan, desc);
  136. else
  137. iop_desc_unmap(iop_chan, desc);
  138. }
  139. }
  140. /* run dependent operations */
  141. dma_run_dependencies(tx);
  142. return cookie;
  143. }
  144. static int
  145. iop_adma_clean_slot(struct iop_adma_desc_slot *desc,
  146. struct iop_adma_chan *iop_chan)
  147. {
  148. /* the client is allowed to attach dependent operations
  149. * until 'ack' is set
  150. */
  151. if (!async_tx_test_ack(&desc->async_tx))
  152. return 0;
  153. /* leave the last descriptor in the chain
  154. * so we can append to it
  155. */
  156. if (desc->chain_node.next == &iop_chan->chain)
  157. return 1;
  158. dev_dbg(iop_chan->device->common.dev,
  159. "\tfree slot: %d slots_per_op: %d\n",
  160. desc->idx, desc->slots_per_op);
  161. list_del(&desc->chain_node);
  162. iop_adma_free_slots(desc);
  163. return 0;
  164. }
  165. static void __iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan)
  166. {
  167. struct iop_adma_desc_slot *iter, *_iter, *grp_start = NULL;
  168. dma_cookie_t cookie = 0;
  169. u32 current_desc = iop_chan_get_current_descriptor(iop_chan);
  170. int busy = iop_chan_is_busy(iop_chan);
  171. int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
  172. dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
  173. /* free completed slots from the chain starting with
  174. * the oldest descriptor
  175. */
  176. list_for_each_entry_safe(iter, _iter, &iop_chan->chain,
  177. chain_node) {
  178. pr_debug("\tcookie: %d slot: %d busy: %d "
  179. "this_desc: %#x next_desc: %#x ack: %d\n",
  180. iter->async_tx.cookie, iter->idx, busy,
  181. iter->async_tx.phys, iop_desc_get_next_desc(iter),
  182. async_tx_test_ack(&iter->async_tx));
  183. prefetch(_iter);
  184. prefetch(&_iter->async_tx);
  185. /* do not advance past the current descriptor loaded into the
  186. * hardware channel, subsequent descriptors are either in
  187. * process or have not been submitted
  188. */
  189. if (seen_current)
  190. break;
  191. /* stop the search if we reach the current descriptor and the
  192. * channel is busy, or if it appears that the current descriptor
  193. * needs to be re-read (i.e. has been appended to)
  194. */
  195. if (iter->async_tx.phys == current_desc) {
  196. BUG_ON(seen_current++);
  197. if (busy || iop_desc_get_next_desc(iter))
  198. break;
  199. }
  200. /* detect the start of a group transaction */
  201. if (!slot_cnt && !slots_per_op) {
  202. slot_cnt = iter->slot_cnt;
  203. slots_per_op = iter->slots_per_op;
  204. if (slot_cnt <= slots_per_op) {
  205. slot_cnt = 0;
  206. slots_per_op = 0;
  207. }
  208. }
  209. if (slot_cnt) {
  210. pr_debug("\tgroup++\n");
  211. if (!grp_start)
  212. grp_start = iter;
  213. slot_cnt -= slots_per_op;
  214. }
  215. /* all the members of a group are complete */
  216. if (slots_per_op != 0 && slot_cnt == 0) {
  217. struct iop_adma_desc_slot *grp_iter, *_grp_iter;
  218. int end_of_chain = 0;
  219. pr_debug("\tgroup end\n");
  220. /* collect the total results */
  221. if (grp_start->xor_check_result) {
  222. u32 zero_sum_result = 0;
  223. slot_cnt = grp_start->slot_cnt;
  224. grp_iter = grp_start;
  225. list_for_each_entry_from(grp_iter,
  226. &iop_chan->chain, chain_node) {
  227. zero_sum_result |=
  228. iop_desc_get_zero_result(grp_iter);
  229. pr_debug("\titer%d result: %d\n",
  230. grp_iter->idx, zero_sum_result);
  231. slot_cnt -= slots_per_op;
  232. if (slot_cnt == 0)
  233. break;
  234. }
  235. pr_debug("\tgrp_start->xor_check_result: %p\n",
  236. grp_start->xor_check_result);
  237. *grp_start->xor_check_result = zero_sum_result;
  238. }
  239. /* clean up the group */
  240. slot_cnt = grp_start->slot_cnt;
  241. grp_iter = grp_start;
  242. list_for_each_entry_safe_from(grp_iter, _grp_iter,
  243. &iop_chan->chain, chain_node) {
  244. cookie = iop_adma_run_tx_complete_actions(
  245. grp_iter, iop_chan, cookie);
  246. slot_cnt -= slots_per_op;
  247. end_of_chain = iop_adma_clean_slot(grp_iter,
  248. iop_chan);
  249. if (slot_cnt == 0 || end_of_chain)
  250. break;
  251. }
  252. /* the group should be complete at this point */
  253. BUG_ON(slot_cnt);
  254. slots_per_op = 0;
  255. grp_start = NULL;
  256. if (end_of_chain)
  257. break;
  258. else
  259. continue;
  260. } else if (slots_per_op) /* wait for group completion */
  261. continue;
  262. /* write back zero sum results (single descriptor case) */
  263. if (iter->xor_check_result && iter->async_tx.cookie)
  264. *iter->xor_check_result =
  265. iop_desc_get_zero_result(iter);
  266. cookie = iop_adma_run_tx_complete_actions(
  267. iter, iop_chan, cookie);
  268. if (iop_adma_clean_slot(iter, iop_chan))
  269. break;
  270. }
  271. if (cookie > 0) {
  272. iop_chan->completed_cookie = cookie;
  273. pr_debug("\tcompleted cookie %d\n", cookie);
  274. }
  275. }
  276. static void
  277. iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan)
  278. {
  279. spin_lock_bh(&iop_chan->lock);
  280. __iop_adma_slot_cleanup(iop_chan);
  281. spin_unlock_bh(&iop_chan->lock);
  282. }
  283. static void iop_adma_tasklet(unsigned long data)
  284. {
  285. struct iop_adma_chan *iop_chan = (struct iop_adma_chan *) data;
  286. /* lockdep will flag depedency submissions as potentially
  287. * recursive locking, this is not the case as a dependency
  288. * submission will never recurse a channels submit routine.
  289. * There are checks in async_tx.c to prevent this.
  290. */
  291. spin_lock_nested(&iop_chan->lock, SINGLE_DEPTH_NESTING);
  292. __iop_adma_slot_cleanup(iop_chan);
  293. spin_unlock(&iop_chan->lock);
  294. }
  295. static struct iop_adma_desc_slot *
  296. iop_adma_alloc_slots(struct iop_adma_chan *iop_chan, int num_slots,
  297. int slots_per_op)
  298. {
  299. struct iop_adma_desc_slot *iter, *_iter, *alloc_start = NULL;
  300. LIST_HEAD(chain);
  301. int slots_found, retry = 0;
  302. /* start search from the last allocated descrtiptor
  303. * if a contiguous allocation can not be found start searching
  304. * from the beginning of the list
  305. */
  306. retry:
  307. slots_found = 0;
  308. if (retry == 0)
  309. iter = iop_chan->last_used;
  310. else
  311. iter = list_entry(&iop_chan->all_slots,
  312. struct iop_adma_desc_slot,
  313. slot_node);
  314. list_for_each_entry_safe_continue(
  315. iter, _iter, &iop_chan->all_slots, slot_node) {
  316. prefetch(_iter);
  317. prefetch(&_iter->async_tx);
  318. if (iter->slots_per_op) {
  319. /* give up after finding the first busy slot
  320. * on the second pass through the list
  321. */
  322. if (retry)
  323. break;
  324. slots_found = 0;
  325. continue;
  326. }
  327. /* start the allocation if the slot is correctly aligned */
  328. if (!slots_found++) {
  329. if (iop_desc_is_aligned(iter, slots_per_op))
  330. alloc_start = iter;
  331. else {
  332. slots_found = 0;
  333. continue;
  334. }
  335. }
  336. if (slots_found == num_slots) {
  337. struct iop_adma_desc_slot *alloc_tail = NULL;
  338. struct iop_adma_desc_slot *last_used = NULL;
  339. iter = alloc_start;
  340. while (num_slots) {
  341. int i;
  342. dev_dbg(iop_chan->device->common.dev,
  343. "allocated slot: %d "
  344. "(desc %p phys: %#x) slots_per_op %d\n",
  345. iter->idx, iter->hw_desc,
  346. iter->async_tx.phys, slots_per_op);
  347. /* pre-ack all but the last descriptor */
  348. if (num_slots != slots_per_op)
  349. async_tx_ack(&iter->async_tx);
  350. list_add_tail(&iter->chain_node, &chain);
  351. alloc_tail = iter;
  352. iter->async_tx.cookie = 0;
  353. iter->slot_cnt = num_slots;
  354. iter->xor_check_result = NULL;
  355. for (i = 0; i < slots_per_op; i++) {
  356. iter->slots_per_op = slots_per_op - i;
  357. last_used = iter;
  358. iter = list_entry(iter->slot_node.next,
  359. struct iop_adma_desc_slot,
  360. slot_node);
  361. }
  362. num_slots -= slots_per_op;
  363. }
  364. alloc_tail->group_head = alloc_start;
  365. alloc_tail->async_tx.cookie = -EBUSY;
  366. list_splice(&chain, &alloc_tail->async_tx.tx_list);
  367. iop_chan->last_used = last_used;
  368. iop_desc_clear_next_desc(alloc_start);
  369. iop_desc_clear_next_desc(alloc_tail);
  370. return alloc_tail;
  371. }
  372. }
  373. if (!retry++)
  374. goto retry;
  375. /* perform direct reclaim if the allocation fails */
  376. __iop_adma_slot_cleanup(iop_chan);
  377. return NULL;
  378. }
  379. static dma_cookie_t
  380. iop_desc_assign_cookie(struct iop_adma_chan *iop_chan,
  381. struct iop_adma_desc_slot *desc)
  382. {
  383. dma_cookie_t cookie = iop_chan->common.cookie;
  384. cookie++;
  385. if (cookie < 0)
  386. cookie = 1;
  387. iop_chan->common.cookie = desc->async_tx.cookie = cookie;
  388. return cookie;
  389. }
  390. static void iop_adma_check_threshold(struct iop_adma_chan *iop_chan)
  391. {
  392. dev_dbg(iop_chan->device->common.dev, "pending: %d\n",
  393. iop_chan->pending);
  394. if (iop_chan->pending >= IOP_ADMA_THRESHOLD) {
  395. iop_chan->pending = 0;
  396. iop_chan_append(iop_chan);
  397. }
  398. }
  399. static dma_cookie_t
  400. iop_adma_tx_submit(struct dma_async_tx_descriptor *tx)
  401. {
  402. struct iop_adma_desc_slot *sw_desc = tx_to_iop_adma_slot(tx);
  403. struct iop_adma_chan *iop_chan = to_iop_adma_chan(tx->chan);
  404. struct iop_adma_desc_slot *grp_start, *old_chain_tail;
  405. int slot_cnt;
  406. int slots_per_op;
  407. dma_cookie_t cookie;
  408. dma_addr_t next_dma;
  409. grp_start = sw_desc->group_head;
  410. slot_cnt = grp_start->slot_cnt;
  411. slots_per_op = grp_start->slots_per_op;
  412. spin_lock_bh(&iop_chan->lock);
  413. cookie = iop_desc_assign_cookie(iop_chan, sw_desc);
  414. old_chain_tail = list_entry(iop_chan->chain.prev,
  415. struct iop_adma_desc_slot, chain_node);
  416. list_splice_init(&sw_desc->async_tx.tx_list,
  417. &old_chain_tail->chain_node);
  418. /* fix up the hardware chain */
  419. next_dma = grp_start->async_tx.phys;
  420. iop_desc_set_next_desc(old_chain_tail, next_dma);
  421. BUG_ON(iop_desc_get_next_desc(old_chain_tail) != next_dma); /* flush */
  422. /* check for pre-chained descriptors */
  423. iop_paranoia(iop_desc_get_next_desc(sw_desc));
  424. /* increment the pending count by the number of slots
  425. * memcpy operations have a 1:1 (slot:operation) relation
  426. * other operations are heavier and will pop the threshold
  427. * more often.
  428. */
  429. iop_chan->pending += slot_cnt;
  430. iop_adma_check_threshold(iop_chan);
  431. spin_unlock_bh(&iop_chan->lock);
  432. dev_dbg(iop_chan->device->common.dev, "%s cookie: %d slot: %d\n",
  433. __func__, sw_desc->async_tx.cookie, sw_desc->idx);
  434. return cookie;
  435. }
  436. static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan);
  437. static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan);
  438. /**
  439. * iop_adma_alloc_chan_resources - returns the number of allocated descriptors
  440. * @chan - allocate descriptor resources for this channel
  441. * @client - current client requesting the channel be ready for requests
  442. *
  443. * Note: We keep the slots for 1 operation on iop_chan->chain at all times. To
  444. * avoid deadlock, via async_xor, num_descs_in_pool must at a minimum be
  445. * greater than 2x the number slots needed to satisfy a device->max_xor
  446. * request.
  447. * */
  448. static int iop_adma_alloc_chan_resources(struct dma_chan *chan)
  449. {
  450. char *hw_desc;
  451. int idx;
  452. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  453. struct iop_adma_desc_slot *slot = NULL;
  454. int init = iop_chan->slots_allocated ? 0 : 1;
  455. struct iop_adma_platform_data *plat_data =
  456. iop_chan->device->pdev->dev.platform_data;
  457. int num_descs_in_pool = plat_data->pool_size/IOP_ADMA_SLOT_SIZE;
  458. /* Allocate descriptor slots */
  459. do {
  460. idx = iop_chan->slots_allocated;
  461. if (idx == num_descs_in_pool)
  462. break;
  463. slot = kzalloc(sizeof(*slot), GFP_KERNEL);
  464. if (!slot) {
  465. printk(KERN_INFO "IOP ADMA Channel only initialized"
  466. " %d descriptor slots", idx);
  467. break;
  468. }
  469. hw_desc = (char *) iop_chan->device->dma_desc_pool_virt;
  470. slot->hw_desc = (void *) &hw_desc[idx * IOP_ADMA_SLOT_SIZE];
  471. dma_async_tx_descriptor_init(&slot->async_tx, chan);
  472. slot->async_tx.tx_submit = iop_adma_tx_submit;
  473. INIT_LIST_HEAD(&slot->chain_node);
  474. INIT_LIST_HEAD(&slot->slot_node);
  475. hw_desc = (char *) iop_chan->device->dma_desc_pool;
  476. slot->async_tx.phys =
  477. (dma_addr_t) &hw_desc[idx * IOP_ADMA_SLOT_SIZE];
  478. slot->idx = idx;
  479. spin_lock_bh(&iop_chan->lock);
  480. iop_chan->slots_allocated++;
  481. list_add_tail(&slot->slot_node, &iop_chan->all_slots);
  482. spin_unlock_bh(&iop_chan->lock);
  483. } while (iop_chan->slots_allocated < num_descs_in_pool);
  484. if (idx && !iop_chan->last_used)
  485. iop_chan->last_used = list_entry(iop_chan->all_slots.next,
  486. struct iop_adma_desc_slot,
  487. slot_node);
  488. dev_dbg(iop_chan->device->common.dev,
  489. "allocated %d descriptor slots last_used: %p\n",
  490. iop_chan->slots_allocated, iop_chan->last_used);
  491. /* initialize the channel and the chain with a null operation */
  492. if (init) {
  493. if (dma_has_cap(DMA_MEMCPY,
  494. iop_chan->device->common.cap_mask))
  495. iop_chan_start_null_memcpy(iop_chan);
  496. else if (dma_has_cap(DMA_XOR,
  497. iop_chan->device->common.cap_mask))
  498. iop_chan_start_null_xor(iop_chan);
  499. else
  500. BUG();
  501. }
  502. return (idx > 0) ? idx : -ENOMEM;
  503. }
  504. static struct dma_async_tx_descriptor *
  505. iop_adma_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags)
  506. {
  507. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  508. struct iop_adma_desc_slot *sw_desc, *grp_start;
  509. int slot_cnt, slots_per_op;
  510. dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
  511. spin_lock_bh(&iop_chan->lock);
  512. slot_cnt = iop_chan_interrupt_slot_count(&slots_per_op, iop_chan);
  513. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  514. if (sw_desc) {
  515. grp_start = sw_desc->group_head;
  516. iop_desc_init_interrupt(grp_start, iop_chan);
  517. grp_start->unmap_len = 0;
  518. sw_desc->async_tx.flags = flags;
  519. }
  520. spin_unlock_bh(&iop_chan->lock);
  521. return sw_desc ? &sw_desc->async_tx : NULL;
  522. }
  523. static struct dma_async_tx_descriptor *
  524. iop_adma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
  525. dma_addr_t dma_src, size_t len, unsigned long flags)
  526. {
  527. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  528. struct iop_adma_desc_slot *sw_desc, *grp_start;
  529. int slot_cnt, slots_per_op;
  530. if (unlikely(!len))
  531. return NULL;
  532. BUG_ON(unlikely(len > IOP_ADMA_MAX_BYTE_COUNT));
  533. dev_dbg(iop_chan->device->common.dev, "%s len: %u\n",
  534. __func__, len);
  535. spin_lock_bh(&iop_chan->lock);
  536. slot_cnt = iop_chan_memcpy_slot_count(len, &slots_per_op);
  537. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  538. if (sw_desc) {
  539. grp_start = sw_desc->group_head;
  540. iop_desc_init_memcpy(grp_start, flags);
  541. iop_desc_set_byte_count(grp_start, iop_chan, len);
  542. iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
  543. iop_desc_set_memcpy_src_addr(grp_start, dma_src);
  544. sw_desc->unmap_src_cnt = 1;
  545. sw_desc->unmap_len = len;
  546. sw_desc->async_tx.flags = flags;
  547. }
  548. spin_unlock_bh(&iop_chan->lock);
  549. return sw_desc ? &sw_desc->async_tx : NULL;
  550. }
  551. static struct dma_async_tx_descriptor *
  552. iop_adma_prep_dma_memset(struct dma_chan *chan, dma_addr_t dma_dest,
  553. int value, size_t len, unsigned long flags)
  554. {
  555. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  556. struct iop_adma_desc_slot *sw_desc, *grp_start;
  557. int slot_cnt, slots_per_op;
  558. if (unlikely(!len))
  559. return NULL;
  560. BUG_ON(unlikely(len > IOP_ADMA_MAX_BYTE_COUNT));
  561. dev_dbg(iop_chan->device->common.dev, "%s len: %u\n",
  562. __func__, len);
  563. spin_lock_bh(&iop_chan->lock);
  564. slot_cnt = iop_chan_memset_slot_count(len, &slots_per_op);
  565. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  566. if (sw_desc) {
  567. grp_start = sw_desc->group_head;
  568. iop_desc_init_memset(grp_start, flags);
  569. iop_desc_set_byte_count(grp_start, iop_chan, len);
  570. iop_desc_set_block_fill_val(grp_start, value);
  571. iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
  572. sw_desc->unmap_src_cnt = 1;
  573. sw_desc->unmap_len = len;
  574. sw_desc->async_tx.flags = flags;
  575. }
  576. spin_unlock_bh(&iop_chan->lock);
  577. return sw_desc ? &sw_desc->async_tx : NULL;
  578. }
  579. static struct dma_async_tx_descriptor *
  580. iop_adma_prep_dma_xor(struct dma_chan *chan, dma_addr_t dma_dest,
  581. dma_addr_t *dma_src, unsigned int src_cnt, size_t len,
  582. unsigned long flags)
  583. {
  584. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  585. struct iop_adma_desc_slot *sw_desc, *grp_start;
  586. int slot_cnt, slots_per_op;
  587. if (unlikely(!len))
  588. return NULL;
  589. BUG_ON(unlikely(len > IOP_ADMA_XOR_MAX_BYTE_COUNT));
  590. dev_dbg(iop_chan->device->common.dev,
  591. "%s src_cnt: %d len: %u flags: %lx\n",
  592. __func__, src_cnt, len, flags);
  593. spin_lock_bh(&iop_chan->lock);
  594. slot_cnt = iop_chan_xor_slot_count(len, src_cnt, &slots_per_op);
  595. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  596. if (sw_desc) {
  597. grp_start = sw_desc->group_head;
  598. iop_desc_init_xor(grp_start, src_cnt, flags);
  599. iop_desc_set_byte_count(grp_start, iop_chan, len);
  600. iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
  601. sw_desc->unmap_src_cnt = src_cnt;
  602. sw_desc->unmap_len = len;
  603. sw_desc->async_tx.flags = flags;
  604. while (src_cnt--)
  605. iop_desc_set_xor_src_addr(grp_start, src_cnt,
  606. dma_src[src_cnt]);
  607. }
  608. spin_unlock_bh(&iop_chan->lock);
  609. return sw_desc ? &sw_desc->async_tx : NULL;
  610. }
  611. static struct dma_async_tx_descriptor *
  612. iop_adma_prep_dma_xor_val(struct dma_chan *chan, dma_addr_t *dma_src,
  613. unsigned int src_cnt, size_t len, u32 *result,
  614. unsigned long flags)
  615. {
  616. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  617. struct iop_adma_desc_slot *sw_desc, *grp_start;
  618. int slot_cnt, slots_per_op;
  619. if (unlikely(!len))
  620. return NULL;
  621. dev_dbg(iop_chan->device->common.dev, "%s src_cnt: %d len: %u\n",
  622. __func__, src_cnt, len);
  623. spin_lock_bh(&iop_chan->lock);
  624. slot_cnt = iop_chan_zero_sum_slot_count(len, src_cnt, &slots_per_op);
  625. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  626. if (sw_desc) {
  627. grp_start = sw_desc->group_head;
  628. iop_desc_init_zero_sum(grp_start, src_cnt, flags);
  629. iop_desc_set_zero_sum_byte_count(grp_start, len);
  630. grp_start->xor_check_result = result;
  631. pr_debug("\t%s: grp_start->xor_check_result: %p\n",
  632. __func__, grp_start->xor_check_result);
  633. sw_desc->unmap_src_cnt = src_cnt;
  634. sw_desc->unmap_len = len;
  635. sw_desc->async_tx.flags = flags;
  636. while (src_cnt--)
  637. iop_desc_set_zero_sum_src_addr(grp_start, src_cnt,
  638. dma_src[src_cnt]);
  639. }
  640. spin_unlock_bh(&iop_chan->lock);
  641. return sw_desc ? &sw_desc->async_tx : NULL;
  642. }
  643. static struct dma_async_tx_descriptor *
  644. iop_adma_prep_dma_pq(struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
  645. unsigned int src_cnt, const unsigned char *scf, size_t len,
  646. unsigned long flags)
  647. {
  648. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  649. struct iop_adma_desc_slot *sw_desc, *g;
  650. int slot_cnt, slots_per_op;
  651. int continue_srcs;
  652. if (unlikely(!len))
  653. return NULL;
  654. BUG_ON(len > IOP_ADMA_XOR_MAX_BYTE_COUNT);
  655. dev_dbg(iop_chan->device->common.dev,
  656. "%s src_cnt: %d len: %u flags: %lx\n",
  657. __func__, src_cnt, len, flags);
  658. if (dmaf_p_disabled_continue(flags))
  659. continue_srcs = 1+src_cnt;
  660. else if (dmaf_continue(flags))
  661. continue_srcs = 3+src_cnt;
  662. else
  663. continue_srcs = 0+src_cnt;
  664. spin_lock_bh(&iop_chan->lock);
  665. slot_cnt = iop_chan_pq_slot_count(len, continue_srcs, &slots_per_op);
  666. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  667. if (sw_desc) {
  668. int i;
  669. g = sw_desc->group_head;
  670. iop_desc_set_byte_count(g, iop_chan, len);
  671. /* even if P is disabled its destination address (bits
  672. * [3:0]) must match Q. It is ok if P points to an
  673. * invalid address, it won't be written.
  674. */
  675. if (flags & DMA_PREP_PQ_DISABLE_P)
  676. dst[0] = dst[1] & 0x7;
  677. iop_desc_set_pq_addr(g, dst);
  678. sw_desc->unmap_src_cnt = src_cnt;
  679. sw_desc->unmap_len = len;
  680. sw_desc->async_tx.flags = flags;
  681. for (i = 0; i < src_cnt; i++)
  682. iop_desc_set_pq_src_addr(g, i, src[i], scf[i]);
  683. /* if we are continuing a previous operation factor in
  684. * the old p and q values, see the comment for dma_maxpq
  685. * in include/linux/dmaengine.h
  686. */
  687. if (dmaf_p_disabled_continue(flags))
  688. iop_desc_set_pq_src_addr(g, i++, dst[1], 1);
  689. else if (dmaf_continue(flags)) {
  690. iop_desc_set_pq_src_addr(g, i++, dst[0], 0);
  691. iop_desc_set_pq_src_addr(g, i++, dst[1], 1);
  692. iop_desc_set_pq_src_addr(g, i++, dst[1], 0);
  693. }
  694. iop_desc_init_pq(g, i, flags);
  695. }
  696. spin_unlock_bh(&iop_chan->lock);
  697. return sw_desc ? &sw_desc->async_tx : NULL;
  698. }
  699. static struct dma_async_tx_descriptor *
  700. iop_adma_prep_dma_pq_val(struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
  701. unsigned int src_cnt, const unsigned char *scf,
  702. size_t len, enum sum_check_flags *pqres,
  703. unsigned long flags)
  704. {
  705. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  706. struct iop_adma_desc_slot *sw_desc, *g;
  707. int slot_cnt, slots_per_op;
  708. if (unlikely(!len))
  709. return NULL;
  710. BUG_ON(len > IOP_ADMA_XOR_MAX_BYTE_COUNT);
  711. dev_dbg(iop_chan->device->common.dev, "%s src_cnt: %d len: %u\n",
  712. __func__, src_cnt, len);
  713. spin_lock_bh(&iop_chan->lock);
  714. slot_cnt = iop_chan_pq_zero_sum_slot_count(len, src_cnt + 2, &slots_per_op);
  715. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  716. if (sw_desc) {
  717. /* for validate operations p and q are tagged onto the
  718. * end of the source list
  719. */
  720. int pq_idx = src_cnt;
  721. g = sw_desc->group_head;
  722. iop_desc_init_pq_zero_sum(g, src_cnt+2, flags);
  723. iop_desc_set_pq_zero_sum_byte_count(g, len);
  724. g->pq_check_result = pqres;
  725. pr_debug("\t%s: g->pq_check_result: %p\n",
  726. __func__, g->pq_check_result);
  727. sw_desc->unmap_src_cnt = src_cnt+2;
  728. sw_desc->unmap_len = len;
  729. sw_desc->async_tx.flags = flags;
  730. while (src_cnt--)
  731. iop_desc_set_pq_zero_sum_src_addr(g, src_cnt,
  732. src[src_cnt],
  733. scf[src_cnt]);
  734. iop_desc_set_pq_zero_sum_addr(g, pq_idx, src);
  735. }
  736. spin_unlock_bh(&iop_chan->lock);
  737. return sw_desc ? &sw_desc->async_tx : NULL;
  738. }
  739. static void iop_adma_free_chan_resources(struct dma_chan *chan)
  740. {
  741. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  742. struct iop_adma_desc_slot *iter, *_iter;
  743. int in_use_descs = 0;
  744. iop_adma_slot_cleanup(iop_chan);
  745. spin_lock_bh(&iop_chan->lock);
  746. list_for_each_entry_safe(iter, _iter, &iop_chan->chain,
  747. chain_node) {
  748. in_use_descs++;
  749. list_del(&iter->chain_node);
  750. }
  751. list_for_each_entry_safe_reverse(
  752. iter, _iter, &iop_chan->all_slots, slot_node) {
  753. list_del(&iter->slot_node);
  754. kfree(iter);
  755. iop_chan->slots_allocated--;
  756. }
  757. iop_chan->last_used = NULL;
  758. dev_dbg(iop_chan->device->common.dev, "%s slots_allocated %d\n",
  759. __func__, iop_chan->slots_allocated);
  760. spin_unlock_bh(&iop_chan->lock);
  761. /* one is ok since we left it on there on purpose */
  762. if (in_use_descs > 1)
  763. printk(KERN_ERR "IOP: Freeing %d in use descriptors!\n",
  764. in_use_descs - 1);
  765. }
  766. /**
  767. * iop_adma_is_complete - poll the status of an ADMA transaction
  768. * @chan: ADMA channel handle
  769. * @cookie: ADMA transaction identifier
  770. */
  771. static enum dma_status iop_adma_is_complete(struct dma_chan *chan,
  772. dma_cookie_t cookie,
  773. dma_cookie_t *done,
  774. dma_cookie_t *used)
  775. {
  776. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  777. dma_cookie_t last_used;
  778. dma_cookie_t last_complete;
  779. enum dma_status ret;
  780. last_used = chan->cookie;
  781. last_complete = iop_chan->completed_cookie;
  782. if (done)
  783. *done = last_complete;
  784. if (used)
  785. *used = last_used;
  786. ret = dma_async_is_complete(cookie, last_complete, last_used);
  787. if (ret == DMA_SUCCESS)
  788. return ret;
  789. iop_adma_slot_cleanup(iop_chan);
  790. last_used = chan->cookie;
  791. last_complete = iop_chan->completed_cookie;
  792. if (done)
  793. *done = last_complete;
  794. if (used)
  795. *used = last_used;
  796. return dma_async_is_complete(cookie, last_complete, last_used);
  797. }
  798. static irqreturn_t iop_adma_eot_handler(int irq, void *data)
  799. {
  800. struct iop_adma_chan *chan = data;
  801. dev_dbg(chan->device->common.dev, "%s\n", __func__);
  802. tasklet_schedule(&chan->irq_tasklet);
  803. iop_adma_device_clear_eot_status(chan);
  804. return IRQ_HANDLED;
  805. }
  806. static irqreturn_t iop_adma_eoc_handler(int irq, void *data)
  807. {
  808. struct iop_adma_chan *chan = data;
  809. dev_dbg(chan->device->common.dev, "%s\n", __func__);
  810. tasklet_schedule(&chan->irq_tasklet);
  811. iop_adma_device_clear_eoc_status(chan);
  812. return IRQ_HANDLED;
  813. }
  814. static irqreturn_t iop_adma_err_handler(int irq, void *data)
  815. {
  816. struct iop_adma_chan *chan = data;
  817. unsigned long status = iop_chan_get_status(chan);
  818. dev_printk(KERN_ERR, chan->device->common.dev,
  819. "error ( %s%s%s%s%s%s%s)\n",
  820. iop_is_err_int_parity(status, chan) ? "int_parity " : "",
  821. iop_is_err_mcu_abort(status, chan) ? "mcu_abort " : "",
  822. iop_is_err_int_tabort(status, chan) ? "int_tabort " : "",
  823. iop_is_err_int_mabort(status, chan) ? "int_mabort " : "",
  824. iop_is_err_pci_tabort(status, chan) ? "pci_tabort " : "",
  825. iop_is_err_pci_mabort(status, chan) ? "pci_mabort " : "",
  826. iop_is_err_split_tx(status, chan) ? "split_tx " : "");
  827. iop_adma_device_clear_err_status(chan);
  828. BUG();
  829. return IRQ_HANDLED;
  830. }
  831. static void iop_adma_issue_pending(struct dma_chan *chan)
  832. {
  833. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  834. if (iop_chan->pending) {
  835. iop_chan->pending = 0;
  836. iop_chan_append(iop_chan);
  837. }
  838. }
  839. /*
  840. * Perform a transaction to verify the HW works.
  841. */
  842. #define IOP_ADMA_TEST_SIZE 2000
  843. static int __devinit iop_adma_memcpy_self_test(struct iop_adma_device *device)
  844. {
  845. int i;
  846. void *src, *dest;
  847. dma_addr_t src_dma, dest_dma;
  848. struct dma_chan *dma_chan;
  849. dma_cookie_t cookie;
  850. struct dma_async_tx_descriptor *tx;
  851. int err = 0;
  852. struct iop_adma_chan *iop_chan;
  853. dev_dbg(device->common.dev, "%s\n", __func__);
  854. src = kmalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL);
  855. if (!src)
  856. return -ENOMEM;
  857. dest = kzalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL);
  858. if (!dest) {
  859. kfree(src);
  860. return -ENOMEM;
  861. }
  862. /* Fill in src buffer */
  863. for (i = 0; i < IOP_ADMA_TEST_SIZE; i++)
  864. ((u8 *) src)[i] = (u8)i;
  865. /* Start copy, using first DMA channel */
  866. dma_chan = container_of(device->common.channels.next,
  867. struct dma_chan,
  868. device_node);
  869. if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
  870. err = -ENODEV;
  871. goto out;
  872. }
  873. dest_dma = dma_map_single(dma_chan->device->dev, dest,
  874. IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE);
  875. src_dma = dma_map_single(dma_chan->device->dev, src,
  876. IOP_ADMA_TEST_SIZE, DMA_TO_DEVICE);
  877. tx = iop_adma_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
  878. IOP_ADMA_TEST_SIZE,
  879. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  880. cookie = iop_adma_tx_submit(tx);
  881. iop_adma_issue_pending(dma_chan);
  882. msleep(1);
  883. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
  884. DMA_SUCCESS) {
  885. dev_printk(KERN_ERR, dma_chan->device->dev,
  886. "Self-test copy timed out, disabling\n");
  887. err = -ENODEV;
  888. goto free_resources;
  889. }
  890. iop_chan = to_iop_adma_chan(dma_chan);
  891. dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma,
  892. IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE);
  893. if (memcmp(src, dest, IOP_ADMA_TEST_SIZE)) {
  894. dev_printk(KERN_ERR, dma_chan->device->dev,
  895. "Self-test copy failed compare, disabling\n");
  896. err = -ENODEV;
  897. goto free_resources;
  898. }
  899. free_resources:
  900. iop_adma_free_chan_resources(dma_chan);
  901. out:
  902. kfree(src);
  903. kfree(dest);
  904. return err;
  905. }
  906. #define IOP_ADMA_NUM_SRC_TEST 4 /* must be <= 15 */
  907. static int __devinit
  908. iop_adma_xor_val_self_test(struct iop_adma_device *device)
  909. {
  910. int i, src_idx;
  911. struct page *dest;
  912. struct page *xor_srcs[IOP_ADMA_NUM_SRC_TEST];
  913. struct page *zero_sum_srcs[IOP_ADMA_NUM_SRC_TEST + 1];
  914. dma_addr_t dma_srcs[IOP_ADMA_NUM_SRC_TEST + 1];
  915. dma_addr_t dma_addr, dest_dma;
  916. struct dma_async_tx_descriptor *tx;
  917. struct dma_chan *dma_chan;
  918. dma_cookie_t cookie;
  919. u8 cmp_byte = 0;
  920. u32 cmp_word;
  921. u32 zero_sum_result;
  922. int err = 0;
  923. struct iop_adma_chan *iop_chan;
  924. dev_dbg(device->common.dev, "%s\n", __func__);
  925. for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) {
  926. xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
  927. if (!xor_srcs[src_idx]) {
  928. while (src_idx--)
  929. __free_page(xor_srcs[src_idx]);
  930. return -ENOMEM;
  931. }
  932. }
  933. dest = alloc_page(GFP_KERNEL);
  934. if (!dest) {
  935. while (src_idx--)
  936. __free_page(xor_srcs[src_idx]);
  937. return -ENOMEM;
  938. }
  939. /* Fill in src buffers */
  940. for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) {
  941. u8 *ptr = page_address(xor_srcs[src_idx]);
  942. for (i = 0; i < PAGE_SIZE; i++)
  943. ptr[i] = (1 << src_idx);
  944. }
  945. for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++)
  946. cmp_byte ^= (u8) (1 << src_idx);
  947. cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
  948. (cmp_byte << 8) | cmp_byte;
  949. memset(page_address(dest), 0, PAGE_SIZE);
  950. dma_chan = container_of(device->common.channels.next,
  951. struct dma_chan,
  952. device_node);
  953. if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
  954. err = -ENODEV;
  955. goto out;
  956. }
  957. /* test xor */
  958. dest_dma = dma_map_page(dma_chan->device->dev, dest, 0,
  959. PAGE_SIZE, DMA_FROM_DEVICE);
  960. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
  961. dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
  962. 0, PAGE_SIZE, DMA_TO_DEVICE);
  963. tx = iop_adma_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
  964. IOP_ADMA_NUM_SRC_TEST, PAGE_SIZE,
  965. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  966. cookie = iop_adma_tx_submit(tx);
  967. iop_adma_issue_pending(dma_chan);
  968. msleep(8);
  969. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
  970. DMA_SUCCESS) {
  971. dev_printk(KERN_ERR, dma_chan->device->dev,
  972. "Self-test xor timed out, disabling\n");
  973. err = -ENODEV;
  974. goto free_resources;
  975. }
  976. iop_chan = to_iop_adma_chan(dma_chan);
  977. dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma,
  978. PAGE_SIZE, DMA_FROM_DEVICE);
  979. for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
  980. u32 *ptr = page_address(dest);
  981. if (ptr[i] != cmp_word) {
  982. dev_printk(KERN_ERR, dma_chan->device->dev,
  983. "Self-test xor failed compare, disabling\n");
  984. err = -ENODEV;
  985. goto free_resources;
  986. }
  987. }
  988. dma_sync_single_for_device(&iop_chan->device->pdev->dev, dest_dma,
  989. PAGE_SIZE, DMA_TO_DEVICE);
  990. /* skip zero sum if the capability is not present */
  991. if (!dma_has_cap(DMA_XOR_VAL, dma_chan->device->cap_mask))
  992. goto free_resources;
  993. /* zero sum the sources with the destintation page */
  994. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
  995. zero_sum_srcs[i] = xor_srcs[i];
  996. zero_sum_srcs[i] = dest;
  997. zero_sum_result = 1;
  998. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++)
  999. dma_srcs[i] = dma_map_page(dma_chan->device->dev,
  1000. zero_sum_srcs[i], 0, PAGE_SIZE,
  1001. DMA_TO_DEVICE);
  1002. tx = iop_adma_prep_dma_xor_val(dma_chan, dma_srcs,
  1003. IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE,
  1004. &zero_sum_result,
  1005. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  1006. cookie = iop_adma_tx_submit(tx);
  1007. iop_adma_issue_pending(dma_chan);
  1008. msleep(8);
  1009. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
  1010. dev_printk(KERN_ERR, dma_chan->device->dev,
  1011. "Self-test zero sum timed out, disabling\n");
  1012. err = -ENODEV;
  1013. goto free_resources;
  1014. }
  1015. if (zero_sum_result != 0) {
  1016. dev_printk(KERN_ERR, dma_chan->device->dev,
  1017. "Self-test zero sum failed compare, disabling\n");
  1018. err = -ENODEV;
  1019. goto free_resources;
  1020. }
  1021. /* test memset */
  1022. dma_addr = dma_map_page(dma_chan->device->dev, dest, 0,
  1023. PAGE_SIZE, DMA_FROM_DEVICE);
  1024. tx = iop_adma_prep_dma_memset(dma_chan, dma_addr, 0, PAGE_SIZE,
  1025. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  1026. cookie = iop_adma_tx_submit(tx);
  1027. iop_adma_issue_pending(dma_chan);
  1028. msleep(8);
  1029. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
  1030. dev_printk(KERN_ERR, dma_chan->device->dev,
  1031. "Self-test memset timed out, disabling\n");
  1032. err = -ENODEV;
  1033. goto free_resources;
  1034. }
  1035. for (i = 0; i < PAGE_SIZE/sizeof(u32); i++) {
  1036. u32 *ptr = page_address(dest);
  1037. if (ptr[i]) {
  1038. dev_printk(KERN_ERR, dma_chan->device->dev,
  1039. "Self-test memset failed compare, disabling\n");
  1040. err = -ENODEV;
  1041. goto free_resources;
  1042. }
  1043. }
  1044. /* test for non-zero parity sum */
  1045. zero_sum_result = 0;
  1046. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++)
  1047. dma_srcs[i] = dma_map_page(dma_chan->device->dev,
  1048. zero_sum_srcs[i], 0, PAGE_SIZE,
  1049. DMA_TO_DEVICE);
  1050. tx = iop_adma_prep_dma_xor_val(dma_chan, dma_srcs,
  1051. IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE,
  1052. &zero_sum_result,
  1053. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  1054. cookie = iop_adma_tx_submit(tx);
  1055. iop_adma_issue_pending(dma_chan);
  1056. msleep(8);
  1057. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
  1058. dev_printk(KERN_ERR, dma_chan->device->dev,
  1059. "Self-test non-zero sum timed out, disabling\n");
  1060. err = -ENODEV;
  1061. goto free_resources;
  1062. }
  1063. if (zero_sum_result != 1) {
  1064. dev_printk(KERN_ERR, dma_chan->device->dev,
  1065. "Self-test non-zero sum failed compare, disabling\n");
  1066. err = -ENODEV;
  1067. goto free_resources;
  1068. }
  1069. free_resources:
  1070. iop_adma_free_chan_resources(dma_chan);
  1071. out:
  1072. src_idx = IOP_ADMA_NUM_SRC_TEST;
  1073. while (src_idx--)
  1074. __free_page(xor_srcs[src_idx]);
  1075. __free_page(dest);
  1076. return err;
  1077. }
  1078. #ifdef CONFIG_MD_RAID6_PQ
  1079. static int __devinit
  1080. iop_adma_pq_zero_sum_self_test(struct iop_adma_device *device)
  1081. {
  1082. /* combined sources, software pq results, and extra hw pq results */
  1083. struct page *pq[IOP_ADMA_NUM_SRC_TEST+2+2];
  1084. /* ptr to the extra hw pq buffers defined above */
  1085. struct page **pq_hw = &pq[IOP_ADMA_NUM_SRC_TEST+2];
  1086. /* address conversion buffers (dma_map / page_address) */
  1087. void *pq_sw[IOP_ADMA_NUM_SRC_TEST+2];
  1088. dma_addr_t pq_src[IOP_ADMA_NUM_SRC_TEST];
  1089. dma_addr_t pq_dest[2];
  1090. int i;
  1091. struct dma_async_tx_descriptor *tx;
  1092. struct dma_chan *dma_chan;
  1093. dma_cookie_t cookie;
  1094. u32 zero_sum_result;
  1095. int err = 0;
  1096. struct device *dev;
  1097. dev_dbg(device->common.dev, "%s\n", __func__);
  1098. for (i = 0; i < ARRAY_SIZE(pq); i++) {
  1099. pq[i] = alloc_page(GFP_KERNEL);
  1100. if (!pq[i]) {
  1101. while (i--)
  1102. __free_page(pq[i]);
  1103. return -ENOMEM;
  1104. }
  1105. }
  1106. /* Fill in src buffers */
  1107. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++) {
  1108. pq_sw[i] = page_address(pq[i]);
  1109. memset(pq_sw[i], 0x11111111 * (1<<i), PAGE_SIZE);
  1110. }
  1111. pq_sw[i] = page_address(pq[i]);
  1112. pq_sw[i+1] = page_address(pq[i+1]);
  1113. dma_chan = container_of(device->common.channels.next,
  1114. struct dma_chan,
  1115. device_node);
  1116. if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
  1117. err = -ENODEV;
  1118. goto out;
  1119. }
  1120. dev = dma_chan->device->dev;
  1121. /* initialize the dests */
  1122. memset(page_address(pq_hw[0]), 0 , PAGE_SIZE);
  1123. memset(page_address(pq_hw[1]), 0 , PAGE_SIZE);
  1124. /* test pq */
  1125. pq_dest[0] = dma_map_page(dev, pq_hw[0], 0, PAGE_SIZE, DMA_FROM_DEVICE);
  1126. pq_dest[1] = dma_map_page(dev, pq_hw[1], 0, PAGE_SIZE, DMA_FROM_DEVICE);
  1127. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
  1128. pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
  1129. DMA_TO_DEVICE);
  1130. tx = iop_adma_prep_dma_pq(dma_chan, pq_dest, pq_src,
  1131. IOP_ADMA_NUM_SRC_TEST, (u8 *)raid6_gfexp,
  1132. PAGE_SIZE,
  1133. DMA_PREP_INTERRUPT |
  1134. DMA_CTRL_ACK);
  1135. cookie = iop_adma_tx_submit(tx);
  1136. iop_adma_issue_pending(dma_chan);
  1137. msleep(8);
  1138. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
  1139. DMA_SUCCESS) {
  1140. dev_err(dev, "Self-test pq timed out, disabling\n");
  1141. err = -ENODEV;
  1142. goto free_resources;
  1143. }
  1144. raid6_call.gen_syndrome(IOP_ADMA_NUM_SRC_TEST+2, PAGE_SIZE, pq_sw);
  1145. if (memcmp(pq_sw[IOP_ADMA_NUM_SRC_TEST],
  1146. page_address(pq_hw[0]), PAGE_SIZE) != 0) {
  1147. dev_err(dev, "Self-test p failed compare, disabling\n");
  1148. err = -ENODEV;
  1149. goto free_resources;
  1150. }
  1151. if (memcmp(pq_sw[IOP_ADMA_NUM_SRC_TEST+1],
  1152. page_address(pq_hw[1]), PAGE_SIZE) != 0) {
  1153. dev_err(dev, "Self-test q failed compare, disabling\n");
  1154. err = -ENODEV;
  1155. goto free_resources;
  1156. }
  1157. /* test correct zero sum using the software generated pq values */
  1158. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 2; i++)
  1159. pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
  1160. DMA_TO_DEVICE);
  1161. zero_sum_result = ~0;
  1162. tx = iop_adma_prep_dma_pq_val(dma_chan, &pq_src[IOP_ADMA_NUM_SRC_TEST],
  1163. pq_src, IOP_ADMA_NUM_SRC_TEST,
  1164. raid6_gfexp, PAGE_SIZE, &zero_sum_result,
  1165. DMA_PREP_INTERRUPT|DMA_CTRL_ACK);
  1166. cookie = iop_adma_tx_submit(tx);
  1167. iop_adma_issue_pending(dma_chan);
  1168. msleep(8);
  1169. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
  1170. DMA_SUCCESS) {
  1171. dev_err(dev, "Self-test pq-zero-sum timed out, disabling\n");
  1172. err = -ENODEV;
  1173. goto free_resources;
  1174. }
  1175. if (zero_sum_result != 0) {
  1176. dev_err(dev, "Self-test pq-zero-sum failed to validate: %x\n",
  1177. zero_sum_result);
  1178. err = -ENODEV;
  1179. goto free_resources;
  1180. }
  1181. /* test incorrect zero sum */
  1182. i = IOP_ADMA_NUM_SRC_TEST;
  1183. memset(pq_sw[i] + 100, 0, 100);
  1184. memset(pq_sw[i+1] + 200, 0, 200);
  1185. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 2; i++)
  1186. pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
  1187. DMA_TO_DEVICE);
  1188. zero_sum_result = 0;
  1189. tx = iop_adma_prep_dma_pq_val(dma_chan, &pq_src[IOP_ADMA_NUM_SRC_TEST],
  1190. pq_src, IOP_ADMA_NUM_SRC_TEST,
  1191. raid6_gfexp, PAGE_SIZE, &zero_sum_result,
  1192. DMA_PREP_INTERRUPT|DMA_CTRL_ACK);
  1193. cookie = iop_adma_tx_submit(tx);
  1194. iop_adma_issue_pending(dma_chan);
  1195. msleep(8);
  1196. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
  1197. DMA_SUCCESS) {
  1198. dev_err(dev, "Self-test !pq-zero-sum timed out, disabling\n");
  1199. err = -ENODEV;
  1200. goto free_resources;
  1201. }
  1202. if (zero_sum_result != (SUM_CHECK_P_RESULT | SUM_CHECK_Q_RESULT)) {
  1203. dev_err(dev, "Self-test !pq-zero-sum failed to validate: %x\n",
  1204. zero_sum_result);
  1205. err = -ENODEV;
  1206. goto free_resources;
  1207. }
  1208. free_resources:
  1209. iop_adma_free_chan_resources(dma_chan);
  1210. out:
  1211. i = ARRAY_SIZE(pq);
  1212. while (i--)
  1213. __free_page(pq[i]);
  1214. return err;
  1215. }
  1216. #endif
  1217. static int __devexit iop_adma_remove(struct platform_device *dev)
  1218. {
  1219. struct iop_adma_device *device = platform_get_drvdata(dev);
  1220. struct dma_chan *chan, *_chan;
  1221. struct iop_adma_chan *iop_chan;
  1222. struct iop_adma_platform_data *plat_data = dev->dev.platform_data;
  1223. dma_async_device_unregister(&device->common);
  1224. dma_free_coherent(&dev->dev, plat_data->pool_size,
  1225. device->dma_desc_pool_virt, device->dma_desc_pool);
  1226. list_for_each_entry_safe(chan, _chan, &device->common.channels,
  1227. device_node) {
  1228. iop_chan = to_iop_adma_chan(chan);
  1229. list_del(&chan->device_node);
  1230. kfree(iop_chan);
  1231. }
  1232. kfree(device);
  1233. return 0;
  1234. }
  1235. static int __devinit iop_adma_probe(struct platform_device *pdev)
  1236. {
  1237. struct resource *res;
  1238. int ret = 0, i;
  1239. struct iop_adma_device *adev;
  1240. struct iop_adma_chan *iop_chan;
  1241. struct dma_device *dma_dev;
  1242. struct iop_adma_platform_data *plat_data = pdev->dev.platform_data;
  1243. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1244. if (!res)
  1245. return -ENODEV;
  1246. if (!devm_request_mem_region(&pdev->dev, res->start,
  1247. res->end - res->start, pdev->name))
  1248. return -EBUSY;
  1249. adev = kzalloc(sizeof(*adev), GFP_KERNEL);
  1250. if (!adev)
  1251. return -ENOMEM;
  1252. dma_dev = &adev->common;
  1253. /* allocate coherent memory for hardware descriptors
  1254. * note: writecombine gives slightly better performance, but
  1255. * requires that we explicitly flush the writes
  1256. */
  1257. if ((adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev,
  1258. plat_data->pool_size,
  1259. &adev->dma_desc_pool,
  1260. GFP_KERNEL)) == NULL) {
  1261. ret = -ENOMEM;
  1262. goto err_free_adev;
  1263. }
  1264. dev_dbg(&pdev->dev, "%s: allocted descriptor pool virt %p phys %p\n",
  1265. __func__, adev->dma_desc_pool_virt,
  1266. (void *) adev->dma_desc_pool);
  1267. adev->id = plat_data->hw_id;
  1268. /* discover transaction capabilites from the platform data */
  1269. dma_dev->cap_mask = plat_data->cap_mask;
  1270. adev->pdev = pdev;
  1271. platform_set_drvdata(pdev, adev);
  1272. INIT_LIST_HEAD(&dma_dev->channels);
  1273. /* set base routines */
  1274. dma_dev->device_alloc_chan_resources = iop_adma_alloc_chan_resources;
  1275. dma_dev->device_free_chan_resources = iop_adma_free_chan_resources;
  1276. dma_dev->device_is_tx_complete = iop_adma_is_complete;
  1277. dma_dev->device_issue_pending = iop_adma_issue_pending;
  1278. dma_dev->dev = &pdev->dev;
  1279. /* set prep routines based on capability */
  1280. if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
  1281. dma_dev->device_prep_dma_memcpy = iop_adma_prep_dma_memcpy;
  1282. if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
  1283. dma_dev->device_prep_dma_memset = iop_adma_prep_dma_memset;
  1284. if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
  1285. dma_dev->max_xor = iop_adma_get_max_xor();
  1286. dma_dev->device_prep_dma_xor = iop_adma_prep_dma_xor;
  1287. }
  1288. if (dma_has_cap(DMA_XOR_VAL, dma_dev->cap_mask))
  1289. dma_dev->device_prep_dma_xor_val =
  1290. iop_adma_prep_dma_xor_val;
  1291. if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
  1292. dma_set_maxpq(dma_dev, iop_adma_get_max_pq(), 0);
  1293. dma_dev->device_prep_dma_pq = iop_adma_prep_dma_pq;
  1294. }
  1295. if (dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask))
  1296. dma_dev->device_prep_dma_pq_val =
  1297. iop_adma_prep_dma_pq_val;
  1298. if (dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask))
  1299. dma_dev->device_prep_dma_interrupt =
  1300. iop_adma_prep_dma_interrupt;
  1301. iop_chan = kzalloc(sizeof(*iop_chan), GFP_KERNEL);
  1302. if (!iop_chan) {
  1303. ret = -ENOMEM;
  1304. goto err_free_dma;
  1305. }
  1306. iop_chan->device = adev;
  1307. iop_chan->mmr_base = devm_ioremap(&pdev->dev, res->start,
  1308. res->end - res->start);
  1309. if (!iop_chan->mmr_base) {
  1310. ret = -ENOMEM;
  1311. goto err_free_iop_chan;
  1312. }
  1313. tasklet_init(&iop_chan->irq_tasklet, iop_adma_tasklet, (unsigned long)
  1314. iop_chan);
  1315. /* clear errors before enabling interrupts */
  1316. iop_adma_device_clear_err_status(iop_chan);
  1317. for (i = 0; i < 3; i++) {
  1318. irq_handler_t handler[] = { iop_adma_eot_handler,
  1319. iop_adma_eoc_handler,
  1320. iop_adma_err_handler };
  1321. int irq = platform_get_irq(pdev, i);
  1322. if (irq < 0) {
  1323. ret = -ENXIO;
  1324. goto err_free_iop_chan;
  1325. } else {
  1326. ret = devm_request_irq(&pdev->dev, irq,
  1327. handler[i], 0, pdev->name, iop_chan);
  1328. if (ret)
  1329. goto err_free_iop_chan;
  1330. }
  1331. }
  1332. spin_lock_init(&iop_chan->lock);
  1333. INIT_LIST_HEAD(&iop_chan->chain);
  1334. INIT_LIST_HEAD(&iop_chan->all_slots);
  1335. iop_chan->common.device = dma_dev;
  1336. list_add_tail(&iop_chan->common.device_node, &dma_dev->channels);
  1337. if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
  1338. ret = iop_adma_memcpy_self_test(adev);
  1339. dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
  1340. if (ret)
  1341. goto err_free_iop_chan;
  1342. }
  1343. if (dma_has_cap(DMA_XOR, dma_dev->cap_mask) ||
  1344. dma_has_cap(DMA_MEMSET, dma_dev->cap_mask)) {
  1345. ret = iop_adma_xor_val_self_test(adev);
  1346. dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
  1347. if (ret)
  1348. goto err_free_iop_chan;
  1349. }
  1350. if (dma_has_cap(DMA_PQ, dma_dev->cap_mask) &&
  1351. dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask)) {
  1352. #ifdef CONFIG_MD_RAID6_PQ
  1353. ret = iop_adma_pq_zero_sum_self_test(adev);
  1354. dev_dbg(&pdev->dev, "pq self test returned %d\n", ret);
  1355. #else
  1356. /* can not test raid6, so do not publish capability */
  1357. dma_cap_clear(DMA_PQ, dma_dev->cap_mask);
  1358. dma_cap_clear(DMA_PQ_VAL, dma_dev->cap_mask);
  1359. ret = 0;
  1360. #endif
  1361. if (ret)
  1362. goto err_free_iop_chan;
  1363. }
  1364. dev_printk(KERN_INFO, &pdev->dev, "Intel(R) IOP: "
  1365. "( %s%s%s%s%s%s%s%s%s%s)\n",
  1366. dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "pq " : "",
  1367. dma_has_cap(DMA_PQ_UPDATE, dma_dev->cap_mask) ? "pq_update " : "",
  1368. dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask) ? "pq_val " : "",
  1369. dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
  1370. dma_has_cap(DMA_DUAL_XOR, dma_dev->cap_mask) ? "dual_xor " : "",
  1371. dma_has_cap(DMA_XOR_VAL, dma_dev->cap_mask) ? "xor_val " : "",
  1372. dma_has_cap(DMA_MEMSET, dma_dev->cap_mask) ? "fill " : "",
  1373. dma_has_cap(DMA_MEMCPY_CRC32C, dma_dev->cap_mask) ? "cpy+crc " : "",
  1374. dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
  1375. dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
  1376. dma_async_device_register(dma_dev);
  1377. goto out;
  1378. err_free_iop_chan:
  1379. kfree(iop_chan);
  1380. err_free_dma:
  1381. dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
  1382. adev->dma_desc_pool_virt, adev->dma_desc_pool);
  1383. err_free_adev:
  1384. kfree(adev);
  1385. out:
  1386. return ret;
  1387. }
  1388. static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan)
  1389. {
  1390. struct iop_adma_desc_slot *sw_desc, *grp_start;
  1391. dma_cookie_t cookie;
  1392. int slot_cnt, slots_per_op;
  1393. dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
  1394. spin_lock_bh(&iop_chan->lock);
  1395. slot_cnt = iop_chan_memcpy_slot_count(0, &slots_per_op);
  1396. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  1397. if (sw_desc) {
  1398. grp_start = sw_desc->group_head;
  1399. list_splice_init(&sw_desc->async_tx.tx_list, &iop_chan->chain);
  1400. async_tx_ack(&sw_desc->async_tx);
  1401. iop_desc_init_memcpy(grp_start, 0);
  1402. iop_desc_set_byte_count(grp_start, iop_chan, 0);
  1403. iop_desc_set_dest_addr(grp_start, iop_chan, 0);
  1404. iop_desc_set_memcpy_src_addr(grp_start, 0);
  1405. cookie = iop_chan->common.cookie;
  1406. cookie++;
  1407. if (cookie <= 1)
  1408. cookie = 2;
  1409. /* initialize the completed cookie to be less than
  1410. * the most recently used cookie
  1411. */
  1412. iop_chan->completed_cookie = cookie - 1;
  1413. iop_chan->common.cookie = sw_desc->async_tx.cookie = cookie;
  1414. /* channel should not be busy */
  1415. BUG_ON(iop_chan_is_busy(iop_chan));
  1416. /* clear any prior error-status bits */
  1417. iop_adma_device_clear_err_status(iop_chan);
  1418. /* disable operation */
  1419. iop_chan_disable(iop_chan);
  1420. /* set the descriptor address */
  1421. iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys);
  1422. /* 1/ don't add pre-chained descriptors
  1423. * 2/ dummy read to flush next_desc write
  1424. */
  1425. BUG_ON(iop_desc_get_next_desc(sw_desc));
  1426. /* run the descriptor */
  1427. iop_chan_enable(iop_chan);
  1428. } else
  1429. dev_printk(KERN_ERR, iop_chan->device->common.dev,
  1430. "failed to allocate null descriptor\n");
  1431. spin_unlock_bh(&iop_chan->lock);
  1432. }
  1433. static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan)
  1434. {
  1435. struct iop_adma_desc_slot *sw_desc, *grp_start;
  1436. dma_cookie_t cookie;
  1437. int slot_cnt, slots_per_op;
  1438. dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
  1439. spin_lock_bh(&iop_chan->lock);
  1440. slot_cnt = iop_chan_xor_slot_count(0, 2, &slots_per_op);
  1441. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  1442. if (sw_desc) {
  1443. grp_start = sw_desc->group_head;
  1444. list_splice_init(&sw_desc->async_tx.tx_list, &iop_chan->chain);
  1445. async_tx_ack(&sw_desc->async_tx);
  1446. iop_desc_init_null_xor(grp_start, 2, 0);
  1447. iop_desc_set_byte_count(grp_start, iop_chan, 0);
  1448. iop_desc_set_dest_addr(grp_start, iop_chan, 0);
  1449. iop_desc_set_xor_src_addr(grp_start, 0, 0);
  1450. iop_desc_set_xor_src_addr(grp_start, 1, 0);
  1451. cookie = iop_chan->common.cookie;
  1452. cookie++;
  1453. if (cookie <= 1)
  1454. cookie = 2;
  1455. /* initialize the completed cookie to be less than
  1456. * the most recently used cookie
  1457. */
  1458. iop_chan->completed_cookie = cookie - 1;
  1459. iop_chan->common.cookie = sw_desc->async_tx.cookie = cookie;
  1460. /* channel should not be busy */
  1461. BUG_ON(iop_chan_is_busy(iop_chan));
  1462. /* clear any prior error-status bits */
  1463. iop_adma_device_clear_err_status(iop_chan);
  1464. /* disable operation */
  1465. iop_chan_disable(iop_chan);
  1466. /* set the descriptor address */
  1467. iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys);
  1468. /* 1/ don't add pre-chained descriptors
  1469. * 2/ dummy read to flush next_desc write
  1470. */
  1471. BUG_ON(iop_desc_get_next_desc(sw_desc));
  1472. /* run the descriptor */
  1473. iop_chan_enable(iop_chan);
  1474. } else
  1475. dev_printk(KERN_ERR, iop_chan->device->common.dev,
  1476. "failed to allocate null descriptor\n");
  1477. spin_unlock_bh(&iop_chan->lock);
  1478. }
  1479. MODULE_ALIAS("platform:iop-adma");
  1480. static struct platform_driver iop_adma_driver = {
  1481. .probe = iop_adma_probe,
  1482. .remove = __devexit_p(iop_adma_remove),
  1483. .driver = {
  1484. .owner = THIS_MODULE,
  1485. .name = "iop-adma",
  1486. },
  1487. };
  1488. static int __init iop_adma_init (void)
  1489. {
  1490. return platform_driver_register(&iop_adma_driver);
  1491. }
  1492. static void __exit iop_adma_exit (void)
  1493. {
  1494. platform_driver_unregister(&iop_adma_driver);
  1495. return;
  1496. }
  1497. module_exit(iop_adma_exit);
  1498. module_init(iop_adma_init);
  1499. MODULE_AUTHOR("Intel Corporation");
  1500. MODULE_DESCRIPTION("IOP ADMA Engine Driver");
  1501. MODULE_LICENSE("GPL");