spi_bfin5xx.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615
  1. /*
  2. * Blackfin On-Chip SPI Driver
  3. *
  4. * Copyright 2004-2007 Analog Devices Inc.
  5. *
  6. * Enter bugs at http://blackfin.uclinux.org/
  7. *
  8. * Licensed under the GPL-2 or later.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/delay.h>
  13. #include <linux/device.h>
  14. #include <linux/slab.h>
  15. #include <linux/io.h>
  16. #include <linux/ioport.h>
  17. #include <linux/irq.h>
  18. #include <linux/errno.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/workqueue.h>
  24. #include <asm/dma.h>
  25. #include <asm/portmux.h>
  26. #include <asm/bfin5xx_spi.h>
  27. #include <asm/cacheflush.h>
  28. #define DRV_NAME "bfin-spi"
  29. #define DRV_AUTHOR "Bryan Wu, Luke Yang"
  30. #define DRV_DESC "Blackfin on-chip SPI Controller Driver"
  31. #define DRV_VERSION "1.0"
  32. MODULE_AUTHOR(DRV_AUTHOR);
  33. MODULE_DESCRIPTION(DRV_DESC);
  34. MODULE_LICENSE("GPL");
  35. #define START_STATE ((void *)0)
  36. #define RUNNING_STATE ((void *)1)
  37. #define DONE_STATE ((void *)2)
  38. #define ERROR_STATE ((void *)-1)
  39. #define QUEUE_RUNNING 0
  40. #define QUEUE_STOPPED 1
  41. /* Value to send if no TX value is supplied */
  42. #define SPI_IDLE_TXVAL 0x0000
  43. struct driver_data {
  44. /* Driver model hookup */
  45. struct platform_device *pdev;
  46. /* SPI framework hookup */
  47. struct spi_master *master;
  48. /* Regs base of SPI controller */
  49. void __iomem *regs_base;
  50. /* Pin request list */
  51. u16 *pin_req;
  52. /* BFIN hookup */
  53. struct bfin5xx_spi_master *master_info;
  54. /* Driver message queue */
  55. struct workqueue_struct *workqueue;
  56. struct work_struct pump_messages;
  57. spinlock_t lock;
  58. struct list_head queue;
  59. int busy;
  60. int run;
  61. /* Message Transfer pump */
  62. struct tasklet_struct pump_transfers;
  63. /* Current message transfer state info */
  64. struct spi_message *cur_msg;
  65. struct spi_transfer *cur_transfer;
  66. struct chip_data *cur_chip;
  67. size_t len_in_bytes;
  68. size_t len;
  69. void *tx;
  70. void *tx_end;
  71. void *rx;
  72. void *rx_end;
  73. /* DMA stuffs */
  74. int dma_channel;
  75. int dma_mapped;
  76. int dma_requested;
  77. dma_addr_t rx_dma;
  78. dma_addr_t tx_dma;
  79. int irq_requested;
  80. int spi_irq;
  81. size_t rx_map_len;
  82. size_t tx_map_len;
  83. u8 n_bytes;
  84. int cs_change;
  85. void (*write) (struct driver_data *);
  86. void (*read) (struct driver_data *);
  87. void (*duplex) (struct driver_data *);
  88. };
  89. struct chip_data {
  90. u16 ctl_reg;
  91. u16 baud;
  92. u16 flag;
  93. u8 chip_select_num;
  94. u8 n_bytes;
  95. u8 width; /* 0 or 1 */
  96. u8 enable_dma;
  97. u8 bits_per_word; /* 8 or 16 */
  98. u8 cs_change_per_word;
  99. u16 cs_chg_udelay; /* Some devices require > 255usec delay */
  100. u32 cs_gpio;
  101. u16 idle_tx_val;
  102. u8 pio_interrupt; /* use spi data irq */
  103. void (*write) (struct driver_data *);
  104. void (*read) (struct driver_data *);
  105. void (*duplex) (struct driver_data *);
  106. };
  107. #define DEFINE_SPI_REG(reg, off) \
  108. static inline u16 read_##reg(struct driver_data *drv_data) \
  109. { return bfin_read16(drv_data->regs_base + off); } \
  110. static inline void write_##reg(struct driver_data *drv_data, u16 v) \
  111. { bfin_write16(drv_data->regs_base + off, v); }
  112. DEFINE_SPI_REG(CTRL, 0x00)
  113. DEFINE_SPI_REG(FLAG, 0x04)
  114. DEFINE_SPI_REG(STAT, 0x08)
  115. DEFINE_SPI_REG(TDBR, 0x0C)
  116. DEFINE_SPI_REG(RDBR, 0x10)
  117. DEFINE_SPI_REG(BAUD, 0x14)
  118. DEFINE_SPI_REG(SHAW, 0x18)
  119. static void bfin_spi_enable(struct driver_data *drv_data)
  120. {
  121. u16 cr;
  122. cr = read_CTRL(drv_data);
  123. write_CTRL(drv_data, (cr | BIT_CTL_ENABLE));
  124. }
  125. static void bfin_spi_disable(struct driver_data *drv_data)
  126. {
  127. u16 cr;
  128. cr = read_CTRL(drv_data);
  129. write_CTRL(drv_data, (cr & (~BIT_CTL_ENABLE)));
  130. }
  131. /* Caculate the SPI_BAUD register value based on input HZ */
  132. static u16 hz_to_spi_baud(u32 speed_hz)
  133. {
  134. u_long sclk = get_sclk();
  135. u16 spi_baud = (sclk / (2 * speed_hz));
  136. if ((sclk % (2 * speed_hz)) > 0)
  137. spi_baud++;
  138. if (spi_baud < MIN_SPI_BAUD_VAL)
  139. spi_baud = MIN_SPI_BAUD_VAL;
  140. return spi_baud;
  141. }
  142. static int bfin_spi_flush(struct driver_data *drv_data)
  143. {
  144. unsigned long limit = loops_per_jiffy << 1;
  145. /* wait for stop and clear stat */
  146. while (!(read_STAT(drv_data) & BIT_STAT_SPIF) && --limit)
  147. cpu_relax();
  148. write_STAT(drv_data, BIT_STAT_CLR);
  149. return limit;
  150. }
  151. /* Chip select operation functions for cs_change flag */
  152. static void bfin_spi_cs_active(struct driver_data *drv_data, struct chip_data *chip)
  153. {
  154. if (likely(chip->chip_select_num)) {
  155. u16 flag = read_FLAG(drv_data);
  156. flag |= chip->flag;
  157. flag &= ~(chip->flag << 8);
  158. write_FLAG(drv_data, flag);
  159. } else {
  160. gpio_set_value(chip->cs_gpio, 0);
  161. }
  162. }
  163. static void bfin_spi_cs_deactive(struct driver_data *drv_data, struct chip_data *chip)
  164. {
  165. if (likely(chip->chip_select_num)) {
  166. u16 flag = read_FLAG(drv_data);
  167. flag &= ~chip->flag;
  168. flag |= (chip->flag << 8);
  169. write_FLAG(drv_data, flag);
  170. } else {
  171. gpio_set_value(chip->cs_gpio, 1);
  172. }
  173. /* Move delay here for consistency */
  174. if (chip->cs_chg_udelay)
  175. udelay(chip->cs_chg_udelay);
  176. }
  177. /* stop controller and re-config current chip*/
  178. static void bfin_spi_restore_state(struct driver_data *drv_data)
  179. {
  180. struct chip_data *chip = drv_data->cur_chip;
  181. /* Clear status and disable clock */
  182. write_STAT(drv_data, BIT_STAT_CLR);
  183. bfin_spi_disable(drv_data);
  184. dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n");
  185. /* Load the registers */
  186. write_CTRL(drv_data, chip->ctl_reg);
  187. write_BAUD(drv_data, chip->baud);
  188. bfin_spi_enable(drv_data);
  189. bfin_spi_cs_active(drv_data, chip);
  190. }
  191. /* used to kick off transfer in rx mode and read unwanted RX data */
  192. static inline void bfin_spi_dummy_read(struct driver_data *drv_data)
  193. {
  194. (void) read_RDBR(drv_data);
  195. }
  196. static void bfin_spi_null_writer(struct driver_data *drv_data)
  197. {
  198. u8 n_bytes = drv_data->n_bytes;
  199. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  200. /* clear RXS (we check for RXS inside the loop) */
  201. bfin_spi_dummy_read(drv_data);
  202. while (drv_data->tx < drv_data->tx_end) {
  203. write_TDBR(drv_data, tx_val);
  204. drv_data->tx += n_bytes;
  205. /* wait until transfer finished.
  206. checking SPIF or TXS may not guarantee transfer completion */
  207. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  208. cpu_relax();
  209. /* discard RX data and clear RXS */
  210. bfin_spi_dummy_read(drv_data);
  211. }
  212. }
  213. static void bfin_spi_null_reader(struct driver_data *drv_data)
  214. {
  215. u8 n_bytes = drv_data->n_bytes;
  216. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  217. /* discard old RX data and clear RXS */
  218. bfin_spi_dummy_read(drv_data);
  219. while (drv_data->rx < drv_data->rx_end) {
  220. write_TDBR(drv_data, tx_val);
  221. drv_data->rx += n_bytes;
  222. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  223. cpu_relax();
  224. bfin_spi_dummy_read(drv_data);
  225. }
  226. }
  227. static void bfin_spi_u8_writer(struct driver_data *drv_data)
  228. {
  229. /* clear RXS (we check for RXS inside the loop) */
  230. bfin_spi_dummy_read(drv_data);
  231. while (drv_data->tx < drv_data->tx_end) {
  232. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  233. /* wait until transfer finished.
  234. checking SPIF or TXS may not guarantee transfer completion */
  235. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  236. cpu_relax();
  237. /* discard RX data and clear RXS */
  238. bfin_spi_dummy_read(drv_data);
  239. }
  240. }
  241. static void bfin_spi_u8_cs_chg_writer(struct driver_data *drv_data)
  242. {
  243. struct chip_data *chip = drv_data->cur_chip;
  244. /* clear RXS (we check for RXS inside the loop) */
  245. bfin_spi_dummy_read(drv_data);
  246. while (drv_data->tx < drv_data->tx_end) {
  247. bfin_spi_cs_active(drv_data, chip);
  248. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  249. /* make sure transfer finished before deactiving CS */
  250. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  251. cpu_relax();
  252. bfin_spi_dummy_read(drv_data);
  253. bfin_spi_cs_deactive(drv_data, chip);
  254. }
  255. }
  256. static void bfin_spi_u8_reader(struct driver_data *drv_data)
  257. {
  258. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  259. /* discard old RX data and clear RXS */
  260. bfin_spi_dummy_read(drv_data);
  261. while (drv_data->rx < drv_data->rx_end) {
  262. write_TDBR(drv_data, tx_val);
  263. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  264. cpu_relax();
  265. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  266. }
  267. }
  268. static void bfin_spi_u8_cs_chg_reader(struct driver_data *drv_data)
  269. {
  270. struct chip_data *chip = drv_data->cur_chip;
  271. u16 tx_val = chip->idle_tx_val;
  272. /* discard old RX data and clear RXS */
  273. bfin_spi_dummy_read(drv_data);
  274. while (drv_data->rx < drv_data->rx_end) {
  275. bfin_spi_cs_active(drv_data, chip);
  276. write_TDBR(drv_data, tx_val);
  277. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  278. cpu_relax();
  279. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  280. bfin_spi_cs_deactive(drv_data, chip);
  281. }
  282. }
  283. static void bfin_spi_u8_duplex(struct driver_data *drv_data)
  284. {
  285. /* discard old RX data and clear RXS */
  286. bfin_spi_dummy_read(drv_data);
  287. while (drv_data->rx < drv_data->rx_end) {
  288. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  289. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  290. cpu_relax();
  291. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  292. }
  293. }
  294. static void bfin_spi_u8_cs_chg_duplex(struct driver_data *drv_data)
  295. {
  296. struct chip_data *chip = drv_data->cur_chip;
  297. /* discard old RX data and clear RXS */
  298. bfin_spi_dummy_read(drv_data);
  299. while (drv_data->rx < drv_data->rx_end) {
  300. bfin_spi_cs_active(drv_data, chip);
  301. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  302. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  303. cpu_relax();
  304. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  305. bfin_spi_cs_deactive(drv_data, chip);
  306. }
  307. }
  308. static void bfin_spi_u16_writer(struct driver_data *drv_data)
  309. {
  310. /* clear RXS (we check for RXS inside the loop) */
  311. bfin_spi_dummy_read(drv_data);
  312. while (drv_data->tx < drv_data->tx_end) {
  313. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  314. drv_data->tx += 2;
  315. /* wait until transfer finished.
  316. checking SPIF or TXS may not guarantee transfer completion */
  317. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  318. cpu_relax();
  319. /* discard RX data and clear RXS */
  320. bfin_spi_dummy_read(drv_data);
  321. }
  322. }
  323. static void bfin_spi_u16_cs_chg_writer(struct driver_data *drv_data)
  324. {
  325. struct chip_data *chip = drv_data->cur_chip;
  326. /* clear RXS (we check for RXS inside the loop) */
  327. bfin_spi_dummy_read(drv_data);
  328. while (drv_data->tx < drv_data->tx_end) {
  329. bfin_spi_cs_active(drv_data, chip);
  330. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  331. drv_data->tx += 2;
  332. /* make sure transfer finished before deactiving CS */
  333. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  334. cpu_relax();
  335. bfin_spi_dummy_read(drv_data);
  336. bfin_spi_cs_deactive(drv_data, chip);
  337. }
  338. }
  339. static void bfin_spi_u16_reader(struct driver_data *drv_data)
  340. {
  341. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  342. /* discard old RX data and clear RXS */
  343. bfin_spi_dummy_read(drv_data);
  344. while (drv_data->rx < drv_data->rx_end) {
  345. write_TDBR(drv_data, tx_val);
  346. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  347. cpu_relax();
  348. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  349. drv_data->rx += 2;
  350. }
  351. }
  352. static void bfin_spi_u16_cs_chg_reader(struct driver_data *drv_data)
  353. {
  354. struct chip_data *chip = drv_data->cur_chip;
  355. u16 tx_val = chip->idle_tx_val;
  356. /* discard old RX data and clear RXS */
  357. bfin_spi_dummy_read(drv_data);
  358. while (drv_data->rx < drv_data->rx_end) {
  359. bfin_spi_cs_active(drv_data, chip);
  360. write_TDBR(drv_data, tx_val);
  361. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  362. cpu_relax();
  363. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  364. drv_data->rx += 2;
  365. bfin_spi_cs_deactive(drv_data, chip);
  366. }
  367. }
  368. static void bfin_spi_u16_duplex(struct driver_data *drv_data)
  369. {
  370. /* discard old RX data and clear RXS */
  371. bfin_spi_dummy_read(drv_data);
  372. while (drv_data->rx < drv_data->rx_end) {
  373. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  374. drv_data->tx += 2;
  375. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  376. cpu_relax();
  377. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  378. drv_data->rx += 2;
  379. }
  380. }
  381. static void bfin_spi_u16_cs_chg_duplex(struct driver_data *drv_data)
  382. {
  383. struct chip_data *chip = drv_data->cur_chip;
  384. /* discard old RX data and clear RXS */
  385. bfin_spi_dummy_read(drv_data);
  386. while (drv_data->rx < drv_data->rx_end) {
  387. bfin_spi_cs_active(drv_data, chip);
  388. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  389. drv_data->tx += 2;
  390. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  391. cpu_relax();
  392. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  393. drv_data->rx += 2;
  394. bfin_spi_cs_deactive(drv_data, chip);
  395. }
  396. }
  397. /* test if ther is more transfer to be done */
  398. static void *bfin_spi_next_transfer(struct driver_data *drv_data)
  399. {
  400. struct spi_message *msg = drv_data->cur_msg;
  401. struct spi_transfer *trans = drv_data->cur_transfer;
  402. /* Move to next transfer */
  403. if (trans->transfer_list.next != &msg->transfers) {
  404. drv_data->cur_transfer =
  405. list_entry(trans->transfer_list.next,
  406. struct spi_transfer, transfer_list);
  407. return RUNNING_STATE;
  408. } else
  409. return DONE_STATE;
  410. }
  411. /*
  412. * caller already set message->status;
  413. * dma and pio irqs are blocked give finished message back
  414. */
  415. static void bfin_spi_giveback(struct driver_data *drv_data)
  416. {
  417. struct chip_data *chip = drv_data->cur_chip;
  418. struct spi_transfer *last_transfer;
  419. unsigned long flags;
  420. struct spi_message *msg;
  421. spin_lock_irqsave(&drv_data->lock, flags);
  422. msg = drv_data->cur_msg;
  423. drv_data->cur_msg = NULL;
  424. drv_data->cur_transfer = NULL;
  425. drv_data->cur_chip = NULL;
  426. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  427. spin_unlock_irqrestore(&drv_data->lock, flags);
  428. last_transfer = list_entry(msg->transfers.prev,
  429. struct spi_transfer, transfer_list);
  430. msg->state = NULL;
  431. if (!drv_data->cs_change)
  432. bfin_spi_cs_deactive(drv_data, chip);
  433. /* Not stop spi in autobuffer mode */
  434. if (drv_data->tx_dma != 0xFFFF)
  435. bfin_spi_disable(drv_data);
  436. if (msg->complete)
  437. msg->complete(msg->context);
  438. }
  439. /* spi data irq handler */
  440. static irqreturn_t bfin_spi_pio_irq_handler(int irq, void *dev_id)
  441. {
  442. struct driver_data *drv_data = dev_id;
  443. struct chip_data *chip = drv_data->cur_chip;
  444. struct spi_message *msg = drv_data->cur_msg;
  445. int n_bytes = drv_data->n_bytes;
  446. /* wait until transfer finished. */
  447. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  448. cpu_relax();
  449. if ((drv_data->tx && drv_data->tx >= drv_data->tx_end) ||
  450. (drv_data->rx && drv_data->rx >= (drv_data->rx_end - n_bytes))) {
  451. /* last read */
  452. if (drv_data->rx) {
  453. dev_dbg(&drv_data->pdev->dev, "last read\n");
  454. if (n_bytes == 2)
  455. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  456. else if (n_bytes == 1)
  457. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  458. drv_data->rx += n_bytes;
  459. }
  460. msg->actual_length += drv_data->len_in_bytes;
  461. if (drv_data->cs_change)
  462. bfin_spi_cs_deactive(drv_data, chip);
  463. /* Move to next transfer */
  464. msg->state = bfin_spi_next_transfer(drv_data);
  465. disable_irq(drv_data->spi_irq);
  466. /* Schedule transfer tasklet */
  467. tasklet_schedule(&drv_data->pump_transfers);
  468. return IRQ_HANDLED;
  469. }
  470. if (drv_data->rx && drv_data->tx) {
  471. /* duplex */
  472. dev_dbg(&drv_data->pdev->dev, "duplex: write_TDBR\n");
  473. if (drv_data->n_bytes == 2) {
  474. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  475. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  476. } else if (drv_data->n_bytes == 1) {
  477. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  478. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  479. }
  480. } else if (drv_data->rx) {
  481. /* read */
  482. dev_dbg(&drv_data->pdev->dev, "read: write_TDBR\n");
  483. if (drv_data->n_bytes == 2)
  484. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  485. else if (drv_data->n_bytes == 1)
  486. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  487. write_TDBR(drv_data, chip->idle_tx_val);
  488. } else if (drv_data->tx) {
  489. /* write */
  490. dev_dbg(&drv_data->pdev->dev, "write: write_TDBR\n");
  491. bfin_spi_dummy_read(drv_data);
  492. if (drv_data->n_bytes == 2)
  493. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  494. else if (drv_data->n_bytes == 1)
  495. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  496. }
  497. if (drv_data->tx)
  498. drv_data->tx += n_bytes;
  499. if (drv_data->rx)
  500. drv_data->rx += n_bytes;
  501. return IRQ_HANDLED;
  502. }
  503. static irqreturn_t bfin_spi_dma_irq_handler(int irq, void *dev_id)
  504. {
  505. struct driver_data *drv_data = dev_id;
  506. struct chip_data *chip = drv_data->cur_chip;
  507. struct spi_message *msg = drv_data->cur_msg;
  508. unsigned long timeout;
  509. unsigned short dmastat = get_dma_curr_irqstat(drv_data->dma_channel);
  510. u16 spistat = read_STAT(drv_data);
  511. dev_dbg(&drv_data->pdev->dev,
  512. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  513. dmastat, spistat);
  514. clear_dma_irqstat(drv_data->dma_channel);
  515. /*
  516. * wait for the last transaction shifted out. HRM states:
  517. * at this point there may still be data in the SPI DMA FIFO waiting
  518. * to be transmitted ... software needs to poll TXS in the SPI_STAT
  519. * register until it goes low for 2 successive reads
  520. */
  521. if (drv_data->tx != NULL) {
  522. while ((read_STAT(drv_data) & TXS) ||
  523. (read_STAT(drv_data) & TXS))
  524. cpu_relax();
  525. }
  526. dev_dbg(&drv_data->pdev->dev,
  527. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  528. dmastat, read_STAT(drv_data));
  529. timeout = jiffies + HZ;
  530. while (!(read_STAT(drv_data) & SPIF))
  531. if (!time_before(jiffies, timeout)) {
  532. dev_warn(&drv_data->pdev->dev, "timeout waiting for SPIF");
  533. break;
  534. } else
  535. cpu_relax();
  536. if ((dmastat & DMA_ERR) && (spistat & RBSY)) {
  537. msg->state = ERROR_STATE;
  538. dev_err(&drv_data->pdev->dev, "dma receive: fifo/buffer overflow\n");
  539. } else {
  540. msg->actual_length += drv_data->len_in_bytes;
  541. if (drv_data->cs_change)
  542. bfin_spi_cs_deactive(drv_data, chip);
  543. /* Move to next transfer */
  544. msg->state = bfin_spi_next_transfer(drv_data);
  545. }
  546. /* Schedule transfer tasklet */
  547. tasklet_schedule(&drv_data->pump_transfers);
  548. /* free the irq handler before next transfer */
  549. dev_dbg(&drv_data->pdev->dev,
  550. "disable dma channel irq%d\n",
  551. drv_data->dma_channel);
  552. dma_disable_irq(drv_data->dma_channel);
  553. return IRQ_HANDLED;
  554. }
  555. static void bfin_spi_pump_transfers(unsigned long data)
  556. {
  557. struct driver_data *drv_data = (struct driver_data *)data;
  558. struct spi_message *message = NULL;
  559. struct spi_transfer *transfer = NULL;
  560. struct spi_transfer *previous = NULL;
  561. struct chip_data *chip = NULL;
  562. u8 width;
  563. u16 cr, dma_width, dma_config;
  564. u32 tranf_success = 1;
  565. u8 full_duplex = 0;
  566. /* Get current state information */
  567. message = drv_data->cur_msg;
  568. transfer = drv_data->cur_transfer;
  569. chip = drv_data->cur_chip;
  570. /*
  571. * if msg is error or done, report it back using complete() callback
  572. */
  573. /* Handle for abort */
  574. if (message->state == ERROR_STATE) {
  575. dev_dbg(&drv_data->pdev->dev, "transfer: we've hit an error\n");
  576. message->status = -EIO;
  577. bfin_spi_giveback(drv_data);
  578. return;
  579. }
  580. /* Handle end of message */
  581. if (message->state == DONE_STATE) {
  582. dev_dbg(&drv_data->pdev->dev, "transfer: all done!\n");
  583. message->status = 0;
  584. bfin_spi_giveback(drv_data);
  585. return;
  586. }
  587. /* Delay if requested at end of transfer */
  588. if (message->state == RUNNING_STATE) {
  589. dev_dbg(&drv_data->pdev->dev, "transfer: still running ...\n");
  590. previous = list_entry(transfer->transfer_list.prev,
  591. struct spi_transfer, transfer_list);
  592. if (previous->delay_usecs)
  593. udelay(previous->delay_usecs);
  594. }
  595. /* Setup the transfer state based on the type of transfer */
  596. if (bfin_spi_flush(drv_data) == 0) {
  597. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  598. message->status = -EIO;
  599. bfin_spi_giveback(drv_data);
  600. return;
  601. }
  602. if (transfer->len == 0) {
  603. /* Move to next transfer of this msg */
  604. message->state = bfin_spi_next_transfer(drv_data);
  605. /* Schedule next transfer tasklet */
  606. tasklet_schedule(&drv_data->pump_transfers);
  607. }
  608. if (transfer->tx_buf != NULL) {
  609. drv_data->tx = (void *)transfer->tx_buf;
  610. drv_data->tx_end = drv_data->tx + transfer->len;
  611. dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n",
  612. transfer->tx_buf, drv_data->tx_end);
  613. } else {
  614. drv_data->tx = NULL;
  615. }
  616. if (transfer->rx_buf != NULL) {
  617. full_duplex = transfer->tx_buf != NULL;
  618. drv_data->rx = transfer->rx_buf;
  619. drv_data->rx_end = drv_data->rx + transfer->len;
  620. dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n",
  621. transfer->rx_buf, drv_data->rx_end);
  622. } else {
  623. drv_data->rx = NULL;
  624. }
  625. drv_data->rx_dma = transfer->rx_dma;
  626. drv_data->tx_dma = transfer->tx_dma;
  627. drv_data->len_in_bytes = transfer->len;
  628. drv_data->cs_change = transfer->cs_change;
  629. /* Bits per word setup */
  630. switch (transfer->bits_per_word) {
  631. case 8:
  632. drv_data->n_bytes = 1;
  633. width = CFG_SPI_WORDSIZE8;
  634. drv_data->read = chip->cs_change_per_word ?
  635. bfin_spi_u8_cs_chg_reader : bfin_spi_u8_reader;
  636. drv_data->write = chip->cs_change_per_word ?
  637. bfin_spi_u8_cs_chg_writer : bfin_spi_u8_writer;
  638. drv_data->duplex = chip->cs_change_per_word ?
  639. bfin_spi_u8_cs_chg_duplex : bfin_spi_u8_duplex;
  640. break;
  641. case 16:
  642. drv_data->n_bytes = 2;
  643. width = CFG_SPI_WORDSIZE16;
  644. drv_data->read = chip->cs_change_per_word ?
  645. bfin_spi_u16_cs_chg_reader : bfin_spi_u16_reader;
  646. drv_data->write = chip->cs_change_per_word ?
  647. bfin_spi_u16_cs_chg_writer : bfin_spi_u16_writer;
  648. drv_data->duplex = chip->cs_change_per_word ?
  649. bfin_spi_u16_cs_chg_duplex : bfin_spi_u16_duplex;
  650. break;
  651. default:
  652. /* No change, the same as default setting */
  653. transfer->bits_per_word = chip->bits_per_word;
  654. drv_data->n_bytes = chip->n_bytes;
  655. width = chip->width;
  656. drv_data->write = drv_data->tx ? chip->write : bfin_spi_null_writer;
  657. drv_data->read = drv_data->rx ? chip->read : bfin_spi_null_reader;
  658. drv_data->duplex = chip->duplex ? chip->duplex : bfin_spi_null_writer;
  659. break;
  660. }
  661. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  662. cr |= (width << 8);
  663. write_CTRL(drv_data, cr);
  664. if (width == CFG_SPI_WORDSIZE16) {
  665. drv_data->len = (transfer->len) >> 1;
  666. } else {
  667. drv_data->len = transfer->len;
  668. }
  669. dev_dbg(&drv_data->pdev->dev,
  670. "transfer: drv_data->write is %p, chip->write is %p, null_wr is %p\n",
  671. drv_data->write, chip->write, bfin_spi_null_writer);
  672. /* speed and width has been set on per message */
  673. message->state = RUNNING_STATE;
  674. dma_config = 0;
  675. /* Speed setup (surely valid because already checked) */
  676. if (transfer->speed_hz)
  677. write_BAUD(drv_data, hz_to_spi_baud(transfer->speed_hz));
  678. else
  679. write_BAUD(drv_data, chip->baud);
  680. write_STAT(drv_data, BIT_STAT_CLR);
  681. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  682. if (drv_data->cs_change)
  683. bfin_spi_cs_active(drv_data, chip);
  684. dev_dbg(&drv_data->pdev->dev,
  685. "now pumping a transfer: width is %d, len is %d\n",
  686. width, transfer->len);
  687. /*
  688. * Try to map dma buffer and do a dma transfer. If successful use,
  689. * different way to r/w according to the enable_dma settings and if
  690. * we are not doing a full duplex transfer (since the hardware does
  691. * not support full duplex DMA transfers).
  692. */
  693. if (!full_duplex && drv_data->cur_chip->enable_dma
  694. && drv_data->len > 6) {
  695. unsigned long dma_start_addr, flags;
  696. disable_dma(drv_data->dma_channel);
  697. clear_dma_irqstat(drv_data->dma_channel);
  698. /* config dma channel */
  699. dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n");
  700. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  701. if (width == CFG_SPI_WORDSIZE16) {
  702. set_dma_x_modify(drv_data->dma_channel, 2);
  703. dma_width = WDSIZE_16;
  704. } else {
  705. set_dma_x_modify(drv_data->dma_channel, 1);
  706. dma_width = WDSIZE_8;
  707. }
  708. /* poll for SPI completion before start */
  709. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  710. cpu_relax();
  711. /* dirty hack for autobuffer DMA mode */
  712. if (drv_data->tx_dma == 0xFFFF) {
  713. dev_dbg(&drv_data->pdev->dev,
  714. "doing autobuffer DMA out.\n");
  715. /* no irq in autobuffer mode */
  716. dma_config =
  717. (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
  718. set_dma_config(drv_data->dma_channel, dma_config);
  719. set_dma_start_addr(drv_data->dma_channel,
  720. (unsigned long)drv_data->tx);
  721. enable_dma(drv_data->dma_channel);
  722. /* start SPI transfer */
  723. write_CTRL(drv_data, cr | BIT_CTL_TIMOD_DMA_TX);
  724. /* just return here, there can only be one transfer
  725. * in this mode
  726. */
  727. message->status = 0;
  728. bfin_spi_giveback(drv_data);
  729. return;
  730. }
  731. /* In dma mode, rx or tx must be NULL in one transfer */
  732. dma_config = (RESTART | dma_width | DI_EN);
  733. if (drv_data->rx != NULL) {
  734. /* set transfer mode, and enable SPI */
  735. dev_dbg(&drv_data->pdev->dev, "doing DMA in to %p (size %zx)\n",
  736. drv_data->rx, drv_data->len_in_bytes);
  737. /* invalidate caches, if needed */
  738. if (bfin_addr_dcacheable((unsigned long) drv_data->rx))
  739. invalidate_dcache_range((unsigned long) drv_data->rx,
  740. (unsigned long) (drv_data->rx +
  741. drv_data->len_in_bytes));
  742. dma_config |= WNR;
  743. dma_start_addr = (unsigned long)drv_data->rx;
  744. cr |= BIT_CTL_TIMOD_DMA_RX | BIT_CTL_SENDOPT;
  745. } else if (drv_data->tx != NULL) {
  746. dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n");
  747. /* flush caches, if needed */
  748. if (bfin_addr_dcacheable((unsigned long) drv_data->tx))
  749. flush_dcache_range((unsigned long) drv_data->tx,
  750. (unsigned long) (drv_data->tx +
  751. drv_data->len_in_bytes));
  752. dma_start_addr = (unsigned long)drv_data->tx;
  753. cr |= BIT_CTL_TIMOD_DMA_TX;
  754. } else
  755. BUG();
  756. /* oh man, here there be monsters ... and i dont mean the
  757. * fluffy cute ones from pixar, i mean the kind that'll eat
  758. * your data, kick your dog, and love it all. do *not* try
  759. * and change these lines unless you (1) heavily test DMA
  760. * with SPI flashes on a loaded system (e.g. ping floods),
  761. * (2) know just how broken the DMA engine interaction with
  762. * the SPI peripheral is, and (3) have someone else to blame
  763. * when you screw it all up anyways.
  764. */
  765. set_dma_start_addr(drv_data->dma_channel, dma_start_addr);
  766. set_dma_config(drv_data->dma_channel, dma_config);
  767. local_irq_save(flags);
  768. SSYNC();
  769. write_CTRL(drv_data, cr);
  770. enable_dma(drv_data->dma_channel);
  771. dma_enable_irq(drv_data->dma_channel);
  772. local_irq_restore(flags);
  773. return;
  774. }
  775. if (chip->pio_interrupt) {
  776. /* use write mode. spi irq should have been disabled */
  777. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  778. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  779. /* discard old RX data and clear RXS */
  780. bfin_spi_dummy_read(drv_data);
  781. /* start transfer */
  782. if (drv_data->tx == NULL)
  783. write_TDBR(drv_data, chip->idle_tx_val);
  784. else {
  785. if (transfer->bits_per_word == 8)
  786. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  787. else if (transfer->bits_per_word == 16)
  788. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  789. drv_data->tx += drv_data->n_bytes;
  790. }
  791. /* once TDBR is empty, interrupt is triggered */
  792. enable_irq(drv_data->spi_irq);
  793. return;
  794. }
  795. /* IO mode */
  796. dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n");
  797. /* we always use SPI_WRITE mode. SPI_READ mode
  798. seems to have problems with setting up the
  799. output value in TDBR prior to the transfer. */
  800. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  801. if (full_duplex) {
  802. /* full duplex mode */
  803. BUG_ON((drv_data->tx_end - drv_data->tx) !=
  804. (drv_data->rx_end - drv_data->rx));
  805. dev_dbg(&drv_data->pdev->dev,
  806. "IO duplex: cr is 0x%x\n", cr);
  807. drv_data->duplex(drv_data);
  808. if (drv_data->tx != drv_data->tx_end)
  809. tranf_success = 0;
  810. } else if (drv_data->tx != NULL) {
  811. /* write only half duplex */
  812. dev_dbg(&drv_data->pdev->dev,
  813. "IO write: cr is 0x%x\n", cr);
  814. drv_data->write(drv_data);
  815. if (drv_data->tx != drv_data->tx_end)
  816. tranf_success = 0;
  817. } else if (drv_data->rx != NULL) {
  818. /* read only half duplex */
  819. dev_dbg(&drv_data->pdev->dev,
  820. "IO read: cr is 0x%x\n", cr);
  821. drv_data->read(drv_data);
  822. if (drv_data->rx != drv_data->rx_end)
  823. tranf_success = 0;
  824. }
  825. if (!tranf_success) {
  826. dev_dbg(&drv_data->pdev->dev,
  827. "IO write error!\n");
  828. message->state = ERROR_STATE;
  829. } else {
  830. /* Update total byte transfered */
  831. message->actual_length += drv_data->len_in_bytes;
  832. /* Move to next transfer of this msg */
  833. message->state = bfin_spi_next_transfer(drv_data);
  834. if (drv_data->cs_change)
  835. bfin_spi_cs_deactive(drv_data, chip);
  836. }
  837. /* Schedule next transfer tasklet */
  838. tasklet_schedule(&drv_data->pump_transfers);
  839. }
  840. /* pop a msg from queue and kick off real transfer */
  841. static void bfin_spi_pump_messages(struct work_struct *work)
  842. {
  843. struct driver_data *drv_data;
  844. unsigned long flags;
  845. drv_data = container_of(work, struct driver_data, pump_messages);
  846. /* Lock queue and check for queue work */
  847. spin_lock_irqsave(&drv_data->lock, flags);
  848. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  849. /* pumper kicked off but no work to do */
  850. drv_data->busy = 0;
  851. spin_unlock_irqrestore(&drv_data->lock, flags);
  852. return;
  853. }
  854. /* Make sure we are not already running a message */
  855. if (drv_data->cur_msg) {
  856. spin_unlock_irqrestore(&drv_data->lock, flags);
  857. return;
  858. }
  859. /* Extract head of queue */
  860. drv_data->cur_msg = list_entry(drv_data->queue.next,
  861. struct spi_message, queue);
  862. /* Setup the SSP using the per chip configuration */
  863. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  864. bfin_spi_restore_state(drv_data);
  865. list_del_init(&drv_data->cur_msg->queue);
  866. /* Initial message state */
  867. drv_data->cur_msg->state = START_STATE;
  868. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  869. struct spi_transfer, transfer_list);
  870. dev_dbg(&drv_data->pdev->dev, "got a message to pump, "
  871. "state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
  872. drv_data->cur_chip->baud, drv_data->cur_chip->flag,
  873. drv_data->cur_chip->ctl_reg);
  874. dev_dbg(&drv_data->pdev->dev,
  875. "the first transfer len is %d\n",
  876. drv_data->cur_transfer->len);
  877. /* Mark as busy and launch transfers */
  878. tasklet_schedule(&drv_data->pump_transfers);
  879. drv_data->busy = 1;
  880. spin_unlock_irqrestore(&drv_data->lock, flags);
  881. }
  882. /*
  883. * got a msg to transfer, queue it in drv_data->queue.
  884. * And kick off message pumper
  885. */
  886. static int bfin_spi_transfer(struct spi_device *spi, struct spi_message *msg)
  887. {
  888. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  889. unsigned long flags;
  890. spin_lock_irqsave(&drv_data->lock, flags);
  891. if (drv_data->run == QUEUE_STOPPED) {
  892. spin_unlock_irqrestore(&drv_data->lock, flags);
  893. return -ESHUTDOWN;
  894. }
  895. msg->actual_length = 0;
  896. msg->status = -EINPROGRESS;
  897. msg->state = START_STATE;
  898. dev_dbg(&spi->dev, "adding an msg in transfer() \n");
  899. list_add_tail(&msg->queue, &drv_data->queue);
  900. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  901. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  902. spin_unlock_irqrestore(&drv_data->lock, flags);
  903. return 0;
  904. }
  905. #define MAX_SPI_SSEL 7
  906. static u16 ssel[][MAX_SPI_SSEL] = {
  907. {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
  908. P_SPI0_SSEL4, P_SPI0_SSEL5,
  909. P_SPI0_SSEL6, P_SPI0_SSEL7},
  910. {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
  911. P_SPI1_SSEL4, P_SPI1_SSEL5,
  912. P_SPI1_SSEL6, P_SPI1_SSEL7},
  913. {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
  914. P_SPI2_SSEL4, P_SPI2_SSEL5,
  915. P_SPI2_SSEL6, P_SPI2_SSEL7},
  916. };
  917. /* first setup for new devices */
  918. static int bfin_spi_setup(struct spi_device *spi)
  919. {
  920. struct bfin5xx_spi_chip *chip_info;
  921. struct chip_data *chip = NULL;
  922. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  923. int ret = -EINVAL;
  924. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  925. goto error;
  926. /* Only alloc (or use chip_info) on first setup */
  927. chip_info = NULL;
  928. chip = spi_get_ctldata(spi);
  929. if (chip == NULL) {
  930. chip = kzalloc(sizeof(*chip), GFP_KERNEL);
  931. if (!chip) {
  932. dev_err(&spi->dev, "cannot allocate chip data\n");
  933. ret = -ENOMEM;
  934. goto error;
  935. }
  936. chip->enable_dma = 0;
  937. chip_info = spi->controller_data;
  938. }
  939. /* chip_info isn't always needed */
  940. if (chip_info) {
  941. /* Make sure people stop trying to set fields via ctl_reg
  942. * when they should actually be using common SPI framework.
  943. * Currently we let through: WOM EMISO PSSE GM SZ TIMOD.
  944. * Not sure if a user actually needs/uses any of these,
  945. * but let's assume (for now) they do.
  946. */
  947. if (chip_info->ctl_reg & (SPE|MSTR|CPOL|CPHA|LSBF|SIZE)) {
  948. dev_err(&spi->dev, "do not set bits in ctl_reg "
  949. "that the SPI framework manages\n");
  950. goto error;
  951. }
  952. chip->enable_dma = chip_info->enable_dma != 0
  953. && drv_data->master_info->enable_dma;
  954. chip->ctl_reg = chip_info->ctl_reg;
  955. chip->bits_per_word = chip_info->bits_per_word;
  956. chip->cs_change_per_word = chip_info->cs_change_per_word;
  957. chip->cs_chg_udelay = chip_info->cs_chg_udelay;
  958. chip->cs_gpio = chip_info->cs_gpio;
  959. chip->idle_tx_val = chip_info->idle_tx_val;
  960. chip->pio_interrupt = chip_info->pio_interrupt;
  961. }
  962. /* translate common spi framework into our register */
  963. if (spi->mode & SPI_CPOL)
  964. chip->ctl_reg |= CPOL;
  965. if (spi->mode & SPI_CPHA)
  966. chip->ctl_reg |= CPHA;
  967. if (spi->mode & SPI_LSB_FIRST)
  968. chip->ctl_reg |= LSBF;
  969. /* we dont support running in slave mode (yet?) */
  970. chip->ctl_reg |= MSTR;
  971. /*
  972. * Notice: for blackfin, the speed_hz is the value of register
  973. * SPI_BAUD, not the real baudrate
  974. */
  975. chip->baud = hz_to_spi_baud(spi->max_speed_hz);
  976. chip->flag = 1 << (spi->chip_select);
  977. chip->chip_select_num = spi->chip_select;
  978. switch (chip->bits_per_word) {
  979. case 8:
  980. chip->n_bytes = 1;
  981. chip->width = CFG_SPI_WORDSIZE8;
  982. chip->read = chip->cs_change_per_word ?
  983. bfin_spi_u8_cs_chg_reader : bfin_spi_u8_reader;
  984. chip->write = chip->cs_change_per_word ?
  985. bfin_spi_u8_cs_chg_writer : bfin_spi_u8_writer;
  986. chip->duplex = chip->cs_change_per_word ?
  987. bfin_spi_u8_cs_chg_duplex : bfin_spi_u8_duplex;
  988. break;
  989. case 16:
  990. chip->n_bytes = 2;
  991. chip->width = CFG_SPI_WORDSIZE16;
  992. chip->read = chip->cs_change_per_word ?
  993. bfin_spi_u16_cs_chg_reader : bfin_spi_u16_reader;
  994. chip->write = chip->cs_change_per_word ?
  995. bfin_spi_u16_cs_chg_writer : bfin_spi_u16_writer;
  996. chip->duplex = chip->cs_change_per_word ?
  997. bfin_spi_u16_cs_chg_duplex : bfin_spi_u16_duplex;
  998. break;
  999. default:
  1000. dev_err(&spi->dev, "%d bits_per_word is not supported\n",
  1001. chip->bits_per_word);
  1002. goto error;
  1003. }
  1004. if (chip->enable_dma && chip->pio_interrupt) {
  1005. dev_err(&spi->dev, "enable_dma is set, "
  1006. "do not set pio_interrupt\n");
  1007. goto error;
  1008. }
  1009. /*
  1010. * if any one SPI chip is registered and wants DMA, request the
  1011. * DMA channel for it
  1012. */
  1013. if (chip->enable_dma && !drv_data->dma_requested) {
  1014. /* register dma irq handler */
  1015. ret = request_dma(drv_data->dma_channel, "BFIN_SPI_DMA");
  1016. if (ret) {
  1017. dev_err(&spi->dev,
  1018. "Unable to request BlackFin SPI DMA channel\n");
  1019. goto error;
  1020. }
  1021. drv_data->dma_requested = 1;
  1022. ret = set_dma_callback(drv_data->dma_channel,
  1023. bfin_spi_dma_irq_handler, drv_data);
  1024. if (ret) {
  1025. dev_err(&spi->dev, "Unable to set dma callback\n");
  1026. goto error;
  1027. }
  1028. dma_disable_irq(drv_data->dma_channel);
  1029. }
  1030. if (chip->pio_interrupt && !drv_data->irq_requested) {
  1031. ret = request_irq(drv_data->spi_irq, bfin_spi_pio_irq_handler,
  1032. IRQF_DISABLED, "BFIN_SPI", drv_data);
  1033. if (ret) {
  1034. dev_err(&spi->dev, "Unable to register spi IRQ\n");
  1035. goto error;
  1036. }
  1037. drv_data->irq_requested = 1;
  1038. /* we use write mode, spi irq has to be disabled here */
  1039. disable_irq(drv_data->spi_irq);
  1040. }
  1041. if (chip->chip_select_num == 0) {
  1042. ret = gpio_request(chip->cs_gpio, spi->modalias);
  1043. if (ret) {
  1044. dev_err(&spi->dev, "gpio_request() error\n");
  1045. goto pin_error;
  1046. }
  1047. gpio_direction_output(chip->cs_gpio, 1);
  1048. }
  1049. dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d\n",
  1050. spi->modalias, chip->width, chip->enable_dma);
  1051. dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n",
  1052. chip->ctl_reg, chip->flag);
  1053. spi_set_ctldata(spi, chip);
  1054. dev_dbg(&spi->dev, "chip select number is %d\n", chip->chip_select_num);
  1055. if (chip->chip_select_num > 0 &&
  1056. chip->chip_select_num <= spi->master->num_chipselect) {
  1057. ret = peripheral_request(ssel[spi->master->bus_num]
  1058. [chip->chip_select_num-1], spi->modalias);
  1059. if (ret) {
  1060. dev_err(&spi->dev, "peripheral_request() error\n");
  1061. goto pin_error;
  1062. }
  1063. }
  1064. bfin_spi_cs_deactive(drv_data, chip);
  1065. return 0;
  1066. pin_error:
  1067. if (chip->chip_select_num == 0)
  1068. gpio_free(chip->cs_gpio);
  1069. else
  1070. peripheral_free(ssel[spi->master->bus_num]
  1071. [chip->chip_select_num - 1]);
  1072. error:
  1073. if (chip) {
  1074. if (drv_data->dma_requested)
  1075. free_dma(drv_data->dma_channel);
  1076. drv_data->dma_requested = 0;
  1077. kfree(chip);
  1078. /* prevent free 'chip' twice */
  1079. spi_set_ctldata(spi, NULL);
  1080. }
  1081. return ret;
  1082. }
  1083. /*
  1084. * callback for spi framework.
  1085. * clean driver specific data
  1086. */
  1087. static void bfin_spi_cleanup(struct spi_device *spi)
  1088. {
  1089. struct chip_data *chip = spi_get_ctldata(spi);
  1090. if (!chip)
  1091. return;
  1092. if ((chip->chip_select_num > 0)
  1093. && (chip->chip_select_num <= spi->master->num_chipselect))
  1094. peripheral_free(ssel[spi->master->bus_num]
  1095. [chip->chip_select_num-1]);
  1096. if (chip->chip_select_num == 0)
  1097. gpio_free(chip->cs_gpio);
  1098. kfree(chip);
  1099. /* prevent free 'chip' twice */
  1100. spi_set_ctldata(spi, NULL);
  1101. }
  1102. static inline int bfin_spi_init_queue(struct driver_data *drv_data)
  1103. {
  1104. INIT_LIST_HEAD(&drv_data->queue);
  1105. spin_lock_init(&drv_data->lock);
  1106. drv_data->run = QUEUE_STOPPED;
  1107. drv_data->busy = 0;
  1108. /* init transfer tasklet */
  1109. tasklet_init(&drv_data->pump_transfers,
  1110. bfin_spi_pump_transfers, (unsigned long)drv_data);
  1111. /* init messages workqueue */
  1112. INIT_WORK(&drv_data->pump_messages, bfin_spi_pump_messages);
  1113. drv_data->workqueue = create_singlethread_workqueue(
  1114. dev_name(drv_data->master->dev.parent));
  1115. if (drv_data->workqueue == NULL)
  1116. return -EBUSY;
  1117. return 0;
  1118. }
  1119. static inline int bfin_spi_start_queue(struct driver_data *drv_data)
  1120. {
  1121. unsigned long flags;
  1122. spin_lock_irqsave(&drv_data->lock, flags);
  1123. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  1124. spin_unlock_irqrestore(&drv_data->lock, flags);
  1125. return -EBUSY;
  1126. }
  1127. drv_data->run = QUEUE_RUNNING;
  1128. drv_data->cur_msg = NULL;
  1129. drv_data->cur_transfer = NULL;
  1130. drv_data->cur_chip = NULL;
  1131. spin_unlock_irqrestore(&drv_data->lock, flags);
  1132. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1133. return 0;
  1134. }
  1135. static inline int bfin_spi_stop_queue(struct driver_data *drv_data)
  1136. {
  1137. unsigned long flags;
  1138. unsigned limit = 500;
  1139. int status = 0;
  1140. spin_lock_irqsave(&drv_data->lock, flags);
  1141. /*
  1142. * This is a bit lame, but is optimized for the common execution path.
  1143. * A wait_queue on the drv_data->busy could be used, but then the common
  1144. * execution path (pump_messages) would be required to call wake_up or
  1145. * friends on every SPI message. Do this instead
  1146. */
  1147. drv_data->run = QUEUE_STOPPED;
  1148. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1149. spin_unlock_irqrestore(&drv_data->lock, flags);
  1150. msleep(10);
  1151. spin_lock_irqsave(&drv_data->lock, flags);
  1152. }
  1153. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1154. status = -EBUSY;
  1155. spin_unlock_irqrestore(&drv_data->lock, flags);
  1156. return status;
  1157. }
  1158. static inline int bfin_spi_destroy_queue(struct driver_data *drv_data)
  1159. {
  1160. int status;
  1161. status = bfin_spi_stop_queue(drv_data);
  1162. if (status != 0)
  1163. return status;
  1164. destroy_workqueue(drv_data->workqueue);
  1165. return 0;
  1166. }
  1167. static int __init bfin_spi_probe(struct platform_device *pdev)
  1168. {
  1169. struct device *dev = &pdev->dev;
  1170. struct bfin5xx_spi_master *platform_info;
  1171. struct spi_master *master;
  1172. struct driver_data *drv_data = 0;
  1173. struct resource *res;
  1174. int status = 0;
  1175. platform_info = dev->platform_data;
  1176. /* Allocate master with space for drv_data */
  1177. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1178. if (!master) {
  1179. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1180. return -ENOMEM;
  1181. }
  1182. drv_data = spi_master_get_devdata(master);
  1183. drv_data->master = master;
  1184. drv_data->master_info = platform_info;
  1185. drv_data->pdev = pdev;
  1186. drv_data->pin_req = platform_info->pin_req;
  1187. /* the spi->mode bits supported by this driver: */
  1188. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
  1189. master->bus_num = pdev->id;
  1190. master->num_chipselect = platform_info->num_chipselect;
  1191. master->cleanup = bfin_spi_cleanup;
  1192. master->setup = bfin_spi_setup;
  1193. master->transfer = bfin_spi_transfer;
  1194. /* Find and map our resources */
  1195. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1196. if (res == NULL) {
  1197. dev_err(dev, "Cannot get IORESOURCE_MEM\n");
  1198. status = -ENOENT;
  1199. goto out_error_get_res;
  1200. }
  1201. drv_data->regs_base = ioremap(res->start, resource_size(res));
  1202. if (drv_data->regs_base == NULL) {
  1203. dev_err(dev, "Cannot map IO\n");
  1204. status = -ENXIO;
  1205. goto out_error_ioremap;
  1206. }
  1207. res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  1208. if (res == NULL) {
  1209. dev_err(dev, "No DMA channel specified\n");
  1210. status = -ENOENT;
  1211. goto out_error_free_io;
  1212. }
  1213. drv_data->dma_channel = res->start;
  1214. drv_data->spi_irq = platform_get_irq(pdev, 0);
  1215. if (drv_data->spi_irq < 0) {
  1216. dev_err(dev, "No spi pio irq specified\n");
  1217. status = -ENOENT;
  1218. goto out_error_free_io;
  1219. }
  1220. /* Initial and start queue */
  1221. status = bfin_spi_init_queue(drv_data);
  1222. if (status != 0) {
  1223. dev_err(dev, "problem initializing queue\n");
  1224. goto out_error_queue_alloc;
  1225. }
  1226. status = bfin_spi_start_queue(drv_data);
  1227. if (status != 0) {
  1228. dev_err(dev, "problem starting queue\n");
  1229. goto out_error_queue_alloc;
  1230. }
  1231. status = peripheral_request_list(drv_data->pin_req, DRV_NAME);
  1232. if (status != 0) {
  1233. dev_err(&pdev->dev, ": Requesting Peripherals failed\n");
  1234. goto out_error_queue_alloc;
  1235. }
  1236. /* Reset SPI registers. If these registers were used by the boot loader,
  1237. * the sky may fall on your head if you enable the dma controller.
  1238. */
  1239. write_CTRL(drv_data, BIT_CTL_CPHA | BIT_CTL_MASTER);
  1240. write_FLAG(drv_data, 0xFF00);
  1241. /* Register with the SPI framework */
  1242. platform_set_drvdata(pdev, drv_data);
  1243. status = spi_register_master(master);
  1244. if (status != 0) {
  1245. dev_err(dev, "problem registering spi master\n");
  1246. goto out_error_queue_alloc;
  1247. }
  1248. dev_info(dev, "%s, Version %s, regs_base@%p, dma channel@%d\n",
  1249. DRV_DESC, DRV_VERSION, drv_data->regs_base,
  1250. drv_data->dma_channel);
  1251. return status;
  1252. out_error_queue_alloc:
  1253. bfin_spi_destroy_queue(drv_data);
  1254. out_error_free_io:
  1255. iounmap((void *) drv_data->regs_base);
  1256. out_error_ioremap:
  1257. out_error_get_res:
  1258. spi_master_put(master);
  1259. return status;
  1260. }
  1261. /* stop hardware and remove the driver */
  1262. static int __devexit bfin_spi_remove(struct platform_device *pdev)
  1263. {
  1264. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1265. int status = 0;
  1266. if (!drv_data)
  1267. return 0;
  1268. /* Remove the queue */
  1269. status = bfin_spi_destroy_queue(drv_data);
  1270. if (status != 0)
  1271. return status;
  1272. /* Disable the SSP at the peripheral and SOC level */
  1273. bfin_spi_disable(drv_data);
  1274. /* Release DMA */
  1275. if (drv_data->master_info->enable_dma) {
  1276. if (dma_channel_active(drv_data->dma_channel))
  1277. free_dma(drv_data->dma_channel);
  1278. }
  1279. if (drv_data->irq_requested) {
  1280. free_irq(drv_data->spi_irq, drv_data);
  1281. drv_data->irq_requested = 0;
  1282. }
  1283. /* Disconnect from the SPI framework */
  1284. spi_unregister_master(drv_data->master);
  1285. peripheral_free_list(drv_data->pin_req);
  1286. /* Prevent double remove */
  1287. platform_set_drvdata(pdev, NULL);
  1288. return 0;
  1289. }
  1290. #ifdef CONFIG_PM
  1291. static int bfin_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1292. {
  1293. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1294. int status = 0;
  1295. status = bfin_spi_stop_queue(drv_data);
  1296. if (status != 0)
  1297. return status;
  1298. /* stop hardware */
  1299. bfin_spi_disable(drv_data);
  1300. return 0;
  1301. }
  1302. static int bfin_spi_resume(struct platform_device *pdev)
  1303. {
  1304. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1305. int status = 0;
  1306. /* Enable the SPI interface */
  1307. bfin_spi_enable(drv_data);
  1308. /* Start the queue running */
  1309. status = bfin_spi_start_queue(drv_data);
  1310. if (status != 0) {
  1311. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1312. return status;
  1313. }
  1314. return 0;
  1315. }
  1316. #else
  1317. #define bfin_spi_suspend NULL
  1318. #define bfin_spi_resume NULL
  1319. #endif /* CONFIG_PM */
  1320. MODULE_ALIAS("platform:bfin-spi");
  1321. static struct platform_driver bfin_spi_driver = {
  1322. .driver = {
  1323. .name = DRV_NAME,
  1324. .owner = THIS_MODULE,
  1325. },
  1326. .suspend = bfin_spi_suspend,
  1327. .resume = bfin_spi_resume,
  1328. .remove = __devexit_p(bfin_spi_remove),
  1329. };
  1330. static int __init bfin_spi_init(void)
  1331. {
  1332. return platform_driver_probe(&bfin_spi_driver, bfin_spi_probe);
  1333. }
  1334. module_init(bfin_spi_init);
  1335. static void __exit bfin_spi_exit(void)
  1336. {
  1337. platform_driver_unregister(&bfin_spi_driver);
  1338. }
  1339. module_exit(bfin_spi_exit);