wmm.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235
  1. /*
  2. * Marvell Wireless LAN device driver: WMM
  3. *
  4. * Copyright (C) 2011, Marvell International Ltd.
  5. *
  6. * This software file (the "File") is distributed by Marvell International
  7. * Ltd. under the terms of the GNU General Public License Version 2, June 1991
  8. * (the "License"). You may use, redistribute and/or modify this File in
  9. * accordance with the terms and conditions of the License, a copy of which
  10. * is available by writing to the Free Software Foundation, Inc.,
  11. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA or on the
  12. * worldwide web at http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt.
  13. *
  14. * THE FILE IS DISTRIBUTED AS-IS, WITHOUT WARRANTY OF ANY KIND, AND THE
  15. * IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
  16. * ARE EXPRESSLY DISCLAIMED. The License provides additional details about
  17. * this warranty disclaimer.
  18. */
  19. #include "decl.h"
  20. #include "ioctl.h"
  21. #include "util.h"
  22. #include "fw.h"
  23. #include "main.h"
  24. #include "wmm.h"
  25. #include "11n.h"
  26. /* Maximum value FW can accept for driver delay in packet transmission */
  27. #define DRV_PKT_DELAY_TO_FW_MAX 512
  28. #define WMM_QUEUED_PACKET_LOWER_LIMIT 180
  29. #define WMM_QUEUED_PACKET_UPPER_LIMIT 200
  30. /* Offset for TOS field in the IP header */
  31. #define IPTOS_OFFSET 5
  32. /* WMM information IE */
  33. static const u8 wmm_info_ie[] = { WLAN_EID_VENDOR_SPECIFIC, 0x07,
  34. 0x00, 0x50, 0xf2, 0x02,
  35. 0x00, 0x01, 0x00
  36. };
  37. static const u8 wmm_aci_to_qidx_map[] = { WMM_AC_BE,
  38. WMM_AC_BK,
  39. WMM_AC_VI,
  40. WMM_AC_VO
  41. };
  42. static u8 tos_to_tid[] = {
  43. /* TID DSCP_P2 DSCP_P1 DSCP_P0 WMM_AC */
  44. 0x01, /* 0 1 0 AC_BK */
  45. 0x02, /* 0 0 0 AC_BK */
  46. 0x00, /* 0 0 1 AC_BE */
  47. 0x03, /* 0 1 1 AC_BE */
  48. 0x04, /* 1 0 0 AC_VI */
  49. 0x05, /* 1 0 1 AC_VI */
  50. 0x06, /* 1 1 0 AC_VO */
  51. 0x07 /* 1 1 1 AC_VO */
  52. };
  53. /*
  54. * This table inverses the tos_to_tid operation to get a priority
  55. * which is in sequential order, and can be compared.
  56. * Use this to compare the priority of two different TIDs.
  57. */
  58. static u8 tos_to_tid_inv[] = {
  59. 0x02, /* from tos_to_tid[2] = 0 */
  60. 0x00, /* from tos_to_tid[0] = 1 */
  61. 0x01, /* from tos_to_tid[1] = 2 */
  62. 0x03,
  63. 0x04,
  64. 0x05,
  65. 0x06,
  66. 0x07};
  67. static u8 ac_to_tid[4][2] = { {1, 2}, {0, 3}, {4, 5}, {6, 7} };
  68. /*
  69. * This function debug prints the priority parameters for a WMM AC.
  70. */
  71. static void
  72. mwifiex_wmm_ac_debug_print(const struct ieee_types_wmm_ac_parameters *ac_param)
  73. {
  74. const char *ac_str[] = { "BK", "BE", "VI", "VO" };
  75. pr_debug("info: WMM AC_%s: ACI=%d, ACM=%d, Aifsn=%d, "
  76. "EcwMin=%d, EcwMax=%d, TxopLimit=%d\n",
  77. ac_str[wmm_aci_to_qidx_map[(ac_param->aci_aifsn_bitmap
  78. & MWIFIEX_ACI) >> 5]],
  79. (ac_param->aci_aifsn_bitmap & MWIFIEX_ACI) >> 5,
  80. (ac_param->aci_aifsn_bitmap & MWIFIEX_ACM) >> 4,
  81. ac_param->aci_aifsn_bitmap & MWIFIEX_AIFSN,
  82. ac_param->ecw_bitmap & MWIFIEX_ECW_MIN,
  83. (ac_param->ecw_bitmap & MWIFIEX_ECW_MAX) >> 4,
  84. le16_to_cpu(ac_param->tx_op_limit));
  85. }
  86. /*
  87. * This function allocates a route address list.
  88. *
  89. * The function also initializes the list with the provided RA.
  90. */
  91. static struct mwifiex_ra_list_tbl *
  92. mwifiex_wmm_allocate_ralist_node(struct mwifiex_adapter *adapter, u8 *ra)
  93. {
  94. struct mwifiex_ra_list_tbl *ra_list;
  95. ra_list = kzalloc(sizeof(struct mwifiex_ra_list_tbl), GFP_ATOMIC);
  96. if (!ra_list) {
  97. dev_err(adapter->dev, "%s: failed to alloc ra_list\n",
  98. __func__);
  99. return NULL;
  100. }
  101. INIT_LIST_HEAD(&ra_list->list);
  102. skb_queue_head_init(&ra_list->skb_head);
  103. memcpy(ra_list->ra, ra, ETH_ALEN);
  104. ra_list->total_pkts_size = 0;
  105. dev_dbg(adapter->dev, "info: allocated ra_list %p\n", ra_list);
  106. return ra_list;
  107. }
  108. /*
  109. * This function allocates and adds a RA list for all TIDs
  110. * with the given RA.
  111. */
  112. void
  113. mwifiex_ralist_add(struct mwifiex_private *priv, u8 *ra)
  114. {
  115. int i;
  116. struct mwifiex_ra_list_tbl *ra_list;
  117. struct mwifiex_adapter *adapter = priv->adapter;
  118. for (i = 0; i < MAX_NUM_TID; ++i) {
  119. ra_list = mwifiex_wmm_allocate_ralist_node(adapter, ra);
  120. dev_dbg(adapter->dev, "info: created ra_list %p\n", ra_list);
  121. if (!ra_list)
  122. break;
  123. if (!mwifiex_queuing_ra_based(priv))
  124. ra_list->is_11n_enabled = IS_11N_ENABLED(priv);
  125. else
  126. ra_list->is_11n_enabled = false;
  127. dev_dbg(adapter->dev, "data: ralist %p: is_11n_enabled=%d\n",
  128. ra_list, ra_list->is_11n_enabled);
  129. list_add_tail(&ra_list->list,
  130. &priv->wmm.tid_tbl_ptr[i].ra_list);
  131. if (!priv->wmm.tid_tbl_ptr[i].ra_list_curr)
  132. priv->wmm.tid_tbl_ptr[i].ra_list_curr = ra_list;
  133. }
  134. }
  135. /*
  136. * This function sets the WMM queue priorities to their default values.
  137. */
  138. static void mwifiex_wmm_default_queue_priorities(struct mwifiex_private *priv)
  139. {
  140. /* Default queue priorities: VO->VI->BE->BK */
  141. priv->wmm.queue_priority[0] = WMM_AC_VO;
  142. priv->wmm.queue_priority[1] = WMM_AC_VI;
  143. priv->wmm.queue_priority[2] = WMM_AC_BE;
  144. priv->wmm.queue_priority[3] = WMM_AC_BK;
  145. }
  146. /*
  147. * This function map ACs to TIDs.
  148. */
  149. static void
  150. mwifiex_wmm_queue_priorities_tid(u8 queue_priority[])
  151. {
  152. int i;
  153. for (i = 0; i < 4; ++i) {
  154. tos_to_tid[7 - (i * 2)] = ac_to_tid[queue_priority[i]][1];
  155. tos_to_tid[6 - (i * 2)] = ac_to_tid[queue_priority[i]][0];
  156. }
  157. }
  158. /*
  159. * This function initializes WMM priority queues.
  160. */
  161. void
  162. mwifiex_wmm_setup_queue_priorities(struct mwifiex_private *priv,
  163. struct ieee_types_wmm_parameter *wmm_ie)
  164. {
  165. u16 cw_min, avg_back_off, tmp[4];
  166. u32 i, j, num_ac;
  167. u8 ac_idx;
  168. if (!wmm_ie || !priv->wmm_enabled) {
  169. /* WMM is not enabled, just set the defaults and return */
  170. mwifiex_wmm_default_queue_priorities(priv);
  171. return;
  172. }
  173. dev_dbg(priv->adapter->dev, "info: WMM Parameter IE: version=%d, "
  174. "qos_info Parameter Set Count=%d, Reserved=%#x\n",
  175. wmm_ie->vend_hdr.version, wmm_ie->qos_info_bitmap &
  176. IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK,
  177. wmm_ie->reserved);
  178. for (num_ac = 0; num_ac < ARRAY_SIZE(wmm_ie->ac_params); num_ac++) {
  179. cw_min = (1 << (wmm_ie->ac_params[num_ac].ecw_bitmap &
  180. MWIFIEX_ECW_MIN)) - 1;
  181. avg_back_off = (cw_min >> 1) +
  182. (wmm_ie->ac_params[num_ac].aci_aifsn_bitmap &
  183. MWIFIEX_AIFSN);
  184. ac_idx = wmm_aci_to_qidx_map[(wmm_ie->ac_params[num_ac].
  185. aci_aifsn_bitmap &
  186. MWIFIEX_ACI) >> 5];
  187. priv->wmm.queue_priority[ac_idx] = ac_idx;
  188. tmp[ac_idx] = avg_back_off;
  189. dev_dbg(priv->adapter->dev, "info: WMM: CWmax=%d CWmin=%d Avg Back-off=%d\n",
  190. (1 << ((wmm_ie->ac_params[num_ac].ecw_bitmap &
  191. MWIFIEX_ECW_MAX) >> 4)) - 1,
  192. cw_min, avg_back_off);
  193. mwifiex_wmm_ac_debug_print(&wmm_ie->ac_params[num_ac]);
  194. }
  195. /* Bubble sort */
  196. for (i = 0; i < num_ac; i++) {
  197. for (j = 1; j < num_ac - i; j++) {
  198. if (tmp[j - 1] > tmp[j]) {
  199. swap(tmp[j - 1], tmp[j]);
  200. swap(priv->wmm.queue_priority[j - 1],
  201. priv->wmm.queue_priority[j]);
  202. } else if (tmp[j - 1] == tmp[j]) {
  203. if (priv->wmm.queue_priority[j - 1]
  204. < priv->wmm.queue_priority[j])
  205. swap(priv->wmm.queue_priority[j - 1],
  206. priv->wmm.queue_priority[j]);
  207. }
  208. }
  209. }
  210. mwifiex_wmm_queue_priorities_tid(priv->wmm.queue_priority);
  211. }
  212. /*
  213. * This function evaluates whether or not an AC is to be downgraded.
  214. *
  215. * In case the AC is not enabled, the highest AC is returned that is
  216. * enabled and does not require admission control.
  217. */
  218. static enum mwifiex_wmm_ac_e
  219. mwifiex_wmm_eval_downgrade_ac(struct mwifiex_private *priv,
  220. enum mwifiex_wmm_ac_e eval_ac)
  221. {
  222. int down_ac;
  223. enum mwifiex_wmm_ac_e ret_ac;
  224. struct mwifiex_wmm_ac_status *ac_status;
  225. ac_status = &priv->wmm.ac_status[eval_ac];
  226. if (!ac_status->disabled)
  227. /* Okay to use this AC, its enabled */
  228. return eval_ac;
  229. /* Setup a default return value of the lowest priority */
  230. ret_ac = WMM_AC_BK;
  231. /*
  232. * Find the highest AC that is enabled and does not require
  233. * admission control. The spec disallows downgrading to an AC,
  234. * which is enabled due to a completed admission control.
  235. * Unadmitted traffic is not to be sent on an AC with admitted
  236. * traffic.
  237. */
  238. for (down_ac = WMM_AC_BK; down_ac < eval_ac; down_ac++) {
  239. ac_status = &priv->wmm.ac_status[down_ac];
  240. if (!ac_status->disabled && !ac_status->flow_required)
  241. /* AC is enabled and does not require admission
  242. control */
  243. ret_ac = (enum mwifiex_wmm_ac_e) down_ac;
  244. }
  245. return ret_ac;
  246. }
  247. /*
  248. * This function downgrades WMM priority queue.
  249. */
  250. void
  251. mwifiex_wmm_setup_ac_downgrade(struct mwifiex_private *priv)
  252. {
  253. int ac_val;
  254. dev_dbg(priv->adapter->dev, "info: WMM: AC Priorities:"
  255. "BK(0), BE(1), VI(2), VO(3)\n");
  256. if (!priv->wmm_enabled) {
  257. /* WMM is not enabled, default priorities */
  258. for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++)
  259. priv->wmm.ac_down_graded_vals[ac_val] =
  260. (enum mwifiex_wmm_ac_e) ac_val;
  261. } else {
  262. for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++) {
  263. priv->wmm.ac_down_graded_vals[ac_val]
  264. = mwifiex_wmm_eval_downgrade_ac(priv,
  265. (enum mwifiex_wmm_ac_e) ac_val);
  266. dev_dbg(priv->adapter->dev, "info: WMM: AC PRIO %d maps to %d\n",
  267. ac_val, priv->wmm.ac_down_graded_vals[ac_val]);
  268. }
  269. }
  270. }
  271. /*
  272. * This function converts the IP TOS field to an WMM AC
  273. * Queue assignment.
  274. */
  275. static enum mwifiex_wmm_ac_e
  276. mwifiex_wmm_convert_tos_to_ac(struct mwifiex_adapter *adapter, u32 tos)
  277. {
  278. /* Map of TOS UP values to WMM AC */
  279. const enum mwifiex_wmm_ac_e tos_to_ac[] = { WMM_AC_BE,
  280. WMM_AC_BK,
  281. WMM_AC_BK,
  282. WMM_AC_BE,
  283. WMM_AC_VI,
  284. WMM_AC_VI,
  285. WMM_AC_VO,
  286. WMM_AC_VO
  287. };
  288. if (tos >= ARRAY_SIZE(tos_to_ac))
  289. return WMM_AC_BE;
  290. return tos_to_ac[tos];
  291. }
  292. /*
  293. * This function evaluates a given TID and downgrades it to a lower
  294. * TID if the WMM Parameter IE received from the AP indicates that the
  295. * AP is disabled (due to call admission control (ACM bit). Mapping
  296. * of TID to AC is taken care of internally.
  297. */
  298. static u8
  299. mwifiex_wmm_downgrade_tid(struct mwifiex_private *priv, u32 tid)
  300. {
  301. enum mwifiex_wmm_ac_e ac, ac_down;
  302. u8 new_tid;
  303. ac = mwifiex_wmm_convert_tos_to_ac(priv->adapter, tid);
  304. ac_down = priv->wmm.ac_down_graded_vals[ac];
  305. /* Send the index to tid array, picking from the array will be
  306. * taken care by dequeuing function
  307. */
  308. new_tid = ac_to_tid[ac_down][tid % 2];
  309. return new_tid;
  310. }
  311. /*
  312. * This function initializes the WMM state information and the
  313. * WMM data path queues.
  314. */
  315. void
  316. mwifiex_wmm_init(struct mwifiex_adapter *adapter)
  317. {
  318. int i, j;
  319. struct mwifiex_private *priv;
  320. for (j = 0; j < adapter->priv_num; ++j) {
  321. priv = adapter->priv[j];
  322. if (!priv)
  323. continue;
  324. for (i = 0; i < MAX_NUM_TID; ++i) {
  325. priv->aggr_prio_tbl[i].amsdu = tos_to_tid_inv[i];
  326. priv->aggr_prio_tbl[i].ampdu_ap = tos_to_tid_inv[i];
  327. priv->aggr_prio_tbl[i].ampdu_user = tos_to_tid_inv[i];
  328. priv->wmm.tid_tbl_ptr[i].ra_list_curr = NULL;
  329. }
  330. priv->aggr_prio_tbl[6].amsdu
  331. = priv->aggr_prio_tbl[6].ampdu_ap
  332. = priv->aggr_prio_tbl[6].ampdu_user
  333. = BA_STREAM_NOT_ALLOWED;
  334. priv->aggr_prio_tbl[7].amsdu = priv->aggr_prio_tbl[7].ampdu_ap
  335. = priv->aggr_prio_tbl[7].ampdu_user
  336. = BA_STREAM_NOT_ALLOWED;
  337. priv->add_ba_param.timeout = MWIFIEX_DEFAULT_BLOCK_ACK_TIMEOUT;
  338. priv->add_ba_param.tx_win_size = MWIFIEX_AMPDU_DEF_TXWINSIZE;
  339. priv->add_ba_param.rx_win_size = MWIFIEX_AMPDU_DEF_RXWINSIZE;
  340. atomic_set(&priv->wmm.tx_pkts_queued, 0);
  341. }
  342. }
  343. /*
  344. * This function checks if WMM Tx queue is empty.
  345. */
  346. int
  347. mwifiex_wmm_lists_empty(struct mwifiex_adapter *adapter)
  348. {
  349. int i;
  350. struct mwifiex_private *priv;
  351. for (i = 0; i < adapter->priv_num; ++i) {
  352. priv = adapter->priv[i];
  353. if (priv && atomic_read(&priv->wmm.tx_pkts_queued))
  354. return false;
  355. }
  356. return true;
  357. }
  358. /*
  359. * This function deletes all packets in an RA list node.
  360. *
  361. * The packet sent completion callback handler are called with
  362. * status failure, after they are dequeued to ensure proper
  363. * cleanup. The RA list node itself is freed at the end.
  364. */
  365. static void
  366. mwifiex_wmm_del_pkts_in_ralist_node(struct mwifiex_private *priv,
  367. struct mwifiex_ra_list_tbl *ra_list)
  368. {
  369. struct mwifiex_adapter *adapter = priv->adapter;
  370. struct sk_buff *skb, *tmp;
  371. skb_queue_walk_safe(&ra_list->skb_head, skb, tmp)
  372. mwifiex_write_data_complete(adapter, skb, -1);
  373. }
  374. /*
  375. * This function deletes all packets in an RA list.
  376. *
  377. * Each nodes in the RA list are freed individually first, and then
  378. * the RA list itself is freed.
  379. */
  380. static void
  381. mwifiex_wmm_del_pkts_in_ralist(struct mwifiex_private *priv,
  382. struct list_head *ra_list_head)
  383. {
  384. struct mwifiex_ra_list_tbl *ra_list;
  385. list_for_each_entry(ra_list, ra_list_head, list)
  386. mwifiex_wmm_del_pkts_in_ralist_node(priv, ra_list);
  387. }
  388. /*
  389. * This function deletes all packets in all RA lists.
  390. */
  391. static void mwifiex_wmm_cleanup_queues(struct mwifiex_private *priv)
  392. {
  393. int i;
  394. for (i = 0; i < MAX_NUM_TID; i++)
  395. mwifiex_wmm_del_pkts_in_ralist(priv, &priv->wmm.tid_tbl_ptr[i].
  396. ra_list);
  397. atomic_set(&priv->wmm.tx_pkts_queued, 0);
  398. }
  399. /*
  400. * This function deletes all route addresses from all RA lists.
  401. */
  402. static void mwifiex_wmm_delete_all_ralist(struct mwifiex_private *priv)
  403. {
  404. struct mwifiex_ra_list_tbl *ra_list, *tmp_node;
  405. int i;
  406. for (i = 0; i < MAX_NUM_TID; ++i) {
  407. dev_dbg(priv->adapter->dev,
  408. "info: ra_list: freeing buf for tid %d\n", i);
  409. list_for_each_entry_safe(ra_list, tmp_node,
  410. &priv->wmm.tid_tbl_ptr[i].ra_list, list) {
  411. list_del(&ra_list->list);
  412. kfree(ra_list);
  413. }
  414. INIT_LIST_HEAD(&priv->wmm.tid_tbl_ptr[i].ra_list);
  415. priv->wmm.tid_tbl_ptr[i].ra_list_curr = NULL;
  416. }
  417. }
  418. /*
  419. * This function cleans up the Tx and Rx queues.
  420. *
  421. * Cleanup includes -
  422. * - All packets in RA lists
  423. * - All entries in Rx reorder table
  424. * - All entries in Tx BA stream table
  425. * - MPA buffer (if required)
  426. * - All RA lists
  427. */
  428. void
  429. mwifiex_clean_txrx(struct mwifiex_private *priv)
  430. {
  431. unsigned long flags;
  432. mwifiex_11n_cleanup_reorder_tbl(priv);
  433. spin_lock_irqsave(&priv->wmm.ra_list_spinlock, flags);
  434. mwifiex_wmm_cleanup_queues(priv);
  435. mwifiex_11n_delete_all_tx_ba_stream_tbl(priv);
  436. if (priv->adapter->if_ops.cleanup_mpa_buf)
  437. priv->adapter->if_ops.cleanup_mpa_buf(priv->adapter);
  438. mwifiex_wmm_delete_all_ralist(priv);
  439. memcpy(tos_to_tid, ac_to_tid, sizeof(tos_to_tid));
  440. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
  441. }
  442. /*
  443. * This function retrieves a particular RA list node, matching with the
  444. * given TID and RA address.
  445. */
  446. static struct mwifiex_ra_list_tbl *
  447. mwifiex_wmm_get_ralist_node(struct mwifiex_private *priv, u8 tid,
  448. u8 *ra_addr)
  449. {
  450. struct mwifiex_ra_list_tbl *ra_list;
  451. list_for_each_entry(ra_list, &priv->wmm.tid_tbl_ptr[tid].ra_list,
  452. list) {
  453. if (!memcmp(ra_list->ra, ra_addr, ETH_ALEN))
  454. return ra_list;
  455. }
  456. return NULL;
  457. }
  458. /*
  459. * This function retrieves an RA list node for a given TID and
  460. * RA address pair.
  461. *
  462. * If no such node is found, a new node is added first and then
  463. * retrieved.
  464. */
  465. static struct mwifiex_ra_list_tbl *
  466. mwifiex_wmm_get_queue_raptr(struct mwifiex_private *priv, u8 tid, u8 *ra_addr)
  467. {
  468. struct mwifiex_ra_list_tbl *ra_list;
  469. ra_list = mwifiex_wmm_get_ralist_node(priv, tid, ra_addr);
  470. if (ra_list)
  471. return ra_list;
  472. mwifiex_ralist_add(priv, ra_addr);
  473. return mwifiex_wmm_get_ralist_node(priv, tid, ra_addr);
  474. }
  475. /*
  476. * This function checks if a particular RA list node exists in a given TID
  477. * table index.
  478. */
  479. int
  480. mwifiex_is_ralist_valid(struct mwifiex_private *priv,
  481. struct mwifiex_ra_list_tbl *ra_list, int ptr_index)
  482. {
  483. struct mwifiex_ra_list_tbl *rlist;
  484. list_for_each_entry(rlist, &priv->wmm.tid_tbl_ptr[ptr_index].ra_list,
  485. list) {
  486. if (rlist == ra_list)
  487. return true;
  488. }
  489. return false;
  490. }
  491. /*
  492. * This function adds a packet to WMM queue.
  493. *
  494. * In disconnected state the packet is immediately dropped and the
  495. * packet send completion callback is called with status failure.
  496. *
  497. * Otherwise, the correct RA list node is located and the packet
  498. * is queued at the list tail.
  499. */
  500. void
  501. mwifiex_wmm_add_buf_txqueue(struct mwifiex_adapter *adapter,
  502. struct sk_buff *skb)
  503. {
  504. struct mwifiex_txinfo *tx_info = MWIFIEX_SKB_TXCB(skb);
  505. struct mwifiex_private *priv = adapter->priv[tx_info->bss_index];
  506. u32 tid;
  507. struct mwifiex_ra_list_tbl *ra_list;
  508. u8 ra[ETH_ALEN], tid_down;
  509. unsigned long flags;
  510. if (!priv->media_connected) {
  511. dev_dbg(adapter->dev, "data: drop packet in disconnect\n");
  512. mwifiex_write_data_complete(adapter, skb, -1);
  513. return;
  514. }
  515. tid = skb->priority;
  516. spin_lock_irqsave(&priv->wmm.ra_list_spinlock, flags);
  517. tid_down = mwifiex_wmm_downgrade_tid(priv, tid);
  518. /* In case of infra as we have already created the list during
  519. association we just don't have to call get_queue_raptr, we will
  520. have only 1 raptr for a tid in case of infra */
  521. if (!mwifiex_queuing_ra_based(priv)) {
  522. if (!list_empty(&priv->wmm.tid_tbl_ptr[tid_down].ra_list))
  523. ra_list = list_first_entry(
  524. &priv->wmm.tid_tbl_ptr[tid_down].ra_list,
  525. struct mwifiex_ra_list_tbl, list);
  526. else
  527. ra_list = NULL;
  528. } else {
  529. memcpy(ra, skb->data, ETH_ALEN);
  530. ra_list = mwifiex_wmm_get_queue_raptr(priv, tid_down, ra);
  531. }
  532. if (!ra_list) {
  533. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
  534. mwifiex_write_data_complete(adapter, skb, -1);
  535. return;
  536. }
  537. skb_queue_tail(&ra_list->skb_head, skb);
  538. ra_list->total_pkts_size += skb->len;
  539. atomic_inc(&priv->wmm.tx_pkts_queued);
  540. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
  541. }
  542. /*
  543. * This function processes the get WMM status command response from firmware.
  544. *
  545. * The response may contain multiple TLVs -
  546. * - AC Queue status TLVs
  547. * - Current WMM Parameter IE TLV
  548. * - Admission Control action frame TLVs
  549. *
  550. * This function parses the TLVs and then calls further specific functions
  551. * to process any changes in the queue prioritize or state.
  552. */
  553. int mwifiex_ret_wmm_get_status(struct mwifiex_private *priv,
  554. const struct host_cmd_ds_command *resp)
  555. {
  556. u8 *curr = (u8 *) &resp->params.get_wmm_status;
  557. uint16_t resp_len = le16_to_cpu(resp->size), tlv_len;
  558. int valid = true;
  559. struct mwifiex_ie_types_data *tlv_hdr;
  560. struct mwifiex_ie_types_wmm_queue_status *tlv_wmm_qstatus;
  561. struct ieee_types_wmm_parameter *wmm_param_ie = NULL;
  562. struct mwifiex_wmm_ac_status *ac_status;
  563. dev_dbg(priv->adapter->dev, "info: WMM: WMM_GET_STATUS cmdresp received: %d\n",
  564. resp_len);
  565. while ((resp_len >= sizeof(tlv_hdr->header)) && valid) {
  566. tlv_hdr = (struct mwifiex_ie_types_data *) curr;
  567. tlv_len = le16_to_cpu(tlv_hdr->header.len);
  568. switch (le16_to_cpu(tlv_hdr->header.type)) {
  569. case TLV_TYPE_WMMQSTATUS:
  570. tlv_wmm_qstatus =
  571. (struct mwifiex_ie_types_wmm_queue_status *)
  572. tlv_hdr;
  573. dev_dbg(priv->adapter->dev,
  574. "info: CMD_RESP: WMM_GET_STATUS:"
  575. " QSTATUS TLV: %d, %d, %d\n",
  576. tlv_wmm_qstatus->queue_index,
  577. tlv_wmm_qstatus->flow_required,
  578. tlv_wmm_qstatus->disabled);
  579. ac_status = &priv->wmm.ac_status[tlv_wmm_qstatus->
  580. queue_index];
  581. ac_status->disabled = tlv_wmm_qstatus->disabled;
  582. ac_status->flow_required =
  583. tlv_wmm_qstatus->flow_required;
  584. ac_status->flow_created = tlv_wmm_qstatus->flow_created;
  585. break;
  586. case WLAN_EID_VENDOR_SPECIFIC:
  587. /*
  588. * Point the regular IEEE IE 2 bytes into the Marvell IE
  589. * and setup the IEEE IE type and length byte fields
  590. */
  591. wmm_param_ie =
  592. (struct ieee_types_wmm_parameter *) (curr +
  593. 2);
  594. wmm_param_ie->vend_hdr.len = (u8) tlv_len;
  595. wmm_param_ie->vend_hdr.element_id =
  596. WLAN_EID_VENDOR_SPECIFIC;
  597. dev_dbg(priv->adapter->dev,
  598. "info: CMD_RESP: WMM_GET_STATUS:"
  599. " WMM Parameter Set Count: %d\n",
  600. wmm_param_ie->qos_info_bitmap &
  601. IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK);
  602. memcpy((u8 *) &priv->curr_bss_params.bss_descriptor.
  603. wmm_ie, wmm_param_ie,
  604. wmm_param_ie->vend_hdr.len + 2);
  605. break;
  606. default:
  607. valid = false;
  608. break;
  609. }
  610. curr += (tlv_len + sizeof(tlv_hdr->header));
  611. resp_len -= (tlv_len + sizeof(tlv_hdr->header));
  612. }
  613. mwifiex_wmm_setup_queue_priorities(priv, wmm_param_ie);
  614. mwifiex_wmm_setup_ac_downgrade(priv);
  615. return 0;
  616. }
  617. /*
  618. * Callback handler from the command module to allow insertion of a WMM TLV.
  619. *
  620. * If the BSS we are associating to supports WMM, this function adds the
  621. * required WMM Information IE to the association request command buffer in
  622. * the form of a Marvell extended IEEE IE.
  623. */
  624. u32
  625. mwifiex_wmm_process_association_req(struct mwifiex_private *priv,
  626. u8 **assoc_buf,
  627. struct ieee_types_wmm_parameter *wmm_ie,
  628. struct ieee80211_ht_cap *ht_cap)
  629. {
  630. struct mwifiex_ie_types_wmm_param_set *wmm_tlv;
  631. u32 ret_len = 0;
  632. /* Null checks */
  633. if (!assoc_buf)
  634. return 0;
  635. if (!(*assoc_buf))
  636. return 0;
  637. if (!wmm_ie)
  638. return 0;
  639. dev_dbg(priv->adapter->dev, "info: WMM: process assoc req:"
  640. "bss->wmmIe=0x%x\n",
  641. wmm_ie->vend_hdr.element_id);
  642. if ((priv->wmm_required
  643. || (ht_cap && (priv->adapter->config_bands & BAND_GN
  644. || priv->adapter->config_bands & BAND_AN))
  645. )
  646. && wmm_ie->vend_hdr.element_id == WLAN_EID_VENDOR_SPECIFIC) {
  647. wmm_tlv = (struct mwifiex_ie_types_wmm_param_set *) *assoc_buf;
  648. wmm_tlv->header.type = cpu_to_le16((u16) wmm_info_ie[0]);
  649. wmm_tlv->header.len = cpu_to_le16((u16) wmm_info_ie[1]);
  650. memcpy(wmm_tlv->wmm_ie, &wmm_info_ie[2],
  651. le16_to_cpu(wmm_tlv->header.len));
  652. if (wmm_ie->qos_info_bitmap & IEEE80211_WMM_IE_AP_QOSINFO_UAPSD)
  653. memcpy((u8 *) (wmm_tlv->wmm_ie
  654. + le16_to_cpu(wmm_tlv->header.len)
  655. - sizeof(priv->wmm_qosinfo)),
  656. &priv->wmm_qosinfo,
  657. sizeof(priv->wmm_qosinfo));
  658. ret_len = sizeof(wmm_tlv->header)
  659. + le16_to_cpu(wmm_tlv->header.len);
  660. *assoc_buf += ret_len;
  661. }
  662. return ret_len;
  663. }
  664. /*
  665. * This function computes the time delay in the driver queues for a
  666. * given packet.
  667. *
  668. * When the packet is received at the OS/Driver interface, the current
  669. * time is set in the packet structure. The difference between the present
  670. * time and that received time is computed in this function and limited
  671. * based on pre-compiled limits in the driver.
  672. */
  673. u8
  674. mwifiex_wmm_compute_drv_pkt_delay(struct mwifiex_private *priv,
  675. const struct sk_buff *skb)
  676. {
  677. u8 ret_val;
  678. struct timeval out_tstamp, in_tstamp;
  679. u32 queue_delay;
  680. do_gettimeofday(&out_tstamp);
  681. in_tstamp = ktime_to_timeval(skb->tstamp);
  682. queue_delay = (out_tstamp.tv_sec - in_tstamp.tv_sec) * 1000;
  683. queue_delay += (out_tstamp.tv_usec - in_tstamp.tv_usec) / 1000;
  684. /*
  685. * Queue delay is passed as a uint8 in units of 2ms (ms shifted
  686. * by 1). Min value (other than 0) is therefore 2ms, max is 510ms.
  687. *
  688. * Pass max value if queue_delay is beyond the uint8 range
  689. */
  690. ret_val = (u8) (min(queue_delay, priv->wmm.drv_pkt_delay_max) >> 1);
  691. dev_dbg(priv->adapter->dev, "data: WMM: Pkt Delay: %d ms,"
  692. " %d ms sent to FW\n", queue_delay, ret_val);
  693. return ret_val;
  694. }
  695. /*
  696. * This function retrieves the highest priority RA list table pointer.
  697. */
  698. static struct mwifiex_ra_list_tbl *
  699. mwifiex_wmm_get_highest_priolist_ptr(struct mwifiex_adapter *adapter,
  700. struct mwifiex_private **priv, int *tid)
  701. {
  702. struct mwifiex_private *priv_tmp;
  703. struct mwifiex_ra_list_tbl *ptr, *head;
  704. struct mwifiex_bss_prio_node *bssprio_node, *bssprio_head;
  705. struct mwifiex_tid_tbl *tid_ptr;
  706. int is_list_empty;
  707. unsigned long flags;
  708. int i, j;
  709. for (j = adapter->priv_num - 1; j >= 0; --j) {
  710. spin_lock_irqsave(&adapter->bss_prio_tbl[j].bss_prio_lock,
  711. flags);
  712. is_list_empty = list_empty(&adapter->bss_prio_tbl[j]
  713. .bss_prio_head);
  714. spin_unlock_irqrestore(&adapter->bss_prio_tbl[j].bss_prio_lock,
  715. flags);
  716. if (is_list_empty)
  717. continue;
  718. if (adapter->bss_prio_tbl[j].bss_prio_cur ==
  719. (struct mwifiex_bss_prio_node *)
  720. &adapter->bss_prio_tbl[j].bss_prio_head) {
  721. bssprio_node =
  722. list_first_entry(&adapter->bss_prio_tbl[j]
  723. .bss_prio_head,
  724. struct mwifiex_bss_prio_node,
  725. list);
  726. bssprio_head = bssprio_node;
  727. } else {
  728. bssprio_node = adapter->bss_prio_tbl[j].bss_prio_cur;
  729. bssprio_head = bssprio_node;
  730. }
  731. do {
  732. priv_tmp = bssprio_node->priv;
  733. for (i = HIGH_PRIO_TID; i >= LOW_PRIO_TID; --i) {
  734. tid_ptr = &(priv_tmp)->wmm.
  735. tid_tbl_ptr[tos_to_tid[i]];
  736. spin_lock_irqsave(&tid_ptr->tid_tbl_lock,
  737. flags);
  738. is_list_empty =
  739. list_empty(&adapter->bss_prio_tbl[j]
  740. .bss_prio_head);
  741. spin_unlock_irqrestore(&tid_ptr->tid_tbl_lock,
  742. flags);
  743. if (is_list_empty)
  744. continue;
  745. /*
  746. * Always choose the next ra we transmitted
  747. * last time, this way we pick the ra's in
  748. * round robin fashion.
  749. */
  750. ptr = list_first_entry(
  751. &tid_ptr->ra_list_curr->list,
  752. struct mwifiex_ra_list_tbl,
  753. list);
  754. head = ptr;
  755. if (ptr == (struct mwifiex_ra_list_tbl *)
  756. &tid_ptr->ra_list) {
  757. /* Get next ra */
  758. ptr = list_first_entry(&ptr->list,
  759. struct mwifiex_ra_list_tbl, list);
  760. head = ptr;
  761. }
  762. do {
  763. is_list_empty =
  764. skb_queue_empty(&ptr->skb_head);
  765. if (!is_list_empty) {
  766. *priv = priv_tmp;
  767. *tid = tos_to_tid[i];
  768. return ptr;
  769. }
  770. /* Get next ra */
  771. ptr = list_first_entry(&ptr->list,
  772. struct mwifiex_ra_list_tbl,
  773. list);
  774. if (ptr ==
  775. (struct mwifiex_ra_list_tbl *)
  776. &tid_ptr->ra_list)
  777. ptr = list_first_entry(
  778. &ptr->list,
  779. struct mwifiex_ra_list_tbl,
  780. list);
  781. } while (ptr != head);
  782. }
  783. /* Get next bss priority node */
  784. bssprio_node = list_first_entry(&bssprio_node->list,
  785. struct mwifiex_bss_prio_node,
  786. list);
  787. if (bssprio_node ==
  788. (struct mwifiex_bss_prio_node *)
  789. &adapter->bss_prio_tbl[j].bss_prio_head)
  790. /* Get next bss priority node */
  791. bssprio_node = list_first_entry(
  792. &bssprio_node->list,
  793. struct mwifiex_bss_prio_node,
  794. list);
  795. } while (bssprio_node != bssprio_head);
  796. }
  797. return NULL;
  798. }
  799. /*
  800. * This function gets the number of packets in the Tx queue of a
  801. * particular RA list.
  802. */
  803. static int
  804. mwifiex_num_pkts_in_txq(struct mwifiex_private *priv,
  805. struct mwifiex_ra_list_tbl *ptr, int max_buf_size)
  806. {
  807. int count = 0, total_size = 0;
  808. struct sk_buff *skb, *tmp;
  809. skb_queue_walk_safe(&ptr->skb_head, skb, tmp) {
  810. total_size += skb->len;
  811. if (total_size < max_buf_size)
  812. ++count;
  813. else
  814. break;
  815. }
  816. return count;
  817. }
  818. /*
  819. * This function sends a single packet to firmware for transmission.
  820. */
  821. static void
  822. mwifiex_send_single_packet(struct mwifiex_private *priv,
  823. struct mwifiex_ra_list_tbl *ptr, int ptr_index,
  824. unsigned long ra_list_flags)
  825. __releases(&priv->wmm.ra_list_spinlock)
  826. {
  827. struct sk_buff *skb, *skb_next;
  828. struct mwifiex_tx_param tx_param;
  829. struct mwifiex_adapter *adapter = priv->adapter;
  830. struct mwifiex_txinfo *tx_info;
  831. if (skb_queue_empty(&ptr->skb_head)) {
  832. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
  833. ra_list_flags);
  834. dev_dbg(adapter->dev, "data: nothing to send\n");
  835. return;
  836. }
  837. skb = skb_dequeue(&ptr->skb_head);
  838. tx_info = MWIFIEX_SKB_TXCB(skb);
  839. dev_dbg(adapter->dev, "data: dequeuing the packet %p %p\n", ptr, skb);
  840. ptr->total_pkts_size -= skb->len;
  841. if (!skb_queue_empty(&ptr->skb_head))
  842. skb_next = skb_peek(&ptr->skb_head);
  843. else
  844. skb_next = NULL;
  845. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, ra_list_flags);
  846. tx_param.next_pkt_len = ((skb_next) ? skb_next->len +
  847. sizeof(struct txpd) : 0);
  848. if (mwifiex_process_tx(priv, skb, &tx_param) == -EBUSY) {
  849. /* Queue the packet back at the head */
  850. spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags);
  851. if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
  852. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
  853. ra_list_flags);
  854. mwifiex_write_data_complete(adapter, skb, -1);
  855. return;
  856. }
  857. skb_queue_tail(&ptr->skb_head, skb);
  858. ptr->total_pkts_size += skb->len;
  859. tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT;
  860. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
  861. ra_list_flags);
  862. } else {
  863. spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags);
  864. if (mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
  865. priv->wmm.packets_out[ptr_index]++;
  866. priv->wmm.tid_tbl_ptr[ptr_index].ra_list_curr = ptr;
  867. }
  868. adapter->bss_prio_tbl[priv->bss_priority].bss_prio_cur =
  869. list_first_entry(
  870. &adapter->bss_prio_tbl[priv->bss_priority]
  871. .bss_prio_cur->list,
  872. struct mwifiex_bss_prio_node,
  873. list);
  874. atomic_dec(&priv->wmm.tx_pkts_queued);
  875. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
  876. ra_list_flags);
  877. }
  878. }
  879. /*
  880. * This function checks if the first packet in the given RA list
  881. * is already processed or not.
  882. */
  883. static int
  884. mwifiex_is_ptr_processed(struct mwifiex_private *priv,
  885. struct mwifiex_ra_list_tbl *ptr)
  886. {
  887. struct sk_buff *skb;
  888. struct mwifiex_txinfo *tx_info;
  889. if (skb_queue_empty(&ptr->skb_head))
  890. return false;
  891. skb = skb_peek(&ptr->skb_head);
  892. tx_info = MWIFIEX_SKB_TXCB(skb);
  893. if (tx_info->flags & MWIFIEX_BUF_FLAG_REQUEUED_PKT)
  894. return true;
  895. return false;
  896. }
  897. /*
  898. * This function sends a single processed packet to firmware for
  899. * transmission.
  900. */
  901. static void
  902. mwifiex_send_processed_packet(struct mwifiex_private *priv,
  903. struct mwifiex_ra_list_tbl *ptr, int ptr_index,
  904. unsigned long ra_list_flags)
  905. __releases(&priv->wmm.ra_list_spinlock)
  906. {
  907. struct mwifiex_tx_param tx_param;
  908. struct mwifiex_adapter *adapter = priv->adapter;
  909. int ret = -1;
  910. struct sk_buff *skb, *skb_next;
  911. struct mwifiex_txinfo *tx_info;
  912. if (skb_queue_empty(&ptr->skb_head)) {
  913. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
  914. ra_list_flags);
  915. return;
  916. }
  917. skb = skb_dequeue(&ptr->skb_head);
  918. if (!skb_queue_empty(&ptr->skb_head))
  919. skb_next = skb_peek(&ptr->skb_head);
  920. else
  921. skb_next = NULL;
  922. tx_info = MWIFIEX_SKB_TXCB(skb);
  923. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, ra_list_flags);
  924. tx_param.next_pkt_len =
  925. ((skb_next) ? skb_next->len +
  926. sizeof(struct txpd) : 0);
  927. ret = adapter->if_ops.host_to_card(adapter, MWIFIEX_TYPE_DATA,
  928. skb->data, skb->len, &tx_param);
  929. switch (ret) {
  930. case -EBUSY:
  931. dev_dbg(adapter->dev, "data: -EBUSY is returned\n");
  932. spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags);
  933. if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
  934. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
  935. ra_list_flags);
  936. mwifiex_write_data_complete(adapter, skb, -1);
  937. return;
  938. }
  939. skb_queue_tail(&ptr->skb_head, skb);
  940. tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT;
  941. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
  942. ra_list_flags);
  943. break;
  944. case -1:
  945. adapter->data_sent = false;
  946. dev_err(adapter->dev, "host_to_card failed: %#x\n", ret);
  947. adapter->dbg.num_tx_host_to_card_failure++;
  948. mwifiex_write_data_complete(adapter, skb, ret);
  949. break;
  950. case -EINPROGRESS:
  951. adapter->data_sent = false;
  952. default:
  953. break;
  954. }
  955. if (ret != -EBUSY) {
  956. spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags);
  957. if (mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
  958. priv->wmm.packets_out[ptr_index]++;
  959. priv->wmm.tid_tbl_ptr[ptr_index].ra_list_curr = ptr;
  960. }
  961. adapter->bss_prio_tbl[priv->bss_priority].bss_prio_cur =
  962. list_first_entry(
  963. &adapter->bss_prio_tbl[priv->bss_priority]
  964. .bss_prio_cur->list,
  965. struct mwifiex_bss_prio_node,
  966. list);
  967. atomic_dec(&priv->wmm.tx_pkts_queued);
  968. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
  969. ra_list_flags);
  970. }
  971. }
  972. /*
  973. * This function dequeues a packet from the highest priority list
  974. * and transmits it.
  975. */
  976. static int
  977. mwifiex_dequeue_tx_packet(struct mwifiex_adapter *adapter)
  978. {
  979. struct mwifiex_ra_list_tbl *ptr;
  980. struct mwifiex_private *priv = NULL;
  981. int ptr_index = 0;
  982. u8 ra[ETH_ALEN];
  983. int tid_del = 0, tid = 0;
  984. unsigned long flags;
  985. ptr = mwifiex_wmm_get_highest_priolist_ptr(adapter, &priv, &ptr_index);
  986. if (!ptr)
  987. return -1;
  988. tid = mwifiex_get_tid(ptr);
  989. dev_dbg(adapter->dev, "data: tid=%d\n", tid);
  990. spin_lock_irqsave(&priv->wmm.ra_list_spinlock, flags);
  991. if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
  992. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
  993. return -1;
  994. }
  995. if (mwifiex_is_ptr_processed(priv, ptr)) {
  996. mwifiex_send_processed_packet(priv, ptr, ptr_index, flags);
  997. /* ra_list_spinlock has been freed in
  998. mwifiex_send_processed_packet() */
  999. return 0;
  1000. }
  1001. if (!ptr->is_11n_enabled || mwifiex_is_ba_stream_setup(priv, ptr, tid)
  1002. || ((priv->sec_info.wpa_enabled
  1003. || priv->sec_info.wpa2_enabled) && !priv->wpa_is_gtk_set)
  1004. ) {
  1005. mwifiex_send_single_packet(priv, ptr, ptr_index, flags);
  1006. /* ra_list_spinlock has been freed in
  1007. mwifiex_send_single_packet() */
  1008. } else {
  1009. if (mwifiex_is_ampdu_allowed(priv, tid)) {
  1010. if (mwifiex_space_avail_for_new_ba_stream(adapter)) {
  1011. mwifiex_11n_create_tx_ba_stream_tbl(priv,
  1012. ptr->ra, tid,
  1013. BA_STREAM_SETUP_INPROGRESS);
  1014. mwifiex_send_addba(priv, tid, ptr->ra);
  1015. } else if (mwifiex_find_stream_to_delete
  1016. (priv, tid, &tid_del, ra)) {
  1017. mwifiex_11n_create_tx_ba_stream_tbl(priv,
  1018. ptr->ra, tid,
  1019. BA_STREAM_SETUP_INPROGRESS);
  1020. mwifiex_send_delba(priv, tid_del, ra, 1);
  1021. }
  1022. }
  1023. /* Minimum number of AMSDU */
  1024. #define MIN_NUM_AMSDU 2
  1025. if (mwifiex_is_amsdu_allowed(priv, tid) &&
  1026. (mwifiex_num_pkts_in_txq(priv, ptr, adapter->tx_buf_size) >=
  1027. MIN_NUM_AMSDU))
  1028. mwifiex_11n_aggregate_pkt(priv, ptr, INTF_HEADER_LEN,
  1029. ptr_index, flags);
  1030. /* ra_list_spinlock has been freed in
  1031. mwifiex_11n_aggregate_pkt() */
  1032. else
  1033. mwifiex_send_single_packet(priv, ptr, ptr_index, flags);
  1034. /* ra_list_spinlock has been freed in
  1035. mwifiex_send_single_packet() */
  1036. }
  1037. return 0;
  1038. }
  1039. /*
  1040. * This function transmits the highest priority packet awaiting in the
  1041. * WMM Queues.
  1042. */
  1043. void
  1044. mwifiex_wmm_process_tx(struct mwifiex_adapter *adapter)
  1045. {
  1046. do {
  1047. /* Check if busy */
  1048. if (adapter->data_sent || adapter->tx_lock_flag)
  1049. break;
  1050. if (mwifiex_dequeue_tx_packet(adapter))
  1051. break;
  1052. } while (true);
  1053. }