i915_gem.c 105 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  41. bool write);
  42. static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  43. uint64_t offset,
  44. uint64_t size);
  45. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  46. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  47. unsigned alignment,
  48. bool map_and_fenceable);
  49. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  50. struct drm_i915_fence_reg *reg);
  51. static int i915_gem_phys_pwrite(struct drm_device *dev,
  52. struct drm_i915_gem_object *obj,
  53. struct drm_i915_gem_pwrite *args,
  54. struct drm_file *file);
  55. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  56. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  57. struct shrink_control *sc);
  58. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  59. /* some bookkeeping */
  60. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  61. size_t size)
  62. {
  63. dev_priv->mm.object_count++;
  64. dev_priv->mm.object_memory += size;
  65. }
  66. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  67. size_t size)
  68. {
  69. dev_priv->mm.object_count--;
  70. dev_priv->mm.object_memory -= size;
  71. }
  72. static int
  73. i915_gem_wait_for_error(struct drm_device *dev)
  74. {
  75. struct drm_i915_private *dev_priv = dev->dev_private;
  76. struct completion *x = &dev_priv->error_completion;
  77. unsigned long flags;
  78. int ret;
  79. if (!atomic_read(&dev_priv->mm.wedged))
  80. return 0;
  81. ret = wait_for_completion_interruptible(x);
  82. if (ret)
  83. return ret;
  84. if (atomic_read(&dev_priv->mm.wedged)) {
  85. /* GPU is hung, bump the completion count to account for
  86. * the token we just consumed so that we never hit zero and
  87. * end up waiting upon a subsequent completion event that
  88. * will never happen.
  89. */
  90. spin_lock_irqsave(&x->wait.lock, flags);
  91. x->done++;
  92. spin_unlock_irqrestore(&x->wait.lock, flags);
  93. }
  94. return 0;
  95. }
  96. int i915_mutex_lock_interruptible(struct drm_device *dev)
  97. {
  98. int ret;
  99. ret = i915_gem_wait_for_error(dev);
  100. if (ret)
  101. return ret;
  102. ret = mutex_lock_interruptible(&dev->struct_mutex);
  103. if (ret)
  104. return ret;
  105. WARN_ON(i915_verify_lists(dev));
  106. return 0;
  107. }
  108. static inline bool
  109. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  110. {
  111. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  112. }
  113. void i915_gem_do_init(struct drm_device *dev,
  114. unsigned long start,
  115. unsigned long mappable_end,
  116. unsigned long end)
  117. {
  118. drm_i915_private_t *dev_priv = dev->dev_private;
  119. drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
  120. dev_priv->mm.gtt_start = start;
  121. dev_priv->mm.gtt_mappable_end = mappable_end;
  122. dev_priv->mm.gtt_end = end;
  123. dev_priv->mm.gtt_total = end - start;
  124. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  125. /* Take over this portion of the GTT */
  126. intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
  127. }
  128. int
  129. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  130. struct drm_file *file)
  131. {
  132. struct drm_i915_gem_init *args = data;
  133. if (args->gtt_start >= args->gtt_end ||
  134. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  135. return -EINVAL;
  136. mutex_lock(&dev->struct_mutex);
  137. i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  138. mutex_unlock(&dev->struct_mutex);
  139. return 0;
  140. }
  141. int
  142. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  143. struct drm_file *file)
  144. {
  145. struct drm_i915_private *dev_priv = dev->dev_private;
  146. struct drm_i915_gem_get_aperture *args = data;
  147. struct drm_i915_gem_object *obj;
  148. size_t pinned;
  149. if (!(dev->driver->driver_features & DRIVER_GEM))
  150. return -ENODEV;
  151. pinned = 0;
  152. mutex_lock(&dev->struct_mutex);
  153. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  154. pinned += obj->gtt_space->size;
  155. mutex_unlock(&dev->struct_mutex);
  156. args->aper_size = dev_priv->mm.gtt_total;
  157. args->aper_available_size = args->aper_size - pinned;
  158. return 0;
  159. }
  160. static int
  161. i915_gem_create(struct drm_file *file,
  162. struct drm_device *dev,
  163. uint64_t size,
  164. uint32_t *handle_p)
  165. {
  166. struct drm_i915_gem_object *obj;
  167. int ret;
  168. u32 handle;
  169. size = roundup(size, PAGE_SIZE);
  170. if (size == 0)
  171. return -EINVAL;
  172. /* Allocate the new object */
  173. obj = i915_gem_alloc_object(dev, size);
  174. if (obj == NULL)
  175. return -ENOMEM;
  176. ret = drm_gem_handle_create(file, &obj->base, &handle);
  177. if (ret) {
  178. drm_gem_object_release(&obj->base);
  179. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  180. kfree(obj);
  181. return ret;
  182. }
  183. /* drop reference from allocate - handle holds it now */
  184. drm_gem_object_unreference(&obj->base);
  185. trace_i915_gem_object_create(obj);
  186. *handle_p = handle;
  187. return 0;
  188. }
  189. int
  190. i915_gem_dumb_create(struct drm_file *file,
  191. struct drm_device *dev,
  192. struct drm_mode_create_dumb *args)
  193. {
  194. /* have to work out size/pitch and return them */
  195. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  196. args->size = args->pitch * args->height;
  197. return i915_gem_create(file, dev,
  198. args->size, &args->handle);
  199. }
  200. int i915_gem_dumb_destroy(struct drm_file *file,
  201. struct drm_device *dev,
  202. uint32_t handle)
  203. {
  204. return drm_gem_handle_delete(file, handle);
  205. }
  206. /**
  207. * Creates a new mm object and returns a handle to it.
  208. */
  209. int
  210. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  211. struct drm_file *file)
  212. {
  213. struct drm_i915_gem_create *args = data;
  214. return i915_gem_create(file, dev,
  215. args->size, &args->handle);
  216. }
  217. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  218. {
  219. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  220. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  221. obj->tiling_mode != I915_TILING_NONE;
  222. }
  223. /**
  224. * This is the fast shmem pread path, which attempts to copy_from_user directly
  225. * from the backing pages of the object to the user's address space. On a
  226. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  227. */
  228. static int
  229. i915_gem_shmem_pread_fast(struct drm_device *dev,
  230. struct drm_i915_gem_object *obj,
  231. struct drm_i915_gem_pread *args,
  232. struct drm_file *file)
  233. {
  234. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  235. ssize_t remain;
  236. loff_t offset;
  237. char __user *user_data;
  238. int page_offset, page_length;
  239. user_data = (char __user *) (uintptr_t) args->data_ptr;
  240. remain = args->size;
  241. offset = args->offset;
  242. while (remain > 0) {
  243. struct page *page;
  244. char *vaddr;
  245. int ret;
  246. /* Operation in this page
  247. *
  248. * page_offset = offset within page
  249. * page_length = bytes to copy for this page
  250. */
  251. page_offset = offset_in_page(offset);
  252. page_length = remain;
  253. if ((page_offset + remain) > PAGE_SIZE)
  254. page_length = PAGE_SIZE - page_offset;
  255. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  256. if (IS_ERR(page))
  257. return PTR_ERR(page);
  258. vaddr = kmap_atomic(page);
  259. ret = __copy_to_user_inatomic(user_data,
  260. vaddr + page_offset,
  261. page_length);
  262. kunmap_atomic(vaddr);
  263. mark_page_accessed(page);
  264. page_cache_release(page);
  265. if (ret)
  266. return -EFAULT;
  267. remain -= page_length;
  268. user_data += page_length;
  269. offset += page_length;
  270. }
  271. return 0;
  272. }
  273. static inline int
  274. __copy_to_user_swizzled(char __user *cpu_vaddr,
  275. const char *gpu_vaddr, int gpu_offset,
  276. int length)
  277. {
  278. int ret, cpu_offset = 0;
  279. while (length > 0) {
  280. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  281. int this_length = min(cacheline_end - gpu_offset, length);
  282. int swizzled_gpu_offset = gpu_offset ^ 64;
  283. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  284. gpu_vaddr + swizzled_gpu_offset,
  285. this_length);
  286. if (ret)
  287. return ret + length;
  288. cpu_offset += this_length;
  289. gpu_offset += this_length;
  290. length -= this_length;
  291. }
  292. return 0;
  293. }
  294. static inline int
  295. __copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
  296. const char *cpu_vaddr,
  297. int length)
  298. {
  299. int ret, cpu_offset = 0;
  300. while (length > 0) {
  301. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  302. int this_length = min(cacheline_end - gpu_offset, length);
  303. int swizzled_gpu_offset = gpu_offset ^ 64;
  304. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  305. cpu_vaddr + cpu_offset,
  306. this_length);
  307. if (ret)
  308. return ret + length;
  309. cpu_offset += this_length;
  310. gpu_offset += this_length;
  311. length -= this_length;
  312. }
  313. return 0;
  314. }
  315. /**
  316. * This is the fallback shmem pread path, which allocates temporary storage
  317. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  318. * can copy out of the object's backing pages while holding the struct mutex
  319. * and not take page faults.
  320. */
  321. static int
  322. i915_gem_shmem_pread_slow(struct drm_device *dev,
  323. struct drm_i915_gem_object *obj,
  324. struct drm_i915_gem_pread *args,
  325. struct drm_file *file)
  326. {
  327. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  328. char __user *user_data;
  329. ssize_t remain;
  330. loff_t offset;
  331. int shmem_page_offset, page_length, ret;
  332. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  333. user_data = (char __user *) (uintptr_t) args->data_ptr;
  334. remain = args->size;
  335. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  336. offset = args->offset;
  337. mutex_unlock(&dev->struct_mutex);
  338. while (remain > 0) {
  339. struct page *page;
  340. char *vaddr;
  341. /* Operation in this page
  342. *
  343. * shmem_page_offset = offset within page in shmem file
  344. * page_length = bytes to copy for this page
  345. */
  346. shmem_page_offset = offset_in_page(offset);
  347. page_length = remain;
  348. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  349. page_length = PAGE_SIZE - shmem_page_offset;
  350. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  351. if (IS_ERR(page)) {
  352. ret = PTR_ERR(page);
  353. goto out;
  354. }
  355. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  356. (page_to_phys(page) & (1 << 17)) != 0;
  357. vaddr = kmap(page);
  358. if (page_do_bit17_swizzling)
  359. ret = __copy_to_user_swizzled(user_data,
  360. vaddr, shmem_page_offset,
  361. page_length);
  362. else
  363. ret = __copy_to_user(user_data,
  364. vaddr + shmem_page_offset,
  365. page_length);
  366. kunmap(page);
  367. mark_page_accessed(page);
  368. page_cache_release(page);
  369. if (ret) {
  370. ret = -EFAULT;
  371. goto out;
  372. }
  373. remain -= page_length;
  374. user_data += page_length;
  375. offset += page_length;
  376. }
  377. out:
  378. mutex_lock(&dev->struct_mutex);
  379. /* Fixup: Kill any reinstated backing storage pages */
  380. if (obj->madv == __I915_MADV_PURGED)
  381. i915_gem_object_truncate(obj);
  382. return ret;
  383. }
  384. /**
  385. * Reads data from the object referenced by handle.
  386. *
  387. * On error, the contents of *data are undefined.
  388. */
  389. int
  390. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  391. struct drm_file *file)
  392. {
  393. struct drm_i915_gem_pread *args = data;
  394. struct drm_i915_gem_object *obj;
  395. int ret = 0;
  396. if (args->size == 0)
  397. return 0;
  398. if (!access_ok(VERIFY_WRITE,
  399. (char __user *)(uintptr_t)args->data_ptr,
  400. args->size))
  401. return -EFAULT;
  402. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  403. args->size);
  404. if (ret)
  405. return -EFAULT;
  406. ret = i915_mutex_lock_interruptible(dev);
  407. if (ret)
  408. return ret;
  409. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  410. if (&obj->base == NULL) {
  411. ret = -ENOENT;
  412. goto unlock;
  413. }
  414. /* Bounds check source. */
  415. if (args->offset > obj->base.size ||
  416. args->size > obj->base.size - args->offset) {
  417. ret = -EINVAL;
  418. goto out;
  419. }
  420. trace_i915_gem_object_pread(obj, args->offset, args->size);
  421. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  422. args->offset,
  423. args->size);
  424. if (ret)
  425. goto out;
  426. ret = -EFAULT;
  427. if (!i915_gem_object_needs_bit17_swizzle(obj))
  428. ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
  429. if (ret == -EFAULT)
  430. ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
  431. out:
  432. drm_gem_object_unreference(&obj->base);
  433. unlock:
  434. mutex_unlock(&dev->struct_mutex);
  435. return ret;
  436. }
  437. /* This is the fast write path which cannot handle
  438. * page faults in the source data
  439. */
  440. static inline int
  441. fast_user_write(struct io_mapping *mapping,
  442. loff_t page_base, int page_offset,
  443. char __user *user_data,
  444. int length)
  445. {
  446. char *vaddr_atomic;
  447. unsigned long unwritten;
  448. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  449. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  450. user_data, length);
  451. io_mapping_unmap_atomic(vaddr_atomic);
  452. return unwritten;
  453. }
  454. /* Here's the write path which can sleep for
  455. * page faults
  456. */
  457. static inline void
  458. slow_kernel_write(struct io_mapping *mapping,
  459. loff_t gtt_base, int gtt_offset,
  460. struct page *user_page, int user_offset,
  461. int length)
  462. {
  463. char __iomem *dst_vaddr;
  464. char *src_vaddr;
  465. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  466. src_vaddr = kmap(user_page);
  467. memcpy_toio(dst_vaddr + gtt_offset,
  468. src_vaddr + user_offset,
  469. length);
  470. kunmap(user_page);
  471. io_mapping_unmap(dst_vaddr);
  472. }
  473. /**
  474. * This is the fast pwrite path, where we copy the data directly from the
  475. * user into the GTT, uncached.
  476. */
  477. static int
  478. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  479. struct drm_i915_gem_object *obj,
  480. struct drm_i915_gem_pwrite *args,
  481. struct drm_file *file)
  482. {
  483. drm_i915_private_t *dev_priv = dev->dev_private;
  484. ssize_t remain;
  485. loff_t offset, page_base;
  486. char __user *user_data;
  487. int page_offset, page_length;
  488. user_data = (char __user *) (uintptr_t) args->data_ptr;
  489. remain = args->size;
  490. offset = obj->gtt_offset + args->offset;
  491. while (remain > 0) {
  492. /* Operation in this page
  493. *
  494. * page_base = page offset within aperture
  495. * page_offset = offset within page
  496. * page_length = bytes to copy for this page
  497. */
  498. page_base = offset & PAGE_MASK;
  499. page_offset = offset_in_page(offset);
  500. page_length = remain;
  501. if ((page_offset + remain) > PAGE_SIZE)
  502. page_length = PAGE_SIZE - page_offset;
  503. /* If we get a fault while copying data, then (presumably) our
  504. * source page isn't available. Return the error and we'll
  505. * retry in the slow path.
  506. */
  507. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  508. page_offset, user_data, page_length))
  509. return -EFAULT;
  510. remain -= page_length;
  511. user_data += page_length;
  512. offset += page_length;
  513. }
  514. return 0;
  515. }
  516. /**
  517. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  518. * the memory and maps it using kmap_atomic for copying.
  519. *
  520. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  521. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  522. */
  523. static int
  524. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  525. struct drm_i915_gem_object *obj,
  526. struct drm_i915_gem_pwrite *args,
  527. struct drm_file *file)
  528. {
  529. drm_i915_private_t *dev_priv = dev->dev_private;
  530. ssize_t remain;
  531. loff_t gtt_page_base, offset;
  532. loff_t first_data_page, last_data_page, num_pages;
  533. loff_t pinned_pages, i;
  534. struct page **user_pages;
  535. struct mm_struct *mm = current->mm;
  536. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  537. int ret;
  538. uint64_t data_ptr = args->data_ptr;
  539. remain = args->size;
  540. /* Pin the user pages containing the data. We can't fault while
  541. * holding the struct mutex, and all of the pwrite implementations
  542. * want to hold it while dereferencing the user data.
  543. */
  544. first_data_page = data_ptr / PAGE_SIZE;
  545. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  546. num_pages = last_data_page - first_data_page + 1;
  547. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  548. if (user_pages == NULL)
  549. return -ENOMEM;
  550. mutex_unlock(&dev->struct_mutex);
  551. down_read(&mm->mmap_sem);
  552. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  553. num_pages, 0, 0, user_pages, NULL);
  554. up_read(&mm->mmap_sem);
  555. mutex_lock(&dev->struct_mutex);
  556. if (pinned_pages < num_pages) {
  557. ret = -EFAULT;
  558. goto out_unpin_pages;
  559. }
  560. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  561. if (ret)
  562. goto out_unpin_pages;
  563. ret = i915_gem_object_put_fence(obj);
  564. if (ret)
  565. goto out_unpin_pages;
  566. offset = obj->gtt_offset + args->offset;
  567. while (remain > 0) {
  568. /* Operation in this page
  569. *
  570. * gtt_page_base = page offset within aperture
  571. * gtt_page_offset = offset within page in aperture
  572. * data_page_index = page number in get_user_pages return
  573. * data_page_offset = offset with data_page_index page.
  574. * page_length = bytes to copy for this page
  575. */
  576. gtt_page_base = offset & PAGE_MASK;
  577. gtt_page_offset = offset_in_page(offset);
  578. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  579. data_page_offset = offset_in_page(data_ptr);
  580. page_length = remain;
  581. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  582. page_length = PAGE_SIZE - gtt_page_offset;
  583. if ((data_page_offset + page_length) > PAGE_SIZE)
  584. page_length = PAGE_SIZE - data_page_offset;
  585. slow_kernel_write(dev_priv->mm.gtt_mapping,
  586. gtt_page_base, gtt_page_offset,
  587. user_pages[data_page_index],
  588. data_page_offset,
  589. page_length);
  590. remain -= page_length;
  591. offset += page_length;
  592. data_ptr += page_length;
  593. }
  594. out_unpin_pages:
  595. for (i = 0; i < pinned_pages; i++)
  596. page_cache_release(user_pages[i]);
  597. drm_free_large(user_pages);
  598. return ret;
  599. }
  600. /**
  601. * This is the fast shmem pwrite path, which attempts to directly
  602. * copy_from_user into the kmapped pages backing the object.
  603. */
  604. static int
  605. i915_gem_shmem_pwrite_fast(struct drm_device *dev,
  606. struct drm_i915_gem_object *obj,
  607. struct drm_i915_gem_pwrite *args,
  608. struct drm_file *file)
  609. {
  610. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  611. ssize_t remain;
  612. loff_t offset;
  613. char __user *user_data;
  614. int page_offset, page_length;
  615. user_data = (char __user *) (uintptr_t) args->data_ptr;
  616. remain = args->size;
  617. offset = args->offset;
  618. obj->dirty = 1;
  619. while (remain > 0) {
  620. struct page *page;
  621. char *vaddr;
  622. int ret;
  623. /* Operation in this page
  624. *
  625. * page_offset = offset within page
  626. * page_length = bytes to copy for this page
  627. */
  628. page_offset = offset_in_page(offset);
  629. page_length = remain;
  630. if ((page_offset + remain) > PAGE_SIZE)
  631. page_length = PAGE_SIZE - page_offset;
  632. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  633. if (IS_ERR(page))
  634. return PTR_ERR(page);
  635. vaddr = kmap_atomic(page);
  636. ret = __copy_from_user_inatomic(vaddr + page_offset,
  637. user_data,
  638. page_length);
  639. kunmap_atomic(vaddr);
  640. set_page_dirty(page);
  641. mark_page_accessed(page);
  642. page_cache_release(page);
  643. /* If we get a fault while copying data, then (presumably) our
  644. * source page isn't available. Return the error and we'll
  645. * retry in the slow path.
  646. */
  647. if (ret)
  648. return -EFAULT;
  649. remain -= page_length;
  650. user_data += page_length;
  651. offset += page_length;
  652. }
  653. return 0;
  654. }
  655. /**
  656. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  657. * the memory and maps it using kmap_atomic for copying.
  658. *
  659. * This avoids taking mmap_sem for faulting on the user's address while the
  660. * struct_mutex is held.
  661. */
  662. static int
  663. i915_gem_shmem_pwrite_slow(struct drm_device *dev,
  664. struct drm_i915_gem_object *obj,
  665. struct drm_i915_gem_pwrite *args,
  666. struct drm_file *file)
  667. {
  668. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  669. ssize_t remain;
  670. loff_t offset;
  671. char __user *user_data;
  672. int shmem_page_offset, page_length, ret;
  673. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  674. user_data = (char __user *) (uintptr_t) args->data_ptr;
  675. remain = args->size;
  676. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  677. offset = args->offset;
  678. obj->dirty = 1;
  679. mutex_unlock(&dev->struct_mutex);
  680. while (remain > 0) {
  681. struct page *page;
  682. char *vaddr;
  683. /* Operation in this page
  684. *
  685. * shmem_page_offset = offset within page in shmem file
  686. * page_length = bytes to copy for this page
  687. */
  688. shmem_page_offset = offset_in_page(offset);
  689. page_length = remain;
  690. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  691. page_length = PAGE_SIZE - shmem_page_offset;
  692. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  693. if (IS_ERR(page)) {
  694. ret = PTR_ERR(page);
  695. goto out;
  696. }
  697. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  698. (page_to_phys(page) & (1 << 17)) != 0;
  699. vaddr = kmap(page);
  700. if (page_do_bit17_swizzling)
  701. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  702. user_data,
  703. page_length);
  704. else
  705. ret = __copy_from_user(vaddr + shmem_page_offset,
  706. user_data,
  707. page_length);
  708. kunmap(page);
  709. set_page_dirty(page);
  710. mark_page_accessed(page);
  711. page_cache_release(page);
  712. if (ret) {
  713. ret = -EFAULT;
  714. goto out;
  715. }
  716. remain -= page_length;
  717. user_data += page_length;
  718. offset += page_length;
  719. }
  720. out:
  721. mutex_lock(&dev->struct_mutex);
  722. /* Fixup: Kill any reinstated backing storage pages */
  723. if (obj->madv == __I915_MADV_PURGED)
  724. i915_gem_object_truncate(obj);
  725. /* and flush dirty cachelines in case the object isn't in the cpu write
  726. * domain anymore. */
  727. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  728. i915_gem_clflush_object(obj);
  729. intel_gtt_chipset_flush();
  730. }
  731. return ret;
  732. }
  733. /**
  734. * Writes data to the object referenced by handle.
  735. *
  736. * On error, the contents of the buffer that were to be modified are undefined.
  737. */
  738. int
  739. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  740. struct drm_file *file)
  741. {
  742. struct drm_i915_gem_pwrite *args = data;
  743. struct drm_i915_gem_object *obj;
  744. int ret;
  745. if (args->size == 0)
  746. return 0;
  747. if (!access_ok(VERIFY_READ,
  748. (char __user *)(uintptr_t)args->data_ptr,
  749. args->size))
  750. return -EFAULT;
  751. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  752. args->size);
  753. if (ret)
  754. return -EFAULT;
  755. ret = i915_mutex_lock_interruptible(dev);
  756. if (ret)
  757. return ret;
  758. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  759. if (&obj->base == NULL) {
  760. ret = -ENOENT;
  761. goto unlock;
  762. }
  763. /* Bounds check destination. */
  764. if (args->offset > obj->base.size ||
  765. args->size > obj->base.size - args->offset) {
  766. ret = -EINVAL;
  767. goto out;
  768. }
  769. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  770. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  771. * it would end up going through the fenced access, and we'll get
  772. * different detiling behavior between reading and writing.
  773. * pread/pwrite currently are reading and writing from the CPU
  774. * perspective, requiring manual detiling by the client.
  775. */
  776. if (obj->phys_obj) {
  777. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  778. goto out;
  779. }
  780. if (obj->gtt_space &&
  781. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  782. ret = i915_gem_object_pin(obj, 0, true);
  783. if (ret)
  784. goto out;
  785. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  786. if (ret)
  787. goto out_unpin;
  788. ret = i915_gem_object_put_fence(obj);
  789. if (ret)
  790. goto out_unpin;
  791. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  792. if (ret == -EFAULT)
  793. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  794. out_unpin:
  795. i915_gem_object_unpin(obj);
  796. if (ret != -EFAULT)
  797. goto out;
  798. /* Fall through to the shmfs paths because the gtt paths might
  799. * fail with non-page-backed user pointers (e.g. gtt mappings
  800. * when moving data between textures). */
  801. }
  802. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  803. if (ret)
  804. goto out;
  805. ret = -EFAULT;
  806. if (!i915_gem_object_needs_bit17_swizzle(obj))
  807. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  808. if (ret == -EFAULT)
  809. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  810. out:
  811. drm_gem_object_unreference(&obj->base);
  812. unlock:
  813. mutex_unlock(&dev->struct_mutex);
  814. return ret;
  815. }
  816. /**
  817. * Called when user space prepares to use an object with the CPU, either
  818. * through the mmap ioctl's mapping or a GTT mapping.
  819. */
  820. int
  821. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  822. struct drm_file *file)
  823. {
  824. struct drm_i915_gem_set_domain *args = data;
  825. struct drm_i915_gem_object *obj;
  826. uint32_t read_domains = args->read_domains;
  827. uint32_t write_domain = args->write_domain;
  828. int ret;
  829. if (!(dev->driver->driver_features & DRIVER_GEM))
  830. return -ENODEV;
  831. /* Only handle setting domains to types used by the CPU. */
  832. if (write_domain & I915_GEM_GPU_DOMAINS)
  833. return -EINVAL;
  834. if (read_domains & I915_GEM_GPU_DOMAINS)
  835. return -EINVAL;
  836. /* Having something in the write domain implies it's in the read
  837. * domain, and only that read domain. Enforce that in the request.
  838. */
  839. if (write_domain != 0 && read_domains != write_domain)
  840. return -EINVAL;
  841. ret = i915_mutex_lock_interruptible(dev);
  842. if (ret)
  843. return ret;
  844. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  845. if (&obj->base == NULL) {
  846. ret = -ENOENT;
  847. goto unlock;
  848. }
  849. if (read_domains & I915_GEM_DOMAIN_GTT) {
  850. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  851. /* Silently promote "you're not bound, there was nothing to do"
  852. * to success, since the client was just asking us to
  853. * make sure everything was done.
  854. */
  855. if (ret == -EINVAL)
  856. ret = 0;
  857. } else {
  858. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  859. }
  860. drm_gem_object_unreference(&obj->base);
  861. unlock:
  862. mutex_unlock(&dev->struct_mutex);
  863. return ret;
  864. }
  865. /**
  866. * Called when user space has done writes to this buffer
  867. */
  868. int
  869. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  870. struct drm_file *file)
  871. {
  872. struct drm_i915_gem_sw_finish *args = data;
  873. struct drm_i915_gem_object *obj;
  874. int ret = 0;
  875. if (!(dev->driver->driver_features & DRIVER_GEM))
  876. return -ENODEV;
  877. ret = i915_mutex_lock_interruptible(dev);
  878. if (ret)
  879. return ret;
  880. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  881. if (&obj->base == NULL) {
  882. ret = -ENOENT;
  883. goto unlock;
  884. }
  885. /* Pinned buffers may be scanout, so flush the cache */
  886. if (obj->pin_count)
  887. i915_gem_object_flush_cpu_write_domain(obj);
  888. drm_gem_object_unreference(&obj->base);
  889. unlock:
  890. mutex_unlock(&dev->struct_mutex);
  891. return ret;
  892. }
  893. /**
  894. * Maps the contents of an object, returning the address it is mapped
  895. * into.
  896. *
  897. * While the mapping holds a reference on the contents of the object, it doesn't
  898. * imply a ref on the object itself.
  899. */
  900. int
  901. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  902. struct drm_file *file)
  903. {
  904. struct drm_i915_gem_mmap *args = data;
  905. struct drm_gem_object *obj;
  906. unsigned long addr;
  907. if (!(dev->driver->driver_features & DRIVER_GEM))
  908. return -ENODEV;
  909. obj = drm_gem_object_lookup(dev, file, args->handle);
  910. if (obj == NULL)
  911. return -ENOENT;
  912. down_write(&current->mm->mmap_sem);
  913. addr = do_mmap(obj->filp, 0, args->size,
  914. PROT_READ | PROT_WRITE, MAP_SHARED,
  915. args->offset);
  916. up_write(&current->mm->mmap_sem);
  917. drm_gem_object_unreference_unlocked(obj);
  918. if (IS_ERR((void *)addr))
  919. return addr;
  920. args->addr_ptr = (uint64_t) addr;
  921. return 0;
  922. }
  923. /**
  924. * i915_gem_fault - fault a page into the GTT
  925. * vma: VMA in question
  926. * vmf: fault info
  927. *
  928. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  929. * from userspace. The fault handler takes care of binding the object to
  930. * the GTT (if needed), allocating and programming a fence register (again,
  931. * only if needed based on whether the old reg is still valid or the object
  932. * is tiled) and inserting a new PTE into the faulting process.
  933. *
  934. * Note that the faulting process may involve evicting existing objects
  935. * from the GTT and/or fence registers to make room. So performance may
  936. * suffer if the GTT working set is large or there are few fence registers
  937. * left.
  938. */
  939. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  940. {
  941. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  942. struct drm_device *dev = obj->base.dev;
  943. drm_i915_private_t *dev_priv = dev->dev_private;
  944. pgoff_t page_offset;
  945. unsigned long pfn;
  946. int ret = 0;
  947. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  948. /* We don't use vmf->pgoff since that has the fake offset */
  949. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  950. PAGE_SHIFT;
  951. ret = i915_mutex_lock_interruptible(dev);
  952. if (ret)
  953. goto out;
  954. trace_i915_gem_object_fault(obj, page_offset, true, write);
  955. /* Now bind it into the GTT if needed */
  956. if (!obj->map_and_fenceable) {
  957. ret = i915_gem_object_unbind(obj);
  958. if (ret)
  959. goto unlock;
  960. }
  961. if (!obj->gtt_space) {
  962. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  963. if (ret)
  964. goto unlock;
  965. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  966. if (ret)
  967. goto unlock;
  968. }
  969. if (obj->tiling_mode == I915_TILING_NONE)
  970. ret = i915_gem_object_put_fence(obj);
  971. else
  972. ret = i915_gem_object_get_fence(obj, NULL);
  973. if (ret)
  974. goto unlock;
  975. if (i915_gem_object_is_inactive(obj))
  976. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  977. obj->fault_mappable = true;
  978. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  979. page_offset;
  980. /* Finally, remap it using the new GTT offset */
  981. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  982. unlock:
  983. mutex_unlock(&dev->struct_mutex);
  984. out:
  985. switch (ret) {
  986. case -EIO:
  987. case -EAGAIN:
  988. /* Give the error handler a chance to run and move the
  989. * objects off the GPU active list. Next time we service the
  990. * fault, we should be able to transition the page into the
  991. * GTT without touching the GPU (and so avoid further
  992. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  993. * with coherency, just lost writes.
  994. */
  995. set_need_resched();
  996. case 0:
  997. case -ERESTARTSYS:
  998. case -EINTR:
  999. return VM_FAULT_NOPAGE;
  1000. case -ENOMEM:
  1001. return VM_FAULT_OOM;
  1002. default:
  1003. return VM_FAULT_SIGBUS;
  1004. }
  1005. }
  1006. /**
  1007. * i915_gem_release_mmap - remove physical page mappings
  1008. * @obj: obj in question
  1009. *
  1010. * Preserve the reservation of the mmapping with the DRM core code, but
  1011. * relinquish ownership of the pages back to the system.
  1012. *
  1013. * It is vital that we remove the page mapping if we have mapped a tiled
  1014. * object through the GTT and then lose the fence register due to
  1015. * resource pressure. Similarly if the object has been moved out of the
  1016. * aperture, than pages mapped into userspace must be revoked. Removing the
  1017. * mapping will then trigger a page fault on the next user access, allowing
  1018. * fixup by i915_gem_fault().
  1019. */
  1020. void
  1021. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1022. {
  1023. if (!obj->fault_mappable)
  1024. return;
  1025. if (obj->base.dev->dev_mapping)
  1026. unmap_mapping_range(obj->base.dev->dev_mapping,
  1027. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1028. obj->base.size, 1);
  1029. obj->fault_mappable = false;
  1030. }
  1031. static uint32_t
  1032. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1033. {
  1034. uint32_t gtt_size;
  1035. if (INTEL_INFO(dev)->gen >= 4 ||
  1036. tiling_mode == I915_TILING_NONE)
  1037. return size;
  1038. /* Previous chips need a power-of-two fence region when tiling */
  1039. if (INTEL_INFO(dev)->gen == 3)
  1040. gtt_size = 1024*1024;
  1041. else
  1042. gtt_size = 512*1024;
  1043. while (gtt_size < size)
  1044. gtt_size <<= 1;
  1045. return gtt_size;
  1046. }
  1047. /**
  1048. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1049. * @obj: object to check
  1050. *
  1051. * Return the required GTT alignment for an object, taking into account
  1052. * potential fence register mapping.
  1053. */
  1054. static uint32_t
  1055. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1056. uint32_t size,
  1057. int tiling_mode)
  1058. {
  1059. /*
  1060. * Minimum alignment is 4k (GTT page size), but might be greater
  1061. * if a fence register is needed for the object.
  1062. */
  1063. if (INTEL_INFO(dev)->gen >= 4 ||
  1064. tiling_mode == I915_TILING_NONE)
  1065. return 4096;
  1066. /*
  1067. * Previous chips need to be aligned to the size of the smallest
  1068. * fence register that can contain the object.
  1069. */
  1070. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1071. }
  1072. /**
  1073. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1074. * unfenced object
  1075. * @dev: the device
  1076. * @size: size of the object
  1077. * @tiling_mode: tiling mode of the object
  1078. *
  1079. * Return the required GTT alignment for an object, only taking into account
  1080. * unfenced tiled surface requirements.
  1081. */
  1082. uint32_t
  1083. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1084. uint32_t size,
  1085. int tiling_mode)
  1086. {
  1087. /*
  1088. * Minimum alignment is 4k (GTT page size) for sane hw.
  1089. */
  1090. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1091. tiling_mode == I915_TILING_NONE)
  1092. return 4096;
  1093. /* Previous hardware however needs to be aligned to a power-of-two
  1094. * tile height. The simplest method for determining this is to reuse
  1095. * the power-of-tile object size.
  1096. */
  1097. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1098. }
  1099. int
  1100. i915_gem_mmap_gtt(struct drm_file *file,
  1101. struct drm_device *dev,
  1102. uint32_t handle,
  1103. uint64_t *offset)
  1104. {
  1105. struct drm_i915_private *dev_priv = dev->dev_private;
  1106. struct drm_i915_gem_object *obj;
  1107. int ret;
  1108. if (!(dev->driver->driver_features & DRIVER_GEM))
  1109. return -ENODEV;
  1110. ret = i915_mutex_lock_interruptible(dev);
  1111. if (ret)
  1112. return ret;
  1113. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1114. if (&obj->base == NULL) {
  1115. ret = -ENOENT;
  1116. goto unlock;
  1117. }
  1118. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1119. ret = -E2BIG;
  1120. goto out;
  1121. }
  1122. if (obj->madv != I915_MADV_WILLNEED) {
  1123. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1124. ret = -EINVAL;
  1125. goto out;
  1126. }
  1127. if (!obj->base.map_list.map) {
  1128. ret = drm_gem_create_mmap_offset(&obj->base);
  1129. if (ret)
  1130. goto out;
  1131. }
  1132. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1133. out:
  1134. drm_gem_object_unreference(&obj->base);
  1135. unlock:
  1136. mutex_unlock(&dev->struct_mutex);
  1137. return ret;
  1138. }
  1139. /**
  1140. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1141. * @dev: DRM device
  1142. * @data: GTT mapping ioctl data
  1143. * @file: GEM object info
  1144. *
  1145. * Simply returns the fake offset to userspace so it can mmap it.
  1146. * The mmap call will end up in drm_gem_mmap(), which will set things
  1147. * up so we can get faults in the handler above.
  1148. *
  1149. * The fault handler will take care of binding the object into the GTT
  1150. * (since it may have been evicted to make room for something), allocating
  1151. * a fence register, and mapping the appropriate aperture address into
  1152. * userspace.
  1153. */
  1154. int
  1155. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1156. struct drm_file *file)
  1157. {
  1158. struct drm_i915_gem_mmap_gtt *args = data;
  1159. if (!(dev->driver->driver_features & DRIVER_GEM))
  1160. return -ENODEV;
  1161. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1162. }
  1163. static int
  1164. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1165. gfp_t gfpmask)
  1166. {
  1167. int page_count, i;
  1168. struct address_space *mapping;
  1169. struct inode *inode;
  1170. struct page *page;
  1171. /* Get the list of pages out of our struct file. They'll be pinned
  1172. * at this point until we release them.
  1173. */
  1174. page_count = obj->base.size / PAGE_SIZE;
  1175. BUG_ON(obj->pages != NULL);
  1176. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1177. if (obj->pages == NULL)
  1178. return -ENOMEM;
  1179. inode = obj->base.filp->f_path.dentry->d_inode;
  1180. mapping = inode->i_mapping;
  1181. gfpmask |= mapping_gfp_mask(mapping);
  1182. for (i = 0; i < page_count; i++) {
  1183. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1184. if (IS_ERR(page))
  1185. goto err_pages;
  1186. obj->pages[i] = page;
  1187. }
  1188. if (i915_gem_object_needs_bit17_swizzle(obj))
  1189. i915_gem_object_do_bit_17_swizzle(obj);
  1190. return 0;
  1191. err_pages:
  1192. while (i--)
  1193. page_cache_release(obj->pages[i]);
  1194. drm_free_large(obj->pages);
  1195. obj->pages = NULL;
  1196. return PTR_ERR(page);
  1197. }
  1198. static void
  1199. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1200. {
  1201. int page_count = obj->base.size / PAGE_SIZE;
  1202. int i;
  1203. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1204. if (i915_gem_object_needs_bit17_swizzle(obj))
  1205. i915_gem_object_save_bit_17_swizzle(obj);
  1206. if (obj->madv == I915_MADV_DONTNEED)
  1207. obj->dirty = 0;
  1208. for (i = 0; i < page_count; i++) {
  1209. if (obj->dirty)
  1210. set_page_dirty(obj->pages[i]);
  1211. if (obj->madv == I915_MADV_WILLNEED)
  1212. mark_page_accessed(obj->pages[i]);
  1213. page_cache_release(obj->pages[i]);
  1214. }
  1215. obj->dirty = 0;
  1216. drm_free_large(obj->pages);
  1217. obj->pages = NULL;
  1218. }
  1219. void
  1220. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1221. struct intel_ring_buffer *ring,
  1222. u32 seqno)
  1223. {
  1224. struct drm_device *dev = obj->base.dev;
  1225. struct drm_i915_private *dev_priv = dev->dev_private;
  1226. BUG_ON(ring == NULL);
  1227. obj->ring = ring;
  1228. /* Add a reference if we're newly entering the active list. */
  1229. if (!obj->active) {
  1230. drm_gem_object_reference(&obj->base);
  1231. obj->active = 1;
  1232. }
  1233. /* Move from whatever list we were on to the tail of execution. */
  1234. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1235. list_move_tail(&obj->ring_list, &ring->active_list);
  1236. obj->last_rendering_seqno = seqno;
  1237. if (obj->fenced_gpu_access) {
  1238. struct drm_i915_fence_reg *reg;
  1239. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1240. obj->last_fenced_seqno = seqno;
  1241. obj->last_fenced_ring = ring;
  1242. reg = &dev_priv->fence_regs[obj->fence_reg];
  1243. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1244. }
  1245. }
  1246. static void
  1247. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1248. {
  1249. list_del_init(&obj->ring_list);
  1250. obj->last_rendering_seqno = 0;
  1251. }
  1252. static void
  1253. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1254. {
  1255. struct drm_device *dev = obj->base.dev;
  1256. drm_i915_private_t *dev_priv = dev->dev_private;
  1257. BUG_ON(!obj->active);
  1258. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1259. i915_gem_object_move_off_active(obj);
  1260. }
  1261. static void
  1262. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1263. {
  1264. struct drm_device *dev = obj->base.dev;
  1265. struct drm_i915_private *dev_priv = dev->dev_private;
  1266. if (obj->pin_count != 0)
  1267. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1268. else
  1269. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1270. BUG_ON(!list_empty(&obj->gpu_write_list));
  1271. BUG_ON(!obj->active);
  1272. obj->ring = NULL;
  1273. i915_gem_object_move_off_active(obj);
  1274. obj->fenced_gpu_access = false;
  1275. obj->active = 0;
  1276. obj->pending_gpu_write = false;
  1277. drm_gem_object_unreference(&obj->base);
  1278. WARN_ON(i915_verify_lists(dev));
  1279. }
  1280. /* Immediately discard the backing storage */
  1281. static void
  1282. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1283. {
  1284. struct inode *inode;
  1285. /* Our goal here is to return as much of the memory as
  1286. * is possible back to the system as we are called from OOM.
  1287. * To do this we must instruct the shmfs to drop all of its
  1288. * backing pages, *now*.
  1289. */
  1290. inode = obj->base.filp->f_path.dentry->d_inode;
  1291. shmem_truncate_range(inode, 0, (loff_t)-1);
  1292. obj->madv = __I915_MADV_PURGED;
  1293. }
  1294. static inline int
  1295. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1296. {
  1297. return obj->madv == I915_MADV_DONTNEED;
  1298. }
  1299. static void
  1300. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1301. uint32_t flush_domains)
  1302. {
  1303. struct drm_i915_gem_object *obj, *next;
  1304. list_for_each_entry_safe(obj, next,
  1305. &ring->gpu_write_list,
  1306. gpu_write_list) {
  1307. if (obj->base.write_domain & flush_domains) {
  1308. uint32_t old_write_domain = obj->base.write_domain;
  1309. obj->base.write_domain = 0;
  1310. list_del_init(&obj->gpu_write_list);
  1311. i915_gem_object_move_to_active(obj, ring,
  1312. i915_gem_next_request_seqno(ring));
  1313. trace_i915_gem_object_change_domain(obj,
  1314. obj->base.read_domains,
  1315. old_write_domain);
  1316. }
  1317. }
  1318. }
  1319. int
  1320. i915_add_request(struct intel_ring_buffer *ring,
  1321. struct drm_file *file,
  1322. struct drm_i915_gem_request *request)
  1323. {
  1324. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1325. uint32_t seqno;
  1326. int was_empty;
  1327. int ret;
  1328. BUG_ON(request == NULL);
  1329. ret = ring->add_request(ring, &seqno);
  1330. if (ret)
  1331. return ret;
  1332. trace_i915_gem_request_add(ring, seqno);
  1333. request->seqno = seqno;
  1334. request->ring = ring;
  1335. request->emitted_jiffies = jiffies;
  1336. was_empty = list_empty(&ring->request_list);
  1337. list_add_tail(&request->list, &ring->request_list);
  1338. if (file) {
  1339. struct drm_i915_file_private *file_priv = file->driver_priv;
  1340. spin_lock(&file_priv->mm.lock);
  1341. request->file_priv = file_priv;
  1342. list_add_tail(&request->client_list,
  1343. &file_priv->mm.request_list);
  1344. spin_unlock(&file_priv->mm.lock);
  1345. }
  1346. ring->outstanding_lazy_request = false;
  1347. if (!dev_priv->mm.suspended) {
  1348. if (i915_enable_hangcheck) {
  1349. mod_timer(&dev_priv->hangcheck_timer,
  1350. jiffies +
  1351. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1352. }
  1353. if (was_empty)
  1354. queue_delayed_work(dev_priv->wq,
  1355. &dev_priv->mm.retire_work, HZ);
  1356. }
  1357. return 0;
  1358. }
  1359. static inline void
  1360. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1361. {
  1362. struct drm_i915_file_private *file_priv = request->file_priv;
  1363. if (!file_priv)
  1364. return;
  1365. spin_lock(&file_priv->mm.lock);
  1366. if (request->file_priv) {
  1367. list_del(&request->client_list);
  1368. request->file_priv = NULL;
  1369. }
  1370. spin_unlock(&file_priv->mm.lock);
  1371. }
  1372. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1373. struct intel_ring_buffer *ring)
  1374. {
  1375. while (!list_empty(&ring->request_list)) {
  1376. struct drm_i915_gem_request *request;
  1377. request = list_first_entry(&ring->request_list,
  1378. struct drm_i915_gem_request,
  1379. list);
  1380. list_del(&request->list);
  1381. i915_gem_request_remove_from_client(request);
  1382. kfree(request);
  1383. }
  1384. while (!list_empty(&ring->active_list)) {
  1385. struct drm_i915_gem_object *obj;
  1386. obj = list_first_entry(&ring->active_list,
  1387. struct drm_i915_gem_object,
  1388. ring_list);
  1389. obj->base.write_domain = 0;
  1390. list_del_init(&obj->gpu_write_list);
  1391. i915_gem_object_move_to_inactive(obj);
  1392. }
  1393. }
  1394. static void i915_gem_reset_fences(struct drm_device *dev)
  1395. {
  1396. struct drm_i915_private *dev_priv = dev->dev_private;
  1397. int i;
  1398. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1399. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1400. struct drm_i915_gem_object *obj = reg->obj;
  1401. if (!obj)
  1402. continue;
  1403. if (obj->tiling_mode)
  1404. i915_gem_release_mmap(obj);
  1405. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1406. reg->obj->fenced_gpu_access = false;
  1407. reg->obj->last_fenced_seqno = 0;
  1408. reg->obj->last_fenced_ring = NULL;
  1409. i915_gem_clear_fence_reg(dev, reg);
  1410. }
  1411. }
  1412. void i915_gem_reset(struct drm_device *dev)
  1413. {
  1414. struct drm_i915_private *dev_priv = dev->dev_private;
  1415. struct drm_i915_gem_object *obj;
  1416. int i;
  1417. for (i = 0; i < I915_NUM_RINGS; i++)
  1418. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1419. /* Remove anything from the flushing lists. The GPU cache is likely
  1420. * to be lost on reset along with the data, so simply move the
  1421. * lost bo to the inactive list.
  1422. */
  1423. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1424. obj = list_first_entry(&dev_priv->mm.flushing_list,
  1425. struct drm_i915_gem_object,
  1426. mm_list);
  1427. obj->base.write_domain = 0;
  1428. list_del_init(&obj->gpu_write_list);
  1429. i915_gem_object_move_to_inactive(obj);
  1430. }
  1431. /* Move everything out of the GPU domains to ensure we do any
  1432. * necessary invalidation upon reuse.
  1433. */
  1434. list_for_each_entry(obj,
  1435. &dev_priv->mm.inactive_list,
  1436. mm_list)
  1437. {
  1438. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1439. }
  1440. /* The fence registers are invalidated so clear them out */
  1441. i915_gem_reset_fences(dev);
  1442. }
  1443. /**
  1444. * This function clears the request list as sequence numbers are passed.
  1445. */
  1446. static void
  1447. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1448. {
  1449. uint32_t seqno;
  1450. int i;
  1451. if (list_empty(&ring->request_list))
  1452. return;
  1453. WARN_ON(i915_verify_lists(ring->dev));
  1454. seqno = ring->get_seqno(ring);
  1455. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1456. if (seqno >= ring->sync_seqno[i])
  1457. ring->sync_seqno[i] = 0;
  1458. while (!list_empty(&ring->request_list)) {
  1459. struct drm_i915_gem_request *request;
  1460. request = list_first_entry(&ring->request_list,
  1461. struct drm_i915_gem_request,
  1462. list);
  1463. if (!i915_seqno_passed(seqno, request->seqno))
  1464. break;
  1465. trace_i915_gem_request_retire(ring, request->seqno);
  1466. list_del(&request->list);
  1467. i915_gem_request_remove_from_client(request);
  1468. kfree(request);
  1469. }
  1470. /* Move any buffers on the active list that are no longer referenced
  1471. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1472. */
  1473. while (!list_empty(&ring->active_list)) {
  1474. struct drm_i915_gem_object *obj;
  1475. obj = list_first_entry(&ring->active_list,
  1476. struct drm_i915_gem_object,
  1477. ring_list);
  1478. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1479. break;
  1480. if (obj->base.write_domain != 0)
  1481. i915_gem_object_move_to_flushing(obj);
  1482. else
  1483. i915_gem_object_move_to_inactive(obj);
  1484. }
  1485. if (unlikely(ring->trace_irq_seqno &&
  1486. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1487. ring->irq_put(ring);
  1488. ring->trace_irq_seqno = 0;
  1489. }
  1490. WARN_ON(i915_verify_lists(ring->dev));
  1491. }
  1492. void
  1493. i915_gem_retire_requests(struct drm_device *dev)
  1494. {
  1495. drm_i915_private_t *dev_priv = dev->dev_private;
  1496. int i;
  1497. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1498. struct drm_i915_gem_object *obj, *next;
  1499. /* We must be careful that during unbind() we do not
  1500. * accidentally infinitely recurse into retire requests.
  1501. * Currently:
  1502. * retire -> free -> unbind -> wait -> retire_ring
  1503. */
  1504. list_for_each_entry_safe(obj, next,
  1505. &dev_priv->mm.deferred_free_list,
  1506. mm_list)
  1507. i915_gem_free_object_tail(obj);
  1508. }
  1509. for (i = 0; i < I915_NUM_RINGS; i++)
  1510. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1511. }
  1512. static void
  1513. i915_gem_retire_work_handler(struct work_struct *work)
  1514. {
  1515. drm_i915_private_t *dev_priv;
  1516. struct drm_device *dev;
  1517. bool idle;
  1518. int i;
  1519. dev_priv = container_of(work, drm_i915_private_t,
  1520. mm.retire_work.work);
  1521. dev = dev_priv->dev;
  1522. /* Come back later if the device is busy... */
  1523. if (!mutex_trylock(&dev->struct_mutex)) {
  1524. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1525. return;
  1526. }
  1527. i915_gem_retire_requests(dev);
  1528. /* Send a periodic flush down the ring so we don't hold onto GEM
  1529. * objects indefinitely.
  1530. */
  1531. idle = true;
  1532. for (i = 0; i < I915_NUM_RINGS; i++) {
  1533. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1534. if (!list_empty(&ring->gpu_write_list)) {
  1535. struct drm_i915_gem_request *request;
  1536. int ret;
  1537. ret = i915_gem_flush_ring(ring,
  1538. 0, I915_GEM_GPU_DOMAINS);
  1539. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1540. if (ret || request == NULL ||
  1541. i915_add_request(ring, NULL, request))
  1542. kfree(request);
  1543. }
  1544. idle &= list_empty(&ring->request_list);
  1545. }
  1546. if (!dev_priv->mm.suspended && !idle)
  1547. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1548. mutex_unlock(&dev->struct_mutex);
  1549. }
  1550. /**
  1551. * Waits for a sequence number to be signaled, and cleans up the
  1552. * request and object lists appropriately for that event.
  1553. */
  1554. int
  1555. i915_wait_request(struct intel_ring_buffer *ring,
  1556. uint32_t seqno,
  1557. bool do_retire)
  1558. {
  1559. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1560. u32 ier;
  1561. int ret = 0;
  1562. BUG_ON(seqno == 0);
  1563. if (atomic_read(&dev_priv->mm.wedged)) {
  1564. struct completion *x = &dev_priv->error_completion;
  1565. bool recovery_complete;
  1566. unsigned long flags;
  1567. /* Give the error handler a chance to run. */
  1568. spin_lock_irqsave(&x->wait.lock, flags);
  1569. recovery_complete = x->done > 0;
  1570. spin_unlock_irqrestore(&x->wait.lock, flags);
  1571. return recovery_complete ? -EIO : -EAGAIN;
  1572. }
  1573. if (seqno == ring->outstanding_lazy_request) {
  1574. struct drm_i915_gem_request *request;
  1575. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1576. if (request == NULL)
  1577. return -ENOMEM;
  1578. ret = i915_add_request(ring, NULL, request);
  1579. if (ret) {
  1580. kfree(request);
  1581. return ret;
  1582. }
  1583. seqno = request->seqno;
  1584. }
  1585. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1586. if (HAS_PCH_SPLIT(ring->dev))
  1587. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1588. else
  1589. ier = I915_READ(IER);
  1590. if (!ier) {
  1591. DRM_ERROR("something (likely vbetool) disabled "
  1592. "interrupts, re-enabling\n");
  1593. ring->dev->driver->irq_preinstall(ring->dev);
  1594. ring->dev->driver->irq_postinstall(ring->dev);
  1595. }
  1596. trace_i915_gem_request_wait_begin(ring, seqno);
  1597. ring->waiting_seqno = seqno;
  1598. if (ring->irq_get(ring)) {
  1599. if (dev_priv->mm.interruptible)
  1600. ret = wait_event_interruptible(ring->irq_queue,
  1601. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1602. || atomic_read(&dev_priv->mm.wedged));
  1603. else
  1604. wait_event(ring->irq_queue,
  1605. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1606. || atomic_read(&dev_priv->mm.wedged));
  1607. ring->irq_put(ring);
  1608. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  1609. seqno) ||
  1610. atomic_read(&dev_priv->mm.wedged), 3000))
  1611. ret = -EBUSY;
  1612. ring->waiting_seqno = 0;
  1613. trace_i915_gem_request_wait_end(ring, seqno);
  1614. }
  1615. if (atomic_read(&dev_priv->mm.wedged))
  1616. ret = -EAGAIN;
  1617. if (ret && ret != -ERESTARTSYS)
  1618. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1619. __func__, ret, seqno, ring->get_seqno(ring),
  1620. dev_priv->next_seqno);
  1621. /* Directly dispatch request retiring. While we have the work queue
  1622. * to handle this, the waiter on a request often wants an associated
  1623. * buffer to have made it to the inactive list, and we would need
  1624. * a separate wait queue to handle that.
  1625. */
  1626. if (ret == 0 && do_retire)
  1627. i915_gem_retire_requests_ring(ring);
  1628. return ret;
  1629. }
  1630. /**
  1631. * Ensures that all rendering to the object has completed and the object is
  1632. * safe to unbind from the GTT or access from the CPU.
  1633. */
  1634. int
  1635. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1636. {
  1637. int ret;
  1638. /* This function only exists to support waiting for existing rendering,
  1639. * not for emitting required flushes.
  1640. */
  1641. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1642. /* If there is rendering queued on the buffer being evicted, wait for
  1643. * it.
  1644. */
  1645. if (obj->active) {
  1646. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
  1647. true);
  1648. if (ret)
  1649. return ret;
  1650. }
  1651. return 0;
  1652. }
  1653. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1654. {
  1655. u32 old_write_domain, old_read_domains;
  1656. /* Act a barrier for all accesses through the GTT */
  1657. mb();
  1658. /* Force a pagefault for domain tracking on next user access */
  1659. i915_gem_release_mmap(obj);
  1660. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1661. return;
  1662. old_read_domains = obj->base.read_domains;
  1663. old_write_domain = obj->base.write_domain;
  1664. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1665. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1666. trace_i915_gem_object_change_domain(obj,
  1667. old_read_domains,
  1668. old_write_domain);
  1669. }
  1670. /**
  1671. * Unbinds an object from the GTT aperture.
  1672. */
  1673. int
  1674. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1675. {
  1676. int ret = 0;
  1677. if (obj->gtt_space == NULL)
  1678. return 0;
  1679. if (obj->pin_count != 0) {
  1680. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1681. return -EINVAL;
  1682. }
  1683. ret = i915_gem_object_finish_gpu(obj);
  1684. if (ret == -ERESTARTSYS)
  1685. return ret;
  1686. /* Continue on if we fail due to EIO, the GPU is hung so we
  1687. * should be safe and we need to cleanup or else we might
  1688. * cause memory corruption through use-after-free.
  1689. */
  1690. i915_gem_object_finish_gtt(obj);
  1691. /* Move the object to the CPU domain to ensure that
  1692. * any possible CPU writes while it's not in the GTT
  1693. * are flushed when we go to remap it.
  1694. */
  1695. if (ret == 0)
  1696. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1697. if (ret == -ERESTARTSYS)
  1698. return ret;
  1699. if (ret) {
  1700. /* In the event of a disaster, abandon all caches and
  1701. * hope for the best.
  1702. */
  1703. i915_gem_clflush_object(obj);
  1704. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1705. }
  1706. /* release the fence reg _after_ flushing */
  1707. ret = i915_gem_object_put_fence(obj);
  1708. if (ret == -ERESTARTSYS)
  1709. return ret;
  1710. trace_i915_gem_object_unbind(obj);
  1711. i915_gem_gtt_unbind_object(obj);
  1712. i915_gem_object_put_pages_gtt(obj);
  1713. list_del_init(&obj->gtt_list);
  1714. list_del_init(&obj->mm_list);
  1715. /* Avoid an unnecessary call to unbind on rebind. */
  1716. obj->map_and_fenceable = true;
  1717. drm_mm_put_block(obj->gtt_space);
  1718. obj->gtt_space = NULL;
  1719. obj->gtt_offset = 0;
  1720. if (i915_gem_object_is_purgeable(obj))
  1721. i915_gem_object_truncate(obj);
  1722. return ret;
  1723. }
  1724. int
  1725. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1726. uint32_t invalidate_domains,
  1727. uint32_t flush_domains)
  1728. {
  1729. int ret;
  1730. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1731. return 0;
  1732. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1733. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1734. if (ret)
  1735. return ret;
  1736. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1737. i915_gem_process_flushing_list(ring, flush_domains);
  1738. return 0;
  1739. }
  1740. static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
  1741. {
  1742. int ret;
  1743. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1744. return 0;
  1745. if (!list_empty(&ring->gpu_write_list)) {
  1746. ret = i915_gem_flush_ring(ring,
  1747. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1748. if (ret)
  1749. return ret;
  1750. }
  1751. return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
  1752. do_retire);
  1753. }
  1754. int i915_gpu_idle(struct drm_device *dev, bool do_retire)
  1755. {
  1756. drm_i915_private_t *dev_priv = dev->dev_private;
  1757. int ret, i;
  1758. /* Flush everything onto the inactive list. */
  1759. for (i = 0; i < I915_NUM_RINGS; i++) {
  1760. ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
  1761. if (ret)
  1762. return ret;
  1763. }
  1764. return 0;
  1765. }
  1766. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1767. struct intel_ring_buffer *pipelined)
  1768. {
  1769. struct drm_device *dev = obj->base.dev;
  1770. drm_i915_private_t *dev_priv = dev->dev_private;
  1771. u32 size = obj->gtt_space->size;
  1772. int regnum = obj->fence_reg;
  1773. uint64_t val;
  1774. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1775. 0xfffff000) << 32;
  1776. val |= obj->gtt_offset & 0xfffff000;
  1777. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1778. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1779. if (obj->tiling_mode == I915_TILING_Y)
  1780. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1781. val |= I965_FENCE_REG_VALID;
  1782. if (pipelined) {
  1783. int ret = intel_ring_begin(pipelined, 6);
  1784. if (ret)
  1785. return ret;
  1786. intel_ring_emit(pipelined, MI_NOOP);
  1787. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1788. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1789. intel_ring_emit(pipelined, (u32)val);
  1790. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1791. intel_ring_emit(pipelined, (u32)(val >> 32));
  1792. intel_ring_advance(pipelined);
  1793. } else
  1794. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1795. return 0;
  1796. }
  1797. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1798. struct intel_ring_buffer *pipelined)
  1799. {
  1800. struct drm_device *dev = obj->base.dev;
  1801. drm_i915_private_t *dev_priv = dev->dev_private;
  1802. u32 size = obj->gtt_space->size;
  1803. int regnum = obj->fence_reg;
  1804. uint64_t val;
  1805. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1806. 0xfffff000) << 32;
  1807. val |= obj->gtt_offset & 0xfffff000;
  1808. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1809. if (obj->tiling_mode == I915_TILING_Y)
  1810. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1811. val |= I965_FENCE_REG_VALID;
  1812. if (pipelined) {
  1813. int ret = intel_ring_begin(pipelined, 6);
  1814. if (ret)
  1815. return ret;
  1816. intel_ring_emit(pipelined, MI_NOOP);
  1817. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1818. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1819. intel_ring_emit(pipelined, (u32)val);
  1820. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1821. intel_ring_emit(pipelined, (u32)(val >> 32));
  1822. intel_ring_advance(pipelined);
  1823. } else
  1824. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1825. return 0;
  1826. }
  1827. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1828. struct intel_ring_buffer *pipelined)
  1829. {
  1830. struct drm_device *dev = obj->base.dev;
  1831. drm_i915_private_t *dev_priv = dev->dev_private;
  1832. u32 size = obj->gtt_space->size;
  1833. u32 fence_reg, val, pitch_val;
  1834. int tile_width;
  1835. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1836. (size & -size) != size ||
  1837. (obj->gtt_offset & (size - 1)),
  1838. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1839. obj->gtt_offset, obj->map_and_fenceable, size))
  1840. return -EINVAL;
  1841. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1842. tile_width = 128;
  1843. else
  1844. tile_width = 512;
  1845. /* Note: pitch better be a power of two tile widths */
  1846. pitch_val = obj->stride / tile_width;
  1847. pitch_val = ffs(pitch_val) - 1;
  1848. val = obj->gtt_offset;
  1849. if (obj->tiling_mode == I915_TILING_Y)
  1850. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1851. val |= I915_FENCE_SIZE_BITS(size);
  1852. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1853. val |= I830_FENCE_REG_VALID;
  1854. fence_reg = obj->fence_reg;
  1855. if (fence_reg < 8)
  1856. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1857. else
  1858. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1859. if (pipelined) {
  1860. int ret = intel_ring_begin(pipelined, 4);
  1861. if (ret)
  1862. return ret;
  1863. intel_ring_emit(pipelined, MI_NOOP);
  1864. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1865. intel_ring_emit(pipelined, fence_reg);
  1866. intel_ring_emit(pipelined, val);
  1867. intel_ring_advance(pipelined);
  1868. } else
  1869. I915_WRITE(fence_reg, val);
  1870. return 0;
  1871. }
  1872. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  1873. struct intel_ring_buffer *pipelined)
  1874. {
  1875. struct drm_device *dev = obj->base.dev;
  1876. drm_i915_private_t *dev_priv = dev->dev_private;
  1877. u32 size = obj->gtt_space->size;
  1878. int regnum = obj->fence_reg;
  1879. uint32_t val;
  1880. uint32_t pitch_val;
  1881. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1882. (size & -size) != size ||
  1883. (obj->gtt_offset & (size - 1)),
  1884. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1885. obj->gtt_offset, size))
  1886. return -EINVAL;
  1887. pitch_val = obj->stride / 128;
  1888. pitch_val = ffs(pitch_val) - 1;
  1889. val = obj->gtt_offset;
  1890. if (obj->tiling_mode == I915_TILING_Y)
  1891. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1892. val |= I830_FENCE_SIZE_BITS(size);
  1893. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1894. val |= I830_FENCE_REG_VALID;
  1895. if (pipelined) {
  1896. int ret = intel_ring_begin(pipelined, 4);
  1897. if (ret)
  1898. return ret;
  1899. intel_ring_emit(pipelined, MI_NOOP);
  1900. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1901. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  1902. intel_ring_emit(pipelined, val);
  1903. intel_ring_advance(pipelined);
  1904. } else
  1905. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  1906. return 0;
  1907. }
  1908. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1909. {
  1910. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  1911. }
  1912. static int
  1913. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  1914. struct intel_ring_buffer *pipelined)
  1915. {
  1916. int ret;
  1917. if (obj->fenced_gpu_access) {
  1918. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  1919. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  1920. 0, obj->base.write_domain);
  1921. if (ret)
  1922. return ret;
  1923. }
  1924. obj->fenced_gpu_access = false;
  1925. }
  1926. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  1927. if (!ring_passed_seqno(obj->last_fenced_ring,
  1928. obj->last_fenced_seqno)) {
  1929. ret = i915_wait_request(obj->last_fenced_ring,
  1930. obj->last_fenced_seqno,
  1931. true);
  1932. if (ret)
  1933. return ret;
  1934. }
  1935. obj->last_fenced_seqno = 0;
  1936. obj->last_fenced_ring = NULL;
  1937. }
  1938. /* Ensure that all CPU reads are completed before installing a fence
  1939. * and all writes before removing the fence.
  1940. */
  1941. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  1942. mb();
  1943. return 0;
  1944. }
  1945. int
  1946. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  1947. {
  1948. int ret;
  1949. if (obj->tiling_mode)
  1950. i915_gem_release_mmap(obj);
  1951. ret = i915_gem_object_flush_fence(obj, NULL);
  1952. if (ret)
  1953. return ret;
  1954. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1955. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1956. WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
  1957. i915_gem_clear_fence_reg(obj->base.dev,
  1958. &dev_priv->fence_regs[obj->fence_reg]);
  1959. obj->fence_reg = I915_FENCE_REG_NONE;
  1960. }
  1961. return 0;
  1962. }
  1963. static struct drm_i915_fence_reg *
  1964. i915_find_fence_reg(struct drm_device *dev,
  1965. struct intel_ring_buffer *pipelined)
  1966. {
  1967. struct drm_i915_private *dev_priv = dev->dev_private;
  1968. struct drm_i915_fence_reg *reg, *first, *avail;
  1969. int i;
  1970. /* First try to find a free reg */
  1971. avail = NULL;
  1972. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1973. reg = &dev_priv->fence_regs[i];
  1974. if (!reg->obj)
  1975. return reg;
  1976. if (!reg->pin_count)
  1977. avail = reg;
  1978. }
  1979. if (avail == NULL)
  1980. return NULL;
  1981. /* None available, try to steal one or wait for a user to finish */
  1982. avail = first = NULL;
  1983. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  1984. if (reg->pin_count)
  1985. continue;
  1986. if (first == NULL)
  1987. first = reg;
  1988. if (!pipelined ||
  1989. !reg->obj->last_fenced_ring ||
  1990. reg->obj->last_fenced_ring == pipelined) {
  1991. avail = reg;
  1992. break;
  1993. }
  1994. }
  1995. if (avail == NULL)
  1996. avail = first;
  1997. return avail;
  1998. }
  1999. /**
  2000. * i915_gem_object_get_fence - set up a fence reg for an object
  2001. * @obj: object to map through a fence reg
  2002. * @pipelined: ring on which to queue the change, or NULL for CPU access
  2003. * @interruptible: must we wait uninterruptibly for the register to retire?
  2004. *
  2005. * When mapping objects through the GTT, userspace wants to be able to write
  2006. * to them without having to worry about swizzling if the object is tiled.
  2007. *
  2008. * This function walks the fence regs looking for a free one for @obj,
  2009. * stealing one if it can't find any.
  2010. *
  2011. * It then sets up the reg based on the object's properties: address, pitch
  2012. * and tiling format.
  2013. */
  2014. int
  2015. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  2016. struct intel_ring_buffer *pipelined)
  2017. {
  2018. struct drm_device *dev = obj->base.dev;
  2019. struct drm_i915_private *dev_priv = dev->dev_private;
  2020. struct drm_i915_fence_reg *reg;
  2021. int ret;
  2022. /* XXX disable pipelining. There are bugs. Shocking. */
  2023. pipelined = NULL;
  2024. /* Just update our place in the LRU if our fence is getting reused. */
  2025. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2026. reg = &dev_priv->fence_regs[obj->fence_reg];
  2027. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2028. if (obj->tiling_changed) {
  2029. ret = i915_gem_object_flush_fence(obj, pipelined);
  2030. if (ret)
  2031. return ret;
  2032. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2033. pipelined = NULL;
  2034. if (pipelined) {
  2035. reg->setup_seqno =
  2036. i915_gem_next_request_seqno(pipelined);
  2037. obj->last_fenced_seqno = reg->setup_seqno;
  2038. obj->last_fenced_ring = pipelined;
  2039. }
  2040. goto update;
  2041. }
  2042. if (!pipelined) {
  2043. if (reg->setup_seqno) {
  2044. if (!ring_passed_seqno(obj->last_fenced_ring,
  2045. reg->setup_seqno)) {
  2046. ret = i915_wait_request(obj->last_fenced_ring,
  2047. reg->setup_seqno,
  2048. true);
  2049. if (ret)
  2050. return ret;
  2051. }
  2052. reg->setup_seqno = 0;
  2053. }
  2054. } else if (obj->last_fenced_ring &&
  2055. obj->last_fenced_ring != pipelined) {
  2056. ret = i915_gem_object_flush_fence(obj, pipelined);
  2057. if (ret)
  2058. return ret;
  2059. }
  2060. return 0;
  2061. }
  2062. reg = i915_find_fence_reg(dev, pipelined);
  2063. if (reg == NULL)
  2064. return -EDEADLK;
  2065. ret = i915_gem_object_flush_fence(obj, pipelined);
  2066. if (ret)
  2067. return ret;
  2068. if (reg->obj) {
  2069. struct drm_i915_gem_object *old = reg->obj;
  2070. drm_gem_object_reference(&old->base);
  2071. if (old->tiling_mode)
  2072. i915_gem_release_mmap(old);
  2073. ret = i915_gem_object_flush_fence(old, pipelined);
  2074. if (ret) {
  2075. drm_gem_object_unreference(&old->base);
  2076. return ret;
  2077. }
  2078. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2079. pipelined = NULL;
  2080. old->fence_reg = I915_FENCE_REG_NONE;
  2081. old->last_fenced_ring = pipelined;
  2082. old->last_fenced_seqno =
  2083. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2084. drm_gem_object_unreference(&old->base);
  2085. } else if (obj->last_fenced_seqno == 0)
  2086. pipelined = NULL;
  2087. reg->obj = obj;
  2088. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2089. obj->fence_reg = reg - dev_priv->fence_regs;
  2090. obj->last_fenced_ring = pipelined;
  2091. reg->setup_seqno =
  2092. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2093. obj->last_fenced_seqno = reg->setup_seqno;
  2094. update:
  2095. obj->tiling_changed = false;
  2096. switch (INTEL_INFO(dev)->gen) {
  2097. case 7:
  2098. case 6:
  2099. ret = sandybridge_write_fence_reg(obj, pipelined);
  2100. break;
  2101. case 5:
  2102. case 4:
  2103. ret = i965_write_fence_reg(obj, pipelined);
  2104. break;
  2105. case 3:
  2106. ret = i915_write_fence_reg(obj, pipelined);
  2107. break;
  2108. case 2:
  2109. ret = i830_write_fence_reg(obj, pipelined);
  2110. break;
  2111. }
  2112. return ret;
  2113. }
  2114. /**
  2115. * i915_gem_clear_fence_reg - clear out fence register info
  2116. * @obj: object to clear
  2117. *
  2118. * Zeroes out the fence register itself and clears out the associated
  2119. * data structures in dev_priv and obj.
  2120. */
  2121. static void
  2122. i915_gem_clear_fence_reg(struct drm_device *dev,
  2123. struct drm_i915_fence_reg *reg)
  2124. {
  2125. drm_i915_private_t *dev_priv = dev->dev_private;
  2126. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2127. switch (INTEL_INFO(dev)->gen) {
  2128. case 7:
  2129. case 6:
  2130. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2131. break;
  2132. case 5:
  2133. case 4:
  2134. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2135. break;
  2136. case 3:
  2137. if (fence_reg >= 8)
  2138. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2139. else
  2140. case 2:
  2141. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2142. I915_WRITE(fence_reg, 0);
  2143. break;
  2144. }
  2145. list_del_init(&reg->lru_list);
  2146. reg->obj = NULL;
  2147. reg->setup_seqno = 0;
  2148. reg->pin_count = 0;
  2149. }
  2150. /**
  2151. * Finds free space in the GTT aperture and binds the object there.
  2152. */
  2153. static int
  2154. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2155. unsigned alignment,
  2156. bool map_and_fenceable)
  2157. {
  2158. struct drm_device *dev = obj->base.dev;
  2159. drm_i915_private_t *dev_priv = dev->dev_private;
  2160. struct drm_mm_node *free_space;
  2161. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2162. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2163. bool mappable, fenceable;
  2164. int ret;
  2165. if (obj->madv != I915_MADV_WILLNEED) {
  2166. DRM_ERROR("Attempting to bind a purgeable object\n");
  2167. return -EINVAL;
  2168. }
  2169. fence_size = i915_gem_get_gtt_size(dev,
  2170. obj->base.size,
  2171. obj->tiling_mode);
  2172. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2173. obj->base.size,
  2174. obj->tiling_mode);
  2175. unfenced_alignment =
  2176. i915_gem_get_unfenced_gtt_alignment(dev,
  2177. obj->base.size,
  2178. obj->tiling_mode);
  2179. if (alignment == 0)
  2180. alignment = map_and_fenceable ? fence_alignment :
  2181. unfenced_alignment;
  2182. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2183. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2184. return -EINVAL;
  2185. }
  2186. size = map_and_fenceable ? fence_size : obj->base.size;
  2187. /* If the object is bigger than the entire aperture, reject it early
  2188. * before evicting everything in a vain attempt to find space.
  2189. */
  2190. if (obj->base.size >
  2191. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2192. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2193. return -E2BIG;
  2194. }
  2195. search_free:
  2196. if (map_and_fenceable)
  2197. free_space =
  2198. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2199. size, alignment, 0,
  2200. dev_priv->mm.gtt_mappable_end,
  2201. 0);
  2202. else
  2203. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2204. size, alignment, 0);
  2205. if (free_space != NULL) {
  2206. if (map_and_fenceable)
  2207. obj->gtt_space =
  2208. drm_mm_get_block_range_generic(free_space,
  2209. size, alignment, 0,
  2210. dev_priv->mm.gtt_mappable_end,
  2211. 0);
  2212. else
  2213. obj->gtt_space =
  2214. drm_mm_get_block(free_space, size, alignment);
  2215. }
  2216. if (obj->gtt_space == NULL) {
  2217. /* If the gtt is empty and we're still having trouble
  2218. * fitting our object in, we're out of memory.
  2219. */
  2220. ret = i915_gem_evict_something(dev, size, alignment,
  2221. map_and_fenceable);
  2222. if (ret)
  2223. return ret;
  2224. goto search_free;
  2225. }
  2226. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2227. if (ret) {
  2228. drm_mm_put_block(obj->gtt_space);
  2229. obj->gtt_space = NULL;
  2230. if (ret == -ENOMEM) {
  2231. /* first try to reclaim some memory by clearing the GTT */
  2232. ret = i915_gem_evict_everything(dev, false);
  2233. if (ret) {
  2234. /* now try to shrink everyone else */
  2235. if (gfpmask) {
  2236. gfpmask = 0;
  2237. goto search_free;
  2238. }
  2239. return -ENOMEM;
  2240. }
  2241. goto search_free;
  2242. }
  2243. return ret;
  2244. }
  2245. ret = i915_gem_gtt_bind_object(obj);
  2246. if (ret) {
  2247. i915_gem_object_put_pages_gtt(obj);
  2248. drm_mm_put_block(obj->gtt_space);
  2249. obj->gtt_space = NULL;
  2250. if (i915_gem_evict_everything(dev, false))
  2251. return ret;
  2252. goto search_free;
  2253. }
  2254. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2255. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2256. /* Assert that the object is not currently in any GPU domain. As it
  2257. * wasn't in the GTT, there shouldn't be any way it could have been in
  2258. * a GPU cache
  2259. */
  2260. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2261. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2262. obj->gtt_offset = obj->gtt_space->start;
  2263. fenceable =
  2264. obj->gtt_space->size == fence_size &&
  2265. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2266. mappable =
  2267. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2268. obj->map_and_fenceable = mappable && fenceable;
  2269. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2270. return 0;
  2271. }
  2272. void
  2273. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2274. {
  2275. /* If we don't have a page list set up, then we're not pinned
  2276. * to GPU, and we can ignore the cache flush because it'll happen
  2277. * again at bind time.
  2278. */
  2279. if (obj->pages == NULL)
  2280. return;
  2281. /* If the GPU is snooping the contents of the CPU cache,
  2282. * we do not need to manually clear the CPU cache lines. However,
  2283. * the caches are only snooped when the render cache is
  2284. * flushed/invalidated. As we always have to emit invalidations
  2285. * and flushes when moving into and out of the RENDER domain, correct
  2286. * snooping behaviour occurs naturally as the result of our domain
  2287. * tracking.
  2288. */
  2289. if (obj->cache_level != I915_CACHE_NONE)
  2290. return;
  2291. trace_i915_gem_object_clflush(obj);
  2292. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2293. }
  2294. /** Flushes any GPU write domain for the object if it's dirty. */
  2295. static int
  2296. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2297. {
  2298. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2299. return 0;
  2300. /* Queue the GPU write cache flushing we need. */
  2301. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2302. }
  2303. /** Flushes the GTT write domain for the object if it's dirty. */
  2304. static void
  2305. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2306. {
  2307. uint32_t old_write_domain;
  2308. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2309. return;
  2310. /* No actual flushing is required for the GTT write domain. Writes
  2311. * to it immediately go to main memory as far as we know, so there's
  2312. * no chipset flush. It also doesn't land in render cache.
  2313. *
  2314. * However, we do have to enforce the order so that all writes through
  2315. * the GTT land before any writes to the device, such as updates to
  2316. * the GATT itself.
  2317. */
  2318. wmb();
  2319. old_write_domain = obj->base.write_domain;
  2320. obj->base.write_domain = 0;
  2321. trace_i915_gem_object_change_domain(obj,
  2322. obj->base.read_domains,
  2323. old_write_domain);
  2324. }
  2325. /** Flushes the CPU write domain for the object if it's dirty. */
  2326. static void
  2327. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2328. {
  2329. uint32_t old_write_domain;
  2330. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2331. return;
  2332. i915_gem_clflush_object(obj);
  2333. intel_gtt_chipset_flush();
  2334. old_write_domain = obj->base.write_domain;
  2335. obj->base.write_domain = 0;
  2336. trace_i915_gem_object_change_domain(obj,
  2337. obj->base.read_domains,
  2338. old_write_domain);
  2339. }
  2340. /**
  2341. * Moves a single object to the GTT read, and possibly write domain.
  2342. *
  2343. * This function returns when the move is complete, including waiting on
  2344. * flushes to occur.
  2345. */
  2346. int
  2347. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2348. {
  2349. uint32_t old_write_domain, old_read_domains;
  2350. int ret;
  2351. /* Not valid to be called on unbound objects. */
  2352. if (obj->gtt_space == NULL)
  2353. return -EINVAL;
  2354. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2355. return 0;
  2356. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2357. if (ret)
  2358. return ret;
  2359. if (obj->pending_gpu_write || write) {
  2360. ret = i915_gem_object_wait_rendering(obj);
  2361. if (ret)
  2362. return ret;
  2363. }
  2364. i915_gem_object_flush_cpu_write_domain(obj);
  2365. old_write_domain = obj->base.write_domain;
  2366. old_read_domains = obj->base.read_domains;
  2367. /* It should now be out of any other write domains, and we can update
  2368. * the domain values for our changes.
  2369. */
  2370. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2371. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2372. if (write) {
  2373. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2374. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2375. obj->dirty = 1;
  2376. }
  2377. trace_i915_gem_object_change_domain(obj,
  2378. old_read_domains,
  2379. old_write_domain);
  2380. return 0;
  2381. }
  2382. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2383. enum i915_cache_level cache_level)
  2384. {
  2385. int ret;
  2386. if (obj->cache_level == cache_level)
  2387. return 0;
  2388. if (obj->pin_count) {
  2389. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2390. return -EBUSY;
  2391. }
  2392. if (obj->gtt_space) {
  2393. ret = i915_gem_object_finish_gpu(obj);
  2394. if (ret)
  2395. return ret;
  2396. i915_gem_object_finish_gtt(obj);
  2397. /* Before SandyBridge, you could not use tiling or fence
  2398. * registers with snooped memory, so relinquish any fences
  2399. * currently pointing to our region in the aperture.
  2400. */
  2401. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2402. ret = i915_gem_object_put_fence(obj);
  2403. if (ret)
  2404. return ret;
  2405. }
  2406. i915_gem_gtt_rebind_object(obj, cache_level);
  2407. }
  2408. if (cache_level == I915_CACHE_NONE) {
  2409. u32 old_read_domains, old_write_domain;
  2410. /* If we're coming from LLC cached, then we haven't
  2411. * actually been tracking whether the data is in the
  2412. * CPU cache or not, since we only allow one bit set
  2413. * in obj->write_domain and have been skipping the clflushes.
  2414. * Just set it to the CPU cache for now.
  2415. */
  2416. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2417. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2418. old_read_domains = obj->base.read_domains;
  2419. old_write_domain = obj->base.write_domain;
  2420. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2421. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2422. trace_i915_gem_object_change_domain(obj,
  2423. old_read_domains,
  2424. old_write_domain);
  2425. }
  2426. obj->cache_level = cache_level;
  2427. return 0;
  2428. }
  2429. /*
  2430. * Prepare buffer for display plane (scanout, cursors, etc).
  2431. * Can be called from an uninterruptible phase (modesetting) and allows
  2432. * any flushes to be pipelined (for pageflips).
  2433. *
  2434. * For the display plane, we want to be in the GTT but out of any write
  2435. * domains. So in many ways this looks like set_to_gtt_domain() apart from the
  2436. * ability to pipeline the waits, pinning and any additional subtleties
  2437. * that may differentiate the display plane from ordinary buffers.
  2438. */
  2439. int
  2440. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2441. u32 alignment,
  2442. struct intel_ring_buffer *pipelined)
  2443. {
  2444. u32 old_read_domains, old_write_domain;
  2445. int ret;
  2446. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2447. if (ret)
  2448. return ret;
  2449. if (pipelined != obj->ring) {
  2450. ret = i915_gem_object_wait_rendering(obj);
  2451. if (ret == -ERESTARTSYS)
  2452. return ret;
  2453. }
  2454. /* The display engine is not coherent with the LLC cache on gen6. As
  2455. * a result, we make sure that the pinning that is about to occur is
  2456. * done with uncached PTEs. This is lowest common denominator for all
  2457. * chipsets.
  2458. *
  2459. * However for gen6+, we could do better by using the GFDT bit instead
  2460. * of uncaching, which would allow us to flush all the LLC-cached data
  2461. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2462. */
  2463. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2464. if (ret)
  2465. return ret;
  2466. /* As the user may map the buffer once pinned in the display plane
  2467. * (e.g. libkms for the bootup splash), we have to ensure that we
  2468. * always use map_and_fenceable for all scanout buffers.
  2469. */
  2470. ret = i915_gem_object_pin(obj, alignment, true);
  2471. if (ret)
  2472. return ret;
  2473. i915_gem_object_flush_cpu_write_domain(obj);
  2474. old_write_domain = obj->base.write_domain;
  2475. old_read_domains = obj->base.read_domains;
  2476. /* It should now be out of any other write domains, and we can update
  2477. * the domain values for our changes.
  2478. */
  2479. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2480. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2481. trace_i915_gem_object_change_domain(obj,
  2482. old_read_domains,
  2483. old_write_domain);
  2484. return 0;
  2485. }
  2486. int
  2487. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2488. {
  2489. int ret;
  2490. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2491. return 0;
  2492. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2493. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2494. if (ret)
  2495. return ret;
  2496. }
  2497. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2498. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2499. return i915_gem_object_wait_rendering(obj);
  2500. }
  2501. /**
  2502. * Moves a single object to the CPU read, and possibly write domain.
  2503. *
  2504. * This function returns when the move is complete, including waiting on
  2505. * flushes to occur.
  2506. */
  2507. static int
  2508. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2509. {
  2510. uint32_t old_write_domain, old_read_domains;
  2511. int ret;
  2512. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2513. return 0;
  2514. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2515. if (ret)
  2516. return ret;
  2517. ret = i915_gem_object_wait_rendering(obj);
  2518. if (ret)
  2519. return ret;
  2520. i915_gem_object_flush_gtt_write_domain(obj);
  2521. /* If we have a partially-valid cache of the object in the CPU,
  2522. * finish invalidating it and free the per-page flags.
  2523. */
  2524. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2525. old_write_domain = obj->base.write_domain;
  2526. old_read_domains = obj->base.read_domains;
  2527. /* Flush the CPU cache if it's still invalid. */
  2528. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2529. i915_gem_clflush_object(obj);
  2530. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2531. }
  2532. /* It should now be out of any other write domains, and we can update
  2533. * the domain values for our changes.
  2534. */
  2535. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2536. /* If we're writing through the CPU, then the GPU read domains will
  2537. * need to be invalidated at next use.
  2538. */
  2539. if (write) {
  2540. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2541. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2542. }
  2543. trace_i915_gem_object_change_domain(obj,
  2544. old_read_domains,
  2545. old_write_domain);
  2546. return 0;
  2547. }
  2548. /**
  2549. * Moves the object from a partially CPU read to a full one.
  2550. *
  2551. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2552. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2553. */
  2554. static void
  2555. i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
  2556. {
  2557. if (!obj->page_cpu_valid)
  2558. return;
  2559. /* If we're partially in the CPU read domain, finish moving it in.
  2560. */
  2561. if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
  2562. int i;
  2563. for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
  2564. if (obj->page_cpu_valid[i])
  2565. continue;
  2566. drm_clflush_pages(obj->pages + i, 1);
  2567. }
  2568. }
  2569. /* Free the page_cpu_valid mappings which are now stale, whether
  2570. * or not we've got I915_GEM_DOMAIN_CPU.
  2571. */
  2572. kfree(obj->page_cpu_valid);
  2573. obj->page_cpu_valid = NULL;
  2574. }
  2575. /**
  2576. * Set the CPU read domain on a range of the object.
  2577. *
  2578. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2579. * not entirely valid. The page_cpu_valid member of the object flags which
  2580. * pages have been flushed, and will be respected by
  2581. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2582. * of the whole object.
  2583. *
  2584. * This function returns when the move is complete, including waiting on
  2585. * flushes to occur.
  2586. */
  2587. static int
  2588. i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  2589. uint64_t offset, uint64_t size)
  2590. {
  2591. uint32_t old_read_domains;
  2592. int i, ret;
  2593. if (offset == 0 && size == obj->base.size)
  2594. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2595. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2596. if (ret)
  2597. return ret;
  2598. ret = i915_gem_object_wait_rendering(obj);
  2599. if (ret)
  2600. return ret;
  2601. i915_gem_object_flush_gtt_write_domain(obj);
  2602. /* If we're already fully in the CPU read domain, we're done. */
  2603. if (obj->page_cpu_valid == NULL &&
  2604. (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2605. return 0;
  2606. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2607. * newly adding I915_GEM_DOMAIN_CPU
  2608. */
  2609. if (obj->page_cpu_valid == NULL) {
  2610. obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
  2611. GFP_KERNEL);
  2612. if (obj->page_cpu_valid == NULL)
  2613. return -ENOMEM;
  2614. } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2615. memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
  2616. /* Flush the cache on any pages that are still invalid from the CPU's
  2617. * perspective.
  2618. */
  2619. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2620. i++) {
  2621. if (obj->page_cpu_valid[i])
  2622. continue;
  2623. drm_clflush_pages(obj->pages + i, 1);
  2624. obj->page_cpu_valid[i] = 1;
  2625. }
  2626. /* It should now be out of any other write domains, and we can update
  2627. * the domain values for our changes.
  2628. */
  2629. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2630. old_read_domains = obj->base.read_domains;
  2631. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2632. trace_i915_gem_object_change_domain(obj,
  2633. old_read_domains,
  2634. obj->base.write_domain);
  2635. return 0;
  2636. }
  2637. /* Throttle our rendering by waiting until the ring has completed our requests
  2638. * emitted over 20 msec ago.
  2639. *
  2640. * Note that if we were to use the current jiffies each time around the loop,
  2641. * we wouldn't escape the function with any frames outstanding if the time to
  2642. * render a frame was over 20ms.
  2643. *
  2644. * This should get us reasonable parallelism between CPU and GPU but also
  2645. * relatively low latency when blocking on a particular request to finish.
  2646. */
  2647. static int
  2648. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2649. {
  2650. struct drm_i915_private *dev_priv = dev->dev_private;
  2651. struct drm_i915_file_private *file_priv = file->driver_priv;
  2652. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2653. struct drm_i915_gem_request *request;
  2654. struct intel_ring_buffer *ring = NULL;
  2655. u32 seqno = 0;
  2656. int ret;
  2657. if (atomic_read(&dev_priv->mm.wedged))
  2658. return -EIO;
  2659. spin_lock(&file_priv->mm.lock);
  2660. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2661. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2662. break;
  2663. ring = request->ring;
  2664. seqno = request->seqno;
  2665. }
  2666. spin_unlock(&file_priv->mm.lock);
  2667. if (seqno == 0)
  2668. return 0;
  2669. ret = 0;
  2670. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2671. /* And wait for the seqno passing without holding any locks and
  2672. * causing extra latency for others. This is safe as the irq
  2673. * generation is designed to be run atomically and so is
  2674. * lockless.
  2675. */
  2676. if (ring->irq_get(ring)) {
  2677. ret = wait_event_interruptible(ring->irq_queue,
  2678. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2679. || atomic_read(&dev_priv->mm.wedged));
  2680. ring->irq_put(ring);
  2681. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2682. ret = -EIO;
  2683. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  2684. seqno) ||
  2685. atomic_read(&dev_priv->mm.wedged), 3000)) {
  2686. ret = -EBUSY;
  2687. }
  2688. }
  2689. if (ret == 0)
  2690. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2691. return ret;
  2692. }
  2693. int
  2694. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2695. uint32_t alignment,
  2696. bool map_and_fenceable)
  2697. {
  2698. struct drm_device *dev = obj->base.dev;
  2699. struct drm_i915_private *dev_priv = dev->dev_private;
  2700. int ret;
  2701. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2702. WARN_ON(i915_verify_lists(dev));
  2703. if (obj->gtt_space != NULL) {
  2704. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2705. (map_and_fenceable && !obj->map_and_fenceable)) {
  2706. WARN(obj->pin_count,
  2707. "bo is already pinned with incorrect alignment:"
  2708. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2709. " obj->map_and_fenceable=%d\n",
  2710. obj->gtt_offset, alignment,
  2711. map_and_fenceable,
  2712. obj->map_and_fenceable);
  2713. ret = i915_gem_object_unbind(obj);
  2714. if (ret)
  2715. return ret;
  2716. }
  2717. }
  2718. if (obj->gtt_space == NULL) {
  2719. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2720. map_and_fenceable);
  2721. if (ret)
  2722. return ret;
  2723. }
  2724. if (obj->pin_count++ == 0) {
  2725. if (!obj->active)
  2726. list_move_tail(&obj->mm_list,
  2727. &dev_priv->mm.pinned_list);
  2728. }
  2729. obj->pin_mappable |= map_and_fenceable;
  2730. WARN_ON(i915_verify_lists(dev));
  2731. return 0;
  2732. }
  2733. void
  2734. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2735. {
  2736. struct drm_device *dev = obj->base.dev;
  2737. drm_i915_private_t *dev_priv = dev->dev_private;
  2738. WARN_ON(i915_verify_lists(dev));
  2739. BUG_ON(obj->pin_count == 0);
  2740. BUG_ON(obj->gtt_space == NULL);
  2741. if (--obj->pin_count == 0) {
  2742. if (!obj->active)
  2743. list_move_tail(&obj->mm_list,
  2744. &dev_priv->mm.inactive_list);
  2745. obj->pin_mappable = false;
  2746. }
  2747. WARN_ON(i915_verify_lists(dev));
  2748. }
  2749. int
  2750. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2751. struct drm_file *file)
  2752. {
  2753. struct drm_i915_gem_pin *args = data;
  2754. struct drm_i915_gem_object *obj;
  2755. int ret;
  2756. ret = i915_mutex_lock_interruptible(dev);
  2757. if (ret)
  2758. return ret;
  2759. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2760. if (&obj->base == NULL) {
  2761. ret = -ENOENT;
  2762. goto unlock;
  2763. }
  2764. if (obj->madv != I915_MADV_WILLNEED) {
  2765. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2766. ret = -EINVAL;
  2767. goto out;
  2768. }
  2769. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2770. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2771. args->handle);
  2772. ret = -EINVAL;
  2773. goto out;
  2774. }
  2775. obj->user_pin_count++;
  2776. obj->pin_filp = file;
  2777. if (obj->user_pin_count == 1) {
  2778. ret = i915_gem_object_pin(obj, args->alignment, true);
  2779. if (ret)
  2780. goto out;
  2781. }
  2782. /* XXX - flush the CPU caches for pinned objects
  2783. * as the X server doesn't manage domains yet
  2784. */
  2785. i915_gem_object_flush_cpu_write_domain(obj);
  2786. args->offset = obj->gtt_offset;
  2787. out:
  2788. drm_gem_object_unreference(&obj->base);
  2789. unlock:
  2790. mutex_unlock(&dev->struct_mutex);
  2791. return ret;
  2792. }
  2793. int
  2794. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2795. struct drm_file *file)
  2796. {
  2797. struct drm_i915_gem_pin *args = data;
  2798. struct drm_i915_gem_object *obj;
  2799. int ret;
  2800. ret = i915_mutex_lock_interruptible(dev);
  2801. if (ret)
  2802. return ret;
  2803. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2804. if (&obj->base == NULL) {
  2805. ret = -ENOENT;
  2806. goto unlock;
  2807. }
  2808. if (obj->pin_filp != file) {
  2809. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2810. args->handle);
  2811. ret = -EINVAL;
  2812. goto out;
  2813. }
  2814. obj->user_pin_count--;
  2815. if (obj->user_pin_count == 0) {
  2816. obj->pin_filp = NULL;
  2817. i915_gem_object_unpin(obj);
  2818. }
  2819. out:
  2820. drm_gem_object_unreference(&obj->base);
  2821. unlock:
  2822. mutex_unlock(&dev->struct_mutex);
  2823. return ret;
  2824. }
  2825. int
  2826. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2827. struct drm_file *file)
  2828. {
  2829. struct drm_i915_gem_busy *args = data;
  2830. struct drm_i915_gem_object *obj;
  2831. int ret;
  2832. ret = i915_mutex_lock_interruptible(dev);
  2833. if (ret)
  2834. return ret;
  2835. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2836. if (&obj->base == NULL) {
  2837. ret = -ENOENT;
  2838. goto unlock;
  2839. }
  2840. /* Count all active objects as busy, even if they are currently not used
  2841. * by the gpu. Users of this interface expect objects to eventually
  2842. * become non-busy without any further actions, therefore emit any
  2843. * necessary flushes here.
  2844. */
  2845. args->busy = obj->active;
  2846. if (args->busy) {
  2847. /* Unconditionally flush objects, even when the gpu still uses this
  2848. * object. Userspace calling this function indicates that it wants to
  2849. * use this buffer rather sooner than later, so issuing the required
  2850. * flush earlier is beneficial.
  2851. */
  2852. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2853. ret = i915_gem_flush_ring(obj->ring,
  2854. 0, obj->base.write_domain);
  2855. } else if (obj->ring->outstanding_lazy_request ==
  2856. obj->last_rendering_seqno) {
  2857. struct drm_i915_gem_request *request;
  2858. /* This ring is not being cleared by active usage,
  2859. * so emit a request to do so.
  2860. */
  2861. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2862. if (request) {
  2863. ret = i915_add_request(obj->ring, NULL, request);
  2864. if (ret)
  2865. kfree(request);
  2866. } else
  2867. ret = -ENOMEM;
  2868. }
  2869. /* Update the active list for the hardware's current position.
  2870. * Otherwise this only updates on a delayed timer or when irqs
  2871. * are actually unmasked, and our working set ends up being
  2872. * larger than required.
  2873. */
  2874. i915_gem_retire_requests_ring(obj->ring);
  2875. args->busy = obj->active;
  2876. }
  2877. drm_gem_object_unreference(&obj->base);
  2878. unlock:
  2879. mutex_unlock(&dev->struct_mutex);
  2880. return ret;
  2881. }
  2882. int
  2883. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2884. struct drm_file *file_priv)
  2885. {
  2886. return i915_gem_ring_throttle(dev, file_priv);
  2887. }
  2888. int
  2889. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2890. struct drm_file *file_priv)
  2891. {
  2892. struct drm_i915_gem_madvise *args = data;
  2893. struct drm_i915_gem_object *obj;
  2894. int ret;
  2895. switch (args->madv) {
  2896. case I915_MADV_DONTNEED:
  2897. case I915_MADV_WILLNEED:
  2898. break;
  2899. default:
  2900. return -EINVAL;
  2901. }
  2902. ret = i915_mutex_lock_interruptible(dev);
  2903. if (ret)
  2904. return ret;
  2905. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2906. if (&obj->base == NULL) {
  2907. ret = -ENOENT;
  2908. goto unlock;
  2909. }
  2910. if (obj->pin_count) {
  2911. ret = -EINVAL;
  2912. goto out;
  2913. }
  2914. if (obj->madv != __I915_MADV_PURGED)
  2915. obj->madv = args->madv;
  2916. /* if the object is no longer bound, discard its backing storage */
  2917. if (i915_gem_object_is_purgeable(obj) &&
  2918. obj->gtt_space == NULL)
  2919. i915_gem_object_truncate(obj);
  2920. args->retained = obj->madv != __I915_MADV_PURGED;
  2921. out:
  2922. drm_gem_object_unreference(&obj->base);
  2923. unlock:
  2924. mutex_unlock(&dev->struct_mutex);
  2925. return ret;
  2926. }
  2927. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2928. size_t size)
  2929. {
  2930. struct drm_i915_private *dev_priv = dev->dev_private;
  2931. struct drm_i915_gem_object *obj;
  2932. struct address_space *mapping;
  2933. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2934. if (obj == NULL)
  2935. return NULL;
  2936. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2937. kfree(obj);
  2938. return NULL;
  2939. }
  2940. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  2941. mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
  2942. i915_gem_info_add_obj(dev_priv, size);
  2943. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2944. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2945. if (HAS_LLC(dev)) {
  2946. /* On some devices, we can have the GPU use the LLC (the CPU
  2947. * cache) for about a 10% performance improvement
  2948. * compared to uncached. Graphics requests other than
  2949. * display scanout are coherent with the CPU in
  2950. * accessing this cache. This means in this mode we
  2951. * don't need to clflush on the CPU side, and on the
  2952. * GPU side we only need to flush internal caches to
  2953. * get data visible to the CPU.
  2954. *
  2955. * However, we maintain the display planes as UC, and so
  2956. * need to rebind when first used as such.
  2957. */
  2958. obj->cache_level = I915_CACHE_LLC;
  2959. } else
  2960. obj->cache_level = I915_CACHE_NONE;
  2961. obj->base.driver_private = NULL;
  2962. obj->fence_reg = I915_FENCE_REG_NONE;
  2963. INIT_LIST_HEAD(&obj->mm_list);
  2964. INIT_LIST_HEAD(&obj->gtt_list);
  2965. INIT_LIST_HEAD(&obj->ring_list);
  2966. INIT_LIST_HEAD(&obj->exec_list);
  2967. INIT_LIST_HEAD(&obj->gpu_write_list);
  2968. obj->madv = I915_MADV_WILLNEED;
  2969. /* Avoid an unnecessary call to unbind on the first bind. */
  2970. obj->map_and_fenceable = true;
  2971. return obj;
  2972. }
  2973. int i915_gem_init_object(struct drm_gem_object *obj)
  2974. {
  2975. BUG();
  2976. return 0;
  2977. }
  2978. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  2979. {
  2980. struct drm_device *dev = obj->base.dev;
  2981. drm_i915_private_t *dev_priv = dev->dev_private;
  2982. int ret;
  2983. ret = i915_gem_object_unbind(obj);
  2984. if (ret == -ERESTARTSYS) {
  2985. list_move(&obj->mm_list,
  2986. &dev_priv->mm.deferred_free_list);
  2987. return;
  2988. }
  2989. trace_i915_gem_object_destroy(obj);
  2990. if (obj->base.map_list.map)
  2991. drm_gem_free_mmap_offset(&obj->base);
  2992. drm_gem_object_release(&obj->base);
  2993. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2994. kfree(obj->page_cpu_valid);
  2995. kfree(obj->bit_17);
  2996. kfree(obj);
  2997. }
  2998. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  2999. {
  3000. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3001. struct drm_device *dev = obj->base.dev;
  3002. while (obj->pin_count > 0)
  3003. i915_gem_object_unpin(obj);
  3004. if (obj->phys_obj)
  3005. i915_gem_detach_phys_object(dev, obj);
  3006. i915_gem_free_object_tail(obj);
  3007. }
  3008. int
  3009. i915_gem_idle(struct drm_device *dev)
  3010. {
  3011. drm_i915_private_t *dev_priv = dev->dev_private;
  3012. int ret;
  3013. mutex_lock(&dev->struct_mutex);
  3014. if (dev_priv->mm.suspended) {
  3015. mutex_unlock(&dev->struct_mutex);
  3016. return 0;
  3017. }
  3018. ret = i915_gpu_idle(dev, true);
  3019. if (ret) {
  3020. mutex_unlock(&dev->struct_mutex);
  3021. return ret;
  3022. }
  3023. /* Under UMS, be paranoid and evict. */
  3024. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3025. ret = i915_gem_evict_inactive(dev, false);
  3026. if (ret) {
  3027. mutex_unlock(&dev->struct_mutex);
  3028. return ret;
  3029. }
  3030. }
  3031. i915_gem_reset_fences(dev);
  3032. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3033. * We need to replace this with a semaphore, or something.
  3034. * And not confound mm.suspended!
  3035. */
  3036. dev_priv->mm.suspended = 1;
  3037. del_timer_sync(&dev_priv->hangcheck_timer);
  3038. i915_kernel_lost_context(dev);
  3039. i915_gem_cleanup_ringbuffer(dev);
  3040. mutex_unlock(&dev->struct_mutex);
  3041. /* Cancel the retire work handler, which should be idle now. */
  3042. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3043. return 0;
  3044. }
  3045. void i915_gem_init_swizzling(struct drm_device *dev)
  3046. {
  3047. drm_i915_private_t *dev_priv = dev->dev_private;
  3048. if (INTEL_INFO(dev)->gen < 6 ||
  3049. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  3050. return;
  3051. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  3052. DISP_TILE_SURFACE_SWIZZLING);
  3053. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  3054. if (IS_GEN6(dev))
  3055. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3056. else
  3057. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3058. }
  3059. int
  3060. i915_gem_init_hw(struct drm_device *dev)
  3061. {
  3062. drm_i915_private_t *dev_priv = dev->dev_private;
  3063. int ret;
  3064. i915_gem_init_swizzling(dev);
  3065. ret = intel_init_render_ring_buffer(dev);
  3066. if (ret)
  3067. return ret;
  3068. if (HAS_BSD(dev)) {
  3069. ret = intel_init_bsd_ring_buffer(dev);
  3070. if (ret)
  3071. goto cleanup_render_ring;
  3072. }
  3073. if (HAS_BLT(dev)) {
  3074. ret = intel_init_blt_ring_buffer(dev);
  3075. if (ret)
  3076. goto cleanup_bsd_ring;
  3077. }
  3078. dev_priv->next_seqno = 1;
  3079. return 0;
  3080. cleanup_bsd_ring:
  3081. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3082. cleanup_render_ring:
  3083. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3084. return ret;
  3085. }
  3086. void
  3087. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3088. {
  3089. drm_i915_private_t *dev_priv = dev->dev_private;
  3090. int i;
  3091. for (i = 0; i < I915_NUM_RINGS; i++)
  3092. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3093. }
  3094. int
  3095. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3096. struct drm_file *file_priv)
  3097. {
  3098. drm_i915_private_t *dev_priv = dev->dev_private;
  3099. int ret, i;
  3100. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3101. return 0;
  3102. if (atomic_read(&dev_priv->mm.wedged)) {
  3103. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3104. atomic_set(&dev_priv->mm.wedged, 0);
  3105. }
  3106. mutex_lock(&dev->struct_mutex);
  3107. dev_priv->mm.suspended = 0;
  3108. ret = i915_gem_init_hw(dev);
  3109. if (ret != 0) {
  3110. mutex_unlock(&dev->struct_mutex);
  3111. return ret;
  3112. }
  3113. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3114. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3115. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3116. for (i = 0; i < I915_NUM_RINGS; i++) {
  3117. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3118. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3119. }
  3120. mutex_unlock(&dev->struct_mutex);
  3121. ret = drm_irq_install(dev);
  3122. if (ret)
  3123. goto cleanup_ringbuffer;
  3124. return 0;
  3125. cleanup_ringbuffer:
  3126. mutex_lock(&dev->struct_mutex);
  3127. i915_gem_cleanup_ringbuffer(dev);
  3128. dev_priv->mm.suspended = 1;
  3129. mutex_unlock(&dev->struct_mutex);
  3130. return ret;
  3131. }
  3132. int
  3133. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3134. struct drm_file *file_priv)
  3135. {
  3136. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3137. return 0;
  3138. drm_irq_uninstall(dev);
  3139. return i915_gem_idle(dev);
  3140. }
  3141. void
  3142. i915_gem_lastclose(struct drm_device *dev)
  3143. {
  3144. int ret;
  3145. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3146. return;
  3147. ret = i915_gem_idle(dev);
  3148. if (ret)
  3149. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3150. }
  3151. static void
  3152. init_ring_lists(struct intel_ring_buffer *ring)
  3153. {
  3154. INIT_LIST_HEAD(&ring->active_list);
  3155. INIT_LIST_HEAD(&ring->request_list);
  3156. INIT_LIST_HEAD(&ring->gpu_write_list);
  3157. }
  3158. void
  3159. i915_gem_load(struct drm_device *dev)
  3160. {
  3161. int i;
  3162. drm_i915_private_t *dev_priv = dev->dev_private;
  3163. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3164. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3165. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3166. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3167. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3168. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3169. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3170. for (i = 0; i < I915_NUM_RINGS; i++)
  3171. init_ring_lists(&dev_priv->ring[i]);
  3172. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3173. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3174. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3175. i915_gem_retire_work_handler);
  3176. init_completion(&dev_priv->error_completion);
  3177. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3178. if (IS_GEN3(dev)) {
  3179. u32 tmp = I915_READ(MI_ARB_STATE);
  3180. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3181. /* arb state is a masked write, so set bit + bit in mask */
  3182. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3183. I915_WRITE(MI_ARB_STATE, tmp);
  3184. }
  3185. }
  3186. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3187. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3188. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3189. dev_priv->fence_reg_start = 3;
  3190. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3191. dev_priv->num_fence_regs = 16;
  3192. else
  3193. dev_priv->num_fence_regs = 8;
  3194. /* Initialize fence registers to zero */
  3195. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  3196. i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
  3197. }
  3198. i915_gem_detect_bit_6_swizzle(dev);
  3199. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3200. dev_priv->mm.interruptible = true;
  3201. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3202. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3203. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3204. }
  3205. /*
  3206. * Create a physically contiguous memory object for this object
  3207. * e.g. for cursor + overlay regs
  3208. */
  3209. static int i915_gem_init_phys_object(struct drm_device *dev,
  3210. int id, int size, int align)
  3211. {
  3212. drm_i915_private_t *dev_priv = dev->dev_private;
  3213. struct drm_i915_gem_phys_object *phys_obj;
  3214. int ret;
  3215. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3216. return 0;
  3217. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3218. if (!phys_obj)
  3219. return -ENOMEM;
  3220. phys_obj->id = id;
  3221. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3222. if (!phys_obj->handle) {
  3223. ret = -ENOMEM;
  3224. goto kfree_obj;
  3225. }
  3226. #ifdef CONFIG_X86
  3227. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3228. #endif
  3229. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3230. return 0;
  3231. kfree_obj:
  3232. kfree(phys_obj);
  3233. return ret;
  3234. }
  3235. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3236. {
  3237. drm_i915_private_t *dev_priv = dev->dev_private;
  3238. struct drm_i915_gem_phys_object *phys_obj;
  3239. if (!dev_priv->mm.phys_objs[id - 1])
  3240. return;
  3241. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3242. if (phys_obj->cur_obj) {
  3243. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3244. }
  3245. #ifdef CONFIG_X86
  3246. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3247. #endif
  3248. drm_pci_free(dev, phys_obj->handle);
  3249. kfree(phys_obj);
  3250. dev_priv->mm.phys_objs[id - 1] = NULL;
  3251. }
  3252. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3253. {
  3254. int i;
  3255. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3256. i915_gem_free_phys_object(dev, i);
  3257. }
  3258. void i915_gem_detach_phys_object(struct drm_device *dev,
  3259. struct drm_i915_gem_object *obj)
  3260. {
  3261. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3262. char *vaddr;
  3263. int i;
  3264. int page_count;
  3265. if (!obj->phys_obj)
  3266. return;
  3267. vaddr = obj->phys_obj->handle->vaddr;
  3268. page_count = obj->base.size / PAGE_SIZE;
  3269. for (i = 0; i < page_count; i++) {
  3270. struct page *page = shmem_read_mapping_page(mapping, i);
  3271. if (!IS_ERR(page)) {
  3272. char *dst = kmap_atomic(page);
  3273. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3274. kunmap_atomic(dst);
  3275. drm_clflush_pages(&page, 1);
  3276. set_page_dirty(page);
  3277. mark_page_accessed(page);
  3278. page_cache_release(page);
  3279. }
  3280. }
  3281. intel_gtt_chipset_flush();
  3282. obj->phys_obj->cur_obj = NULL;
  3283. obj->phys_obj = NULL;
  3284. }
  3285. int
  3286. i915_gem_attach_phys_object(struct drm_device *dev,
  3287. struct drm_i915_gem_object *obj,
  3288. int id,
  3289. int align)
  3290. {
  3291. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3292. drm_i915_private_t *dev_priv = dev->dev_private;
  3293. int ret = 0;
  3294. int page_count;
  3295. int i;
  3296. if (id > I915_MAX_PHYS_OBJECT)
  3297. return -EINVAL;
  3298. if (obj->phys_obj) {
  3299. if (obj->phys_obj->id == id)
  3300. return 0;
  3301. i915_gem_detach_phys_object(dev, obj);
  3302. }
  3303. /* create a new object */
  3304. if (!dev_priv->mm.phys_objs[id - 1]) {
  3305. ret = i915_gem_init_phys_object(dev, id,
  3306. obj->base.size, align);
  3307. if (ret) {
  3308. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3309. id, obj->base.size);
  3310. return ret;
  3311. }
  3312. }
  3313. /* bind to the object */
  3314. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3315. obj->phys_obj->cur_obj = obj;
  3316. page_count = obj->base.size / PAGE_SIZE;
  3317. for (i = 0; i < page_count; i++) {
  3318. struct page *page;
  3319. char *dst, *src;
  3320. page = shmem_read_mapping_page(mapping, i);
  3321. if (IS_ERR(page))
  3322. return PTR_ERR(page);
  3323. src = kmap_atomic(page);
  3324. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3325. memcpy(dst, src, PAGE_SIZE);
  3326. kunmap_atomic(src);
  3327. mark_page_accessed(page);
  3328. page_cache_release(page);
  3329. }
  3330. return 0;
  3331. }
  3332. static int
  3333. i915_gem_phys_pwrite(struct drm_device *dev,
  3334. struct drm_i915_gem_object *obj,
  3335. struct drm_i915_gem_pwrite *args,
  3336. struct drm_file *file_priv)
  3337. {
  3338. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3339. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3340. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3341. unsigned long unwritten;
  3342. /* The physical object once assigned is fixed for the lifetime
  3343. * of the obj, so we can safely drop the lock and continue
  3344. * to access vaddr.
  3345. */
  3346. mutex_unlock(&dev->struct_mutex);
  3347. unwritten = copy_from_user(vaddr, user_data, args->size);
  3348. mutex_lock(&dev->struct_mutex);
  3349. if (unwritten)
  3350. return -EFAULT;
  3351. }
  3352. intel_gtt_chipset_flush();
  3353. return 0;
  3354. }
  3355. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3356. {
  3357. struct drm_i915_file_private *file_priv = file->driver_priv;
  3358. /* Clean up our request list when the client is going away, so that
  3359. * later retire_requests won't dereference our soon-to-be-gone
  3360. * file_priv.
  3361. */
  3362. spin_lock(&file_priv->mm.lock);
  3363. while (!list_empty(&file_priv->mm.request_list)) {
  3364. struct drm_i915_gem_request *request;
  3365. request = list_first_entry(&file_priv->mm.request_list,
  3366. struct drm_i915_gem_request,
  3367. client_list);
  3368. list_del(&request->client_list);
  3369. request->file_priv = NULL;
  3370. }
  3371. spin_unlock(&file_priv->mm.lock);
  3372. }
  3373. static int
  3374. i915_gpu_is_active(struct drm_device *dev)
  3375. {
  3376. drm_i915_private_t *dev_priv = dev->dev_private;
  3377. int lists_empty;
  3378. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3379. list_empty(&dev_priv->mm.active_list);
  3380. return !lists_empty;
  3381. }
  3382. static int
  3383. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3384. {
  3385. struct drm_i915_private *dev_priv =
  3386. container_of(shrinker,
  3387. struct drm_i915_private,
  3388. mm.inactive_shrinker);
  3389. struct drm_device *dev = dev_priv->dev;
  3390. struct drm_i915_gem_object *obj, *next;
  3391. int nr_to_scan = sc->nr_to_scan;
  3392. int cnt;
  3393. if (!mutex_trylock(&dev->struct_mutex))
  3394. return 0;
  3395. /* "fast-path" to count number of available objects */
  3396. if (nr_to_scan == 0) {
  3397. cnt = 0;
  3398. list_for_each_entry(obj,
  3399. &dev_priv->mm.inactive_list,
  3400. mm_list)
  3401. cnt++;
  3402. mutex_unlock(&dev->struct_mutex);
  3403. return cnt / 100 * sysctl_vfs_cache_pressure;
  3404. }
  3405. rescan:
  3406. /* first scan for clean buffers */
  3407. i915_gem_retire_requests(dev);
  3408. list_for_each_entry_safe(obj, next,
  3409. &dev_priv->mm.inactive_list,
  3410. mm_list) {
  3411. if (i915_gem_object_is_purgeable(obj)) {
  3412. if (i915_gem_object_unbind(obj) == 0 &&
  3413. --nr_to_scan == 0)
  3414. break;
  3415. }
  3416. }
  3417. /* second pass, evict/count anything still on the inactive list */
  3418. cnt = 0;
  3419. list_for_each_entry_safe(obj, next,
  3420. &dev_priv->mm.inactive_list,
  3421. mm_list) {
  3422. if (nr_to_scan &&
  3423. i915_gem_object_unbind(obj) == 0)
  3424. nr_to_scan--;
  3425. else
  3426. cnt++;
  3427. }
  3428. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3429. /*
  3430. * We are desperate for pages, so as a last resort, wait
  3431. * for the GPU to finish and discard whatever we can.
  3432. * This has a dramatic impact to reduce the number of
  3433. * OOM-killer events whilst running the GPU aggressively.
  3434. */
  3435. if (i915_gpu_idle(dev, true) == 0)
  3436. goto rescan;
  3437. }
  3438. mutex_unlock(&dev->struct_mutex);
  3439. return cnt / 100 * sysctl_vfs_cache_pressure;
  3440. }