intel_display.c 266 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/cpufreq.h>
  28. #include <linux/module.h>
  29. #include <linux/input.h>
  30. #include <linux/i2c.h>
  31. #include <linux/kernel.h>
  32. #include <linux/slab.h>
  33. #include <linux/vgaarb.h>
  34. #include <drm/drm_edid.h>
  35. #include "drmP.h"
  36. #include "intel_drv.h"
  37. #include "i915_drm.h"
  38. #include "i915_drv.h"
  39. #include "i915_trace.h"
  40. #include "drm_dp_helper.h"
  41. #include "drm_crtc_helper.h"
  42. #include <linux/dma_remapping.h>
  43. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  44. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  45. static void intel_increase_pllclock(struct drm_crtc *crtc);
  46. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  47. typedef struct {
  48. /* given values */
  49. int n;
  50. int m1, m2;
  51. int p1, p2;
  52. /* derived values */
  53. int dot;
  54. int vco;
  55. int m;
  56. int p;
  57. } intel_clock_t;
  58. typedef struct {
  59. int min, max;
  60. } intel_range_t;
  61. typedef struct {
  62. int dot_limit;
  63. int p2_slow, p2_fast;
  64. } intel_p2_t;
  65. #define INTEL_P2_NUM 2
  66. typedef struct intel_limit intel_limit_t;
  67. struct intel_limit {
  68. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  69. intel_p2_t p2;
  70. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  71. int, int, intel_clock_t *, intel_clock_t *);
  72. };
  73. /* FDI */
  74. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  75. static bool
  76. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  77. int target, int refclk, intel_clock_t *match_clock,
  78. intel_clock_t *best_clock);
  79. static bool
  80. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  81. int target, int refclk, intel_clock_t *match_clock,
  82. intel_clock_t *best_clock);
  83. static bool
  84. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  85. int target, int refclk, intel_clock_t *match_clock,
  86. intel_clock_t *best_clock);
  87. static bool
  88. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  89. int target, int refclk, intel_clock_t *match_clock,
  90. intel_clock_t *best_clock);
  91. static inline u32 /* units of 100MHz */
  92. intel_fdi_link_freq(struct drm_device *dev)
  93. {
  94. if (IS_GEN5(dev)) {
  95. struct drm_i915_private *dev_priv = dev->dev_private;
  96. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  97. } else
  98. return 27;
  99. }
  100. static const intel_limit_t intel_limits_i8xx_dvo = {
  101. .dot = { .min = 25000, .max = 350000 },
  102. .vco = { .min = 930000, .max = 1400000 },
  103. .n = { .min = 3, .max = 16 },
  104. .m = { .min = 96, .max = 140 },
  105. .m1 = { .min = 18, .max = 26 },
  106. .m2 = { .min = 6, .max = 16 },
  107. .p = { .min = 4, .max = 128 },
  108. .p1 = { .min = 2, .max = 33 },
  109. .p2 = { .dot_limit = 165000,
  110. .p2_slow = 4, .p2_fast = 2 },
  111. .find_pll = intel_find_best_PLL,
  112. };
  113. static const intel_limit_t intel_limits_i8xx_lvds = {
  114. .dot = { .min = 25000, .max = 350000 },
  115. .vco = { .min = 930000, .max = 1400000 },
  116. .n = { .min = 3, .max = 16 },
  117. .m = { .min = 96, .max = 140 },
  118. .m1 = { .min = 18, .max = 26 },
  119. .m2 = { .min = 6, .max = 16 },
  120. .p = { .min = 4, .max = 128 },
  121. .p1 = { .min = 1, .max = 6 },
  122. .p2 = { .dot_limit = 165000,
  123. .p2_slow = 14, .p2_fast = 7 },
  124. .find_pll = intel_find_best_PLL,
  125. };
  126. static const intel_limit_t intel_limits_i9xx_sdvo = {
  127. .dot = { .min = 20000, .max = 400000 },
  128. .vco = { .min = 1400000, .max = 2800000 },
  129. .n = { .min = 1, .max = 6 },
  130. .m = { .min = 70, .max = 120 },
  131. .m1 = { .min = 10, .max = 22 },
  132. .m2 = { .min = 5, .max = 9 },
  133. .p = { .min = 5, .max = 80 },
  134. .p1 = { .min = 1, .max = 8 },
  135. .p2 = { .dot_limit = 200000,
  136. .p2_slow = 10, .p2_fast = 5 },
  137. .find_pll = intel_find_best_PLL,
  138. };
  139. static const intel_limit_t intel_limits_i9xx_lvds = {
  140. .dot = { .min = 20000, .max = 400000 },
  141. .vco = { .min = 1400000, .max = 2800000 },
  142. .n = { .min = 1, .max = 6 },
  143. .m = { .min = 70, .max = 120 },
  144. .m1 = { .min = 10, .max = 22 },
  145. .m2 = { .min = 5, .max = 9 },
  146. .p = { .min = 7, .max = 98 },
  147. .p1 = { .min = 1, .max = 8 },
  148. .p2 = { .dot_limit = 112000,
  149. .p2_slow = 14, .p2_fast = 7 },
  150. .find_pll = intel_find_best_PLL,
  151. };
  152. static const intel_limit_t intel_limits_g4x_sdvo = {
  153. .dot = { .min = 25000, .max = 270000 },
  154. .vco = { .min = 1750000, .max = 3500000},
  155. .n = { .min = 1, .max = 4 },
  156. .m = { .min = 104, .max = 138 },
  157. .m1 = { .min = 17, .max = 23 },
  158. .m2 = { .min = 5, .max = 11 },
  159. .p = { .min = 10, .max = 30 },
  160. .p1 = { .min = 1, .max = 3},
  161. .p2 = { .dot_limit = 270000,
  162. .p2_slow = 10,
  163. .p2_fast = 10
  164. },
  165. .find_pll = intel_g4x_find_best_PLL,
  166. };
  167. static const intel_limit_t intel_limits_g4x_hdmi = {
  168. .dot = { .min = 22000, .max = 400000 },
  169. .vco = { .min = 1750000, .max = 3500000},
  170. .n = { .min = 1, .max = 4 },
  171. .m = { .min = 104, .max = 138 },
  172. .m1 = { .min = 16, .max = 23 },
  173. .m2 = { .min = 5, .max = 11 },
  174. .p = { .min = 5, .max = 80 },
  175. .p1 = { .min = 1, .max = 8},
  176. .p2 = { .dot_limit = 165000,
  177. .p2_slow = 10, .p2_fast = 5 },
  178. .find_pll = intel_g4x_find_best_PLL,
  179. };
  180. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  181. .dot = { .min = 20000, .max = 115000 },
  182. .vco = { .min = 1750000, .max = 3500000 },
  183. .n = { .min = 1, .max = 3 },
  184. .m = { .min = 104, .max = 138 },
  185. .m1 = { .min = 17, .max = 23 },
  186. .m2 = { .min = 5, .max = 11 },
  187. .p = { .min = 28, .max = 112 },
  188. .p1 = { .min = 2, .max = 8 },
  189. .p2 = { .dot_limit = 0,
  190. .p2_slow = 14, .p2_fast = 14
  191. },
  192. .find_pll = intel_g4x_find_best_PLL,
  193. };
  194. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  195. .dot = { .min = 80000, .max = 224000 },
  196. .vco = { .min = 1750000, .max = 3500000 },
  197. .n = { .min = 1, .max = 3 },
  198. .m = { .min = 104, .max = 138 },
  199. .m1 = { .min = 17, .max = 23 },
  200. .m2 = { .min = 5, .max = 11 },
  201. .p = { .min = 14, .max = 42 },
  202. .p1 = { .min = 2, .max = 6 },
  203. .p2 = { .dot_limit = 0,
  204. .p2_slow = 7, .p2_fast = 7
  205. },
  206. .find_pll = intel_g4x_find_best_PLL,
  207. };
  208. static const intel_limit_t intel_limits_g4x_display_port = {
  209. .dot = { .min = 161670, .max = 227000 },
  210. .vco = { .min = 1750000, .max = 3500000},
  211. .n = { .min = 1, .max = 2 },
  212. .m = { .min = 97, .max = 108 },
  213. .m1 = { .min = 0x10, .max = 0x12 },
  214. .m2 = { .min = 0x05, .max = 0x06 },
  215. .p = { .min = 10, .max = 20 },
  216. .p1 = { .min = 1, .max = 2},
  217. .p2 = { .dot_limit = 0,
  218. .p2_slow = 10, .p2_fast = 10 },
  219. .find_pll = intel_find_pll_g4x_dp,
  220. };
  221. static const intel_limit_t intel_limits_pineview_sdvo = {
  222. .dot = { .min = 20000, .max = 400000},
  223. .vco = { .min = 1700000, .max = 3500000 },
  224. /* Pineview's Ncounter is a ring counter */
  225. .n = { .min = 3, .max = 6 },
  226. .m = { .min = 2, .max = 256 },
  227. /* Pineview only has one combined m divider, which we treat as m2. */
  228. .m1 = { .min = 0, .max = 0 },
  229. .m2 = { .min = 0, .max = 254 },
  230. .p = { .min = 5, .max = 80 },
  231. .p1 = { .min = 1, .max = 8 },
  232. .p2 = { .dot_limit = 200000,
  233. .p2_slow = 10, .p2_fast = 5 },
  234. .find_pll = intel_find_best_PLL,
  235. };
  236. static const intel_limit_t intel_limits_pineview_lvds = {
  237. .dot = { .min = 20000, .max = 400000 },
  238. .vco = { .min = 1700000, .max = 3500000 },
  239. .n = { .min = 3, .max = 6 },
  240. .m = { .min = 2, .max = 256 },
  241. .m1 = { .min = 0, .max = 0 },
  242. .m2 = { .min = 0, .max = 254 },
  243. .p = { .min = 7, .max = 112 },
  244. .p1 = { .min = 1, .max = 8 },
  245. .p2 = { .dot_limit = 112000,
  246. .p2_slow = 14, .p2_fast = 14 },
  247. .find_pll = intel_find_best_PLL,
  248. };
  249. /* Ironlake / Sandybridge
  250. *
  251. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  252. * the range value for them is (actual_value - 2).
  253. */
  254. static const intel_limit_t intel_limits_ironlake_dac = {
  255. .dot = { .min = 25000, .max = 350000 },
  256. .vco = { .min = 1760000, .max = 3510000 },
  257. .n = { .min = 1, .max = 5 },
  258. .m = { .min = 79, .max = 127 },
  259. .m1 = { .min = 12, .max = 22 },
  260. .m2 = { .min = 5, .max = 9 },
  261. .p = { .min = 5, .max = 80 },
  262. .p1 = { .min = 1, .max = 8 },
  263. .p2 = { .dot_limit = 225000,
  264. .p2_slow = 10, .p2_fast = 5 },
  265. .find_pll = intel_g4x_find_best_PLL,
  266. };
  267. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  268. .dot = { .min = 25000, .max = 350000 },
  269. .vco = { .min = 1760000, .max = 3510000 },
  270. .n = { .min = 1, .max = 3 },
  271. .m = { .min = 79, .max = 118 },
  272. .m1 = { .min = 12, .max = 22 },
  273. .m2 = { .min = 5, .max = 9 },
  274. .p = { .min = 28, .max = 112 },
  275. .p1 = { .min = 2, .max = 8 },
  276. .p2 = { .dot_limit = 225000,
  277. .p2_slow = 14, .p2_fast = 14 },
  278. .find_pll = intel_g4x_find_best_PLL,
  279. };
  280. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  281. .dot = { .min = 25000, .max = 350000 },
  282. .vco = { .min = 1760000, .max = 3510000 },
  283. .n = { .min = 1, .max = 3 },
  284. .m = { .min = 79, .max = 127 },
  285. .m1 = { .min = 12, .max = 22 },
  286. .m2 = { .min = 5, .max = 9 },
  287. .p = { .min = 14, .max = 56 },
  288. .p1 = { .min = 2, .max = 8 },
  289. .p2 = { .dot_limit = 225000,
  290. .p2_slow = 7, .p2_fast = 7 },
  291. .find_pll = intel_g4x_find_best_PLL,
  292. };
  293. /* LVDS 100mhz refclk limits. */
  294. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  295. .dot = { .min = 25000, .max = 350000 },
  296. .vco = { .min = 1760000, .max = 3510000 },
  297. .n = { .min = 1, .max = 2 },
  298. .m = { .min = 79, .max = 126 },
  299. .m1 = { .min = 12, .max = 22 },
  300. .m2 = { .min = 5, .max = 9 },
  301. .p = { .min = 28, .max = 112 },
  302. .p1 = { .min = 2, .max = 8 },
  303. .p2 = { .dot_limit = 225000,
  304. .p2_slow = 14, .p2_fast = 14 },
  305. .find_pll = intel_g4x_find_best_PLL,
  306. };
  307. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  308. .dot = { .min = 25000, .max = 350000 },
  309. .vco = { .min = 1760000, .max = 3510000 },
  310. .n = { .min = 1, .max = 3 },
  311. .m = { .min = 79, .max = 126 },
  312. .m1 = { .min = 12, .max = 22 },
  313. .m2 = { .min = 5, .max = 9 },
  314. .p = { .min = 14, .max = 42 },
  315. .p1 = { .min = 2, .max = 6 },
  316. .p2 = { .dot_limit = 225000,
  317. .p2_slow = 7, .p2_fast = 7 },
  318. .find_pll = intel_g4x_find_best_PLL,
  319. };
  320. static const intel_limit_t intel_limits_ironlake_display_port = {
  321. .dot = { .min = 25000, .max = 350000 },
  322. .vco = { .min = 1760000, .max = 3510000},
  323. .n = { .min = 1, .max = 2 },
  324. .m = { .min = 81, .max = 90 },
  325. .m1 = { .min = 12, .max = 22 },
  326. .m2 = { .min = 5, .max = 9 },
  327. .p = { .min = 10, .max = 20 },
  328. .p1 = { .min = 1, .max = 2},
  329. .p2 = { .dot_limit = 0,
  330. .p2_slow = 10, .p2_fast = 10 },
  331. .find_pll = intel_find_pll_ironlake_dp,
  332. };
  333. u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
  334. {
  335. unsigned long flags;
  336. u32 val = 0;
  337. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  338. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  339. DRM_ERROR("DPIO idle wait timed out\n");
  340. goto out_unlock;
  341. }
  342. I915_WRITE(DPIO_REG, reg);
  343. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
  344. DPIO_BYTE);
  345. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  346. DRM_ERROR("DPIO read wait timed out\n");
  347. goto out_unlock;
  348. }
  349. val = I915_READ(DPIO_DATA);
  350. out_unlock:
  351. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  352. return val;
  353. }
  354. static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
  355. u32 val)
  356. {
  357. unsigned long flags;
  358. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  359. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  360. DRM_ERROR("DPIO idle wait timed out\n");
  361. goto out_unlock;
  362. }
  363. I915_WRITE(DPIO_DATA, val);
  364. I915_WRITE(DPIO_REG, reg);
  365. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
  366. DPIO_BYTE);
  367. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
  368. DRM_ERROR("DPIO write wait timed out\n");
  369. out_unlock:
  370. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  371. }
  372. static void vlv_init_dpio(struct drm_device *dev)
  373. {
  374. struct drm_i915_private *dev_priv = dev->dev_private;
  375. /* Reset the DPIO config */
  376. I915_WRITE(DPIO_CTL, 0);
  377. POSTING_READ(DPIO_CTL);
  378. I915_WRITE(DPIO_CTL, 1);
  379. POSTING_READ(DPIO_CTL);
  380. }
  381. static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
  382. {
  383. DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
  384. return 1;
  385. }
  386. static const struct dmi_system_id intel_dual_link_lvds[] = {
  387. {
  388. .callback = intel_dual_link_lvds_callback,
  389. .ident = "Apple MacBook Pro (Core i5/i7 Series)",
  390. .matches = {
  391. DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
  392. DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
  393. },
  394. },
  395. { } /* terminating entry */
  396. };
  397. static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
  398. unsigned int reg)
  399. {
  400. unsigned int val;
  401. /* use the module option value if specified */
  402. if (i915_lvds_channel_mode > 0)
  403. return i915_lvds_channel_mode == 2;
  404. if (dmi_check_system(intel_dual_link_lvds))
  405. return true;
  406. if (dev_priv->lvds_val)
  407. val = dev_priv->lvds_val;
  408. else {
  409. /* BIOS should set the proper LVDS register value at boot, but
  410. * in reality, it doesn't set the value when the lid is closed;
  411. * we need to check "the value to be set" in VBT when LVDS
  412. * register is uninitialized.
  413. */
  414. val = I915_READ(reg);
  415. if (!(val & ~LVDS_DETECTED))
  416. val = dev_priv->bios_lvds_val;
  417. dev_priv->lvds_val = val;
  418. }
  419. return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
  420. }
  421. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  422. int refclk)
  423. {
  424. struct drm_device *dev = crtc->dev;
  425. struct drm_i915_private *dev_priv = dev->dev_private;
  426. const intel_limit_t *limit;
  427. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  428. if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
  429. /* LVDS dual channel */
  430. if (refclk == 100000)
  431. limit = &intel_limits_ironlake_dual_lvds_100m;
  432. else
  433. limit = &intel_limits_ironlake_dual_lvds;
  434. } else {
  435. if (refclk == 100000)
  436. limit = &intel_limits_ironlake_single_lvds_100m;
  437. else
  438. limit = &intel_limits_ironlake_single_lvds;
  439. }
  440. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  441. HAS_eDP)
  442. limit = &intel_limits_ironlake_display_port;
  443. else
  444. limit = &intel_limits_ironlake_dac;
  445. return limit;
  446. }
  447. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  448. {
  449. struct drm_device *dev = crtc->dev;
  450. struct drm_i915_private *dev_priv = dev->dev_private;
  451. const intel_limit_t *limit;
  452. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  453. if (is_dual_link_lvds(dev_priv, LVDS))
  454. /* LVDS with dual channel */
  455. limit = &intel_limits_g4x_dual_channel_lvds;
  456. else
  457. /* LVDS with dual channel */
  458. limit = &intel_limits_g4x_single_channel_lvds;
  459. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  460. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  461. limit = &intel_limits_g4x_hdmi;
  462. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  463. limit = &intel_limits_g4x_sdvo;
  464. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  465. limit = &intel_limits_g4x_display_port;
  466. } else /* The option is for other outputs */
  467. limit = &intel_limits_i9xx_sdvo;
  468. return limit;
  469. }
  470. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  471. {
  472. struct drm_device *dev = crtc->dev;
  473. const intel_limit_t *limit;
  474. if (HAS_PCH_SPLIT(dev))
  475. limit = intel_ironlake_limit(crtc, refclk);
  476. else if (IS_G4X(dev)) {
  477. limit = intel_g4x_limit(crtc);
  478. } else if (IS_PINEVIEW(dev)) {
  479. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  480. limit = &intel_limits_pineview_lvds;
  481. else
  482. limit = &intel_limits_pineview_sdvo;
  483. } else if (!IS_GEN2(dev)) {
  484. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  485. limit = &intel_limits_i9xx_lvds;
  486. else
  487. limit = &intel_limits_i9xx_sdvo;
  488. } else {
  489. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  490. limit = &intel_limits_i8xx_lvds;
  491. else
  492. limit = &intel_limits_i8xx_dvo;
  493. }
  494. return limit;
  495. }
  496. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  497. static void pineview_clock(int refclk, intel_clock_t *clock)
  498. {
  499. clock->m = clock->m2 + 2;
  500. clock->p = clock->p1 * clock->p2;
  501. clock->vco = refclk * clock->m / clock->n;
  502. clock->dot = clock->vco / clock->p;
  503. }
  504. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  505. {
  506. if (IS_PINEVIEW(dev)) {
  507. pineview_clock(refclk, clock);
  508. return;
  509. }
  510. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  511. clock->p = clock->p1 * clock->p2;
  512. clock->vco = refclk * clock->m / (clock->n + 2);
  513. clock->dot = clock->vco / clock->p;
  514. }
  515. /**
  516. * Returns whether any output on the specified pipe is of the specified type
  517. */
  518. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  519. {
  520. struct drm_device *dev = crtc->dev;
  521. struct drm_mode_config *mode_config = &dev->mode_config;
  522. struct intel_encoder *encoder;
  523. list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
  524. if (encoder->base.crtc == crtc && encoder->type == type)
  525. return true;
  526. return false;
  527. }
  528. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  529. /**
  530. * Returns whether the given set of divisors are valid for a given refclk with
  531. * the given connectors.
  532. */
  533. static bool intel_PLL_is_valid(struct drm_device *dev,
  534. const intel_limit_t *limit,
  535. const intel_clock_t *clock)
  536. {
  537. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  538. INTELPllInvalid("p1 out of range\n");
  539. if (clock->p < limit->p.min || limit->p.max < clock->p)
  540. INTELPllInvalid("p out of range\n");
  541. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  542. INTELPllInvalid("m2 out of range\n");
  543. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  544. INTELPllInvalid("m1 out of range\n");
  545. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  546. INTELPllInvalid("m1 <= m2\n");
  547. if (clock->m < limit->m.min || limit->m.max < clock->m)
  548. INTELPllInvalid("m out of range\n");
  549. if (clock->n < limit->n.min || limit->n.max < clock->n)
  550. INTELPllInvalid("n out of range\n");
  551. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  552. INTELPllInvalid("vco out of range\n");
  553. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  554. * connector, etc., rather than just a single range.
  555. */
  556. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  557. INTELPllInvalid("dot out of range\n");
  558. return true;
  559. }
  560. static bool
  561. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  562. int target, int refclk, intel_clock_t *match_clock,
  563. intel_clock_t *best_clock)
  564. {
  565. struct drm_device *dev = crtc->dev;
  566. struct drm_i915_private *dev_priv = dev->dev_private;
  567. intel_clock_t clock;
  568. int err = target;
  569. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  570. (I915_READ(LVDS)) != 0) {
  571. /*
  572. * For LVDS, if the panel is on, just rely on its current
  573. * settings for dual-channel. We haven't figured out how to
  574. * reliably set up different single/dual channel state, if we
  575. * even can.
  576. */
  577. if (is_dual_link_lvds(dev_priv, LVDS))
  578. clock.p2 = limit->p2.p2_fast;
  579. else
  580. clock.p2 = limit->p2.p2_slow;
  581. } else {
  582. if (target < limit->p2.dot_limit)
  583. clock.p2 = limit->p2.p2_slow;
  584. else
  585. clock.p2 = limit->p2.p2_fast;
  586. }
  587. memset(best_clock, 0, sizeof(*best_clock));
  588. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  589. clock.m1++) {
  590. for (clock.m2 = limit->m2.min;
  591. clock.m2 <= limit->m2.max; clock.m2++) {
  592. /* m1 is always 0 in Pineview */
  593. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  594. break;
  595. for (clock.n = limit->n.min;
  596. clock.n <= limit->n.max; clock.n++) {
  597. for (clock.p1 = limit->p1.min;
  598. clock.p1 <= limit->p1.max; clock.p1++) {
  599. int this_err;
  600. intel_clock(dev, refclk, &clock);
  601. if (!intel_PLL_is_valid(dev, limit,
  602. &clock))
  603. continue;
  604. if (match_clock &&
  605. clock.p != match_clock->p)
  606. continue;
  607. this_err = abs(clock.dot - target);
  608. if (this_err < err) {
  609. *best_clock = clock;
  610. err = this_err;
  611. }
  612. }
  613. }
  614. }
  615. }
  616. return (err != target);
  617. }
  618. static bool
  619. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  620. int target, int refclk, intel_clock_t *match_clock,
  621. intel_clock_t *best_clock)
  622. {
  623. struct drm_device *dev = crtc->dev;
  624. struct drm_i915_private *dev_priv = dev->dev_private;
  625. intel_clock_t clock;
  626. int max_n;
  627. bool found;
  628. /* approximately equals target * 0.00585 */
  629. int err_most = (target >> 8) + (target >> 9);
  630. found = false;
  631. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  632. int lvds_reg;
  633. if (HAS_PCH_SPLIT(dev))
  634. lvds_reg = PCH_LVDS;
  635. else
  636. lvds_reg = LVDS;
  637. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  638. LVDS_CLKB_POWER_UP)
  639. clock.p2 = limit->p2.p2_fast;
  640. else
  641. clock.p2 = limit->p2.p2_slow;
  642. } else {
  643. if (target < limit->p2.dot_limit)
  644. clock.p2 = limit->p2.p2_slow;
  645. else
  646. clock.p2 = limit->p2.p2_fast;
  647. }
  648. memset(best_clock, 0, sizeof(*best_clock));
  649. max_n = limit->n.max;
  650. /* based on hardware requirement, prefer smaller n to precision */
  651. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  652. /* based on hardware requirement, prefere larger m1,m2 */
  653. for (clock.m1 = limit->m1.max;
  654. clock.m1 >= limit->m1.min; clock.m1--) {
  655. for (clock.m2 = limit->m2.max;
  656. clock.m2 >= limit->m2.min; clock.m2--) {
  657. for (clock.p1 = limit->p1.max;
  658. clock.p1 >= limit->p1.min; clock.p1--) {
  659. int this_err;
  660. intel_clock(dev, refclk, &clock);
  661. if (!intel_PLL_is_valid(dev, limit,
  662. &clock))
  663. continue;
  664. if (match_clock &&
  665. clock.p != match_clock->p)
  666. continue;
  667. this_err = abs(clock.dot - target);
  668. if (this_err < err_most) {
  669. *best_clock = clock;
  670. err_most = this_err;
  671. max_n = clock.n;
  672. found = true;
  673. }
  674. }
  675. }
  676. }
  677. }
  678. return found;
  679. }
  680. static bool
  681. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  682. int target, int refclk, intel_clock_t *match_clock,
  683. intel_clock_t *best_clock)
  684. {
  685. struct drm_device *dev = crtc->dev;
  686. intel_clock_t clock;
  687. if (target < 200000) {
  688. clock.n = 1;
  689. clock.p1 = 2;
  690. clock.p2 = 10;
  691. clock.m1 = 12;
  692. clock.m2 = 9;
  693. } else {
  694. clock.n = 2;
  695. clock.p1 = 1;
  696. clock.p2 = 10;
  697. clock.m1 = 14;
  698. clock.m2 = 8;
  699. }
  700. intel_clock(dev, refclk, &clock);
  701. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  702. return true;
  703. }
  704. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  705. static bool
  706. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  707. int target, int refclk, intel_clock_t *match_clock,
  708. intel_clock_t *best_clock)
  709. {
  710. intel_clock_t clock;
  711. if (target < 200000) {
  712. clock.p1 = 2;
  713. clock.p2 = 10;
  714. clock.n = 2;
  715. clock.m1 = 23;
  716. clock.m2 = 8;
  717. } else {
  718. clock.p1 = 1;
  719. clock.p2 = 10;
  720. clock.n = 1;
  721. clock.m1 = 14;
  722. clock.m2 = 2;
  723. }
  724. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  725. clock.p = (clock.p1 * clock.p2);
  726. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  727. clock.vco = 0;
  728. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  729. return true;
  730. }
  731. /**
  732. * intel_wait_for_vblank - wait for vblank on a given pipe
  733. * @dev: drm device
  734. * @pipe: pipe to wait for
  735. *
  736. * Wait for vblank to occur on a given pipe. Needed for various bits of
  737. * mode setting code.
  738. */
  739. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  740. {
  741. struct drm_i915_private *dev_priv = dev->dev_private;
  742. int pipestat_reg = PIPESTAT(pipe);
  743. /* Clear existing vblank status. Note this will clear any other
  744. * sticky status fields as well.
  745. *
  746. * This races with i915_driver_irq_handler() with the result
  747. * that either function could miss a vblank event. Here it is not
  748. * fatal, as we will either wait upon the next vblank interrupt or
  749. * timeout. Generally speaking intel_wait_for_vblank() is only
  750. * called during modeset at which time the GPU should be idle and
  751. * should *not* be performing page flips and thus not waiting on
  752. * vblanks...
  753. * Currently, the result of us stealing a vblank from the irq
  754. * handler is that a single frame will be skipped during swapbuffers.
  755. */
  756. I915_WRITE(pipestat_reg,
  757. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  758. /* Wait for vblank interrupt bit to set */
  759. if (wait_for(I915_READ(pipestat_reg) &
  760. PIPE_VBLANK_INTERRUPT_STATUS,
  761. 50))
  762. DRM_DEBUG_KMS("vblank wait timed out\n");
  763. }
  764. /*
  765. * intel_wait_for_pipe_off - wait for pipe to turn off
  766. * @dev: drm device
  767. * @pipe: pipe to wait for
  768. *
  769. * After disabling a pipe, we can't wait for vblank in the usual way,
  770. * spinning on the vblank interrupt status bit, since we won't actually
  771. * see an interrupt when the pipe is disabled.
  772. *
  773. * On Gen4 and above:
  774. * wait for the pipe register state bit to turn off
  775. *
  776. * Otherwise:
  777. * wait for the display line value to settle (it usually
  778. * ends up stopping at the start of the next frame).
  779. *
  780. */
  781. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  782. {
  783. struct drm_i915_private *dev_priv = dev->dev_private;
  784. if (INTEL_INFO(dev)->gen >= 4) {
  785. int reg = PIPECONF(pipe);
  786. /* Wait for the Pipe State to go off */
  787. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  788. 100))
  789. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  790. } else {
  791. u32 last_line;
  792. int reg = PIPEDSL(pipe);
  793. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  794. /* Wait for the display line to settle */
  795. do {
  796. last_line = I915_READ(reg) & DSL_LINEMASK;
  797. mdelay(5);
  798. } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
  799. time_after(timeout, jiffies));
  800. if (time_after(jiffies, timeout))
  801. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  802. }
  803. }
  804. static const char *state_string(bool enabled)
  805. {
  806. return enabled ? "on" : "off";
  807. }
  808. /* Only for pre-ILK configs */
  809. static void assert_pll(struct drm_i915_private *dev_priv,
  810. enum pipe pipe, bool state)
  811. {
  812. int reg;
  813. u32 val;
  814. bool cur_state;
  815. reg = DPLL(pipe);
  816. val = I915_READ(reg);
  817. cur_state = !!(val & DPLL_VCO_ENABLE);
  818. WARN(cur_state != state,
  819. "PLL state assertion failure (expected %s, current %s)\n",
  820. state_string(state), state_string(cur_state));
  821. }
  822. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  823. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  824. /* For ILK+ */
  825. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  826. enum pipe pipe, bool state)
  827. {
  828. int reg;
  829. u32 val;
  830. bool cur_state;
  831. if (HAS_PCH_CPT(dev_priv->dev)) {
  832. u32 pch_dpll;
  833. pch_dpll = I915_READ(PCH_DPLL_SEL);
  834. /* Make sure the selected PLL is enabled to the transcoder */
  835. WARN(!((pch_dpll >> (4 * pipe)) & 8),
  836. "transcoder %d PLL not enabled\n", pipe);
  837. /* Convert the transcoder pipe number to a pll pipe number */
  838. pipe = (pch_dpll >> (4 * pipe)) & 1;
  839. }
  840. reg = PCH_DPLL(pipe);
  841. val = I915_READ(reg);
  842. cur_state = !!(val & DPLL_VCO_ENABLE);
  843. WARN(cur_state != state,
  844. "PCH PLL state assertion failure (expected %s, current %s)\n",
  845. state_string(state), state_string(cur_state));
  846. }
  847. #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
  848. #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
  849. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  850. enum pipe pipe, bool state)
  851. {
  852. int reg;
  853. u32 val;
  854. bool cur_state;
  855. reg = FDI_TX_CTL(pipe);
  856. val = I915_READ(reg);
  857. cur_state = !!(val & FDI_TX_ENABLE);
  858. WARN(cur_state != state,
  859. "FDI TX state assertion failure (expected %s, current %s)\n",
  860. state_string(state), state_string(cur_state));
  861. }
  862. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  863. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  864. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  865. enum pipe pipe, bool state)
  866. {
  867. int reg;
  868. u32 val;
  869. bool cur_state;
  870. reg = FDI_RX_CTL(pipe);
  871. val = I915_READ(reg);
  872. cur_state = !!(val & FDI_RX_ENABLE);
  873. WARN(cur_state != state,
  874. "FDI RX state assertion failure (expected %s, current %s)\n",
  875. state_string(state), state_string(cur_state));
  876. }
  877. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  878. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  879. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  880. enum pipe pipe)
  881. {
  882. int reg;
  883. u32 val;
  884. /* ILK FDI PLL is always enabled */
  885. if (dev_priv->info->gen == 5)
  886. return;
  887. reg = FDI_TX_CTL(pipe);
  888. val = I915_READ(reg);
  889. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  890. }
  891. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  892. enum pipe pipe)
  893. {
  894. int reg;
  895. u32 val;
  896. reg = FDI_RX_CTL(pipe);
  897. val = I915_READ(reg);
  898. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  899. }
  900. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  901. enum pipe pipe)
  902. {
  903. int pp_reg, lvds_reg;
  904. u32 val;
  905. enum pipe panel_pipe = PIPE_A;
  906. bool locked = true;
  907. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  908. pp_reg = PCH_PP_CONTROL;
  909. lvds_reg = PCH_LVDS;
  910. } else {
  911. pp_reg = PP_CONTROL;
  912. lvds_reg = LVDS;
  913. }
  914. val = I915_READ(pp_reg);
  915. if (!(val & PANEL_POWER_ON) ||
  916. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  917. locked = false;
  918. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  919. panel_pipe = PIPE_B;
  920. WARN(panel_pipe == pipe && locked,
  921. "panel assertion failure, pipe %c regs locked\n",
  922. pipe_name(pipe));
  923. }
  924. void assert_pipe(struct drm_i915_private *dev_priv,
  925. enum pipe pipe, bool state)
  926. {
  927. int reg;
  928. u32 val;
  929. bool cur_state;
  930. /* if we need the pipe A quirk it must be always on */
  931. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  932. state = true;
  933. reg = PIPECONF(pipe);
  934. val = I915_READ(reg);
  935. cur_state = !!(val & PIPECONF_ENABLE);
  936. WARN(cur_state != state,
  937. "pipe %c assertion failure (expected %s, current %s)\n",
  938. pipe_name(pipe), state_string(state), state_string(cur_state));
  939. }
  940. static void assert_plane(struct drm_i915_private *dev_priv,
  941. enum plane plane, bool state)
  942. {
  943. int reg;
  944. u32 val;
  945. bool cur_state;
  946. reg = DSPCNTR(plane);
  947. val = I915_READ(reg);
  948. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  949. WARN(cur_state != state,
  950. "plane %c assertion failure (expected %s, current %s)\n",
  951. plane_name(plane), state_string(state), state_string(cur_state));
  952. }
  953. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  954. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  955. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  956. enum pipe pipe)
  957. {
  958. int reg, i;
  959. u32 val;
  960. int cur_pipe;
  961. /* Planes are fixed to pipes on ILK+ */
  962. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  963. reg = DSPCNTR(pipe);
  964. val = I915_READ(reg);
  965. WARN((val & DISPLAY_PLANE_ENABLE),
  966. "plane %c assertion failure, should be disabled but not\n",
  967. plane_name(pipe));
  968. return;
  969. }
  970. /* Need to check both planes against the pipe */
  971. for (i = 0; i < 2; i++) {
  972. reg = DSPCNTR(i);
  973. val = I915_READ(reg);
  974. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  975. DISPPLANE_SEL_PIPE_SHIFT;
  976. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  977. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  978. plane_name(i), pipe_name(pipe));
  979. }
  980. }
  981. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  982. {
  983. u32 val;
  984. bool enabled;
  985. val = I915_READ(PCH_DREF_CONTROL);
  986. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  987. DREF_SUPERSPREAD_SOURCE_MASK));
  988. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  989. }
  990. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  991. enum pipe pipe)
  992. {
  993. int reg;
  994. u32 val;
  995. bool enabled;
  996. reg = TRANSCONF(pipe);
  997. val = I915_READ(reg);
  998. enabled = !!(val & TRANS_ENABLE);
  999. WARN(enabled,
  1000. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1001. pipe_name(pipe));
  1002. }
  1003. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1004. enum pipe pipe, u32 port_sel, u32 val)
  1005. {
  1006. if ((val & DP_PORT_EN) == 0)
  1007. return false;
  1008. if (HAS_PCH_CPT(dev_priv->dev)) {
  1009. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1010. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1011. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1012. return false;
  1013. } else {
  1014. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1015. return false;
  1016. }
  1017. return true;
  1018. }
  1019. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1020. enum pipe pipe, u32 val)
  1021. {
  1022. if ((val & PORT_ENABLE) == 0)
  1023. return false;
  1024. if (HAS_PCH_CPT(dev_priv->dev)) {
  1025. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1026. return false;
  1027. } else {
  1028. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  1029. return false;
  1030. }
  1031. return true;
  1032. }
  1033. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1034. enum pipe pipe, u32 val)
  1035. {
  1036. if ((val & LVDS_PORT_EN) == 0)
  1037. return false;
  1038. if (HAS_PCH_CPT(dev_priv->dev)) {
  1039. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1040. return false;
  1041. } else {
  1042. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1043. return false;
  1044. }
  1045. return true;
  1046. }
  1047. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1048. enum pipe pipe, u32 val)
  1049. {
  1050. if ((val & ADPA_DAC_ENABLE) == 0)
  1051. return false;
  1052. if (HAS_PCH_CPT(dev_priv->dev)) {
  1053. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1054. return false;
  1055. } else {
  1056. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1057. return false;
  1058. }
  1059. return true;
  1060. }
  1061. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1062. enum pipe pipe, int reg, u32 port_sel)
  1063. {
  1064. u32 val = I915_READ(reg);
  1065. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1066. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1067. reg, pipe_name(pipe));
  1068. }
  1069. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1070. enum pipe pipe, int reg)
  1071. {
  1072. u32 val = I915_READ(reg);
  1073. WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
  1074. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1075. reg, pipe_name(pipe));
  1076. }
  1077. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1078. enum pipe pipe)
  1079. {
  1080. int reg;
  1081. u32 val;
  1082. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1083. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1084. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1085. reg = PCH_ADPA;
  1086. val = I915_READ(reg);
  1087. WARN(adpa_pipe_enabled(dev_priv, val, pipe),
  1088. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1089. pipe_name(pipe));
  1090. reg = PCH_LVDS;
  1091. val = I915_READ(reg);
  1092. WARN(lvds_pipe_enabled(dev_priv, val, pipe),
  1093. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1094. pipe_name(pipe));
  1095. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  1096. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  1097. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  1098. }
  1099. /**
  1100. * intel_enable_pll - enable a PLL
  1101. * @dev_priv: i915 private structure
  1102. * @pipe: pipe PLL to enable
  1103. *
  1104. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1105. * make sure the PLL reg is writable first though, since the panel write
  1106. * protect mechanism may be enabled.
  1107. *
  1108. * Note! This is for pre-ILK only.
  1109. */
  1110. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1111. {
  1112. int reg;
  1113. u32 val;
  1114. /* No really, not for ILK+ */
  1115. BUG_ON(dev_priv->info->gen >= 5);
  1116. /* PLL is protected by panel, make sure we can write it */
  1117. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1118. assert_panel_unlocked(dev_priv, pipe);
  1119. reg = DPLL(pipe);
  1120. val = I915_READ(reg);
  1121. val |= DPLL_VCO_ENABLE;
  1122. /* We do this three times for luck */
  1123. I915_WRITE(reg, val);
  1124. POSTING_READ(reg);
  1125. udelay(150); /* wait for warmup */
  1126. I915_WRITE(reg, val);
  1127. POSTING_READ(reg);
  1128. udelay(150); /* wait for warmup */
  1129. I915_WRITE(reg, val);
  1130. POSTING_READ(reg);
  1131. udelay(150); /* wait for warmup */
  1132. }
  1133. /**
  1134. * intel_disable_pll - disable a PLL
  1135. * @dev_priv: i915 private structure
  1136. * @pipe: pipe PLL to disable
  1137. *
  1138. * Disable the PLL for @pipe, making sure the pipe is off first.
  1139. *
  1140. * Note! This is for pre-ILK only.
  1141. */
  1142. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1143. {
  1144. int reg;
  1145. u32 val;
  1146. /* Don't disable pipe A or pipe A PLLs if needed */
  1147. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1148. return;
  1149. /* Make sure the pipe isn't still relying on us */
  1150. assert_pipe_disabled(dev_priv, pipe);
  1151. reg = DPLL(pipe);
  1152. val = I915_READ(reg);
  1153. val &= ~DPLL_VCO_ENABLE;
  1154. I915_WRITE(reg, val);
  1155. POSTING_READ(reg);
  1156. }
  1157. /**
  1158. * intel_enable_pch_pll - enable PCH PLL
  1159. * @dev_priv: i915 private structure
  1160. * @pipe: pipe PLL to enable
  1161. *
  1162. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1163. * drives the transcoder clock.
  1164. */
  1165. static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
  1166. enum pipe pipe)
  1167. {
  1168. int reg;
  1169. u32 val;
  1170. if (pipe > 1)
  1171. return;
  1172. /* PCH only available on ILK+ */
  1173. BUG_ON(dev_priv->info->gen < 5);
  1174. /* PCH refclock must be enabled first */
  1175. assert_pch_refclk_enabled(dev_priv);
  1176. reg = PCH_DPLL(pipe);
  1177. val = I915_READ(reg);
  1178. val |= DPLL_VCO_ENABLE;
  1179. I915_WRITE(reg, val);
  1180. POSTING_READ(reg);
  1181. udelay(200);
  1182. }
  1183. static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
  1184. enum pipe pipe)
  1185. {
  1186. int reg;
  1187. u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
  1188. pll_sel = TRANSC_DPLL_ENABLE;
  1189. if (pipe > 1)
  1190. return;
  1191. /* PCH only available on ILK+ */
  1192. BUG_ON(dev_priv->info->gen < 5);
  1193. /* Make sure transcoder isn't still depending on us */
  1194. assert_transcoder_disabled(dev_priv, pipe);
  1195. if (pipe == 0)
  1196. pll_sel |= TRANSC_DPLLA_SEL;
  1197. else if (pipe == 1)
  1198. pll_sel |= TRANSC_DPLLB_SEL;
  1199. if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
  1200. return;
  1201. reg = PCH_DPLL(pipe);
  1202. val = I915_READ(reg);
  1203. val &= ~DPLL_VCO_ENABLE;
  1204. I915_WRITE(reg, val);
  1205. POSTING_READ(reg);
  1206. udelay(200);
  1207. }
  1208. static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
  1209. enum pipe pipe)
  1210. {
  1211. int reg;
  1212. u32 val, pipeconf_val;
  1213. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1214. /* PCH only available on ILK+ */
  1215. BUG_ON(dev_priv->info->gen < 5);
  1216. /* Make sure PCH DPLL is enabled */
  1217. assert_pch_pll_enabled(dev_priv, pipe);
  1218. /* FDI must be feeding us bits for PCH ports */
  1219. assert_fdi_tx_enabled(dev_priv, pipe);
  1220. assert_fdi_rx_enabled(dev_priv, pipe);
  1221. reg = TRANSCONF(pipe);
  1222. val = I915_READ(reg);
  1223. pipeconf_val = I915_READ(PIPECONF(pipe));
  1224. if (HAS_PCH_IBX(dev_priv->dev)) {
  1225. /*
  1226. * make the BPC in transcoder be consistent with
  1227. * that in pipeconf reg.
  1228. */
  1229. val &= ~PIPE_BPC_MASK;
  1230. val |= pipeconf_val & PIPE_BPC_MASK;
  1231. }
  1232. val &= ~TRANS_INTERLACE_MASK;
  1233. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1234. if (HAS_PCH_IBX(dev_priv->dev) &&
  1235. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1236. val |= TRANS_LEGACY_INTERLACED_ILK;
  1237. else
  1238. val |= TRANS_INTERLACED;
  1239. else
  1240. val |= TRANS_PROGRESSIVE;
  1241. I915_WRITE(reg, val | TRANS_ENABLE);
  1242. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1243. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1244. }
  1245. static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
  1246. enum pipe pipe)
  1247. {
  1248. int reg;
  1249. u32 val;
  1250. /* FDI relies on the transcoder */
  1251. assert_fdi_tx_disabled(dev_priv, pipe);
  1252. assert_fdi_rx_disabled(dev_priv, pipe);
  1253. /* Ports must be off as well */
  1254. assert_pch_ports_disabled(dev_priv, pipe);
  1255. reg = TRANSCONF(pipe);
  1256. val = I915_READ(reg);
  1257. val &= ~TRANS_ENABLE;
  1258. I915_WRITE(reg, val);
  1259. /* wait for PCH transcoder off, transcoder state */
  1260. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1261. DRM_ERROR("failed to disable transcoder %d\n", pipe);
  1262. }
  1263. /**
  1264. * intel_enable_pipe - enable a pipe, asserting requirements
  1265. * @dev_priv: i915 private structure
  1266. * @pipe: pipe to enable
  1267. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1268. *
  1269. * Enable @pipe, making sure that various hardware specific requirements
  1270. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1271. *
  1272. * @pipe should be %PIPE_A or %PIPE_B.
  1273. *
  1274. * Will wait until the pipe is actually running (i.e. first vblank) before
  1275. * returning.
  1276. */
  1277. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1278. bool pch_port)
  1279. {
  1280. int reg;
  1281. u32 val;
  1282. /*
  1283. * A pipe without a PLL won't actually be able to drive bits from
  1284. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1285. * need the check.
  1286. */
  1287. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1288. assert_pll_enabled(dev_priv, pipe);
  1289. else {
  1290. if (pch_port) {
  1291. /* if driving the PCH, we need FDI enabled */
  1292. assert_fdi_rx_pll_enabled(dev_priv, pipe);
  1293. assert_fdi_tx_pll_enabled(dev_priv, pipe);
  1294. }
  1295. /* FIXME: assert CPU port conditions for SNB+ */
  1296. }
  1297. reg = PIPECONF(pipe);
  1298. val = I915_READ(reg);
  1299. if (val & PIPECONF_ENABLE)
  1300. return;
  1301. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1302. intel_wait_for_vblank(dev_priv->dev, pipe);
  1303. }
  1304. /**
  1305. * intel_disable_pipe - disable a pipe, asserting requirements
  1306. * @dev_priv: i915 private structure
  1307. * @pipe: pipe to disable
  1308. *
  1309. * Disable @pipe, making sure that various hardware specific requirements
  1310. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1311. *
  1312. * @pipe should be %PIPE_A or %PIPE_B.
  1313. *
  1314. * Will wait until the pipe has shut down before returning.
  1315. */
  1316. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1317. enum pipe pipe)
  1318. {
  1319. int reg;
  1320. u32 val;
  1321. /*
  1322. * Make sure planes won't keep trying to pump pixels to us,
  1323. * or we might hang the display.
  1324. */
  1325. assert_planes_disabled(dev_priv, pipe);
  1326. /* Don't disable pipe A or pipe A PLLs if needed */
  1327. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1328. return;
  1329. reg = PIPECONF(pipe);
  1330. val = I915_READ(reg);
  1331. if ((val & PIPECONF_ENABLE) == 0)
  1332. return;
  1333. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1334. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1335. }
  1336. /*
  1337. * Plane regs are double buffered, going from enabled->disabled needs a
  1338. * trigger in order to latch. The display address reg provides this.
  1339. */
  1340. static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1341. enum plane plane)
  1342. {
  1343. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1344. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1345. }
  1346. /**
  1347. * intel_enable_plane - enable a display plane on a given pipe
  1348. * @dev_priv: i915 private structure
  1349. * @plane: plane to enable
  1350. * @pipe: pipe being fed
  1351. *
  1352. * Enable @plane on @pipe, making sure that @pipe is running first.
  1353. */
  1354. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1355. enum plane plane, enum pipe pipe)
  1356. {
  1357. int reg;
  1358. u32 val;
  1359. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1360. assert_pipe_enabled(dev_priv, pipe);
  1361. reg = DSPCNTR(plane);
  1362. val = I915_READ(reg);
  1363. if (val & DISPLAY_PLANE_ENABLE)
  1364. return;
  1365. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1366. intel_flush_display_plane(dev_priv, plane);
  1367. intel_wait_for_vblank(dev_priv->dev, pipe);
  1368. }
  1369. /**
  1370. * intel_disable_plane - disable a display plane
  1371. * @dev_priv: i915 private structure
  1372. * @plane: plane to disable
  1373. * @pipe: pipe consuming the data
  1374. *
  1375. * Disable @plane; should be an independent operation.
  1376. */
  1377. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1378. enum plane plane, enum pipe pipe)
  1379. {
  1380. int reg;
  1381. u32 val;
  1382. reg = DSPCNTR(plane);
  1383. val = I915_READ(reg);
  1384. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1385. return;
  1386. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1387. intel_flush_display_plane(dev_priv, plane);
  1388. intel_wait_for_vblank(dev_priv->dev, pipe);
  1389. }
  1390. static void disable_pch_dp(struct drm_i915_private *dev_priv,
  1391. enum pipe pipe, int reg, u32 port_sel)
  1392. {
  1393. u32 val = I915_READ(reg);
  1394. if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
  1395. DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
  1396. I915_WRITE(reg, val & ~DP_PORT_EN);
  1397. }
  1398. }
  1399. static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
  1400. enum pipe pipe, int reg)
  1401. {
  1402. u32 val = I915_READ(reg);
  1403. if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
  1404. DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
  1405. reg, pipe);
  1406. I915_WRITE(reg, val & ~PORT_ENABLE);
  1407. }
  1408. }
  1409. /* Disable any ports connected to this transcoder */
  1410. static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
  1411. enum pipe pipe)
  1412. {
  1413. u32 reg, val;
  1414. val = I915_READ(PCH_PP_CONTROL);
  1415. I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
  1416. disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1417. disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1418. disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1419. reg = PCH_ADPA;
  1420. val = I915_READ(reg);
  1421. if (adpa_pipe_enabled(dev_priv, val, pipe))
  1422. I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
  1423. reg = PCH_LVDS;
  1424. val = I915_READ(reg);
  1425. if (lvds_pipe_enabled(dev_priv, val, pipe)) {
  1426. DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
  1427. I915_WRITE(reg, val & ~LVDS_PORT_EN);
  1428. POSTING_READ(reg);
  1429. udelay(100);
  1430. }
  1431. disable_pch_hdmi(dev_priv, pipe, HDMIB);
  1432. disable_pch_hdmi(dev_priv, pipe, HDMIC);
  1433. disable_pch_hdmi(dev_priv, pipe, HDMID);
  1434. }
  1435. static void i8xx_disable_fbc(struct drm_device *dev)
  1436. {
  1437. struct drm_i915_private *dev_priv = dev->dev_private;
  1438. u32 fbc_ctl;
  1439. /* Disable compression */
  1440. fbc_ctl = I915_READ(FBC_CONTROL);
  1441. if ((fbc_ctl & FBC_CTL_EN) == 0)
  1442. return;
  1443. fbc_ctl &= ~FBC_CTL_EN;
  1444. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1445. /* Wait for compressing bit to clear */
  1446. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  1447. DRM_DEBUG_KMS("FBC idle timed out\n");
  1448. return;
  1449. }
  1450. DRM_DEBUG_KMS("disabled FBC\n");
  1451. }
  1452. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1453. {
  1454. struct drm_device *dev = crtc->dev;
  1455. struct drm_i915_private *dev_priv = dev->dev_private;
  1456. struct drm_framebuffer *fb = crtc->fb;
  1457. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1458. struct drm_i915_gem_object *obj = intel_fb->obj;
  1459. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1460. int cfb_pitch;
  1461. int plane, i;
  1462. u32 fbc_ctl, fbc_ctl2;
  1463. cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  1464. if (fb->pitches[0] < cfb_pitch)
  1465. cfb_pitch = fb->pitches[0];
  1466. /* FBC_CTL wants 64B units */
  1467. cfb_pitch = (cfb_pitch / 64) - 1;
  1468. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  1469. /* Clear old tags */
  1470. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  1471. I915_WRITE(FBC_TAG + (i * 4), 0);
  1472. /* Set it up... */
  1473. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  1474. fbc_ctl2 |= plane;
  1475. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  1476. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  1477. /* enable it... */
  1478. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  1479. if (IS_I945GM(dev))
  1480. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  1481. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  1482. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  1483. fbc_ctl |= obj->fence_reg;
  1484. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1485. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
  1486. cfb_pitch, crtc->y, intel_crtc->plane);
  1487. }
  1488. static bool i8xx_fbc_enabled(struct drm_device *dev)
  1489. {
  1490. struct drm_i915_private *dev_priv = dev->dev_private;
  1491. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  1492. }
  1493. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1494. {
  1495. struct drm_device *dev = crtc->dev;
  1496. struct drm_i915_private *dev_priv = dev->dev_private;
  1497. struct drm_framebuffer *fb = crtc->fb;
  1498. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1499. struct drm_i915_gem_object *obj = intel_fb->obj;
  1500. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1501. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1502. unsigned long stall_watermark = 200;
  1503. u32 dpfc_ctl;
  1504. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  1505. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  1506. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  1507. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1508. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1509. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1510. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  1511. /* enable it... */
  1512. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  1513. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1514. }
  1515. static void g4x_disable_fbc(struct drm_device *dev)
  1516. {
  1517. struct drm_i915_private *dev_priv = dev->dev_private;
  1518. u32 dpfc_ctl;
  1519. /* Disable compression */
  1520. dpfc_ctl = I915_READ(DPFC_CONTROL);
  1521. if (dpfc_ctl & DPFC_CTL_EN) {
  1522. dpfc_ctl &= ~DPFC_CTL_EN;
  1523. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  1524. DRM_DEBUG_KMS("disabled FBC\n");
  1525. }
  1526. }
  1527. static bool g4x_fbc_enabled(struct drm_device *dev)
  1528. {
  1529. struct drm_i915_private *dev_priv = dev->dev_private;
  1530. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  1531. }
  1532. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  1533. {
  1534. struct drm_i915_private *dev_priv = dev->dev_private;
  1535. u32 blt_ecoskpd;
  1536. /* Make sure blitter notifies FBC of writes */
  1537. gen6_gt_force_wake_get(dev_priv);
  1538. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  1539. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  1540. GEN6_BLITTER_LOCK_SHIFT;
  1541. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1542. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  1543. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1544. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  1545. GEN6_BLITTER_LOCK_SHIFT);
  1546. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1547. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  1548. gen6_gt_force_wake_put(dev_priv);
  1549. }
  1550. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1551. {
  1552. struct drm_device *dev = crtc->dev;
  1553. struct drm_i915_private *dev_priv = dev->dev_private;
  1554. struct drm_framebuffer *fb = crtc->fb;
  1555. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1556. struct drm_i915_gem_object *obj = intel_fb->obj;
  1557. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1558. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1559. unsigned long stall_watermark = 200;
  1560. u32 dpfc_ctl;
  1561. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1562. dpfc_ctl &= DPFC_RESERVED;
  1563. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  1564. /* Set persistent mode for front-buffer rendering, ala X. */
  1565. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  1566. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  1567. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  1568. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1569. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1570. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1571. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  1572. I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
  1573. /* enable it... */
  1574. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  1575. if (IS_GEN6(dev)) {
  1576. I915_WRITE(SNB_DPFC_CTL_SA,
  1577. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  1578. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  1579. sandybridge_blit_fbc_update(dev);
  1580. }
  1581. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1582. }
  1583. static void ironlake_disable_fbc(struct drm_device *dev)
  1584. {
  1585. struct drm_i915_private *dev_priv = dev->dev_private;
  1586. u32 dpfc_ctl;
  1587. /* Disable compression */
  1588. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1589. if (dpfc_ctl & DPFC_CTL_EN) {
  1590. dpfc_ctl &= ~DPFC_CTL_EN;
  1591. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  1592. DRM_DEBUG_KMS("disabled FBC\n");
  1593. }
  1594. }
  1595. static bool ironlake_fbc_enabled(struct drm_device *dev)
  1596. {
  1597. struct drm_i915_private *dev_priv = dev->dev_private;
  1598. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  1599. }
  1600. bool intel_fbc_enabled(struct drm_device *dev)
  1601. {
  1602. struct drm_i915_private *dev_priv = dev->dev_private;
  1603. if (!dev_priv->display.fbc_enabled)
  1604. return false;
  1605. return dev_priv->display.fbc_enabled(dev);
  1606. }
  1607. static void intel_fbc_work_fn(struct work_struct *__work)
  1608. {
  1609. struct intel_fbc_work *work =
  1610. container_of(to_delayed_work(__work),
  1611. struct intel_fbc_work, work);
  1612. struct drm_device *dev = work->crtc->dev;
  1613. struct drm_i915_private *dev_priv = dev->dev_private;
  1614. mutex_lock(&dev->struct_mutex);
  1615. if (work == dev_priv->fbc_work) {
  1616. /* Double check that we haven't switched fb without cancelling
  1617. * the prior work.
  1618. */
  1619. if (work->crtc->fb == work->fb) {
  1620. dev_priv->display.enable_fbc(work->crtc,
  1621. work->interval);
  1622. dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
  1623. dev_priv->cfb_fb = work->crtc->fb->base.id;
  1624. dev_priv->cfb_y = work->crtc->y;
  1625. }
  1626. dev_priv->fbc_work = NULL;
  1627. }
  1628. mutex_unlock(&dev->struct_mutex);
  1629. kfree(work);
  1630. }
  1631. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  1632. {
  1633. if (dev_priv->fbc_work == NULL)
  1634. return;
  1635. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  1636. /* Synchronisation is provided by struct_mutex and checking of
  1637. * dev_priv->fbc_work, so we can perform the cancellation
  1638. * entirely asynchronously.
  1639. */
  1640. if (cancel_delayed_work(&dev_priv->fbc_work->work))
  1641. /* tasklet was killed before being run, clean up */
  1642. kfree(dev_priv->fbc_work);
  1643. /* Mark the work as no longer wanted so that if it does
  1644. * wake-up (because the work was already running and waiting
  1645. * for our mutex), it will discover that is no longer
  1646. * necessary to run.
  1647. */
  1648. dev_priv->fbc_work = NULL;
  1649. }
  1650. static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1651. {
  1652. struct intel_fbc_work *work;
  1653. struct drm_device *dev = crtc->dev;
  1654. struct drm_i915_private *dev_priv = dev->dev_private;
  1655. if (!dev_priv->display.enable_fbc)
  1656. return;
  1657. intel_cancel_fbc_work(dev_priv);
  1658. work = kzalloc(sizeof *work, GFP_KERNEL);
  1659. if (work == NULL) {
  1660. dev_priv->display.enable_fbc(crtc, interval);
  1661. return;
  1662. }
  1663. work->crtc = crtc;
  1664. work->fb = crtc->fb;
  1665. work->interval = interval;
  1666. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  1667. dev_priv->fbc_work = work;
  1668. DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
  1669. /* Delay the actual enabling to let pageflipping cease and the
  1670. * display to settle before starting the compression. Note that
  1671. * this delay also serves a second purpose: it allows for a
  1672. * vblank to pass after disabling the FBC before we attempt
  1673. * to modify the control registers.
  1674. *
  1675. * A more complicated solution would involve tracking vblanks
  1676. * following the termination of the page-flipping sequence
  1677. * and indeed performing the enable as a co-routine and not
  1678. * waiting synchronously upon the vblank.
  1679. */
  1680. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  1681. }
  1682. void intel_disable_fbc(struct drm_device *dev)
  1683. {
  1684. struct drm_i915_private *dev_priv = dev->dev_private;
  1685. intel_cancel_fbc_work(dev_priv);
  1686. if (!dev_priv->display.disable_fbc)
  1687. return;
  1688. dev_priv->display.disable_fbc(dev);
  1689. dev_priv->cfb_plane = -1;
  1690. }
  1691. /**
  1692. * intel_update_fbc - enable/disable FBC as needed
  1693. * @dev: the drm_device
  1694. *
  1695. * Set up the framebuffer compression hardware at mode set time. We
  1696. * enable it if possible:
  1697. * - plane A only (on pre-965)
  1698. * - no pixel mulitply/line duplication
  1699. * - no alpha buffer discard
  1700. * - no dual wide
  1701. * - framebuffer <= 2048 in width, 1536 in height
  1702. *
  1703. * We can't assume that any compression will take place (worst case),
  1704. * so the compressed buffer has to be the same size as the uncompressed
  1705. * one. It also must reside (along with the line length buffer) in
  1706. * stolen memory.
  1707. *
  1708. * We need to enable/disable FBC on a global basis.
  1709. */
  1710. static void intel_update_fbc(struct drm_device *dev)
  1711. {
  1712. struct drm_i915_private *dev_priv = dev->dev_private;
  1713. struct drm_crtc *crtc = NULL, *tmp_crtc;
  1714. struct intel_crtc *intel_crtc;
  1715. struct drm_framebuffer *fb;
  1716. struct intel_framebuffer *intel_fb;
  1717. struct drm_i915_gem_object *obj;
  1718. int enable_fbc;
  1719. DRM_DEBUG_KMS("\n");
  1720. if (!i915_powersave)
  1721. return;
  1722. if (!I915_HAS_FBC(dev))
  1723. return;
  1724. /*
  1725. * If FBC is already on, we just have to verify that we can
  1726. * keep it that way...
  1727. * Need to disable if:
  1728. * - more than one pipe is active
  1729. * - changing FBC params (stride, fence, mode)
  1730. * - new fb is too large to fit in compressed buffer
  1731. * - going to an unsupported config (interlace, pixel multiply, etc.)
  1732. */
  1733. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  1734. if (tmp_crtc->enabled && tmp_crtc->fb) {
  1735. if (crtc) {
  1736. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  1737. dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
  1738. goto out_disable;
  1739. }
  1740. crtc = tmp_crtc;
  1741. }
  1742. }
  1743. if (!crtc || crtc->fb == NULL) {
  1744. DRM_DEBUG_KMS("no output, disabling\n");
  1745. dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
  1746. goto out_disable;
  1747. }
  1748. intel_crtc = to_intel_crtc(crtc);
  1749. fb = crtc->fb;
  1750. intel_fb = to_intel_framebuffer(fb);
  1751. obj = intel_fb->obj;
  1752. enable_fbc = i915_enable_fbc;
  1753. if (enable_fbc < 0) {
  1754. DRM_DEBUG_KMS("fbc set to per-chip default\n");
  1755. enable_fbc = 1;
  1756. if (INTEL_INFO(dev)->gen <= 6)
  1757. enable_fbc = 0;
  1758. }
  1759. if (!enable_fbc) {
  1760. DRM_DEBUG_KMS("fbc disabled per module param\n");
  1761. dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
  1762. goto out_disable;
  1763. }
  1764. if (intel_fb->obj->base.size > dev_priv->cfb_size) {
  1765. DRM_DEBUG_KMS("framebuffer too large, disabling "
  1766. "compression\n");
  1767. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  1768. goto out_disable;
  1769. }
  1770. if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
  1771. (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
  1772. DRM_DEBUG_KMS("mode incompatible with compression, "
  1773. "disabling\n");
  1774. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  1775. goto out_disable;
  1776. }
  1777. if ((crtc->mode.hdisplay > 2048) ||
  1778. (crtc->mode.vdisplay > 1536)) {
  1779. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  1780. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  1781. goto out_disable;
  1782. }
  1783. if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
  1784. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  1785. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  1786. goto out_disable;
  1787. }
  1788. /* The use of a CPU fence is mandatory in order to detect writes
  1789. * by the CPU to the scanout and trigger updates to the FBC.
  1790. */
  1791. if (obj->tiling_mode != I915_TILING_X ||
  1792. obj->fence_reg == I915_FENCE_REG_NONE) {
  1793. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  1794. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  1795. goto out_disable;
  1796. }
  1797. /* If the kernel debugger is active, always disable compression */
  1798. if (in_dbg_master())
  1799. goto out_disable;
  1800. /* If the scanout has not changed, don't modify the FBC settings.
  1801. * Note that we make the fundamental assumption that the fb->obj
  1802. * cannot be unpinned (and have its GTT offset and fence revoked)
  1803. * without first being decoupled from the scanout and FBC disabled.
  1804. */
  1805. if (dev_priv->cfb_plane == intel_crtc->plane &&
  1806. dev_priv->cfb_fb == fb->base.id &&
  1807. dev_priv->cfb_y == crtc->y)
  1808. return;
  1809. if (intel_fbc_enabled(dev)) {
  1810. /* We update FBC along two paths, after changing fb/crtc
  1811. * configuration (modeswitching) and after page-flipping
  1812. * finishes. For the latter, we know that not only did
  1813. * we disable the FBC at the start of the page-flip
  1814. * sequence, but also more than one vblank has passed.
  1815. *
  1816. * For the former case of modeswitching, it is possible
  1817. * to switch between two FBC valid configurations
  1818. * instantaneously so we do need to disable the FBC
  1819. * before we can modify its control registers. We also
  1820. * have to wait for the next vblank for that to take
  1821. * effect. However, since we delay enabling FBC we can
  1822. * assume that a vblank has passed since disabling and
  1823. * that we can safely alter the registers in the deferred
  1824. * callback.
  1825. *
  1826. * In the scenario that we go from a valid to invalid
  1827. * and then back to valid FBC configuration we have
  1828. * no strict enforcement that a vblank occurred since
  1829. * disabling the FBC. However, along all current pipe
  1830. * disabling paths we do need to wait for a vblank at
  1831. * some point. And we wait before enabling FBC anyway.
  1832. */
  1833. DRM_DEBUG_KMS("disabling active FBC for update\n");
  1834. intel_disable_fbc(dev);
  1835. }
  1836. intel_enable_fbc(crtc, 500);
  1837. return;
  1838. out_disable:
  1839. /* Multiple disables should be harmless */
  1840. if (intel_fbc_enabled(dev)) {
  1841. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  1842. intel_disable_fbc(dev);
  1843. }
  1844. }
  1845. int
  1846. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1847. struct drm_i915_gem_object *obj,
  1848. struct intel_ring_buffer *pipelined)
  1849. {
  1850. struct drm_i915_private *dev_priv = dev->dev_private;
  1851. u32 alignment;
  1852. int ret;
  1853. switch (obj->tiling_mode) {
  1854. case I915_TILING_NONE:
  1855. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1856. alignment = 128 * 1024;
  1857. else if (INTEL_INFO(dev)->gen >= 4)
  1858. alignment = 4 * 1024;
  1859. else
  1860. alignment = 64 * 1024;
  1861. break;
  1862. case I915_TILING_X:
  1863. /* pin() will align the object as required by fence */
  1864. alignment = 0;
  1865. break;
  1866. case I915_TILING_Y:
  1867. /* FIXME: Is this true? */
  1868. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1869. return -EINVAL;
  1870. default:
  1871. BUG();
  1872. }
  1873. dev_priv->mm.interruptible = false;
  1874. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1875. if (ret)
  1876. goto err_interruptible;
  1877. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1878. * fence, whereas 965+ only requires a fence if using
  1879. * framebuffer compression. For simplicity, we always install
  1880. * a fence as the cost is not that onerous.
  1881. */
  1882. ret = i915_gem_object_get_fence(obj, pipelined);
  1883. if (ret)
  1884. goto err_unpin;
  1885. i915_gem_object_pin_fence(obj);
  1886. dev_priv->mm.interruptible = true;
  1887. return 0;
  1888. err_unpin:
  1889. i915_gem_object_unpin(obj);
  1890. err_interruptible:
  1891. dev_priv->mm.interruptible = true;
  1892. return ret;
  1893. }
  1894. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1895. {
  1896. i915_gem_object_unpin_fence(obj);
  1897. i915_gem_object_unpin(obj);
  1898. }
  1899. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1900. int x, int y)
  1901. {
  1902. struct drm_device *dev = crtc->dev;
  1903. struct drm_i915_private *dev_priv = dev->dev_private;
  1904. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1905. struct intel_framebuffer *intel_fb;
  1906. struct drm_i915_gem_object *obj;
  1907. int plane = intel_crtc->plane;
  1908. unsigned long Start, Offset;
  1909. u32 dspcntr;
  1910. u32 reg;
  1911. switch (plane) {
  1912. case 0:
  1913. case 1:
  1914. break;
  1915. default:
  1916. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1917. return -EINVAL;
  1918. }
  1919. intel_fb = to_intel_framebuffer(fb);
  1920. obj = intel_fb->obj;
  1921. reg = DSPCNTR(plane);
  1922. dspcntr = I915_READ(reg);
  1923. /* Mask out pixel format bits in case we change it */
  1924. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1925. switch (fb->bits_per_pixel) {
  1926. case 8:
  1927. dspcntr |= DISPPLANE_8BPP;
  1928. break;
  1929. case 16:
  1930. if (fb->depth == 15)
  1931. dspcntr |= DISPPLANE_15_16BPP;
  1932. else
  1933. dspcntr |= DISPPLANE_16BPP;
  1934. break;
  1935. case 24:
  1936. case 32:
  1937. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1938. break;
  1939. default:
  1940. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1941. return -EINVAL;
  1942. }
  1943. if (INTEL_INFO(dev)->gen >= 4) {
  1944. if (obj->tiling_mode != I915_TILING_NONE)
  1945. dspcntr |= DISPPLANE_TILED;
  1946. else
  1947. dspcntr &= ~DISPPLANE_TILED;
  1948. }
  1949. I915_WRITE(reg, dspcntr);
  1950. Start = obj->gtt_offset;
  1951. Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1952. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1953. Start, Offset, x, y, fb->pitches[0]);
  1954. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1955. if (INTEL_INFO(dev)->gen >= 4) {
  1956. I915_WRITE(DSPSURF(plane), Start);
  1957. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1958. I915_WRITE(DSPADDR(plane), Offset);
  1959. } else
  1960. I915_WRITE(DSPADDR(plane), Start + Offset);
  1961. POSTING_READ(reg);
  1962. return 0;
  1963. }
  1964. static int ironlake_update_plane(struct drm_crtc *crtc,
  1965. struct drm_framebuffer *fb, int x, int y)
  1966. {
  1967. struct drm_device *dev = crtc->dev;
  1968. struct drm_i915_private *dev_priv = dev->dev_private;
  1969. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1970. struct intel_framebuffer *intel_fb;
  1971. struct drm_i915_gem_object *obj;
  1972. int plane = intel_crtc->plane;
  1973. unsigned long Start, Offset;
  1974. u32 dspcntr;
  1975. u32 reg;
  1976. switch (plane) {
  1977. case 0:
  1978. case 1:
  1979. case 2:
  1980. break;
  1981. default:
  1982. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1983. return -EINVAL;
  1984. }
  1985. intel_fb = to_intel_framebuffer(fb);
  1986. obj = intel_fb->obj;
  1987. reg = DSPCNTR(plane);
  1988. dspcntr = I915_READ(reg);
  1989. /* Mask out pixel format bits in case we change it */
  1990. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1991. switch (fb->bits_per_pixel) {
  1992. case 8:
  1993. dspcntr |= DISPPLANE_8BPP;
  1994. break;
  1995. case 16:
  1996. if (fb->depth != 16)
  1997. return -EINVAL;
  1998. dspcntr |= DISPPLANE_16BPP;
  1999. break;
  2000. case 24:
  2001. case 32:
  2002. if (fb->depth == 24)
  2003. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  2004. else if (fb->depth == 30)
  2005. dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  2006. else
  2007. return -EINVAL;
  2008. break;
  2009. default:
  2010. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  2011. return -EINVAL;
  2012. }
  2013. if (obj->tiling_mode != I915_TILING_NONE)
  2014. dspcntr |= DISPPLANE_TILED;
  2015. else
  2016. dspcntr &= ~DISPPLANE_TILED;
  2017. /* must disable */
  2018. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  2019. I915_WRITE(reg, dspcntr);
  2020. Start = obj->gtt_offset;
  2021. Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  2022. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  2023. Start, Offset, x, y, fb->pitches[0]);
  2024. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  2025. I915_WRITE(DSPSURF(plane), Start);
  2026. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  2027. I915_WRITE(DSPADDR(plane), Offset);
  2028. POSTING_READ(reg);
  2029. return 0;
  2030. }
  2031. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  2032. static int
  2033. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  2034. int x, int y, enum mode_set_atomic state)
  2035. {
  2036. struct drm_device *dev = crtc->dev;
  2037. struct drm_i915_private *dev_priv = dev->dev_private;
  2038. int ret;
  2039. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  2040. if (ret)
  2041. return ret;
  2042. intel_update_fbc(dev);
  2043. intel_increase_pllclock(crtc);
  2044. return 0;
  2045. }
  2046. static int
  2047. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  2048. struct drm_framebuffer *old_fb)
  2049. {
  2050. struct drm_device *dev = crtc->dev;
  2051. struct drm_i915_master_private *master_priv;
  2052. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2053. int ret;
  2054. /* no fb bound */
  2055. if (!crtc->fb) {
  2056. DRM_ERROR("No FB bound\n");
  2057. return 0;
  2058. }
  2059. switch (intel_crtc->plane) {
  2060. case 0:
  2061. case 1:
  2062. break;
  2063. case 2:
  2064. if (IS_IVYBRIDGE(dev))
  2065. break;
  2066. /* fall through otherwise */
  2067. default:
  2068. DRM_ERROR("no plane for crtc\n");
  2069. return -EINVAL;
  2070. }
  2071. mutex_lock(&dev->struct_mutex);
  2072. ret = intel_pin_and_fence_fb_obj(dev,
  2073. to_intel_framebuffer(crtc->fb)->obj,
  2074. NULL);
  2075. if (ret != 0) {
  2076. mutex_unlock(&dev->struct_mutex);
  2077. DRM_ERROR("pin & fence failed\n");
  2078. return ret;
  2079. }
  2080. if (old_fb) {
  2081. struct drm_i915_private *dev_priv = dev->dev_private;
  2082. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  2083. wait_event(dev_priv->pending_flip_queue,
  2084. atomic_read(&dev_priv->mm.wedged) ||
  2085. atomic_read(&obj->pending_flip) == 0);
  2086. /* Big Hammer, we also need to ensure that any pending
  2087. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  2088. * current scanout is retired before unpinning the old
  2089. * framebuffer.
  2090. *
  2091. * This should only fail upon a hung GPU, in which case we
  2092. * can safely continue.
  2093. */
  2094. ret = i915_gem_object_finish_gpu(obj);
  2095. (void) ret;
  2096. }
  2097. ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
  2098. LEAVE_ATOMIC_MODE_SET);
  2099. if (ret) {
  2100. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  2101. mutex_unlock(&dev->struct_mutex);
  2102. DRM_ERROR("failed to update base address\n");
  2103. return ret;
  2104. }
  2105. if (old_fb) {
  2106. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2107. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2108. }
  2109. mutex_unlock(&dev->struct_mutex);
  2110. if (!dev->primary->master)
  2111. return 0;
  2112. master_priv = dev->primary->master->driver_priv;
  2113. if (!master_priv->sarea_priv)
  2114. return 0;
  2115. if (intel_crtc->pipe) {
  2116. master_priv->sarea_priv->pipeB_x = x;
  2117. master_priv->sarea_priv->pipeB_y = y;
  2118. } else {
  2119. master_priv->sarea_priv->pipeA_x = x;
  2120. master_priv->sarea_priv->pipeA_y = y;
  2121. }
  2122. return 0;
  2123. }
  2124. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  2125. {
  2126. struct drm_device *dev = crtc->dev;
  2127. struct drm_i915_private *dev_priv = dev->dev_private;
  2128. u32 dpa_ctl;
  2129. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  2130. dpa_ctl = I915_READ(DP_A);
  2131. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  2132. if (clock < 200000) {
  2133. u32 temp;
  2134. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  2135. /* workaround for 160Mhz:
  2136. 1) program 0x4600c bits 15:0 = 0x8124
  2137. 2) program 0x46010 bit 0 = 1
  2138. 3) program 0x46034 bit 24 = 1
  2139. 4) program 0x64000 bit 14 = 1
  2140. */
  2141. temp = I915_READ(0x4600c);
  2142. temp &= 0xffff0000;
  2143. I915_WRITE(0x4600c, temp | 0x8124);
  2144. temp = I915_READ(0x46010);
  2145. I915_WRITE(0x46010, temp | 1);
  2146. temp = I915_READ(0x46034);
  2147. I915_WRITE(0x46034, temp | (1 << 24));
  2148. } else {
  2149. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  2150. }
  2151. I915_WRITE(DP_A, dpa_ctl);
  2152. POSTING_READ(DP_A);
  2153. udelay(500);
  2154. }
  2155. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2156. {
  2157. struct drm_device *dev = crtc->dev;
  2158. struct drm_i915_private *dev_priv = dev->dev_private;
  2159. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2160. int pipe = intel_crtc->pipe;
  2161. u32 reg, temp;
  2162. /* enable normal train */
  2163. reg = FDI_TX_CTL(pipe);
  2164. temp = I915_READ(reg);
  2165. if (IS_IVYBRIDGE(dev)) {
  2166. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2167. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2168. } else {
  2169. temp &= ~FDI_LINK_TRAIN_NONE;
  2170. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2171. }
  2172. I915_WRITE(reg, temp);
  2173. reg = FDI_RX_CTL(pipe);
  2174. temp = I915_READ(reg);
  2175. if (HAS_PCH_CPT(dev)) {
  2176. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2177. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2178. } else {
  2179. temp &= ~FDI_LINK_TRAIN_NONE;
  2180. temp |= FDI_LINK_TRAIN_NONE;
  2181. }
  2182. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2183. /* wait one idle pattern time */
  2184. POSTING_READ(reg);
  2185. udelay(1000);
  2186. /* IVB wants error correction enabled */
  2187. if (IS_IVYBRIDGE(dev))
  2188. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2189. FDI_FE_ERRC_ENABLE);
  2190. }
  2191. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  2192. {
  2193. struct drm_i915_private *dev_priv = dev->dev_private;
  2194. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2195. flags |= FDI_PHASE_SYNC_OVR(pipe);
  2196. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  2197. flags |= FDI_PHASE_SYNC_EN(pipe);
  2198. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  2199. POSTING_READ(SOUTH_CHICKEN1);
  2200. }
  2201. /* The FDI link training functions for ILK/Ibexpeak. */
  2202. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2203. {
  2204. struct drm_device *dev = crtc->dev;
  2205. struct drm_i915_private *dev_priv = dev->dev_private;
  2206. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2207. int pipe = intel_crtc->pipe;
  2208. int plane = intel_crtc->plane;
  2209. u32 reg, temp, tries;
  2210. /* FDI needs bits from pipe & plane first */
  2211. assert_pipe_enabled(dev_priv, pipe);
  2212. assert_plane_enabled(dev_priv, plane);
  2213. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2214. for train result */
  2215. reg = FDI_RX_IMR(pipe);
  2216. temp = I915_READ(reg);
  2217. temp &= ~FDI_RX_SYMBOL_LOCK;
  2218. temp &= ~FDI_RX_BIT_LOCK;
  2219. I915_WRITE(reg, temp);
  2220. I915_READ(reg);
  2221. udelay(150);
  2222. /* enable CPU FDI TX and PCH FDI RX */
  2223. reg = FDI_TX_CTL(pipe);
  2224. temp = I915_READ(reg);
  2225. temp &= ~(7 << 19);
  2226. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2227. temp &= ~FDI_LINK_TRAIN_NONE;
  2228. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2229. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2230. reg = FDI_RX_CTL(pipe);
  2231. temp = I915_READ(reg);
  2232. temp &= ~FDI_LINK_TRAIN_NONE;
  2233. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2234. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2235. POSTING_READ(reg);
  2236. udelay(150);
  2237. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2238. if (HAS_PCH_IBX(dev)) {
  2239. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2240. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2241. FDI_RX_PHASE_SYNC_POINTER_EN);
  2242. }
  2243. reg = FDI_RX_IIR(pipe);
  2244. for (tries = 0; tries < 5; tries++) {
  2245. temp = I915_READ(reg);
  2246. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2247. if ((temp & FDI_RX_BIT_LOCK)) {
  2248. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2249. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2250. break;
  2251. }
  2252. }
  2253. if (tries == 5)
  2254. DRM_ERROR("FDI train 1 fail!\n");
  2255. /* Train 2 */
  2256. reg = FDI_TX_CTL(pipe);
  2257. temp = I915_READ(reg);
  2258. temp &= ~FDI_LINK_TRAIN_NONE;
  2259. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2260. I915_WRITE(reg, temp);
  2261. reg = FDI_RX_CTL(pipe);
  2262. temp = I915_READ(reg);
  2263. temp &= ~FDI_LINK_TRAIN_NONE;
  2264. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2265. I915_WRITE(reg, temp);
  2266. POSTING_READ(reg);
  2267. udelay(150);
  2268. reg = FDI_RX_IIR(pipe);
  2269. for (tries = 0; tries < 5; tries++) {
  2270. temp = I915_READ(reg);
  2271. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2272. if (temp & FDI_RX_SYMBOL_LOCK) {
  2273. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2274. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2275. break;
  2276. }
  2277. }
  2278. if (tries == 5)
  2279. DRM_ERROR("FDI train 2 fail!\n");
  2280. DRM_DEBUG_KMS("FDI train done\n");
  2281. }
  2282. static const int snb_b_fdi_train_param[] = {
  2283. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2284. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2285. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2286. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2287. };
  2288. /* The FDI link training functions for SNB/Cougarpoint. */
  2289. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2290. {
  2291. struct drm_device *dev = crtc->dev;
  2292. struct drm_i915_private *dev_priv = dev->dev_private;
  2293. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2294. int pipe = intel_crtc->pipe;
  2295. u32 reg, temp, i, retry;
  2296. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2297. for train result */
  2298. reg = FDI_RX_IMR(pipe);
  2299. temp = I915_READ(reg);
  2300. temp &= ~FDI_RX_SYMBOL_LOCK;
  2301. temp &= ~FDI_RX_BIT_LOCK;
  2302. I915_WRITE(reg, temp);
  2303. POSTING_READ(reg);
  2304. udelay(150);
  2305. /* enable CPU FDI TX and PCH FDI RX */
  2306. reg = FDI_TX_CTL(pipe);
  2307. temp = I915_READ(reg);
  2308. temp &= ~(7 << 19);
  2309. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2310. temp &= ~FDI_LINK_TRAIN_NONE;
  2311. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2312. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2313. /* SNB-B */
  2314. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2315. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2316. reg = FDI_RX_CTL(pipe);
  2317. temp = I915_READ(reg);
  2318. if (HAS_PCH_CPT(dev)) {
  2319. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2320. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2321. } else {
  2322. temp &= ~FDI_LINK_TRAIN_NONE;
  2323. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2324. }
  2325. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2326. POSTING_READ(reg);
  2327. udelay(150);
  2328. if (HAS_PCH_CPT(dev))
  2329. cpt_phase_pointer_enable(dev, pipe);
  2330. for (i = 0; i < 4; i++) {
  2331. reg = FDI_TX_CTL(pipe);
  2332. temp = I915_READ(reg);
  2333. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2334. temp |= snb_b_fdi_train_param[i];
  2335. I915_WRITE(reg, temp);
  2336. POSTING_READ(reg);
  2337. udelay(500);
  2338. for (retry = 0; retry < 5; retry++) {
  2339. reg = FDI_RX_IIR(pipe);
  2340. temp = I915_READ(reg);
  2341. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2342. if (temp & FDI_RX_BIT_LOCK) {
  2343. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2344. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2345. break;
  2346. }
  2347. udelay(50);
  2348. }
  2349. if (retry < 5)
  2350. break;
  2351. }
  2352. if (i == 4)
  2353. DRM_ERROR("FDI train 1 fail!\n");
  2354. /* Train 2 */
  2355. reg = FDI_TX_CTL(pipe);
  2356. temp = I915_READ(reg);
  2357. temp &= ~FDI_LINK_TRAIN_NONE;
  2358. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2359. if (IS_GEN6(dev)) {
  2360. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2361. /* SNB-B */
  2362. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2363. }
  2364. I915_WRITE(reg, temp);
  2365. reg = FDI_RX_CTL(pipe);
  2366. temp = I915_READ(reg);
  2367. if (HAS_PCH_CPT(dev)) {
  2368. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2369. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2370. } else {
  2371. temp &= ~FDI_LINK_TRAIN_NONE;
  2372. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2373. }
  2374. I915_WRITE(reg, temp);
  2375. POSTING_READ(reg);
  2376. udelay(150);
  2377. for (i = 0; i < 4; i++) {
  2378. reg = FDI_TX_CTL(pipe);
  2379. temp = I915_READ(reg);
  2380. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2381. temp |= snb_b_fdi_train_param[i];
  2382. I915_WRITE(reg, temp);
  2383. POSTING_READ(reg);
  2384. udelay(500);
  2385. for (retry = 0; retry < 5; retry++) {
  2386. reg = FDI_RX_IIR(pipe);
  2387. temp = I915_READ(reg);
  2388. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2389. if (temp & FDI_RX_SYMBOL_LOCK) {
  2390. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2391. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2392. break;
  2393. }
  2394. udelay(50);
  2395. }
  2396. if (retry < 5)
  2397. break;
  2398. }
  2399. if (i == 4)
  2400. DRM_ERROR("FDI train 2 fail!\n");
  2401. DRM_DEBUG_KMS("FDI train done.\n");
  2402. }
  2403. /* Manual link training for Ivy Bridge A0 parts */
  2404. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2405. {
  2406. struct drm_device *dev = crtc->dev;
  2407. struct drm_i915_private *dev_priv = dev->dev_private;
  2408. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2409. int pipe = intel_crtc->pipe;
  2410. u32 reg, temp, i;
  2411. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2412. for train result */
  2413. reg = FDI_RX_IMR(pipe);
  2414. temp = I915_READ(reg);
  2415. temp &= ~FDI_RX_SYMBOL_LOCK;
  2416. temp &= ~FDI_RX_BIT_LOCK;
  2417. I915_WRITE(reg, temp);
  2418. POSTING_READ(reg);
  2419. udelay(150);
  2420. /* enable CPU FDI TX and PCH FDI RX */
  2421. reg = FDI_TX_CTL(pipe);
  2422. temp = I915_READ(reg);
  2423. temp &= ~(7 << 19);
  2424. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2425. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2426. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2427. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2428. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2429. temp |= FDI_COMPOSITE_SYNC;
  2430. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2431. reg = FDI_RX_CTL(pipe);
  2432. temp = I915_READ(reg);
  2433. temp &= ~FDI_LINK_TRAIN_AUTO;
  2434. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2435. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2436. temp |= FDI_COMPOSITE_SYNC;
  2437. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2438. POSTING_READ(reg);
  2439. udelay(150);
  2440. if (HAS_PCH_CPT(dev))
  2441. cpt_phase_pointer_enable(dev, pipe);
  2442. for (i = 0; i < 4; i++) {
  2443. reg = FDI_TX_CTL(pipe);
  2444. temp = I915_READ(reg);
  2445. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2446. temp |= snb_b_fdi_train_param[i];
  2447. I915_WRITE(reg, temp);
  2448. POSTING_READ(reg);
  2449. udelay(500);
  2450. reg = FDI_RX_IIR(pipe);
  2451. temp = I915_READ(reg);
  2452. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2453. if (temp & FDI_RX_BIT_LOCK ||
  2454. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2455. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2456. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2457. break;
  2458. }
  2459. }
  2460. if (i == 4)
  2461. DRM_ERROR("FDI train 1 fail!\n");
  2462. /* Train 2 */
  2463. reg = FDI_TX_CTL(pipe);
  2464. temp = I915_READ(reg);
  2465. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2466. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2467. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2468. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2469. I915_WRITE(reg, temp);
  2470. reg = FDI_RX_CTL(pipe);
  2471. temp = I915_READ(reg);
  2472. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2473. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2474. I915_WRITE(reg, temp);
  2475. POSTING_READ(reg);
  2476. udelay(150);
  2477. for (i = 0; i < 4; i++) {
  2478. reg = FDI_TX_CTL(pipe);
  2479. temp = I915_READ(reg);
  2480. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2481. temp |= snb_b_fdi_train_param[i];
  2482. I915_WRITE(reg, temp);
  2483. POSTING_READ(reg);
  2484. udelay(500);
  2485. reg = FDI_RX_IIR(pipe);
  2486. temp = I915_READ(reg);
  2487. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2488. if (temp & FDI_RX_SYMBOL_LOCK) {
  2489. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2490. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2491. break;
  2492. }
  2493. }
  2494. if (i == 4)
  2495. DRM_ERROR("FDI train 2 fail!\n");
  2496. DRM_DEBUG_KMS("FDI train done.\n");
  2497. }
  2498. static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
  2499. {
  2500. struct drm_device *dev = crtc->dev;
  2501. struct drm_i915_private *dev_priv = dev->dev_private;
  2502. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2503. int pipe = intel_crtc->pipe;
  2504. u32 reg, temp;
  2505. /* Write the TU size bits so error detection works */
  2506. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2507. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2508. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2509. reg = FDI_RX_CTL(pipe);
  2510. temp = I915_READ(reg);
  2511. temp &= ~((0x7 << 19) | (0x7 << 16));
  2512. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2513. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2514. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2515. POSTING_READ(reg);
  2516. udelay(200);
  2517. /* Switch from Rawclk to PCDclk */
  2518. temp = I915_READ(reg);
  2519. I915_WRITE(reg, temp | FDI_PCDCLK);
  2520. POSTING_READ(reg);
  2521. udelay(200);
  2522. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2523. reg = FDI_TX_CTL(pipe);
  2524. temp = I915_READ(reg);
  2525. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2526. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2527. POSTING_READ(reg);
  2528. udelay(100);
  2529. }
  2530. }
  2531. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2532. {
  2533. struct drm_i915_private *dev_priv = dev->dev_private;
  2534. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2535. flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2536. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2537. flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2538. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2539. POSTING_READ(SOUTH_CHICKEN1);
  2540. }
  2541. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2542. {
  2543. struct drm_device *dev = crtc->dev;
  2544. struct drm_i915_private *dev_priv = dev->dev_private;
  2545. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2546. int pipe = intel_crtc->pipe;
  2547. u32 reg, temp;
  2548. /* disable CPU FDI tx and PCH FDI rx */
  2549. reg = FDI_TX_CTL(pipe);
  2550. temp = I915_READ(reg);
  2551. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2552. POSTING_READ(reg);
  2553. reg = FDI_RX_CTL(pipe);
  2554. temp = I915_READ(reg);
  2555. temp &= ~(0x7 << 16);
  2556. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2557. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2558. POSTING_READ(reg);
  2559. udelay(100);
  2560. /* Ironlake workaround, disable clock pointer after downing FDI */
  2561. if (HAS_PCH_IBX(dev)) {
  2562. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2563. I915_WRITE(FDI_RX_CHICKEN(pipe),
  2564. I915_READ(FDI_RX_CHICKEN(pipe) &
  2565. ~FDI_RX_PHASE_SYNC_POINTER_EN));
  2566. } else if (HAS_PCH_CPT(dev)) {
  2567. cpt_phase_pointer_disable(dev, pipe);
  2568. }
  2569. /* still set train pattern 1 */
  2570. reg = FDI_TX_CTL(pipe);
  2571. temp = I915_READ(reg);
  2572. temp &= ~FDI_LINK_TRAIN_NONE;
  2573. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2574. I915_WRITE(reg, temp);
  2575. reg = FDI_RX_CTL(pipe);
  2576. temp = I915_READ(reg);
  2577. if (HAS_PCH_CPT(dev)) {
  2578. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2579. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2580. } else {
  2581. temp &= ~FDI_LINK_TRAIN_NONE;
  2582. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2583. }
  2584. /* BPC in FDI rx is consistent with that in PIPECONF */
  2585. temp &= ~(0x07 << 16);
  2586. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2587. I915_WRITE(reg, temp);
  2588. POSTING_READ(reg);
  2589. udelay(100);
  2590. }
  2591. /*
  2592. * When we disable a pipe, we need to clear any pending scanline wait events
  2593. * to avoid hanging the ring, which we assume we are waiting on.
  2594. */
  2595. static void intel_clear_scanline_wait(struct drm_device *dev)
  2596. {
  2597. struct drm_i915_private *dev_priv = dev->dev_private;
  2598. struct intel_ring_buffer *ring;
  2599. u32 tmp;
  2600. if (IS_GEN2(dev))
  2601. /* Can't break the hang on i8xx */
  2602. return;
  2603. ring = LP_RING(dev_priv);
  2604. tmp = I915_READ_CTL(ring);
  2605. if (tmp & RING_WAIT)
  2606. I915_WRITE_CTL(ring, tmp);
  2607. }
  2608. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2609. {
  2610. struct drm_i915_gem_object *obj;
  2611. struct drm_i915_private *dev_priv;
  2612. if (crtc->fb == NULL)
  2613. return;
  2614. obj = to_intel_framebuffer(crtc->fb)->obj;
  2615. dev_priv = crtc->dev->dev_private;
  2616. wait_event(dev_priv->pending_flip_queue,
  2617. atomic_read(&obj->pending_flip) == 0);
  2618. }
  2619. static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
  2620. {
  2621. struct drm_device *dev = crtc->dev;
  2622. struct drm_mode_config *mode_config = &dev->mode_config;
  2623. struct intel_encoder *encoder;
  2624. /*
  2625. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2626. * must be driven by its own crtc; no sharing is possible.
  2627. */
  2628. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  2629. if (encoder->base.crtc != crtc)
  2630. continue;
  2631. switch (encoder->type) {
  2632. case INTEL_OUTPUT_EDP:
  2633. if (!intel_encoder_is_pch_edp(&encoder->base))
  2634. return false;
  2635. continue;
  2636. }
  2637. }
  2638. return true;
  2639. }
  2640. /*
  2641. * Enable PCH resources required for PCH ports:
  2642. * - PCH PLLs
  2643. * - FDI training & RX/TX
  2644. * - update transcoder timings
  2645. * - DP transcoding bits
  2646. * - transcoder
  2647. */
  2648. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2649. {
  2650. struct drm_device *dev = crtc->dev;
  2651. struct drm_i915_private *dev_priv = dev->dev_private;
  2652. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2653. int pipe = intel_crtc->pipe;
  2654. u32 reg, temp, transc_sel;
  2655. /* For PCH output, training FDI link */
  2656. dev_priv->display.fdi_link_train(crtc);
  2657. intel_enable_pch_pll(dev_priv, pipe);
  2658. if (HAS_PCH_CPT(dev)) {
  2659. transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
  2660. TRANSC_DPLLB_SEL;
  2661. /* Be sure PCH DPLL SEL is set */
  2662. temp = I915_READ(PCH_DPLL_SEL);
  2663. if (pipe == 0) {
  2664. temp &= ~(TRANSA_DPLLB_SEL);
  2665. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  2666. } else if (pipe == 1) {
  2667. temp &= ~(TRANSB_DPLLB_SEL);
  2668. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2669. } else if (pipe == 2) {
  2670. temp &= ~(TRANSC_DPLLB_SEL);
  2671. temp |= (TRANSC_DPLL_ENABLE | transc_sel);
  2672. }
  2673. I915_WRITE(PCH_DPLL_SEL, temp);
  2674. }
  2675. /* set transcoder timing, panel must allow it */
  2676. assert_panel_unlocked(dev_priv, pipe);
  2677. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2678. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2679. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2680. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2681. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2682. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2683. I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
  2684. intel_fdi_normal_train(crtc);
  2685. /* For PCH DP, enable TRANS_DP_CTL */
  2686. if (HAS_PCH_CPT(dev) &&
  2687. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2688. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2689. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  2690. reg = TRANS_DP_CTL(pipe);
  2691. temp = I915_READ(reg);
  2692. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2693. TRANS_DP_SYNC_MASK |
  2694. TRANS_DP_BPC_MASK);
  2695. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2696. TRANS_DP_ENH_FRAMING);
  2697. temp |= bpc << 9; /* same format but at 11:9 */
  2698. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2699. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2700. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2701. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2702. switch (intel_trans_dp_port_sel(crtc)) {
  2703. case PCH_DP_B:
  2704. temp |= TRANS_DP_PORT_SEL_B;
  2705. break;
  2706. case PCH_DP_C:
  2707. temp |= TRANS_DP_PORT_SEL_C;
  2708. break;
  2709. case PCH_DP_D:
  2710. temp |= TRANS_DP_PORT_SEL_D;
  2711. break;
  2712. default:
  2713. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  2714. temp |= TRANS_DP_PORT_SEL_B;
  2715. break;
  2716. }
  2717. I915_WRITE(reg, temp);
  2718. }
  2719. intel_enable_transcoder(dev_priv, pipe);
  2720. }
  2721. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2722. {
  2723. struct drm_i915_private *dev_priv = dev->dev_private;
  2724. int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
  2725. u32 temp;
  2726. temp = I915_READ(dslreg);
  2727. udelay(500);
  2728. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2729. /* Without this, mode sets may fail silently on FDI */
  2730. I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
  2731. udelay(250);
  2732. I915_WRITE(tc2reg, 0);
  2733. if (wait_for(I915_READ(dslreg) != temp, 5))
  2734. DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
  2735. }
  2736. }
  2737. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2738. {
  2739. struct drm_device *dev = crtc->dev;
  2740. struct drm_i915_private *dev_priv = dev->dev_private;
  2741. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2742. int pipe = intel_crtc->pipe;
  2743. int plane = intel_crtc->plane;
  2744. u32 temp;
  2745. bool is_pch_port;
  2746. if (intel_crtc->active)
  2747. return;
  2748. intel_crtc->active = true;
  2749. intel_update_watermarks(dev);
  2750. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2751. temp = I915_READ(PCH_LVDS);
  2752. if ((temp & LVDS_PORT_EN) == 0)
  2753. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2754. }
  2755. is_pch_port = intel_crtc_driving_pch(crtc);
  2756. if (is_pch_port)
  2757. ironlake_fdi_pll_enable(crtc);
  2758. else
  2759. ironlake_fdi_disable(crtc);
  2760. /* Enable panel fitting for LVDS */
  2761. if (dev_priv->pch_pf_size &&
  2762. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
  2763. /* Force use of hard-coded filter coefficients
  2764. * as some pre-programmed values are broken,
  2765. * e.g. x201.
  2766. */
  2767. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2768. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2769. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2770. }
  2771. /*
  2772. * On ILK+ LUT must be loaded before the pipe is running but with
  2773. * clocks enabled
  2774. */
  2775. intel_crtc_load_lut(crtc);
  2776. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2777. intel_enable_plane(dev_priv, plane, pipe);
  2778. if (is_pch_port)
  2779. ironlake_pch_enable(crtc);
  2780. mutex_lock(&dev->struct_mutex);
  2781. intel_update_fbc(dev);
  2782. mutex_unlock(&dev->struct_mutex);
  2783. intel_crtc_update_cursor(crtc, true);
  2784. }
  2785. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2786. {
  2787. struct drm_device *dev = crtc->dev;
  2788. struct drm_i915_private *dev_priv = dev->dev_private;
  2789. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2790. int pipe = intel_crtc->pipe;
  2791. int plane = intel_crtc->plane;
  2792. u32 reg, temp;
  2793. if (!intel_crtc->active)
  2794. return;
  2795. intel_crtc_wait_for_pending_flips(crtc);
  2796. drm_vblank_off(dev, pipe);
  2797. intel_crtc_update_cursor(crtc, false);
  2798. intel_disable_plane(dev_priv, plane, pipe);
  2799. if (dev_priv->cfb_plane == plane)
  2800. intel_disable_fbc(dev);
  2801. intel_disable_pipe(dev_priv, pipe);
  2802. /* Disable PF */
  2803. I915_WRITE(PF_CTL(pipe), 0);
  2804. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2805. ironlake_fdi_disable(crtc);
  2806. /* This is a horrible layering violation; we should be doing this in
  2807. * the connector/encoder ->prepare instead, but we don't always have
  2808. * enough information there about the config to know whether it will
  2809. * actually be necessary or just cause undesired flicker.
  2810. */
  2811. intel_disable_pch_ports(dev_priv, pipe);
  2812. intel_disable_transcoder(dev_priv, pipe);
  2813. if (HAS_PCH_CPT(dev)) {
  2814. /* disable TRANS_DP_CTL */
  2815. reg = TRANS_DP_CTL(pipe);
  2816. temp = I915_READ(reg);
  2817. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2818. temp |= TRANS_DP_PORT_SEL_NONE;
  2819. I915_WRITE(reg, temp);
  2820. /* disable DPLL_SEL */
  2821. temp = I915_READ(PCH_DPLL_SEL);
  2822. switch (pipe) {
  2823. case 0:
  2824. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2825. break;
  2826. case 1:
  2827. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2828. break;
  2829. case 2:
  2830. /* C shares PLL A or B */
  2831. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2832. break;
  2833. default:
  2834. BUG(); /* wtf */
  2835. }
  2836. I915_WRITE(PCH_DPLL_SEL, temp);
  2837. }
  2838. /* disable PCH DPLL */
  2839. if (!intel_crtc->no_pll)
  2840. intel_disable_pch_pll(dev_priv, pipe);
  2841. /* Switch from PCDclk to Rawclk */
  2842. reg = FDI_RX_CTL(pipe);
  2843. temp = I915_READ(reg);
  2844. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2845. /* Disable CPU FDI TX PLL */
  2846. reg = FDI_TX_CTL(pipe);
  2847. temp = I915_READ(reg);
  2848. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2849. POSTING_READ(reg);
  2850. udelay(100);
  2851. reg = FDI_RX_CTL(pipe);
  2852. temp = I915_READ(reg);
  2853. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2854. /* Wait for the clocks to turn off. */
  2855. POSTING_READ(reg);
  2856. udelay(100);
  2857. intel_crtc->active = false;
  2858. intel_update_watermarks(dev);
  2859. mutex_lock(&dev->struct_mutex);
  2860. intel_update_fbc(dev);
  2861. intel_clear_scanline_wait(dev);
  2862. mutex_unlock(&dev->struct_mutex);
  2863. }
  2864. static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
  2865. {
  2866. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2867. int pipe = intel_crtc->pipe;
  2868. int plane = intel_crtc->plane;
  2869. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2870. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2871. */
  2872. switch (mode) {
  2873. case DRM_MODE_DPMS_ON:
  2874. case DRM_MODE_DPMS_STANDBY:
  2875. case DRM_MODE_DPMS_SUSPEND:
  2876. DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
  2877. ironlake_crtc_enable(crtc);
  2878. break;
  2879. case DRM_MODE_DPMS_OFF:
  2880. DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
  2881. ironlake_crtc_disable(crtc);
  2882. break;
  2883. }
  2884. }
  2885. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  2886. {
  2887. if (!enable && intel_crtc->overlay) {
  2888. struct drm_device *dev = intel_crtc->base.dev;
  2889. struct drm_i915_private *dev_priv = dev->dev_private;
  2890. mutex_lock(&dev->struct_mutex);
  2891. dev_priv->mm.interruptible = false;
  2892. (void) intel_overlay_switch_off(intel_crtc->overlay);
  2893. dev_priv->mm.interruptible = true;
  2894. mutex_unlock(&dev->struct_mutex);
  2895. }
  2896. /* Let userspace switch the overlay on again. In most cases userspace
  2897. * has to recompute where to put it anyway.
  2898. */
  2899. }
  2900. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  2901. {
  2902. struct drm_device *dev = crtc->dev;
  2903. struct drm_i915_private *dev_priv = dev->dev_private;
  2904. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2905. int pipe = intel_crtc->pipe;
  2906. int plane = intel_crtc->plane;
  2907. if (intel_crtc->active)
  2908. return;
  2909. intel_crtc->active = true;
  2910. intel_update_watermarks(dev);
  2911. intel_enable_pll(dev_priv, pipe);
  2912. intel_enable_pipe(dev_priv, pipe, false);
  2913. intel_enable_plane(dev_priv, plane, pipe);
  2914. intel_crtc_load_lut(crtc);
  2915. intel_update_fbc(dev);
  2916. /* Give the overlay scaler a chance to enable if it's on this pipe */
  2917. intel_crtc_dpms_overlay(intel_crtc, true);
  2918. intel_crtc_update_cursor(crtc, true);
  2919. }
  2920. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  2921. {
  2922. struct drm_device *dev = crtc->dev;
  2923. struct drm_i915_private *dev_priv = dev->dev_private;
  2924. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2925. int pipe = intel_crtc->pipe;
  2926. int plane = intel_crtc->plane;
  2927. if (!intel_crtc->active)
  2928. return;
  2929. /* Give the overlay scaler a chance to disable if it's on this pipe */
  2930. intel_crtc_wait_for_pending_flips(crtc);
  2931. drm_vblank_off(dev, pipe);
  2932. intel_crtc_dpms_overlay(intel_crtc, false);
  2933. intel_crtc_update_cursor(crtc, false);
  2934. if (dev_priv->cfb_plane == plane)
  2935. intel_disable_fbc(dev);
  2936. intel_disable_plane(dev_priv, plane, pipe);
  2937. intel_disable_pipe(dev_priv, pipe);
  2938. intel_disable_pll(dev_priv, pipe);
  2939. intel_crtc->active = false;
  2940. intel_update_fbc(dev);
  2941. intel_update_watermarks(dev);
  2942. intel_clear_scanline_wait(dev);
  2943. }
  2944. static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
  2945. {
  2946. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2947. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2948. */
  2949. switch (mode) {
  2950. case DRM_MODE_DPMS_ON:
  2951. case DRM_MODE_DPMS_STANDBY:
  2952. case DRM_MODE_DPMS_SUSPEND:
  2953. i9xx_crtc_enable(crtc);
  2954. break;
  2955. case DRM_MODE_DPMS_OFF:
  2956. i9xx_crtc_disable(crtc);
  2957. break;
  2958. }
  2959. }
  2960. /**
  2961. * Sets the power management mode of the pipe and plane.
  2962. */
  2963. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  2964. {
  2965. struct drm_device *dev = crtc->dev;
  2966. struct drm_i915_private *dev_priv = dev->dev_private;
  2967. struct drm_i915_master_private *master_priv;
  2968. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2969. int pipe = intel_crtc->pipe;
  2970. bool enabled;
  2971. if (intel_crtc->dpms_mode == mode)
  2972. return;
  2973. intel_crtc->dpms_mode = mode;
  2974. dev_priv->display.dpms(crtc, mode);
  2975. if (!dev->primary->master)
  2976. return;
  2977. master_priv = dev->primary->master->driver_priv;
  2978. if (!master_priv->sarea_priv)
  2979. return;
  2980. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  2981. switch (pipe) {
  2982. case 0:
  2983. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2984. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  2985. break;
  2986. case 1:
  2987. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  2988. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  2989. break;
  2990. default:
  2991. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  2992. break;
  2993. }
  2994. }
  2995. static void intel_crtc_disable(struct drm_crtc *crtc)
  2996. {
  2997. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2998. struct drm_device *dev = crtc->dev;
  2999. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  3000. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3001. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3002. if (crtc->fb) {
  3003. mutex_lock(&dev->struct_mutex);
  3004. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3005. mutex_unlock(&dev->struct_mutex);
  3006. }
  3007. }
  3008. /* Prepare for a mode set.
  3009. *
  3010. * Note we could be a lot smarter here. We need to figure out which outputs
  3011. * will be enabled, which disabled (in short, how the config will changes)
  3012. * and perform the minimum necessary steps to accomplish that, e.g. updating
  3013. * watermarks, FBC configuration, making sure PLLs are programmed correctly,
  3014. * panel fitting is in the proper state, etc.
  3015. */
  3016. static void i9xx_crtc_prepare(struct drm_crtc *crtc)
  3017. {
  3018. i9xx_crtc_disable(crtc);
  3019. }
  3020. static void i9xx_crtc_commit(struct drm_crtc *crtc)
  3021. {
  3022. i9xx_crtc_enable(crtc);
  3023. }
  3024. static void ironlake_crtc_prepare(struct drm_crtc *crtc)
  3025. {
  3026. ironlake_crtc_disable(crtc);
  3027. }
  3028. static void ironlake_crtc_commit(struct drm_crtc *crtc)
  3029. {
  3030. ironlake_crtc_enable(crtc);
  3031. }
  3032. void intel_encoder_prepare(struct drm_encoder *encoder)
  3033. {
  3034. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  3035. /* lvds has its own version of prepare see intel_lvds_prepare */
  3036. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  3037. }
  3038. void intel_encoder_commit(struct drm_encoder *encoder)
  3039. {
  3040. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  3041. struct drm_device *dev = encoder->dev;
  3042. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3043. struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  3044. /* lvds has its own version of commit see intel_lvds_commit */
  3045. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  3046. if (HAS_PCH_CPT(dev))
  3047. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  3048. }
  3049. void intel_encoder_destroy(struct drm_encoder *encoder)
  3050. {
  3051. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3052. drm_encoder_cleanup(encoder);
  3053. kfree(intel_encoder);
  3054. }
  3055. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  3056. struct drm_display_mode *mode,
  3057. struct drm_display_mode *adjusted_mode)
  3058. {
  3059. struct drm_device *dev = crtc->dev;
  3060. if (HAS_PCH_SPLIT(dev)) {
  3061. /* FDI link clock is fixed at 2.7G */
  3062. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  3063. return false;
  3064. }
  3065. /* All interlaced capable intel hw wants timings in frames. */
  3066. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3067. return true;
  3068. }
  3069. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3070. {
  3071. return 400000; /* FIXME */
  3072. }
  3073. static int i945_get_display_clock_speed(struct drm_device *dev)
  3074. {
  3075. return 400000;
  3076. }
  3077. static int i915_get_display_clock_speed(struct drm_device *dev)
  3078. {
  3079. return 333000;
  3080. }
  3081. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3082. {
  3083. return 200000;
  3084. }
  3085. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3086. {
  3087. u16 gcfgc = 0;
  3088. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3089. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3090. return 133000;
  3091. else {
  3092. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3093. case GC_DISPLAY_CLOCK_333_MHZ:
  3094. return 333000;
  3095. default:
  3096. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3097. return 190000;
  3098. }
  3099. }
  3100. }
  3101. static int i865_get_display_clock_speed(struct drm_device *dev)
  3102. {
  3103. return 266000;
  3104. }
  3105. static int i855_get_display_clock_speed(struct drm_device *dev)
  3106. {
  3107. u16 hpllcc = 0;
  3108. /* Assume that the hardware is in the high speed state. This
  3109. * should be the default.
  3110. */
  3111. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3112. case GC_CLOCK_133_200:
  3113. case GC_CLOCK_100_200:
  3114. return 200000;
  3115. case GC_CLOCK_166_250:
  3116. return 250000;
  3117. case GC_CLOCK_100_133:
  3118. return 133000;
  3119. }
  3120. /* Shouldn't happen */
  3121. return 0;
  3122. }
  3123. static int i830_get_display_clock_speed(struct drm_device *dev)
  3124. {
  3125. return 133000;
  3126. }
  3127. struct fdi_m_n {
  3128. u32 tu;
  3129. u32 gmch_m;
  3130. u32 gmch_n;
  3131. u32 link_m;
  3132. u32 link_n;
  3133. };
  3134. static void
  3135. fdi_reduce_ratio(u32 *num, u32 *den)
  3136. {
  3137. while (*num > 0xffffff || *den > 0xffffff) {
  3138. *num >>= 1;
  3139. *den >>= 1;
  3140. }
  3141. }
  3142. static void
  3143. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  3144. int link_clock, struct fdi_m_n *m_n)
  3145. {
  3146. m_n->tu = 64; /* default size */
  3147. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  3148. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3149. m_n->gmch_n = link_clock * nlanes * 8;
  3150. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3151. m_n->link_m = pixel_clock;
  3152. m_n->link_n = link_clock;
  3153. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3154. }
  3155. struct intel_watermark_params {
  3156. unsigned long fifo_size;
  3157. unsigned long max_wm;
  3158. unsigned long default_wm;
  3159. unsigned long guard_size;
  3160. unsigned long cacheline_size;
  3161. };
  3162. /* Pineview has different values for various configs */
  3163. static const struct intel_watermark_params pineview_display_wm = {
  3164. PINEVIEW_DISPLAY_FIFO,
  3165. PINEVIEW_MAX_WM,
  3166. PINEVIEW_DFT_WM,
  3167. PINEVIEW_GUARD_WM,
  3168. PINEVIEW_FIFO_LINE_SIZE
  3169. };
  3170. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  3171. PINEVIEW_DISPLAY_FIFO,
  3172. PINEVIEW_MAX_WM,
  3173. PINEVIEW_DFT_HPLLOFF_WM,
  3174. PINEVIEW_GUARD_WM,
  3175. PINEVIEW_FIFO_LINE_SIZE
  3176. };
  3177. static const struct intel_watermark_params pineview_cursor_wm = {
  3178. PINEVIEW_CURSOR_FIFO,
  3179. PINEVIEW_CURSOR_MAX_WM,
  3180. PINEVIEW_CURSOR_DFT_WM,
  3181. PINEVIEW_CURSOR_GUARD_WM,
  3182. PINEVIEW_FIFO_LINE_SIZE,
  3183. };
  3184. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  3185. PINEVIEW_CURSOR_FIFO,
  3186. PINEVIEW_CURSOR_MAX_WM,
  3187. PINEVIEW_CURSOR_DFT_WM,
  3188. PINEVIEW_CURSOR_GUARD_WM,
  3189. PINEVIEW_FIFO_LINE_SIZE
  3190. };
  3191. static const struct intel_watermark_params g4x_wm_info = {
  3192. G4X_FIFO_SIZE,
  3193. G4X_MAX_WM,
  3194. G4X_MAX_WM,
  3195. 2,
  3196. G4X_FIFO_LINE_SIZE,
  3197. };
  3198. static const struct intel_watermark_params g4x_cursor_wm_info = {
  3199. I965_CURSOR_FIFO,
  3200. I965_CURSOR_MAX_WM,
  3201. I965_CURSOR_DFT_WM,
  3202. 2,
  3203. G4X_FIFO_LINE_SIZE,
  3204. };
  3205. static const struct intel_watermark_params valleyview_wm_info = {
  3206. VALLEYVIEW_FIFO_SIZE,
  3207. VALLEYVIEW_MAX_WM,
  3208. VALLEYVIEW_MAX_WM,
  3209. 2,
  3210. G4X_FIFO_LINE_SIZE,
  3211. };
  3212. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  3213. I965_CURSOR_FIFO,
  3214. VALLEYVIEW_CURSOR_MAX_WM,
  3215. I965_CURSOR_DFT_WM,
  3216. 2,
  3217. G4X_FIFO_LINE_SIZE,
  3218. };
  3219. static const struct intel_watermark_params i965_cursor_wm_info = {
  3220. I965_CURSOR_FIFO,
  3221. I965_CURSOR_MAX_WM,
  3222. I965_CURSOR_DFT_WM,
  3223. 2,
  3224. I915_FIFO_LINE_SIZE,
  3225. };
  3226. static const struct intel_watermark_params i945_wm_info = {
  3227. I945_FIFO_SIZE,
  3228. I915_MAX_WM,
  3229. 1,
  3230. 2,
  3231. I915_FIFO_LINE_SIZE
  3232. };
  3233. static const struct intel_watermark_params i915_wm_info = {
  3234. I915_FIFO_SIZE,
  3235. I915_MAX_WM,
  3236. 1,
  3237. 2,
  3238. I915_FIFO_LINE_SIZE
  3239. };
  3240. static const struct intel_watermark_params i855_wm_info = {
  3241. I855GM_FIFO_SIZE,
  3242. I915_MAX_WM,
  3243. 1,
  3244. 2,
  3245. I830_FIFO_LINE_SIZE
  3246. };
  3247. static const struct intel_watermark_params i830_wm_info = {
  3248. I830_FIFO_SIZE,
  3249. I915_MAX_WM,
  3250. 1,
  3251. 2,
  3252. I830_FIFO_LINE_SIZE
  3253. };
  3254. static const struct intel_watermark_params ironlake_display_wm_info = {
  3255. ILK_DISPLAY_FIFO,
  3256. ILK_DISPLAY_MAXWM,
  3257. ILK_DISPLAY_DFTWM,
  3258. 2,
  3259. ILK_FIFO_LINE_SIZE
  3260. };
  3261. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  3262. ILK_CURSOR_FIFO,
  3263. ILK_CURSOR_MAXWM,
  3264. ILK_CURSOR_DFTWM,
  3265. 2,
  3266. ILK_FIFO_LINE_SIZE
  3267. };
  3268. static const struct intel_watermark_params ironlake_display_srwm_info = {
  3269. ILK_DISPLAY_SR_FIFO,
  3270. ILK_DISPLAY_MAX_SRWM,
  3271. ILK_DISPLAY_DFT_SRWM,
  3272. 2,
  3273. ILK_FIFO_LINE_SIZE
  3274. };
  3275. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  3276. ILK_CURSOR_SR_FIFO,
  3277. ILK_CURSOR_MAX_SRWM,
  3278. ILK_CURSOR_DFT_SRWM,
  3279. 2,
  3280. ILK_FIFO_LINE_SIZE
  3281. };
  3282. static const struct intel_watermark_params sandybridge_display_wm_info = {
  3283. SNB_DISPLAY_FIFO,
  3284. SNB_DISPLAY_MAXWM,
  3285. SNB_DISPLAY_DFTWM,
  3286. 2,
  3287. SNB_FIFO_LINE_SIZE
  3288. };
  3289. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  3290. SNB_CURSOR_FIFO,
  3291. SNB_CURSOR_MAXWM,
  3292. SNB_CURSOR_DFTWM,
  3293. 2,
  3294. SNB_FIFO_LINE_SIZE
  3295. };
  3296. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  3297. SNB_DISPLAY_SR_FIFO,
  3298. SNB_DISPLAY_MAX_SRWM,
  3299. SNB_DISPLAY_DFT_SRWM,
  3300. 2,
  3301. SNB_FIFO_LINE_SIZE
  3302. };
  3303. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  3304. SNB_CURSOR_SR_FIFO,
  3305. SNB_CURSOR_MAX_SRWM,
  3306. SNB_CURSOR_DFT_SRWM,
  3307. 2,
  3308. SNB_FIFO_LINE_SIZE
  3309. };
  3310. /**
  3311. * intel_calculate_wm - calculate watermark level
  3312. * @clock_in_khz: pixel clock
  3313. * @wm: chip FIFO params
  3314. * @pixel_size: display pixel size
  3315. * @latency_ns: memory latency for the platform
  3316. *
  3317. * Calculate the watermark level (the level at which the display plane will
  3318. * start fetching from memory again). Each chip has a different display
  3319. * FIFO size and allocation, so the caller needs to figure that out and pass
  3320. * in the correct intel_watermark_params structure.
  3321. *
  3322. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  3323. * on the pixel size. When it reaches the watermark level, it'll start
  3324. * fetching FIFO line sized based chunks from memory until the FIFO fills
  3325. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  3326. * will occur, and a display engine hang could result.
  3327. */
  3328. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  3329. const struct intel_watermark_params *wm,
  3330. int fifo_size,
  3331. int pixel_size,
  3332. unsigned long latency_ns)
  3333. {
  3334. long entries_required, wm_size;
  3335. /*
  3336. * Note: we need to make sure we don't overflow for various clock &
  3337. * latency values.
  3338. * clocks go from a few thousand to several hundred thousand.
  3339. * latency is usually a few thousand
  3340. */
  3341. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  3342. 1000;
  3343. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  3344. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  3345. wm_size = fifo_size - (entries_required + wm->guard_size);
  3346. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  3347. /* Don't promote wm_size to unsigned... */
  3348. if (wm_size > (long)wm->max_wm)
  3349. wm_size = wm->max_wm;
  3350. if (wm_size <= 0)
  3351. wm_size = wm->default_wm;
  3352. return wm_size;
  3353. }
  3354. struct cxsr_latency {
  3355. int is_desktop;
  3356. int is_ddr3;
  3357. unsigned long fsb_freq;
  3358. unsigned long mem_freq;
  3359. unsigned long display_sr;
  3360. unsigned long display_hpll_disable;
  3361. unsigned long cursor_sr;
  3362. unsigned long cursor_hpll_disable;
  3363. };
  3364. static const struct cxsr_latency cxsr_latency_table[] = {
  3365. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  3366. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  3367. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  3368. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  3369. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  3370. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  3371. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  3372. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  3373. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  3374. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  3375. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  3376. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  3377. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  3378. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  3379. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  3380. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  3381. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  3382. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  3383. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  3384. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  3385. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  3386. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  3387. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  3388. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  3389. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  3390. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  3391. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  3392. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  3393. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  3394. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  3395. };
  3396. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  3397. int is_ddr3,
  3398. int fsb,
  3399. int mem)
  3400. {
  3401. const struct cxsr_latency *latency;
  3402. int i;
  3403. if (fsb == 0 || mem == 0)
  3404. return NULL;
  3405. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  3406. latency = &cxsr_latency_table[i];
  3407. if (is_desktop == latency->is_desktop &&
  3408. is_ddr3 == latency->is_ddr3 &&
  3409. fsb == latency->fsb_freq && mem == latency->mem_freq)
  3410. return latency;
  3411. }
  3412. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  3413. return NULL;
  3414. }
  3415. static void pineview_disable_cxsr(struct drm_device *dev)
  3416. {
  3417. struct drm_i915_private *dev_priv = dev->dev_private;
  3418. /* deactivate cxsr */
  3419. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  3420. }
  3421. /*
  3422. * Latency for FIFO fetches is dependent on several factors:
  3423. * - memory configuration (speed, channels)
  3424. * - chipset
  3425. * - current MCH state
  3426. * It can be fairly high in some situations, so here we assume a fairly
  3427. * pessimal value. It's a tradeoff between extra memory fetches (if we
  3428. * set this value too high, the FIFO will fetch frequently to stay full)
  3429. * and power consumption (set it too low to save power and we might see
  3430. * FIFO underruns and display "flicker").
  3431. *
  3432. * A value of 5us seems to be a good balance; safe for very low end
  3433. * platforms but not overly aggressive on lower latency configs.
  3434. */
  3435. static const int latency_ns = 5000;
  3436. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  3437. {
  3438. struct drm_i915_private *dev_priv = dev->dev_private;
  3439. uint32_t dsparb = I915_READ(DSPARB);
  3440. int size;
  3441. size = dsparb & 0x7f;
  3442. if (plane)
  3443. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  3444. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3445. plane ? "B" : "A", size);
  3446. return size;
  3447. }
  3448. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  3449. {
  3450. struct drm_i915_private *dev_priv = dev->dev_private;
  3451. uint32_t dsparb = I915_READ(DSPARB);
  3452. int size;
  3453. size = dsparb & 0x1ff;
  3454. if (plane)
  3455. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  3456. size >>= 1; /* Convert to cachelines */
  3457. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3458. plane ? "B" : "A", size);
  3459. return size;
  3460. }
  3461. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  3462. {
  3463. struct drm_i915_private *dev_priv = dev->dev_private;
  3464. uint32_t dsparb = I915_READ(DSPARB);
  3465. int size;
  3466. size = dsparb & 0x7f;
  3467. size >>= 2; /* Convert to cachelines */
  3468. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3469. plane ? "B" : "A",
  3470. size);
  3471. return size;
  3472. }
  3473. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  3474. {
  3475. struct drm_i915_private *dev_priv = dev->dev_private;
  3476. uint32_t dsparb = I915_READ(DSPARB);
  3477. int size;
  3478. size = dsparb & 0x7f;
  3479. size >>= 1; /* Convert to cachelines */
  3480. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3481. plane ? "B" : "A", size);
  3482. return size;
  3483. }
  3484. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  3485. {
  3486. struct drm_crtc *crtc, *enabled = NULL;
  3487. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3488. if (crtc->enabled && crtc->fb) {
  3489. if (enabled)
  3490. return NULL;
  3491. enabled = crtc;
  3492. }
  3493. }
  3494. return enabled;
  3495. }
  3496. static void pineview_update_wm(struct drm_device *dev)
  3497. {
  3498. struct drm_i915_private *dev_priv = dev->dev_private;
  3499. struct drm_crtc *crtc;
  3500. const struct cxsr_latency *latency;
  3501. u32 reg;
  3502. unsigned long wm;
  3503. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  3504. dev_priv->fsb_freq, dev_priv->mem_freq);
  3505. if (!latency) {
  3506. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  3507. pineview_disable_cxsr(dev);
  3508. return;
  3509. }
  3510. crtc = single_enabled_crtc(dev);
  3511. if (crtc) {
  3512. int clock = crtc->mode.clock;
  3513. int pixel_size = crtc->fb->bits_per_pixel / 8;
  3514. /* Display SR */
  3515. wm = intel_calculate_wm(clock, &pineview_display_wm,
  3516. pineview_display_wm.fifo_size,
  3517. pixel_size, latency->display_sr);
  3518. reg = I915_READ(DSPFW1);
  3519. reg &= ~DSPFW_SR_MASK;
  3520. reg |= wm << DSPFW_SR_SHIFT;
  3521. I915_WRITE(DSPFW1, reg);
  3522. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  3523. /* cursor SR */
  3524. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  3525. pineview_display_wm.fifo_size,
  3526. pixel_size, latency->cursor_sr);
  3527. reg = I915_READ(DSPFW3);
  3528. reg &= ~DSPFW_CURSOR_SR_MASK;
  3529. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  3530. I915_WRITE(DSPFW3, reg);
  3531. /* Display HPLL off SR */
  3532. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  3533. pineview_display_hplloff_wm.fifo_size,
  3534. pixel_size, latency->display_hpll_disable);
  3535. reg = I915_READ(DSPFW3);
  3536. reg &= ~DSPFW_HPLL_SR_MASK;
  3537. reg |= wm & DSPFW_HPLL_SR_MASK;
  3538. I915_WRITE(DSPFW3, reg);
  3539. /* cursor HPLL off SR */
  3540. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  3541. pineview_display_hplloff_wm.fifo_size,
  3542. pixel_size, latency->cursor_hpll_disable);
  3543. reg = I915_READ(DSPFW3);
  3544. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  3545. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  3546. I915_WRITE(DSPFW3, reg);
  3547. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  3548. /* activate cxsr */
  3549. I915_WRITE(DSPFW3,
  3550. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  3551. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  3552. } else {
  3553. pineview_disable_cxsr(dev);
  3554. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  3555. }
  3556. }
  3557. static bool g4x_compute_wm0(struct drm_device *dev,
  3558. int plane,
  3559. const struct intel_watermark_params *display,
  3560. int display_latency_ns,
  3561. const struct intel_watermark_params *cursor,
  3562. int cursor_latency_ns,
  3563. int *plane_wm,
  3564. int *cursor_wm)
  3565. {
  3566. struct drm_crtc *crtc;
  3567. int htotal, hdisplay, clock, pixel_size;
  3568. int line_time_us, line_count;
  3569. int entries, tlb_miss;
  3570. crtc = intel_get_crtc_for_plane(dev, plane);
  3571. if (crtc->fb == NULL || !crtc->enabled) {
  3572. *cursor_wm = cursor->guard_size;
  3573. *plane_wm = display->guard_size;
  3574. return false;
  3575. }
  3576. htotal = crtc->mode.htotal;
  3577. hdisplay = crtc->mode.hdisplay;
  3578. clock = crtc->mode.clock;
  3579. pixel_size = crtc->fb->bits_per_pixel / 8;
  3580. /* Use the small buffer method to calculate plane watermark */
  3581. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  3582. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  3583. if (tlb_miss > 0)
  3584. entries += tlb_miss;
  3585. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  3586. *plane_wm = entries + display->guard_size;
  3587. if (*plane_wm > (int)display->max_wm)
  3588. *plane_wm = display->max_wm;
  3589. /* Use the large buffer method to calculate cursor watermark */
  3590. line_time_us = ((htotal * 1000) / clock);
  3591. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  3592. entries = line_count * 64 * pixel_size;
  3593. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  3594. if (tlb_miss > 0)
  3595. entries += tlb_miss;
  3596. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3597. *cursor_wm = entries + cursor->guard_size;
  3598. if (*cursor_wm > (int)cursor->max_wm)
  3599. *cursor_wm = (int)cursor->max_wm;
  3600. return true;
  3601. }
  3602. /*
  3603. * Check the wm result.
  3604. *
  3605. * If any calculated watermark values is larger than the maximum value that
  3606. * can be programmed into the associated watermark register, that watermark
  3607. * must be disabled.
  3608. */
  3609. static bool g4x_check_srwm(struct drm_device *dev,
  3610. int display_wm, int cursor_wm,
  3611. const struct intel_watermark_params *display,
  3612. const struct intel_watermark_params *cursor)
  3613. {
  3614. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  3615. display_wm, cursor_wm);
  3616. if (display_wm > display->max_wm) {
  3617. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  3618. display_wm, display->max_wm);
  3619. return false;
  3620. }
  3621. if (cursor_wm > cursor->max_wm) {
  3622. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  3623. cursor_wm, cursor->max_wm);
  3624. return false;
  3625. }
  3626. if (!(display_wm || cursor_wm)) {
  3627. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  3628. return false;
  3629. }
  3630. return true;
  3631. }
  3632. static bool g4x_compute_srwm(struct drm_device *dev,
  3633. int plane,
  3634. int latency_ns,
  3635. const struct intel_watermark_params *display,
  3636. const struct intel_watermark_params *cursor,
  3637. int *display_wm, int *cursor_wm)
  3638. {
  3639. struct drm_crtc *crtc;
  3640. int hdisplay, htotal, pixel_size, clock;
  3641. unsigned long line_time_us;
  3642. int line_count, line_size;
  3643. int small, large;
  3644. int entries;
  3645. if (!latency_ns) {
  3646. *display_wm = *cursor_wm = 0;
  3647. return false;
  3648. }
  3649. crtc = intel_get_crtc_for_plane(dev, plane);
  3650. hdisplay = crtc->mode.hdisplay;
  3651. htotal = crtc->mode.htotal;
  3652. clock = crtc->mode.clock;
  3653. pixel_size = crtc->fb->bits_per_pixel / 8;
  3654. line_time_us = (htotal * 1000) / clock;
  3655. line_count = (latency_ns / line_time_us + 1000) / 1000;
  3656. line_size = hdisplay * pixel_size;
  3657. /* Use the minimum of the small and large buffer method for primary */
  3658. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  3659. large = line_count * line_size;
  3660. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  3661. *display_wm = entries + display->guard_size;
  3662. /* calculate the self-refresh watermark for display cursor */
  3663. entries = line_count * pixel_size * 64;
  3664. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3665. *cursor_wm = entries + cursor->guard_size;
  3666. return g4x_check_srwm(dev,
  3667. *display_wm, *cursor_wm,
  3668. display, cursor);
  3669. }
  3670. static bool vlv_compute_drain_latency(struct drm_device *dev,
  3671. int plane,
  3672. int *plane_prec_mult,
  3673. int *plane_dl,
  3674. int *cursor_prec_mult,
  3675. int *cursor_dl)
  3676. {
  3677. struct drm_crtc *crtc;
  3678. int clock, pixel_size;
  3679. int entries;
  3680. crtc = intel_get_crtc_for_plane(dev, plane);
  3681. if (crtc->fb == NULL || !crtc->enabled)
  3682. return false;
  3683. clock = crtc->mode.clock; /* VESA DOT Clock */
  3684. pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
  3685. entries = (clock / 1000) * pixel_size;
  3686. *plane_prec_mult = (entries > 256) ?
  3687. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  3688. *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
  3689. pixel_size);
  3690. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  3691. *cursor_prec_mult = (entries > 256) ?
  3692. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  3693. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
  3694. return true;
  3695. }
  3696. /*
  3697. * Update drain latency registers of memory arbiter
  3698. *
  3699. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  3700. * to be programmed. Each plane has a drain latency multiplier and a drain
  3701. * latency value.
  3702. */
  3703. static void vlv_update_drain_latency(struct drm_device *dev)
  3704. {
  3705. struct drm_i915_private *dev_priv = dev->dev_private;
  3706. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  3707. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  3708. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  3709. either 16 or 32 */
  3710. /* For plane A, Cursor A */
  3711. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  3712. &cursor_prec_mult, &cursora_dl)) {
  3713. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  3714. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
  3715. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  3716. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
  3717. I915_WRITE(VLV_DDL1, cursora_prec |
  3718. (cursora_dl << DDL_CURSORA_SHIFT) |
  3719. planea_prec | planea_dl);
  3720. }
  3721. /* For plane B, Cursor B */
  3722. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  3723. &cursor_prec_mult, &cursorb_dl)) {
  3724. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  3725. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
  3726. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  3727. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
  3728. I915_WRITE(VLV_DDL2, cursorb_prec |
  3729. (cursorb_dl << DDL_CURSORB_SHIFT) |
  3730. planeb_prec | planeb_dl);
  3731. }
  3732. }
  3733. #define single_plane_enabled(mask) is_power_of_2(mask)
  3734. static void valleyview_update_wm(struct drm_device *dev)
  3735. {
  3736. static const int sr_latency_ns = 12000;
  3737. struct drm_i915_private *dev_priv = dev->dev_private;
  3738. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  3739. int plane_sr, cursor_sr;
  3740. unsigned int enabled = 0;
  3741. vlv_update_drain_latency(dev);
  3742. if (g4x_compute_wm0(dev, 0,
  3743. &valleyview_wm_info, latency_ns,
  3744. &valleyview_cursor_wm_info, latency_ns,
  3745. &planea_wm, &cursora_wm))
  3746. enabled |= 1;
  3747. if (g4x_compute_wm0(dev, 1,
  3748. &valleyview_wm_info, latency_ns,
  3749. &valleyview_cursor_wm_info, latency_ns,
  3750. &planeb_wm, &cursorb_wm))
  3751. enabled |= 2;
  3752. plane_sr = cursor_sr = 0;
  3753. if (single_plane_enabled(enabled) &&
  3754. g4x_compute_srwm(dev, ffs(enabled) - 1,
  3755. sr_latency_ns,
  3756. &valleyview_wm_info,
  3757. &valleyview_cursor_wm_info,
  3758. &plane_sr, &cursor_sr))
  3759. I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
  3760. else
  3761. I915_WRITE(FW_BLC_SELF_VLV,
  3762. I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
  3763. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  3764. planea_wm, cursora_wm,
  3765. planeb_wm, cursorb_wm,
  3766. plane_sr, cursor_sr);
  3767. I915_WRITE(DSPFW1,
  3768. (plane_sr << DSPFW_SR_SHIFT) |
  3769. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  3770. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  3771. planea_wm);
  3772. I915_WRITE(DSPFW2,
  3773. (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  3774. (cursora_wm << DSPFW_CURSORA_SHIFT));
  3775. I915_WRITE(DSPFW3,
  3776. (I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)));
  3777. }
  3778. static void g4x_update_wm(struct drm_device *dev)
  3779. {
  3780. static const int sr_latency_ns = 12000;
  3781. struct drm_i915_private *dev_priv = dev->dev_private;
  3782. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  3783. int plane_sr, cursor_sr;
  3784. unsigned int enabled = 0;
  3785. if (g4x_compute_wm0(dev, 0,
  3786. &g4x_wm_info, latency_ns,
  3787. &g4x_cursor_wm_info, latency_ns,
  3788. &planea_wm, &cursora_wm))
  3789. enabled |= 1;
  3790. if (g4x_compute_wm0(dev, 1,
  3791. &g4x_wm_info, latency_ns,
  3792. &g4x_cursor_wm_info, latency_ns,
  3793. &planeb_wm, &cursorb_wm))
  3794. enabled |= 2;
  3795. plane_sr = cursor_sr = 0;
  3796. if (single_plane_enabled(enabled) &&
  3797. g4x_compute_srwm(dev, ffs(enabled) - 1,
  3798. sr_latency_ns,
  3799. &g4x_wm_info,
  3800. &g4x_cursor_wm_info,
  3801. &plane_sr, &cursor_sr))
  3802. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3803. else
  3804. I915_WRITE(FW_BLC_SELF,
  3805. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  3806. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  3807. planea_wm, cursora_wm,
  3808. planeb_wm, cursorb_wm,
  3809. plane_sr, cursor_sr);
  3810. I915_WRITE(DSPFW1,
  3811. (plane_sr << DSPFW_SR_SHIFT) |
  3812. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  3813. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  3814. planea_wm);
  3815. I915_WRITE(DSPFW2,
  3816. (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  3817. (cursora_wm << DSPFW_CURSORA_SHIFT));
  3818. /* HPLL off in SR has some issues on G4x... disable it */
  3819. I915_WRITE(DSPFW3,
  3820. (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
  3821. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3822. }
  3823. static void i965_update_wm(struct drm_device *dev)
  3824. {
  3825. struct drm_i915_private *dev_priv = dev->dev_private;
  3826. struct drm_crtc *crtc;
  3827. int srwm = 1;
  3828. int cursor_sr = 16;
  3829. /* Calc sr entries for one plane configs */
  3830. crtc = single_enabled_crtc(dev);
  3831. if (crtc) {
  3832. /* self-refresh has much higher latency */
  3833. static const int sr_latency_ns = 12000;
  3834. int clock = crtc->mode.clock;
  3835. int htotal = crtc->mode.htotal;
  3836. int hdisplay = crtc->mode.hdisplay;
  3837. int pixel_size = crtc->fb->bits_per_pixel / 8;
  3838. unsigned long line_time_us;
  3839. int entries;
  3840. line_time_us = ((htotal * 1000) / clock);
  3841. /* Use ns/us then divide to preserve precision */
  3842. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3843. pixel_size * hdisplay;
  3844. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  3845. srwm = I965_FIFO_SIZE - entries;
  3846. if (srwm < 0)
  3847. srwm = 1;
  3848. srwm &= 0x1ff;
  3849. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  3850. entries, srwm);
  3851. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3852. pixel_size * 64;
  3853. entries = DIV_ROUND_UP(entries,
  3854. i965_cursor_wm_info.cacheline_size);
  3855. cursor_sr = i965_cursor_wm_info.fifo_size -
  3856. (entries + i965_cursor_wm_info.guard_size);
  3857. if (cursor_sr > i965_cursor_wm_info.max_wm)
  3858. cursor_sr = i965_cursor_wm_info.max_wm;
  3859. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  3860. "cursor %d\n", srwm, cursor_sr);
  3861. if (IS_CRESTLINE(dev))
  3862. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3863. } else {
  3864. /* Turn off self refresh if both pipes are enabled */
  3865. if (IS_CRESTLINE(dev))
  3866. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  3867. & ~FW_BLC_SELF_EN);
  3868. }
  3869. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  3870. srwm);
  3871. /* 965 has limitations... */
  3872. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  3873. (8 << 16) | (8 << 8) | (8 << 0));
  3874. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  3875. /* update cursor SR watermark */
  3876. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3877. }
  3878. static void i9xx_update_wm(struct drm_device *dev)
  3879. {
  3880. struct drm_i915_private *dev_priv = dev->dev_private;
  3881. const struct intel_watermark_params *wm_info;
  3882. uint32_t fwater_lo;
  3883. uint32_t fwater_hi;
  3884. int cwm, srwm = 1;
  3885. int fifo_size;
  3886. int planea_wm, planeb_wm;
  3887. struct drm_crtc *crtc, *enabled = NULL;
  3888. if (IS_I945GM(dev))
  3889. wm_info = &i945_wm_info;
  3890. else if (!IS_GEN2(dev))
  3891. wm_info = &i915_wm_info;
  3892. else
  3893. wm_info = &i855_wm_info;
  3894. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  3895. crtc = intel_get_crtc_for_plane(dev, 0);
  3896. if (crtc->enabled && crtc->fb) {
  3897. planea_wm = intel_calculate_wm(crtc->mode.clock,
  3898. wm_info, fifo_size,
  3899. crtc->fb->bits_per_pixel / 8,
  3900. latency_ns);
  3901. enabled = crtc;
  3902. } else
  3903. planea_wm = fifo_size - wm_info->guard_size;
  3904. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  3905. crtc = intel_get_crtc_for_plane(dev, 1);
  3906. if (crtc->enabled && crtc->fb) {
  3907. planeb_wm = intel_calculate_wm(crtc->mode.clock,
  3908. wm_info, fifo_size,
  3909. crtc->fb->bits_per_pixel / 8,
  3910. latency_ns);
  3911. if (enabled == NULL)
  3912. enabled = crtc;
  3913. else
  3914. enabled = NULL;
  3915. } else
  3916. planeb_wm = fifo_size - wm_info->guard_size;
  3917. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  3918. /*
  3919. * Overlay gets an aggressive default since video jitter is bad.
  3920. */
  3921. cwm = 2;
  3922. /* Play safe and disable self-refresh before adjusting watermarks. */
  3923. if (IS_I945G(dev) || IS_I945GM(dev))
  3924. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  3925. else if (IS_I915GM(dev))
  3926. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  3927. /* Calc sr entries for one plane configs */
  3928. if (HAS_FW_BLC(dev) && enabled) {
  3929. /* self-refresh has much higher latency */
  3930. static const int sr_latency_ns = 6000;
  3931. int clock = enabled->mode.clock;
  3932. int htotal = enabled->mode.htotal;
  3933. int hdisplay = enabled->mode.hdisplay;
  3934. int pixel_size = enabled->fb->bits_per_pixel / 8;
  3935. unsigned long line_time_us;
  3936. int entries;
  3937. line_time_us = (htotal * 1000) / clock;
  3938. /* Use ns/us then divide to preserve precision */
  3939. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3940. pixel_size * hdisplay;
  3941. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  3942. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  3943. srwm = wm_info->fifo_size - entries;
  3944. if (srwm < 0)
  3945. srwm = 1;
  3946. if (IS_I945G(dev) || IS_I945GM(dev))
  3947. I915_WRITE(FW_BLC_SELF,
  3948. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  3949. else if (IS_I915GM(dev))
  3950. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  3951. }
  3952. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  3953. planea_wm, planeb_wm, cwm, srwm);
  3954. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  3955. fwater_hi = (cwm & 0x1f);
  3956. /* Set request length to 8 cachelines per fetch */
  3957. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  3958. fwater_hi = fwater_hi | (1 << 8);
  3959. I915_WRITE(FW_BLC, fwater_lo);
  3960. I915_WRITE(FW_BLC2, fwater_hi);
  3961. if (HAS_FW_BLC(dev)) {
  3962. if (enabled) {
  3963. if (IS_I945G(dev) || IS_I945GM(dev))
  3964. I915_WRITE(FW_BLC_SELF,
  3965. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  3966. else if (IS_I915GM(dev))
  3967. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  3968. DRM_DEBUG_KMS("memory self refresh enabled\n");
  3969. } else
  3970. DRM_DEBUG_KMS("memory self refresh disabled\n");
  3971. }
  3972. }
  3973. static void i830_update_wm(struct drm_device *dev)
  3974. {
  3975. struct drm_i915_private *dev_priv = dev->dev_private;
  3976. struct drm_crtc *crtc;
  3977. uint32_t fwater_lo;
  3978. int planea_wm;
  3979. crtc = single_enabled_crtc(dev);
  3980. if (crtc == NULL)
  3981. return;
  3982. planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
  3983. dev_priv->display.get_fifo_size(dev, 0),
  3984. crtc->fb->bits_per_pixel / 8,
  3985. latency_ns);
  3986. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  3987. fwater_lo |= (3<<8) | planea_wm;
  3988. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  3989. I915_WRITE(FW_BLC, fwater_lo);
  3990. }
  3991. #define ILK_LP0_PLANE_LATENCY 700
  3992. #define ILK_LP0_CURSOR_LATENCY 1300
  3993. /*
  3994. * Check the wm result.
  3995. *
  3996. * If any calculated watermark values is larger than the maximum value that
  3997. * can be programmed into the associated watermark register, that watermark
  3998. * must be disabled.
  3999. */
  4000. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  4001. int fbc_wm, int display_wm, int cursor_wm,
  4002. const struct intel_watermark_params *display,
  4003. const struct intel_watermark_params *cursor)
  4004. {
  4005. struct drm_i915_private *dev_priv = dev->dev_private;
  4006. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  4007. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  4008. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  4009. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  4010. fbc_wm, SNB_FBC_MAX_SRWM, level);
  4011. /* fbc has it's own way to disable FBC WM */
  4012. I915_WRITE(DISP_ARB_CTL,
  4013. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  4014. return false;
  4015. }
  4016. if (display_wm > display->max_wm) {
  4017. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  4018. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  4019. return false;
  4020. }
  4021. if (cursor_wm > cursor->max_wm) {
  4022. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  4023. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  4024. return false;
  4025. }
  4026. if (!(fbc_wm || display_wm || cursor_wm)) {
  4027. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  4028. return false;
  4029. }
  4030. return true;
  4031. }
  4032. /*
  4033. * Compute watermark values of WM[1-3],
  4034. */
  4035. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  4036. int latency_ns,
  4037. const struct intel_watermark_params *display,
  4038. const struct intel_watermark_params *cursor,
  4039. int *fbc_wm, int *display_wm, int *cursor_wm)
  4040. {
  4041. struct drm_crtc *crtc;
  4042. unsigned long line_time_us;
  4043. int hdisplay, htotal, pixel_size, clock;
  4044. int line_count, line_size;
  4045. int small, large;
  4046. int entries;
  4047. if (!latency_ns) {
  4048. *fbc_wm = *display_wm = *cursor_wm = 0;
  4049. return false;
  4050. }
  4051. crtc = intel_get_crtc_for_plane(dev, plane);
  4052. hdisplay = crtc->mode.hdisplay;
  4053. htotal = crtc->mode.htotal;
  4054. clock = crtc->mode.clock;
  4055. pixel_size = crtc->fb->bits_per_pixel / 8;
  4056. line_time_us = (htotal * 1000) / clock;
  4057. line_count = (latency_ns / line_time_us + 1000) / 1000;
  4058. line_size = hdisplay * pixel_size;
  4059. /* Use the minimum of the small and large buffer method for primary */
  4060. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  4061. large = line_count * line_size;
  4062. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  4063. *display_wm = entries + display->guard_size;
  4064. /*
  4065. * Spec says:
  4066. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  4067. */
  4068. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  4069. /* calculate the self-refresh watermark for display cursor */
  4070. entries = line_count * pixel_size * 64;
  4071. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  4072. *cursor_wm = entries + cursor->guard_size;
  4073. return ironlake_check_srwm(dev, level,
  4074. *fbc_wm, *display_wm, *cursor_wm,
  4075. display, cursor);
  4076. }
  4077. static void ironlake_update_wm(struct drm_device *dev)
  4078. {
  4079. struct drm_i915_private *dev_priv = dev->dev_private;
  4080. int fbc_wm, plane_wm, cursor_wm;
  4081. unsigned int enabled;
  4082. enabled = 0;
  4083. if (g4x_compute_wm0(dev, 0,
  4084. &ironlake_display_wm_info,
  4085. ILK_LP0_PLANE_LATENCY,
  4086. &ironlake_cursor_wm_info,
  4087. ILK_LP0_CURSOR_LATENCY,
  4088. &plane_wm, &cursor_wm)) {
  4089. I915_WRITE(WM0_PIPEA_ILK,
  4090. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  4091. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  4092. " plane %d, " "cursor: %d\n",
  4093. plane_wm, cursor_wm);
  4094. enabled |= 1;
  4095. }
  4096. if (g4x_compute_wm0(dev, 1,
  4097. &ironlake_display_wm_info,
  4098. ILK_LP0_PLANE_LATENCY,
  4099. &ironlake_cursor_wm_info,
  4100. ILK_LP0_CURSOR_LATENCY,
  4101. &plane_wm, &cursor_wm)) {
  4102. I915_WRITE(WM0_PIPEB_ILK,
  4103. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  4104. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  4105. " plane %d, cursor: %d\n",
  4106. plane_wm, cursor_wm);
  4107. enabled |= 2;
  4108. }
  4109. /*
  4110. * Calculate and update the self-refresh watermark only when one
  4111. * display plane is used.
  4112. */
  4113. I915_WRITE(WM3_LP_ILK, 0);
  4114. I915_WRITE(WM2_LP_ILK, 0);
  4115. I915_WRITE(WM1_LP_ILK, 0);
  4116. if (!single_plane_enabled(enabled))
  4117. return;
  4118. enabled = ffs(enabled) - 1;
  4119. /* WM1 */
  4120. if (!ironlake_compute_srwm(dev, 1, enabled,
  4121. ILK_READ_WM1_LATENCY() * 500,
  4122. &ironlake_display_srwm_info,
  4123. &ironlake_cursor_srwm_info,
  4124. &fbc_wm, &plane_wm, &cursor_wm))
  4125. return;
  4126. I915_WRITE(WM1_LP_ILK,
  4127. WM1_LP_SR_EN |
  4128. (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4129. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4130. (plane_wm << WM1_LP_SR_SHIFT) |
  4131. cursor_wm);
  4132. /* WM2 */
  4133. if (!ironlake_compute_srwm(dev, 2, enabled,
  4134. ILK_READ_WM2_LATENCY() * 500,
  4135. &ironlake_display_srwm_info,
  4136. &ironlake_cursor_srwm_info,
  4137. &fbc_wm, &plane_wm, &cursor_wm))
  4138. return;
  4139. I915_WRITE(WM2_LP_ILK,
  4140. WM2_LP_EN |
  4141. (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4142. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4143. (plane_wm << WM1_LP_SR_SHIFT) |
  4144. cursor_wm);
  4145. /*
  4146. * WM3 is unsupported on ILK, probably because we don't have latency
  4147. * data for that power state
  4148. */
  4149. }
  4150. static void sandybridge_update_wm(struct drm_device *dev)
  4151. {
  4152. struct drm_i915_private *dev_priv = dev->dev_private;
  4153. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  4154. u32 val;
  4155. int fbc_wm, plane_wm, cursor_wm;
  4156. unsigned int enabled;
  4157. enabled = 0;
  4158. if (g4x_compute_wm0(dev, 0,
  4159. &sandybridge_display_wm_info, latency,
  4160. &sandybridge_cursor_wm_info, latency,
  4161. &plane_wm, &cursor_wm)) {
  4162. val = I915_READ(WM0_PIPEA_ILK);
  4163. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  4164. I915_WRITE(WM0_PIPEA_ILK, val |
  4165. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  4166. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  4167. " plane %d, " "cursor: %d\n",
  4168. plane_wm, cursor_wm);
  4169. enabled |= 1;
  4170. }
  4171. if (g4x_compute_wm0(dev, 1,
  4172. &sandybridge_display_wm_info, latency,
  4173. &sandybridge_cursor_wm_info, latency,
  4174. &plane_wm, &cursor_wm)) {
  4175. val = I915_READ(WM0_PIPEB_ILK);
  4176. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  4177. I915_WRITE(WM0_PIPEB_ILK, val |
  4178. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  4179. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  4180. " plane %d, cursor: %d\n",
  4181. plane_wm, cursor_wm);
  4182. enabled |= 2;
  4183. }
  4184. /* IVB has 3 pipes */
  4185. if (IS_IVYBRIDGE(dev) &&
  4186. g4x_compute_wm0(dev, 2,
  4187. &sandybridge_display_wm_info, latency,
  4188. &sandybridge_cursor_wm_info, latency,
  4189. &plane_wm, &cursor_wm)) {
  4190. val = I915_READ(WM0_PIPEC_IVB);
  4191. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  4192. I915_WRITE(WM0_PIPEC_IVB, val |
  4193. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  4194. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  4195. " plane %d, cursor: %d\n",
  4196. plane_wm, cursor_wm);
  4197. enabled |= 3;
  4198. }
  4199. /*
  4200. * Calculate and update the self-refresh watermark only when one
  4201. * display plane is used.
  4202. *
  4203. * SNB support 3 levels of watermark.
  4204. *
  4205. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  4206. * and disabled in the descending order
  4207. *
  4208. */
  4209. I915_WRITE(WM3_LP_ILK, 0);
  4210. I915_WRITE(WM2_LP_ILK, 0);
  4211. I915_WRITE(WM1_LP_ILK, 0);
  4212. if (!single_plane_enabled(enabled) ||
  4213. dev_priv->sprite_scaling_enabled)
  4214. return;
  4215. enabled = ffs(enabled) - 1;
  4216. /* WM1 */
  4217. if (!ironlake_compute_srwm(dev, 1, enabled,
  4218. SNB_READ_WM1_LATENCY() * 500,
  4219. &sandybridge_display_srwm_info,
  4220. &sandybridge_cursor_srwm_info,
  4221. &fbc_wm, &plane_wm, &cursor_wm))
  4222. return;
  4223. I915_WRITE(WM1_LP_ILK,
  4224. WM1_LP_SR_EN |
  4225. (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4226. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4227. (plane_wm << WM1_LP_SR_SHIFT) |
  4228. cursor_wm);
  4229. /* WM2 */
  4230. if (!ironlake_compute_srwm(dev, 2, enabled,
  4231. SNB_READ_WM2_LATENCY() * 500,
  4232. &sandybridge_display_srwm_info,
  4233. &sandybridge_cursor_srwm_info,
  4234. &fbc_wm, &plane_wm, &cursor_wm))
  4235. return;
  4236. I915_WRITE(WM2_LP_ILK,
  4237. WM2_LP_EN |
  4238. (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4239. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4240. (plane_wm << WM1_LP_SR_SHIFT) |
  4241. cursor_wm);
  4242. /* WM3 */
  4243. if (!ironlake_compute_srwm(dev, 3, enabled,
  4244. SNB_READ_WM3_LATENCY() * 500,
  4245. &sandybridge_display_srwm_info,
  4246. &sandybridge_cursor_srwm_info,
  4247. &fbc_wm, &plane_wm, &cursor_wm))
  4248. return;
  4249. I915_WRITE(WM3_LP_ILK,
  4250. WM3_LP_EN |
  4251. (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4252. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4253. (plane_wm << WM1_LP_SR_SHIFT) |
  4254. cursor_wm);
  4255. }
  4256. static bool
  4257. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  4258. uint32_t sprite_width, int pixel_size,
  4259. const struct intel_watermark_params *display,
  4260. int display_latency_ns, int *sprite_wm)
  4261. {
  4262. struct drm_crtc *crtc;
  4263. int clock;
  4264. int entries, tlb_miss;
  4265. crtc = intel_get_crtc_for_plane(dev, plane);
  4266. if (crtc->fb == NULL || !crtc->enabled) {
  4267. *sprite_wm = display->guard_size;
  4268. return false;
  4269. }
  4270. clock = crtc->mode.clock;
  4271. /* Use the small buffer method to calculate the sprite watermark */
  4272. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  4273. tlb_miss = display->fifo_size*display->cacheline_size -
  4274. sprite_width * 8;
  4275. if (tlb_miss > 0)
  4276. entries += tlb_miss;
  4277. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  4278. *sprite_wm = entries + display->guard_size;
  4279. if (*sprite_wm > (int)display->max_wm)
  4280. *sprite_wm = display->max_wm;
  4281. return true;
  4282. }
  4283. static bool
  4284. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  4285. uint32_t sprite_width, int pixel_size,
  4286. const struct intel_watermark_params *display,
  4287. int latency_ns, int *sprite_wm)
  4288. {
  4289. struct drm_crtc *crtc;
  4290. unsigned long line_time_us;
  4291. int clock;
  4292. int line_count, line_size;
  4293. int small, large;
  4294. int entries;
  4295. if (!latency_ns) {
  4296. *sprite_wm = 0;
  4297. return false;
  4298. }
  4299. crtc = intel_get_crtc_for_plane(dev, plane);
  4300. clock = crtc->mode.clock;
  4301. if (!clock) {
  4302. *sprite_wm = 0;
  4303. return false;
  4304. }
  4305. line_time_us = (sprite_width * 1000) / clock;
  4306. if (!line_time_us) {
  4307. *sprite_wm = 0;
  4308. return false;
  4309. }
  4310. line_count = (latency_ns / line_time_us + 1000) / 1000;
  4311. line_size = sprite_width * pixel_size;
  4312. /* Use the minimum of the small and large buffer method for primary */
  4313. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  4314. large = line_count * line_size;
  4315. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  4316. *sprite_wm = entries + display->guard_size;
  4317. return *sprite_wm > 0x3ff ? false : true;
  4318. }
  4319. static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
  4320. uint32_t sprite_width, int pixel_size)
  4321. {
  4322. struct drm_i915_private *dev_priv = dev->dev_private;
  4323. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  4324. u32 val;
  4325. int sprite_wm, reg;
  4326. int ret;
  4327. switch (pipe) {
  4328. case 0:
  4329. reg = WM0_PIPEA_ILK;
  4330. break;
  4331. case 1:
  4332. reg = WM0_PIPEB_ILK;
  4333. break;
  4334. case 2:
  4335. reg = WM0_PIPEC_IVB;
  4336. break;
  4337. default:
  4338. return; /* bad pipe */
  4339. }
  4340. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  4341. &sandybridge_display_wm_info,
  4342. latency, &sprite_wm);
  4343. if (!ret) {
  4344. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
  4345. pipe);
  4346. return;
  4347. }
  4348. val = I915_READ(reg);
  4349. val &= ~WM0_PIPE_SPRITE_MASK;
  4350. I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  4351. DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
  4352. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4353. pixel_size,
  4354. &sandybridge_display_srwm_info,
  4355. SNB_READ_WM1_LATENCY() * 500,
  4356. &sprite_wm);
  4357. if (!ret) {
  4358. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
  4359. pipe);
  4360. return;
  4361. }
  4362. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  4363. /* Only IVB has two more LP watermarks for sprite */
  4364. if (!IS_IVYBRIDGE(dev))
  4365. return;
  4366. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4367. pixel_size,
  4368. &sandybridge_display_srwm_info,
  4369. SNB_READ_WM2_LATENCY() * 500,
  4370. &sprite_wm);
  4371. if (!ret) {
  4372. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
  4373. pipe);
  4374. return;
  4375. }
  4376. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  4377. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4378. pixel_size,
  4379. &sandybridge_display_srwm_info,
  4380. SNB_READ_WM3_LATENCY() * 500,
  4381. &sprite_wm);
  4382. if (!ret) {
  4383. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
  4384. pipe);
  4385. return;
  4386. }
  4387. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  4388. }
  4389. /**
  4390. * intel_update_watermarks - update FIFO watermark values based on current modes
  4391. *
  4392. * Calculate watermark values for the various WM regs based on current mode
  4393. * and plane configuration.
  4394. *
  4395. * There are several cases to deal with here:
  4396. * - normal (i.e. non-self-refresh)
  4397. * - self-refresh (SR) mode
  4398. * - lines are large relative to FIFO size (buffer can hold up to 2)
  4399. * - lines are small relative to FIFO size (buffer can hold more than 2
  4400. * lines), so need to account for TLB latency
  4401. *
  4402. * The normal calculation is:
  4403. * watermark = dotclock * bytes per pixel * latency
  4404. * where latency is platform & configuration dependent (we assume pessimal
  4405. * values here).
  4406. *
  4407. * The SR calculation is:
  4408. * watermark = (trunc(latency/line time)+1) * surface width *
  4409. * bytes per pixel
  4410. * where
  4411. * line time = htotal / dotclock
  4412. * surface width = hdisplay for normal plane and 64 for cursor
  4413. * and latency is assumed to be high, as above.
  4414. *
  4415. * The final value programmed to the register should always be rounded up,
  4416. * and include an extra 2 entries to account for clock crossings.
  4417. *
  4418. * We don't use the sprite, so we can ignore that. And on Crestline we have
  4419. * to set the non-SR watermarks to 8.
  4420. */
  4421. void intel_update_watermarks(struct drm_device *dev)
  4422. {
  4423. struct drm_i915_private *dev_priv = dev->dev_private;
  4424. if (dev_priv->display.update_wm)
  4425. dev_priv->display.update_wm(dev);
  4426. }
  4427. void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
  4428. uint32_t sprite_width, int pixel_size)
  4429. {
  4430. struct drm_i915_private *dev_priv = dev->dev_private;
  4431. if (dev_priv->display.update_sprite_wm)
  4432. dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
  4433. pixel_size);
  4434. }
  4435. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  4436. {
  4437. if (i915_panel_use_ssc >= 0)
  4438. return i915_panel_use_ssc != 0;
  4439. return dev_priv->lvds_use_ssc
  4440. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  4441. }
  4442. /**
  4443. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  4444. * @crtc: CRTC structure
  4445. * @mode: requested mode
  4446. *
  4447. * A pipe may be connected to one or more outputs. Based on the depth of the
  4448. * attached framebuffer, choose a good color depth to use on the pipe.
  4449. *
  4450. * If possible, match the pipe depth to the fb depth. In some cases, this
  4451. * isn't ideal, because the connected output supports a lesser or restricted
  4452. * set of depths. Resolve that here:
  4453. * LVDS typically supports only 6bpc, so clamp down in that case
  4454. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  4455. * Displays may support a restricted set as well, check EDID and clamp as
  4456. * appropriate.
  4457. * DP may want to dither down to 6bpc to fit larger modes
  4458. *
  4459. * RETURNS:
  4460. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  4461. * true if they don't match).
  4462. */
  4463. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  4464. unsigned int *pipe_bpp,
  4465. struct drm_display_mode *mode)
  4466. {
  4467. struct drm_device *dev = crtc->dev;
  4468. struct drm_i915_private *dev_priv = dev->dev_private;
  4469. struct drm_encoder *encoder;
  4470. struct drm_connector *connector;
  4471. unsigned int display_bpc = UINT_MAX, bpc;
  4472. /* Walk the encoders & connectors on this crtc, get min bpc */
  4473. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  4474. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  4475. if (encoder->crtc != crtc)
  4476. continue;
  4477. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  4478. unsigned int lvds_bpc;
  4479. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  4480. LVDS_A3_POWER_UP)
  4481. lvds_bpc = 8;
  4482. else
  4483. lvds_bpc = 6;
  4484. if (lvds_bpc < display_bpc) {
  4485. DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  4486. display_bpc = lvds_bpc;
  4487. }
  4488. continue;
  4489. }
  4490. if (intel_encoder->type == INTEL_OUTPUT_EDP) {
  4491. /* Use VBT settings if we have an eDP panel */
  4492. unsigned int edp_bpc = dev_priv->edp.bpp / 3;
  4493. if (edp_bpc < display_bpc) {
  4494. DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
  4495. display_bpc = edp_bpc;
  4496. }
  4497. continue;
  4498. }
  4499. /* Not one of the known troublemakers, check the EDID */
  4500. list_for_each_entry(connector, &dev->mode_config.connector_list,
  4501. head) {
  4502. if (connector->encoder != encoder)
  4503. continue;
  4504. /* Don't use an invalid EDID bpc value */
  4505. if (connector->display_info.bpc &&
  4506. connector->display_info.bpc < display_bpc) {
  4507. DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  4508. display_bpc = connector->display_info.bpc;
  4509. }
  4510. }
  4511. /*
  4512. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  4513. * through, clamp it down. (Note: >12bpc will be caught below.)
  4514. */
  4515. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  4516. if (display_bpc > 8 && display_bpc < 12) {
  4517. DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
  4518. display_bpc = 12;
  4519. } else {
  4520. DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
  4521. display_bpc = 8;
  4522. }
  4523. }
  4524. }
  4525. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4526. DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
  4527. display_bpc = 6;
  4528. }
  4529. /*
  4530. * We could just drive the pipe at the highest bpc all the time and
  4531. * enable dithering as needed, but that costs bandwidth. So choose
  4532. * the minimum value that expresses the full color range of the fb but
  4533. * also stays within the max display bpc discovered above.
  4534. */
  4535. switch (crtc->fb->depth) {
  4536. case 8:
  4537. bpc = 8; /* since we go through a colormap */
  4538. break;
  4539. case 15:
  4540. case 16:
  4541. bpc = 6; /* min is 18bpp */
  4542. break;
  4543. case 24:
  4544. bpc = 8;
  4545. break;
  4546. case 30:
  4547. bpc = 10;
  4548. break;
  4549. case 48:
  4550. bpc = 12;
  4551. break;
  4552. default:
  4553. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  4554. bpc = min((unsigned int)8, display_bpc);
  4555. break;
  4556. }
  4557. display_bpc = min(display_bpc, bpc);
  4558. DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
  4559. bpc, display_bpc);
  4560. *pipe_bpp = display_bpc * 3;
  4561. return display_bpc != bpc;
  4562. }
  4563. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  4564. {
  4565. struct drm_device *dev = crtc->dev;
  4566. struct drm_i915_private *dev_priv = dev->dev_private;
  4567. int refclk;
  4568. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4569. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4570. refclk = dev_priv->lvds_ssc_freq * 1000;
  4571. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4572. refclk / 1000);
  4573. } else if (!IS_GEN2(dev)) {
  4574. refclk = 96000;
  4575. } else {
  4576. refclk = 48000;
  4577. }
  4578. return refclk;
  4579. }
  4580. static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
  4581. intel_clock_t *clock)
  4582. {
  4583. /* SDVO TV has fixed PLL values depend on its clock range,
  4584. this mirrors vbios setting. */
  4585. if (adjusted_mode->clock >= 100000
  4586. && adjusted_mode->clock < 140500) {
  4587. clock->p1 = 2;
  4588. clock->p2 = 10;
  4589. clock->n = 3;
  4590. clock->m1 = 16;
  4591. clock->m2 = 8;
  4592. } else if (adjusted_mode->clock >= 140500
  4593. && adjusted_mode->clock <= 200000) {
  4594. clock->p1 = 1;
  4595. clock->p2 = 10;
  4596. clock->n = 6;
  4597. clock->m1 = 12;
  4598. clock->m2 = 8;
  4599. }
  4600. }
  4601. static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
  4602. intel_clock_t *clock,
  4603. intel_clock_t *reduced_clock)
  4604. {
  4605. struct drm_device *dev = crtc->dev;
  4606. struct drm_i915_private *dev_priv = dev->dev_private;
  4607. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4608. int pipe = intel_crtc->pipe;
  4609. u32 fp, fp2 = 0;
  4610. if (IS_PINEVIEW(dev)) {
  4611. fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
  4612. if (reduced_clock)
  4613. fp2 = (1 << reduced_clock->n) << 16 |
  4614. reduced_clock->m1 << 8 | reduced_clock->m2;
  4615. } else {
  4616. fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
  4617. if (reduced_clock)
  4618. fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
  4619. reduced_clock->m2;
  4620. }
  4621. I915_WRITE(FP0(pipe), fp);
  4622. intel_crtc->lowfreq_avail = false;
  4623. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4624. reduced_clock && i915_powersave) {
  4625. I915_WRITE(FP1(pipe), fp2);
  4626. intel_crtc->lowfreq_avail = true;
  4627. } else {
  4628. I915_WRITE(FP1(pipe), fp);
  4629. }
  4630. }
  4631. static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
  4632. struct drm_display_mode *adjusted_mode)
  4633. {
  4634. struct drm_device *dev = crtc->dev;
  4635. struct drm_i915_private *dev_priv = dev->dev_private;
  4636. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4637. int pipe = intel_crtc->pipe;
  4638. u32 temp, lvds_sync = 0;
  4639. temp = I915_READ(LVDS);
  4640. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4641. if (pipe == 1) {
  4642. temp |= LVDS_PIPEB_SELECT;
  4643. } else {
  4644. temp &= ~LVDS_PIPEB_SELECT;
  4645. }
  4646. /* set the corresponsding LVDS_BORDER bit */
  4647. temp |= dev_priv->lvds_border_bits;
  4648. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4649. * set the DPLLs for dual-channel mode or not.
  4650. */
  4651. if (clock->p2 == 7)
  4652. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4653. else
  4654. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4655. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4656. * appropriately here, but we need to look more thoroughly into how
  4657. * panels behave in the two modes.
  4658. */
  4659. /* set the dithering flag on LVDS as needed */
  4660. if (INTEL_INFO(dev)->gen >= 4) {
  4661. if (dev_priv->lvds_dither)
  4662. temp |= LVDS_ENABLE_DITHER;
  4663. else
  4664. temp &= ~LVDS_ENABLE_DITHER;
  4665. }
  4666. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4667. lvds_sync |= LVDS_HSYNC_POLARITY;
  4668. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4669. lvds_sync |= LVDS_VSYNC_POLARITY;
  4670. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  4671. != lvds_sync) {
  4672. char flags[2] = "-+";
  4673. DRM_INFO("Changing LVDS panel from "
  4674. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  4675. flags[!(temp & LVDS_HSYNC_POLARITY)],
  4676. flags[!(temp & LVDS_VSYNC_POLARITY)],
  4677. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  4678. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  4679. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4680. temp |= lvds_sync;
  4681. }
  4682. I915_WRITE(LVDS, temp);
  4683. }
  4684. static void i9xx_update_pll(struct drm_crtc *crtc,
  4685. struct drm_display_mode *mode,
  4686. struct drm_display_mode *adjusted_mode,
  4687. intel_clock_t *clock, intel_clock_t *reduced_clock,
  4688. int num_connectors)
  4689. {
  4690. struct drm_device *dev = crtc->dev;
  4691. struct drm_i915_private *dev_priv = dev->dev_private;
  4692. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4693. int pipe = intel_crtc->pipe;
  4694. u32 dpll;
  4695. bool is_sdvo;
  4696. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  4697. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  4698. dpll = DPLL_VGA_MODE_DIS;
  4699. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  4700. dpll |= DPLLB_MODE_LVDS;
  4701. else
  4702. dpll |= DPLLB_MODE_DAC_SERIAL;
  4703. if (is_sdvo) {
  4704. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4705. if (pixel_multiplier > 1) {
  4706. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4707. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  4708. }
  4709. dpll |= DPLL_DVO_HIGH_SPEED;
  4710. }
  4711. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  4712. dpll |= DPLL_DVO_HIGH_SPEED;
  4713. /* compute bitmask from p1 value */
  4714. if (IS_PINEVIEW(dev))
  4715. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  4716. else {
  4717. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4718. if (IS_G4X(dev) && reduced_clock)
  4719. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4720. }
  4721. switch (clock->p2) {
  4722. case 5:
  4723. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4724. break;
  4725. case 7:
  4726. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4727. break;
  4728. case 10:
  4729. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4730. break;
  4731. case 14:
  4732. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4733. break;
  4734. }
  4735. if (INTEL_INFO(dev)->gen >= 4)
  4736. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  4737. if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  4738. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4739. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  4740. /* XXX: just matching BIOS for now */
  4741. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4742. dpll |= 3;
  4743. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4744. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4745. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4746. else
  4747. dpll |= PLL_REF_INPUT_DREFCLK;
  4748. dpll |= DPLL_VCO_ENABLE;
  4749. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  4750. POSTING_READ(DPLL(pipe));
  4751. udelay(150);
  4752. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4753. * This is an exception to the general rule that mode_set doesn't turn
  4754. * things on.
  4755. */
  4756. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  4757. intel_update_lvds(crtc, clock, adjusted_mode);
  4758. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  4759. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4760. I915_WRITE(DPLL(pipe), dpll);
  4761. /* Wait for the clocks to stabilize. */
  4762. POSTING_READ(DPLL(pipe));
  4763. udelay(150);
  4764. if (INTEL_INFO(dev)->gen >= 4) {
  4765. u32 temp = 0;
  4766. if (is_sdvo) {
  4767. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  4768. if (temp > 1)
  4769. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  4770. else
  4771. temp = 0;
  4772. }
  4773. I915_WRITE(DPLL_MD(pipe), temp);
  4774. } else {
  4775. /* The pixel multiplier can only be updated once the
  4776. * DPLL is enabled and the clocks are stable.
  4777. *
  4778. * So write it again.
  4779. */
  4780. I915_WRITE(DPLL(pipe), dpll);
  4781. }
  4782. }
  4783. static void i8xx_update_pll(struct drm_crtc *crtc,
  4784. struct drm_display_mode *adjusted_mode,
  4785. intel_clock_t *clock,
  4786. int num_connectors)
  4787. {
  4788. struct drm_device *dev = crtc->dev;
  4789. struct drm_i915_private *dev_priv = dev->dev_private;
  4790. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4791. int pipe = intel_crtc->pipe;
  4792. u32 dpll;
  4793. dpll = DPLL_VGA_MODE_DIS;
  4794. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  4795. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4796. } else {
  4797. if (clock->p1 == 2)
  4798. dpll |= PLL_P1_DIVIDE_BY_TWO;
  4799. else
  4800. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4801. if (clock->p2 == 4)
  4802. dpll |= PLL_P2_DIVIDE_BY_4;
  4803. }
  4804. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  4805. /* XXX: just matching BIOS for now */
  4806. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4807. dpll |= 3;
  4808. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4809. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4810. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4811. else
  4812. dpll |= PLL_REF_INPUT_DREFCLK;
  4813. dpll |= DPLL_VCO_ENABLE;
  4814. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  4815. POSTING_READ(DPLL(pipe));
  4816. udelay(150);
  4817. I915_WRITE(DPLL(pipe), dpll);
  4818. /* Wait for the clocks to stabilize. */
  4819. POSTING_READ(DPLL(pipe));
  4820. udelay(150);
  4821. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4822. * This is an exception to the general rule that mode_set doesn't turn
  4823. * things on.
  4824. */
  4825. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  4826. intel_update_lvds(crtc, clock, adjusted_mode);
  4827. /* The pixel multiplier can only be updated once the
  4828. * DPLL is enabled and the clocks are stable.
  4829. *
  4830. * So write it again.
  4831. */
  4832. I915_WRITE(DPLL(pipe), dpll);
  4833. }
  4834. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4835. struct drm_display_mode *mode,
  4836. struct drm_display_mode *adjusted_mode,
  4837. int x, int y,
  4838. struct drm_framebuffer *old_fb)
  4839. {
  4840. struct drm_device *dev = crtc->dev;
  4841. struct drm_i915_private *dev_priv = dev->dev_private;
  4842. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4843. int pipe = intel_crtc->pipe;
  4844. int plane = intel_crtc->plane;
  4845. int refclk, num_connectors = 0;
  4846. intel_clock_t clock, reduced_clock;
  4847. u32 dspcntr, pipeconf, vsyncshift;
  4848. bool ok, has_reduced_clock = false, is_sdvo = false;
  4849. bool is_lvds = false, is_tv = false, is_dp = false;
  4850. struct drm_mode_config *mode_config = &dev->mode_config;
  4851. struct intel_encoder *encoder;
  4852. const intel_limit_t *limit;
  4853. int ret;
  4854. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4855. if (encoder->base.crtc != crtc)
  4856. continue;
  4857. switch (encoder->type) {
  4858. case INTEL_OUTPUT_LVDS:
  4859. is_lvds = true;
  4860. break;
  4861. case INTEL_OUTPUT_SDVO:
  4862. case INTEL_OUTPUT_HDMI:
  4863. is_sdvo = true;
  4864. if (encoder->needs_tv_clock)
  4865. is_tv = true;
  4866. break;
  4867. case INTEL_OUTPUT_TVOUT:
  4868. is_tv = true;
  4869. break;
  4870. case INTEL_OUTPUT_DISPLAYPORT:
  4871. is_dp = true;
  4872. break;
  4873. }
  4874. num_connectors++;
  4875. }
  4876. refclk = i9xx_get_refclk(crtc, num_connectors);
  4877. /*
  4878. * Returns a set of divisors for the desired target clock with the given
  4879. * refclk, or FALSE. The returned values represent the clock equation:
  4880. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4881. */
  4882. limit = intel_limit(crtc, refclk);
  4883. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4884. &clock);
  4885. if (!ok) {
  4886. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4887. return -EINVAL;
  4888. }
  4889. /* Ensure that the cursor is valid for the new mode before changing... */
  4890. intel_crtc_update_cursor(crtc, true);
  4891. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4892. /*
  4893. * Ensure we match the reduced clock's P to the target clock.
  4894. * If the clocks don't match, we can't switch the display clock
  4895. * by using the FP0/FP1. In such case we will disable the LVDS
  4896. * downclock feature.
  4897. */
  4898. has_reduced_clock = limit->find_pll(limit, crtc,
  4899. dev_priv->lvds_downclock,
  4900. refclk,
  4901. &clock,
  4902. &reduced_clock);
  4903. }
  4904. if (is_sdvo && is_tv)
  4905. i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  4906. i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
  4907. &reduced_clock : NULL);
  4908. if (IS_GEN2(dev))
  4909. i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
  4910. else
  4911. i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
  4912. has_reduced_clock ? &reduced_clock : NULL,
  4913. num_connectors);
  4914. /* setup pipeconf */
  4915. pipeconf = I915_READ(PIPECONF(pipe));
  4916. /* Set up the display plane register */
  4917. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4918. if (pipe == 0)
  4919. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4920. else
  4921. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4922. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4923. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4924. * core speed.
  4925. *
  4926. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4927. * pipe == 0 check?
  4928. */
  4929. if (mode->clock >
  4930. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4931. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4932. else
  4933. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4934. }
  4935. /* default to 8bpc */
  4936. pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
  4937. if (is_dp) {
  4938. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4939. pipeconf |= PIPECONF_BPP_6 |
  4940. PIPECONF_DITHER_EN |
  4941. PIPECONF_DITHER_TYPE_SP;
  4942. }
  4943. }
  4944. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  4945. drm_mode_debug_printmodeline(mode);
  4946. if (HAS_PIPE_CXSR(dev)) {
  4947. if (intel_crtc->lowfreq_avail) {
  4948. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4949. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4950. } else {
  4951. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4952. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4953. }
  4954. }
  4955. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4956. if (!IS_GEN2(dev) &&
  4957. adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4958. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4959. /* the chip adds 2 halflines automatically */
  4960. adjusted_mode->crtc_vtotal -= 1;
  4961. adjusted_mode->crtc_vblank_end -= 1;
  4962. vsyncshift = adjusted_mode->crtc_hsync_start
  4963. - adjusted_mode->crtc_htotal/2;
  4964. } else {
  4965. pipeconf |= PIPECONF_PROGRESSIVE;
  4966. vsyncshift = 0;
  4967. }
  4968. if (!IS_GEN3(dev))
  4969. I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
  4970. I915_WRITE(HTOTAL(pipe),
  4971. (adjusted_mode->crtc_hdisplay - 1) |
  4972. ((adjusted_mode->crtc_htotal - 1) << 16));
  4973. I915_WRITE(HBLANK(pipe),
  4974. (adjusted_mode->crtc_hblank_start - 1) |
  4975. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4976. I915_WRITE(HSYNC(pipe),
  4977. (adjusted_mode->crtc_hsync_start - 1) |
  4978. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4979. I915_WRITE(VTOTAL(pipe),
  4980. (adjusted_mode->crtc_vdisplay - 1) |
  4981. ((adjusted_mode->crtc_vtotal - 1) << 16));
  4982. I915_WRITE(VBLANK(pipe),
  4983. (adjusted_mode->crtc_vblank_start - 1) |
  4984. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  4985. I915_WRITE(VSYNC(pipe),
  4986. (adjusted_mode->crtc_vsync_start - 1) |
  4987. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4988. /* pipesrc and dspsize control the size that is scaled from,
  4989. * which should always be the user's requested size.
  4990. */
  4991. I915_WRITE(DSPSIZE(plane),
  4992. ((mode->vdisplay - 1) << 16) |
  4993. (mode->hdisplay - 1));
  4994. I915_WRITE(DSPPOS(plane), 0);
  4995. I915_WRITE(PIPESRC(pipe),
  4996. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4997. I915_WRITE(PIPECONF(pipe), pipeconf);
  4998. POSTING_READ(PIPECONF(pipe));
  4999. intel_enable_pipe(dev_priv, pipe, false);
  5000. intel_wait_for_vblank(dev, pipe);
  5001. I915_WRITE(DSPCNTR(plane), dspcntr);
  5002. POSTING_READ(DSPCNTR(plane));
  5003. intel_enable_plane(dev_priv, plane, pipe);
  5004. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  5005. intel_update_watermarks(dev);
  5006. return ret;
  5007. }
  5008. /*
  5009. * Initialize reference clocks when the driver loads
  5010. */
  5011. void ironlake_init_pch_refclk(struct drm_device *dev)
  5012. {
  5013. struct drm_i915_private *dev_priv = dev->dev_private;
  5014. struct drm_mode_config *mode_config = &dev->mode_config;
  5015. struct intel_encoder *encoder;
  5016. u32 temp;
  5017. bool has_lvds = false;
  5018. bool has_cpu_edp = false;
  5019. bool has_pch_edp = false;
  5020. bool has_panel = false;
  5021. bool has_ck505 = false;
  5022. bool can_ssc = false;
  5023. /* We need to take the global config into account */
  5024. list_for_each_entry(encoder, &mode_config->encoder_list,
  5025. base.head) {
  5026. switch (encoder->type) {
  5027. case INTEL_OUTPUT_LVDS:
  5028. has_panel = true;
  5029. has_lvds = true;
  5030. break;
  5031. case INTEL_OUTPUT_EDP:
  5032. has_panel = true;
  5033. if (intel_encoder_is_pch_edp(&encoder->base))
  5034. has_pch_edp = true;
  5035. else
  5036. has_cpu_edp = true;
  5037. break;
  5038. }
  5039. }
  5040. if (HAS_PCH_IBX(dev)) {
  5041. has_ck505 = dev_priv->display_clock_mode;
  5042. can_ssc = has_ck505;
  5043. } else {
  5044. has_ck505 = false;
  5045. can_ssc = true;
  5046. }
  5047. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  5048. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  5049. has_ck505);
  5050. /* Ironlake: try to setup display ref clock before DPLL
  5051. * enabling. This is only under driver's control after
  5052. * PCH B stepping, previous chipset stepping should be
  5053. * ignoring this setting.
  5054. */
  5055. temp = I915_READ(PCH_DREF_CONTROL);
  5056. /* Always enable nonspread source */
  5057. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  5058. if (has_ck505)
  5059. temp |= DREF_NONSPREAD_CK505_ENABLE;
  5060. else
  5061. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  5062. if (has_panel) {
  5063. temp &= ~DREF_SSC_SOURCE_MASK;
  5064. temp |= DREF_SSC_SOURCE_ENABLE;
  5065. /* SSC must be turned on before enabling the CPU output */
  5066. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  5067. DRM_DEBUG_KMS("Using SSC on panel\n");
  5068. temp |= DREF_SSC1_ENABLE;
  5069. } else
  5070. temp &= ~DREF_SSC1_ENABLE;
  5071. /* Get SSC going before enabling the outputs */
  5072. I915_WRITE(PCH_DREF_CONTROL, temp);
  5073. POSTING_READ(PCH_DREF_CONTROL);
  5074. udelay(200);
  5075. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  5076. /* Enable CPU source on CPU attached eDP */
  5077. if (has_cpu_edp) {
  5078. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  5079. DRM_DEBUG_KMS("Using SSC on eDP\n");
  5080. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  5081. }
  5082. else
  5083. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  5084. } else
  5085. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  5086. I915_WRITE(PCH_DREF_CONTROL, temp);
  5087. POSTING_READ(PCH_DREF_CONTROL);
  5088. udelay(200);
  5089. } else {
  5090. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  5091. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  5092. /* Turn off CPU output */
  5093. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  5094. I915_WRITE(PCH_DREF_CONTROL, temp);
  5095. POSTING_READ(PCH_DREF_CONTROL);
  5096. udelay(200);
  5097. /* Turn off the SSC source */
  5098. temp &= ~DREF_SSC_SOURCE_MASK;
  5099. temp |= DREF_SSC_SOURCE_DISABLE;
  5100. /* Turn off SSC1 */
  5101. temp &= ~ DREF_SSC1_ENABLE;
  5102. I915_WRITE(PCH_DREF_CONTROL, temp);
  5103. POSTING_READ(PCH_DREF_CONTROL);
  5104. udelay(200);
  5105. }
  5106. }
  5107. static int ironlake_get_refclk(struct drm_crtc *crtc)
  5108. {
  5109. struct drm_device *dev = crtc->dev;
  5110. struct drm_i915_private *dev_priv = dev->dev_private;
  5111. struct intel_encoder *encoder;
  5112. struct drm_mode_config *mode_config = &dev->mode_config;
  5113. struct intel_encoder *edp_encoder = NULL;
  5114. int num_connectors = 0;
  5115. bool is_lvds = false;
  5116. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  5117. if (encoder->base.crtc != crtc)
  5118. continue;
  5119. switch (encoder->type) {
  5120. case INTEL_OUTPUT_LVDS:
  5121. is_lvds = true;
  5122. break;
  5123. case INTEL_OUTPUT_EDP:
  5124. edp_encoder = encoder;
  5125. break;
  5126. }
  5127. num_connectors++;
  5128. }
  5129. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  5130. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  5131. dev_priv->lvds_ssc_freq);
  5132. return dev_priv->lvds_ssc_freq * 1000;
  5133. }
  5134. return 120000;
  5135. }
  5136. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  5137. struct drm_display_mode *mode,
  5138. struct drm_display_mode *adjusted_mode,
  5139. int x, int y,
  5140. struct drm_framebuffer *old_fb)
  5141. {
  5142. struct drm_device *dev = crtc->dev;
  5143. struct drm_i915_private *dev_priv = dev->dev_private;
  5144. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5145. int pipe = intel_crtc->pipe;
  5146. int plane = intel_crtc->plane;
  5147. int refclk, num_connectors = 0;
  5148. intel_clock_t clock, reduced_clock;
  5149. u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
  5150. bool ok, has_reduced_clock = false, is_sdvo = false;
  5151. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  5152. struct drm_mode_config *mode_config = &dev->mode_config;
  5153. struct intel_encoder *encoder, *edp_encoder = NULL;
  5154. const intel_limit_t *limit;
  5155. int ret;
  5156. struct fdi_m_n m_n = {0};
  5157. u32 temp;
  5158. u32 lvds_sync = 0;
  5159. int target_clock, pixel_multiplier, lane, link_bw, factor;
  5160. unsigned int pipe_bpp;
  5161. bool dither;
  5162. bool is_cpu_edp = false, is_pch_edp = false;
  5163. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  5164. if (encoder->base.crtc != crtc)
  5165. continue;
  5166. switch (encoder->type) {
  5167. case INTEL_OUTPUT_LVDS:
  5168. is_lvds = true;
  5169. break;
  5170. case INTEL_OUTPUT_SDVO:
  5171. case INTEL_OUTPUT_HDMI:
  5172. is_sdvo = true;
  5173. if (encoder->needs_tv_clock)
  5174. is_tv = true;
  5175. break;
  5176. case INTEL_OUTPUT_TVOUT:
  5177. is_tv = true;
  5178. break;
  5179. case INTEL_OUTPUT_ANALOG:
  5180. is_crt = true;
  5181. break;
  5182. case INTEL_OUTPUT_DISPLAYPORT:
  5183. is_dp = true;
  5184. break;
  5185. case INTEL_OUTPUT_EDP:
  5186. is_dp = true;
  5187. if (intel_encoder_is_pch_edp(&encoder->base))
  5188. is_pch_edp = true;
  5189. else
  5190. is_cpu_edp = true;
  5191. edp_encoder = encoder;
  5192. break;
  5193. }
  5194. num_connectors++;
  5195. }
  5196. refclk = ironlake_get_refclk(crtc);
  5197. /*
  5198. * Returns a set of divisors for the desired target clock with the given
  5199. * refclk, or FALSE. The returned values represent the clock equation:
  5200. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  5201. */
  5202. limit = intel_limit(crtc, refclk);
  5203. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  5204. &clock);
  5205. if (!ok) {
  5206. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  5207. return -EINVAL;
  5208. }
  5209. /* Ensure that the cursor is valid for the new mode before changing... */
  5210. intel_crtc_update_cursor(crtc, true);
  5211. if (is_lvds && dev_priv->lvds_downclock_avail) {
  5212. /*
  5213. * Ensure we match the reduced clock's P to the target clock.
  5214. * If the clocks don't match, we can't switch the display clock
  5215. * by using the FP0/FP1. In such case we will disable the LVDS
  5216. * downclock feature.
  5217. */
  5218. has_reduced_clock = limit->find_pll(limit, crtc,
  5219. dev_priv->lvds_downclock,
  5220. refclk,
  5221. &clock,
  5222. &reduced_clock);
  5223. }
  5224. /* SDVO TV has fixed PLL values depend on its clock range,
  5225. this mirrors vbios setting. */
  5226. if (is_sdvo && is_tv) {
  5227. if (adjusted_mode->clock >= 100000
  5228. && adjusted_mode->clock < 140500) {
  5229. clock.p1 = 2;
  5230. clock.p2 = 10;
  5231. clock.n = 3;
  5232. clock.m1 = 16;
  5233. clock.m2 = 8;
  5234. } else if (adjusted_mode->clock >= 140500
  5235. && adjusted_mode->clock <= 200000) {
  5236. clock.p1 = 1;
  5237. clock.p2 = 10;
  5238. clock.n = 6;
  5239. clock.m1 = 12;
  5240. clock.m2 = 8;
  5241. }
  5242. }
  5243. /* FDI link */
  5244. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  5245. lane = 0;
  5246. /* CPU eDP doesn't require FDI link, so just set DP M/N
  5247. according to current link config */
  5248. if (is_cpu_edp) {
  5249. target_clock = mode->clock;
  5250. intel_edp_link_config(edp_encoder, &lane, &link_bw);
  5251. } else {
  5252. /* [e]DP over FDI requires target mode clock
  5253. instead of link clock */
  5254. if (is_dp)
  5255. target_clock = mode->clock;
  5256. else
  5257. target_clock = adjusted_mode->clock;
  5258. /* FDI is a binary signal running at ~2.7GHz, encoding
  5259. * each output octet as 10 bits. The actual frequency
  5260. * is stored as a divider into a 100MHz clock, and the
  5261. * mode pixel clock is stored in units of 1KHz.
  5262. * Hence the bw of each lane in terms of the mode signal
  5263. * is:
  5264. */
  5265. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  5266. }
  5267. /* determine panel color depth */
  5268. temp = I915_READ(PIPECONF(pipe));
  5269. temp &= ~PIPE_BPC_MASK;
  5270. dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
  5271. switch (pipe_bpp) {
  5272. case 18:
  5273. temp |= PIPE_6BPC;
  5274. break;
  5275. case 24:
  5276. temp |= PIPE_8BPC;
  5277. break;
  5278. case 30:
  5279. temp |= PIPE_10BPC;
  5280. break;
  5281. case 36:
  5282. temp |= PIPE_12BPC;
  5283. break;
  5284. default:
  5285. WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
  5286. pipe_bpp);
  5287. temp |= PIPE_8BPC;
  5288. pipe_bpp = 24;
  5289. break;
  5290. }
  5291. intel_crtc->bpp = pipe_bpp;
  5292. I915_WRITE(PIPECONF(pipe), temp);
  5293. if (!lane) {
  5294. /*
  5295. * Account for spread spectrum to avoid
  5296. * oversubscribing the link. Max center spread
  5297. * is 2.5%; use 5% for safety's sake.
  5298. */
  5299. u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
  5300. lane = bps / (link_bw * 8) + 1;
  5301. }
  5302. intel_crtc->fdi_lanes = lane;
  5303. if (pixel_multiplier > 1)
  5304. link_bw *= pixel_multiplier;
  5305. ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  5306. &m_n);
  5307. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  5308. if (has_reduced_clock)
  5309. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  5310. reduced_clock.m2;
  5311. /* Enable autotuning of the PLL clock (if permissible) */
  5312. factor = 21;
  5313. if (is_lvds) {
  5314. if ((intel_panel_use_ssc(dev_priv) &&
  5315. dev_priv->lvds_ssc_freq == 100) ||
  5316. (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
  5317. factor = 25;
  5318. } else if (is_sdvo && is_tv)
  5319. factor = 20;
  5320. if (clock.m < factor * clock.n)
  5321. fp |= FP_CB_TUNE;
  5322. dpll = 0;
  5323. if (is_lvds)
  5324. dpll |= DPLLB_MODE_LVDS;
  5325. else
  5326. dpll |= DPLLB_MODE_DAC_SERIAL;
  5327. if (is_sdvo) {
  5328. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  5329. if (pixel_multiplier > 1) {
  5330. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  5331. }
  5332. dpll |= DPLL_DVO_HIGH_SPEED;
  5333. }
  5334. if (is_dp && !is_cpu_edp)
  5335. dpll |= DPLL_DVO_HIGH_SPEED;
  5336. /* compute bitmask from p1 value */
  5337. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  5338. /* also FPA1 */
  5339. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  5340. switch (clock.p2) {
  5341. case 5:
  5342. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  5343. break;
  5344. case 7:
  5345. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  5346. break;
  5347. case 10:
  5348. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  5349. break;
  5350. case 14:
  5351. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  5352. break;
  5353. }
  5354. if (is_sdvo && is_tv)
  5355. dpll |= PLL_REF_INPUT_TVCLKINBC;
  5356. else if (is_tv)
  5357. /* XXX: just matching BIOS for now */
  5358. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  5359. dpll |= 3;
  5360. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  5361. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  5362. else
  5363. dpll |= PLL_REF_INPUT_DREFCLK;
  5364. /* setup pipeconf */
  5365. pipeconf = I915_READ(PIPECONF(pipe));
  5366. /* Set up the display plane register */
  5367. dspcntr = DISPPLANE_GAMMA_ENABLE;
  5368. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  5369. drm_mode_debug_printmodeline(mode);
  5370. /* PCH eDP needs FDI, but CPU eDP does not */
  5371. if (!intel_crtc->no_pll) {
  5372. if (!is_cpu_edp) {
  5373. I915_WRITE(PCH_FP0(pipe), fp);
  5374. I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  5375. POSTING_READ(PCH_DPLL(pipe));
  5376. udelay(150);
  5377. }
  5378. } else {
  5379. if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
  5380. fp == I915_READ(PCH_FP0(0))) {
  5381. intel_crtc->use_pll_a = true;
  5382. DRM_DEBUG_KMS("using pipe a dpll\n");
  5383. } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
  5384. fp == I915_READ(PCH_FP0(1))) {
  5385. intel_crtc->use_pll_a = false;
  5386. DRM_DEBUG_KMS("using pipe b dpll\n");
  5387. } else {
  5388. DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
  5389. return -EINVAL;
  5390. }
  5391. }
  5392. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  5393. * This is an exception to the general rule that mode_set doesn't turn
  5394. * things on.
  5395. */
  5396. if (is_lvds) {
  5397. temp = I915_READ(PCH_LVDS);
  5398. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  5399. if (HAS_PCH_CPT(dev)) {
  5400. temp &= ~PORT_TRANS_SEL_MASK;
  5401. temp |= PORT_TRANS_SEL_CPT(pipe);
  5402. } else {
  5403. if (pipe == 1)
  5404. temp |= LVDS_PIPEB_SELECT;
  5405. else
  5406. temp &= ~LVDS_PIPEB_SELECT;
  5407. }
  5408. /* set the corresponsding LVDS_BORDER bit */
  5409. temp |= dev_priv->lvds_border_bits;
  5410. /* Set the B0-B3 data pairs corresponding to whether we're going to
  5411. * set the DPLLs for dual-channel mode or not.
  5412. */
  5413. if (clock.p2 == 7)
  5414. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  5415. else
  5416. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  5417. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  5418. * appropriately here, but we need to look more thoroughly into how
  5419. * panels behave in the two modes.
  5420. */
  5421. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  5422. lvds_sync |= LVDS_HSYNC_POLARITY;
  5423. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  5424. lvds_sync |= LVDS_VSYNC_POLARITY;
  5425. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  5426. != lvds_sync) {
  5427. char flags[2] = "-+";
  5428. DRM_INFO("Changing LVDS panel from "
  5429. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  5430. flags[!(temp & LVDS_HSYNC_POLARITY)],
  5431. flags[!(temp & LVDS_VSYNC_POLARITY)],
  5432. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  5433. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  5434. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  5435. temp |= lvds_sync;
  5436. }
  5437. I915_WRITE(PCH_LVDS, temp);
  5438. }
  5439. pipeconf &= ~PIPECONF_DITHER_EN;
  5440. pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
  5441. if ((is_lvds && dev_priv->lvds_dither) || dither) {
  5442. pipeconf |= PIPECONF_DITHER_EN;
  5443. pipeconf |= PIPECONF_DITHER_TYPE_SP;
  5444. }
  5445. if (is_dp && !is_cpu_edp) {
  5446. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  5447. } else {
  5448. /* For non-DP output, clear any trans DP clock recovery setting.*/
  5449. I915_WRITE(TRANSDATA_M1(pipe), 0);
  5450. I915_WRITE(TRANSDATA_N1(pipe), 0);
  5451. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  5452. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  5453. }
  5454. if (!intel_crtc->no_pll && (!edp_encoder || is_pch_edp)) {
  5455. I915_WRITE(PCH_DPLL(pipe), dpll);
  5456. /* Wait for the clocks to stabilize. */
  5457. POSTING_READ(PCH_DPLL(pipe));
  5458. udelay(150);
  5459. /* The pixel multiplier can only be updated once the
  5460. * DPLL is enabled and the clocks are stable.
  5461. *
  5462. * So write it again.
  5463. */
  5464. I915_WRITE(PCH_DPLL(pipe), dpll);
  5465. }
  5466. intel_crtc->lowfreq_avail = false;
  5467. if (!intel_crtc->no_pll) {
  5468. if (is_lvds && has_reduced_clock && i915_powersave) {
  5469. I915_WRITE(PCH_FP1(pipe), fp2);
  5470. intel_crtc->lowfreq_avail = true;
  5471. if (HAS_PIPE_CXSR(dev)) {
  5472. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  5473. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  5474. }
  5475. } else {
  5476. I915_WRITE(PCH_FP1(pipe), fp);
  5477. if (HAS_PIPE_CXSR(dev)) {
  5478. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  5479. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  5480. }
  5481. }
  5482. }
  5483. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  5484. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  5485. pipeconf |= PIPECONF_INTERLACED_ILK;
  5486. /* the chip adds 2 halflines automatically */
  5487. adjusted_mode->crtc_vtotal -= 1;
  5488. adjusted_mode->crtc_vblank_end -= 1;
  5489. I915_WRITE(VSYNCSHIFT(pipe),
  5490. adjusted_mode->crtc_hsync_start
  5491. - adjusted_mode->crtc_htotal/2);
  5492. } else {
  5493. pipeconf |= PIPECONF_PROGRESSIVE;
  5494. I915_WRITE(VSYNCSHIFT(pipe), 0);
  5495. }
  5496. I915_WRITE(HTOTAL(pipe),
  5497. (adjusted_mode->crtc_hdisplay - 1) |
  5498. ((adjusted_mode->crtc_htotal - 1) << 16));
  5499. I915_WRITE(HBLANK(pipe),
  5500. (adjusted_mode->crtc_hblank_start - 1) |
  5501. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  5502. I915_WRITE(HSYNC(pipe),
  5503. (adjusted_mode->crtc_hsync_start - 1) |
  5504. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  5505. I915_WRITE(VTOTAL(pipe),
  5506. (adjusted_mode->crtc_vdisplay - 1) |
  5507. ((adjusted_mode->crtc_vtotal - 1) << 16));
  5508. I915_WRITE(VBLANK(pipe),
  5509. (adjusted_mode->crtc_vblank_start - 1) |
  5510. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  5511. I915_WRITE(VSYNC(pipe),
  5512. (adjusted_mode->crtc_vsync_start - 1) |
  5513. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  5514. /* pipesrc controls the size that is scaled from, which should
  5515. * always be the user's requested size.
  5516. */
  5517. I915_WRITE(PIPESRC(pipe),
  5518. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  5519. I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  5520. I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  5521. I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  5522. I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  5523. if (is_cpu_edp)
  5524. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  5525. I915_WRITE(PIPECONF(pipe), pipeconf);
  5526. POSTING_READ(PIPECONF(pipe));
  5527. intel_wait_for_vblank(dev, pipe);
  5528. I915_WRITE(DSPCNTR(plane), dspcntr);
  5529. POSTING_READ(DSPCNTR(plane));
  5530. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  5531. intel_update_watermarks(dev);
  5532. return ret;
  5533. }
  5534. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5535. struct drm_display_mode *mode,
  5536. struct drm_display_mode *adjusted_mode,
  5537. int x, int y,
  5538. struct drm_framebuffer *old_fb)
  5539. {
  5540. struct drm_device *dev = crtc->dev;
  5541. struct drm_i915_private *dev_priv = dev->dev_private;
  5542. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5543. int pipe = intel_crtc->pipe;
  5544. int ret;
  5545. drm_vblank_pre_modeset(dev, pipe);
  5546. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  5547. x, y, old_fb);
  5548. drm_vblank_post_modeset(dev, pipe);
  5549. if (ret)
  5550. intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
  5551. else
  5552. intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
  5553. return ret;
  5554. }
  5555. static bool intel_eld_uptodate(struct drm_connector *connector,
  5556. int reg_eldv, uint32_t bits_eldv,
  5557. int reg_elda, uint32_t bits_elda,
  5558. int reg_edid)
  5559. {
  5560. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5561. uint8_t *eld = connector->eld;
  5562. uint32_t i;
  5563. i = I915_READ(reg_eldv);
  5564. i &= bits_eldv;
  5565. if (!eld[0])
  5566. return !i;
  5567. if (!i)
  5568. return false;
  5569. i = I915_READ(reg_elda);
  5570. i &= ~bits_elda;
  5571. I915_WRITE(reg_elda, i);
  5572. for (i = 0; i < eld[2]; i++)
  5573. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5574. return false;
  5575. return true;
  5576. }
  5577. static void g4x_write_eld(struct drm_connector *connector,
  5578. struct drm_crtc *crtc)
  5579. {
  5580. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5581. uint8_t *eld = connector->eld;
  5582. uint32_t eldv;
  5583. uint32_t len;
  5584. uint32_t i;
  5585. i = I915_READ(G4X_AUD_VID_DID);
  5586. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5587. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5588. else
  5589. eldv = G4X_ELDV_DEVCTG;
  5590. if (intel_eld_uptodate(connector,
  5591. G4X_AUD_CNTL_ST, eldv,
  5592. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5593. G4X_HDMIW_HDMIEDID))
  5594. return;
  5595. i = I915_READ(G4X_AUD_CNTL_ST);
  5596. i &= ~(eldv | G4X_ELD_ADDR);
  5597. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5598. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5599. if (!eld[0])
  5600. return;
  5601. len = min_t(uint8_t, eld[2], len);
  5602. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5603. for (i = 0; i < len; i++)
  5604. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5605. i = I915_READ(G4X_AUD_CNTL_ST);
  5606. i |= eldv;
  5607. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5608. }
  5609. static void ironlake_write_eld(struct drm_connector *connector,
  5610. struct drm_crtc *crtc)
  5611. {
  5612. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5613. uint8_t *eld = connector->eld;
  5614. uint32_t eldv;
  5615. uint32_t i;
  5616. int len;
  5617. int hdmiw_hdmiedid;
  5618. int aud_config;
  5619. int aud_cntl_st;
  5620. int aud_cntrl_st2;
  5621. if (HAS_PCH_IBX(connector->dev)) {
  5622. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
  5623. aud_config = IBX_AUD_CONFIG_A;
  5624. aud_cntl_st = IBX_AUD_CNTL_ST_A;
  5625. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5626. } else {
  5627. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
  5628. aud_config = CPT_AUD_CONFIG_A;
  5629. aud_cntl_st = CPT_AUD_CNTL_ST_A;
  5630. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5631. }
  5632. i = to_intel_crtc(crtc)->pipe;
  5633. hdmiw_hdmiedid += i * 0x100;
  5634. aud_cntl_st += i * 0x100;
  5635. aud_config += i * 0x100;
  5636. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
  5637. i = I915_READ(aud_cntl_st);
  5638. i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
  5639. if (!i) {
  5640. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5641. /* operate blindly on all ports */
  5642. eldv = IBX_ELD_VALIDB;
  5643. eldv |= IBX_ELD_VALIDB << 4;
  5644. eldv |= IBX_ELD_VALIDB << 8;
  5645. } else {
  5646. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  5647. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5648. }
  5649. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5650. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5651. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5652. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5653. } else
  5654. I915_WRITE(aud_config, 0);
  5655. if (intel_eld_uptodate(connector,
  5656. aud_cntrl_st2, eldv,
  5657. aud_cntl_st, IBX_ELD_ADDRESS,
  5658. hdmiw_hdmiedid))
  5659. return;
  5660. i = I915_READ(aud_cntrl_st2);
  5661. i &= ~eldv;
  5662. I915_WRITE(aud_cntrl_st2, i);
  5663. if (!eld[0])
  5664. return;
  5665. i = I915_READ(aud_cntl_st);
  5666. i &= ~IBX_ELD_ADDRESS;
  5667. I915_WRITE(aud_cntl_st, i);
  5668. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5669. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5670. for (i = 0; i < len; i++)
  5671. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5672. i = I915_READ(aud_cntrl_st2);
  5673. i |= eldv;
  5674. I915_WRITE(aud_cntrl_st2, i);
  5675. }
  5676. void intel_write_eld(struct drm_encoder *encoder,
  5677. struct drm_display_mode *mode)
  5678. {
  5679. struct drm_crtc *crtc = encoder->crtc;
  5680. struct drm_connector *connector;
  5681. struct drm_device *dev = encoder->dev;
  5682. struct drm_i915_private *dev_priv = dev->dev_private;
  5683. connector = drm_select_eld(encoder, mode);
  5684. if (!connector)
  5685. return;
  5686. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5687. connector->base.id,
  5688. drm_get_connector_name(connector),
  5689. connector->encoder->base.id,
  5690. drm_get_encoder_name(connector->encoder));
  5691. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5692. if (dev_priv->display.write_eld)
  5693. dev_priv->display.write_eld(connector, crtc);
  5694. }
  5695. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5696. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5697. {
  5698. struct drm_device *dev = crtc->dev;
  5699. struct drm_i915_private *dev_priv = dev->dev_private;
  5700. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5701. int palreg = PALETTE(intel_crtc->pipe);
  5702. int i;
  5703. /* The clocks have to be on to load the palette. */
  5704. if (!crtc->enabled || !intel_crtc->active)
  5705. return;
  5706. /* use legacy palette for Ironlake */
  5707. if (HAS_PCH_SPLIT(dev))
  5708. palreg = LGC_PALETTE(intel_crtc->pipe);
  5709. for (i = 0; i < 256; i++) {
  5710. I915_WRITE(palreg + 4 * i,
  5711. (intel_crtc->lut_r[i] << 16) |
  5712. (intel_crtc->lut_g[i] << 8) |
  5713. intel_crtc->lut_b[i]);
  5714. }
  5715. }
  5716. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5717. {
  5718. struct drm_device *dev = crtc->dev;
  5719. struct drm_i915_private *dev_priv = dev->dev_private;
  5720. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5721. bool visible = base != 0;
  5722. u32 cntl;
  5723. if (intel_crtc->cursor_visible == visible)
  5724. return;
  5725. cntl = I915_READ(_CURACNTR);
  5726. if (visible) {
  5727. /* On these chipsets we can only modify the base whilst
  5728. * the cursor is disabled.
  5729. */
  5730. I915_WRITE(_CURABASE, base);
  5731. cntl &= ~(CURSOR_FORMAT_MASK);
  5732. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5733. cntl |= CURSOR_ENABLE |
  5734. CURSOR_GAMMA_ENABLE |
  5735. CURSOR_FORMAT_ARGB;
  5736. } else
  5737. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5738. I915_WRITE(_CURACNTR, cntl);
  5739. intel_crtc->cursor_visible = visible;
  5740. }
  5741. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5742. {
  5743. struct drm_device *dev = crtc->dev;
  5744. struct drm_i915_private *dev_priv = dev->dev_private;
  5745. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5746. int pipe = intel_crtc->pipe;
  5747. bool visible = base != 0;
  5748. if (intel_crtc->cursor_visible != visible) {
  5749. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5750. if (base) {
  5751. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5752. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5753. cntl |= pipe << 28; /* Connect to correct pipe */
  5754. } else {
  5755. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5756. cntl |= CURSOR_MODE_DISABLE;
  5757. }
  5758. I915_WRITE(CURCNTR(pipe), cntl);
  5759. intel_crtc->cursor_visible = visible;
  5760. }
  5761. /* and commit changes on next vblank */
  5762. I915_WRITE(CURBASE(pipe), base);
  5763. }
  5764. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5765. {
  5766. struct drm_device *dev = crtc->dev;
  5767. struct drm_i915_private *dev_priv = dev->dev_private;
  5768. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5769. int pipe = intel_crtc->pipe;
  5770. bool visible = base != 0;
  5771. if (intel_crtc->cursor_visible != visible) {
  5772. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5773. if (base) {
  5774. cntl &= ~CURSOR_MODE;
  5775. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5776. } else {
  5777. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5778. cntl |= CURSOR_MODE_DISABLE;
  5779. }
  5780. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5781. intel_crtc->cursor_visible = visible;
  5782. }
  5783. /* and commit changes on next vblank */
  5784. I915_WRITE(CURBASE_IVB(pipe), base);
  5785. }
  5786. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5787. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5788. bool on)
  5789. {
  5790. struct drm_device *dev = crtc->dev;
  5791. struct drm_i915_private *dev_priv = dev->dev_private;
  5792. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5793. int pipe = intel_crtc->pipe;
  5794. int x = intel_crtc->cursor_x;
  5795. int y = intel_crtc->cursor_y;
  5796. u32 base, pos;
  5797. bool visible;
  5798. pos = 0;
  5799. if (on && crtc->enabled && crtc->fb) {
  5800. base = intel_crtc->cursor_addr;
  5801. if (x > (int) crtc->fb->width)
  5802. base = 0;
  5803. if (y > (int) crtc->fb->height)
  5804. base = 0;
  5805. } else
  5806. base = 0;
  5807. if (x < 0) {
  5808. if (x + intel_crtc->cursor_width < 0)
  5809. base = 0;
  5810. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5811. x = -x;
  5812. }
  5813. pos |= x << CURSOR_X_SHIFT;
  5814. if (y < 0) {
  5815. if (y + intel_crtc->cursor_height < 0)
  5816. base = 0;
  5817. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5818. y = -y;
  5819. }
  5820. pos |= y << CURSOR_Y_SHIFT;
  5821. visible = base != 0;
  5822. if (!visible && !intel_crtc->cursor_visible)
  5823. return;
  5824. if (IS_IVYBRIDGE(dev)) {
  5825. I915_WRITE(CURPOS_IVB(pipe), pos);
  5826. ivb_update_cursor(crtc, base);
  5827. } else {
  5828. I915_WRITE(CURPOS(pipe), pos);
  5829. if (IS_845G(dev) || IS_I865G(dev))
  5830. i845_update_cursor(crtc, base);
  5831. else
  5832. i9xx_update_cursor(crtc, base);
  5833. }
  5834. if (visible)
  5835. intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
  5836. }
  5837. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5838. struct drm_file *file,
  5839. uint32_t handle,
  5840. uint32_t width, uint32_t height)
  5841. {
  5842. struct drm_device *dev = crtc->dev;
  5843. struct drm_i915_private *dev_priv = dev->dev_private;
  5844. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5845. struct drm_i915_gem_object *obj;
  5846. uint32_t addr;
  5847. int ret;
  5848. DRM_DEBUG_KMS("\n");
  5849. /* if we want to turn off the cursor ignore width and height */
  5850. if (!handle) {
  5851. DRM_DEBUG_KMS("cursor off\n");
  5852. addr = 0;
  5853. obj = NULL;
  5854. mutex_lock(&dev->struct_mutex);
  5855. goto finish;
  5856. }
  5857. /* Currently we only support 64x64 cursors */
  5858. if (width != 64 || height != 64) {
  5859. DRM_ERROR("we currently only support 64x64 cursors\n");
  5860. return -EINVAL;
  5861. }
  5862. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5863. if (&obj->base == NULL)
  5864. return -ENOENT;
  5865. if (obj->base.size < width * height * 4) {
  5866. DRM_ERROR("buffer is to small\n");
  5867. ret = -ENOMEM;
  5868. goto fail;
  5869. }
  5870. /* we only need to pin inside GTT if cursor is non-phy */
  5871. mutex_lock(&dev->struct_mutex);
  5872. if (!dev_priv->info->cursor_needs_physical) {
  5873. if (obj->tiling_mode) {
  5874. DRM_ERROR("cursor cannot be tiled\n");
  5875. ret = -EINVAL;
  5876. goto fail_locked;
  5877. }
  5878. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  5879. if (ret) {
  5880. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5881. goto fail_locked;
  5882. }
  5883. ret = i915_gem_object_put_fence(obj);
  5884. if (ret) {
  5885. DRM_ERROR("failed to release fence for cursor");
  5886. goto fail_unpin;
  5887. }
  5888. addr = obj->gtt_offset;
  5889. } else {
  5890. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5891. ret = i915_gem_attach_phys_object(dev, obj,
  5892. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5893. align);
  5894. if (ret) {
  5895. DRM_ERROR("failed to attach phys object\n");
  5896. goto fail_locked;
  5897. }
  5898. addr = obj->phys_obj->handle->busaddr;
  5899. }
  5900. if (IS_GEN2(dev))
  5901. I915_WRITE(CURSIZE, (height << 12) | width);
  5902. finish:
  5903. if (intel_crtc->cursor_bo) {
  5904. if (dev_priv->info->cursor_needs_physical) {
  5905. if (intel_crtc->cursor_bo != obj)
  5906. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5907. } else
  5908. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5909. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5910. }
  5911. mutex_unlock(&dev->struct_mutex);
  5912. intel_crtc->cursor_addr = addr;
  5913. intel_crtc->cursor_bo = obj;
  5914. intel_crtc->cursor_width = width;
  5915. intel_crtc->cursor_height = height;
  5916. intel_crtc_update_cursor(crtc, true);
  5917. return 0;
  5918. fail_unpin:
  5919. i915_gem_object_unpin(obj);
  5920. fail_locked:
  5921. mutex_unlock(&dev->struct_mutex);
  5922. fail:
  5923. drm_gem_object_unreference_unlocked(&obj->base);
  5924. return ret;
  5925. }
  5926. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5927. {
  5928. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5929. intel_crtc->cursor_x = x;
  5930. intel_crtc->cursor_y = y;
  5931. intel_crtc_update_cursor(crtc, true);
  5932. return 0;
  5933. }
  5934. /** Sets the color ramps on behalf of RandR */
  5935. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5936. u16 blue, int regno)
  5937. {
  5938. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5939. intel_crtc->lut_r[regno] = red >> 8;
  5940. intel_crtc->lut_g[regno] = green >> 8;
  5941. intel_crtc->lut_b[regno] = blue >> 8;
  5942. }
  5943. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5944. u16 *blue, int regno)
  5945. {
  5946. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5947. *red = intel_crtc->lut_r[regno] << 8;
  5948. *green = intel_crtc->lut_g[regno] << 8;
  5949. *blue = intel_crtc->lut_b[regno] << 8;
  5950. }
  5951. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5952. u16 *blue, uint32_t start, uint32_t size)
  5953. {
  5954. int end = (start + size > 256) ? 256 : start + size, i;
  5955. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5956. for (i = start; i < end; i++) {
  5957. intel_crtc->lut_r[i] = red[i] >> 8;
  5958. intel_crtc->lut_g[i] = green[i] >> 8;
  5959. intel_crtc->lut_b[i] = blue[i] >> 8;
  5960. }
  5961. intel_crtc_load_lut(crtc);
  5962. }
  5963. /**
  5964. * Get a pipe with a simple mode set on it for doing load-based monitor
  5965. * detection.
  5966. *
  5967. * It will be up to the load-detect code to adjust the pipe as appropriate for
  5968. * its requirements. The pipe will be connected to no other encoders.
  5969. *
  5970. * Currently this code will only succeed if there is a pipe with no encoders
  5971. * configured for it. In the future, it could choose to temporarily disable
  5972. * some outputs to free up a pipe for its use.
  5973. *
  5974. * \return crtc, or NULL if no pipes are available.
  5975. */
  5976. /* VESA 640x480x72Hz mode to set on the pipe */
  5977. static struct drm_display_mode load_detect_mode = {
  5978. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5979. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5980. };
  5981. static struct drm_framebuffer *
  5982. intel_framebuffer_create(struct drm_device *dev,
  5983. struct drm_mode_fb_cmd2 *mode_cmd,
  5984. struct drm_i915_gem_object *obj)
  5985. {
  5986. struct intel_framebuffer *intel_fb;
  5987. int ret;
  5988. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5989. if (!intel_fb) {
  5990. drm_gem_object_unreference_unlocked(&obj->base);
  5991. return ERR_PTR(-ENOMEM);
  5992. }
  5993. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5994. if (ret) {
  5995. drm_gem_object_unreference_unlocked(&obj->base);
  5996. kfree(intel_fb);
  5997. return ERR_PTR(ret);
  5998. }
  5999. return &intel_fb->base;
  6000. }
  6001. static u32
  6002. intel_framebuffer_pitch_for_width(int width, int bpp)
  6003. {
  6004. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  6005. return ALIGN(pitch, 64);
  6006. }
  6007. static u32
  6008. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  6009. {
  6010. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  6011. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  6012. }
  6013. static struct drm_framebuffer *
  6014. intel_framebuffer_create_for_mode(struct drm_device *dev,
  6015. struct drm_display_mode *mode,
  6016. int depth, int bpp)
  6017. {
  6018. struct drm_i915_gem_object *obj;
  6019. struct drm_mode_fb_cmd2 mode_cmd;
  6020. obj = i915_gem_alloc_object(dev,
  6021. intel_framebuffer_size_for_mode(mode, bpp));
  6022. if (obj == NULL)
  6023. return ERR_PTR(-ENOMEM);
  6024. mode_cmd.width = mode->hdisplay;
  6025. mode_cmd.height = mode->vdisplay;
  6026. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  6027. bpp);
  6028. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  6029. return intel_framebuffer_create(dev, &mode_cmd, obj);
  6030. }
  6031. static struct drm_framebuffer *
  6032. mode_fits_in_fbdev(struct drm_device *dev,
  6033. struct drm_display_mode *mode)
  6034. {
  6035. struct drm_i915_private *dev_priv = dev->dev_private;
  6036. struct drm_i915_gem_object *obj;
  6037. struct drm_framebuffer *fb;
  6038. if (dev_priv->fbdev == NULL)
  6039. return NULL;
  6040. obj = dev_priv->fbdev->ifb.obj;
  6041. if (obj == NULL)
  6042. return NULL;
  6043. fb = &dev_priv->fbdev->ifb.base;
  6044. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  6045. fb->bits_per_pixel))
  6046. return NULL;
  6047. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  6048. return NULL;
  6049. return fb;
  6050. }
  6051. bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
  6052. struct drm_connector *connector,
  6053. struct drm_display_mode *mode,
  6054. struct intel_load_detect_pipe *old)
  6055. {
  6056. struct intel_crtc *intel_crtc;
  6057. struct drm_crtc *possible_crtc;
  6058. struct drm_encoder *encoder = &intel_encoder->base;
  6059. struct drm_crtc *crtc = NULL;
  6060. struct drm_device *dev = encoder->dev;
  6061. struct drm_framebuffer *old_fb;
  6062. int i = -1;
  6063. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6064. connector->base.id, drm_get_connector_name(connector),
  6065. encoder->base.id, drm_get_encoder_name(encoder));
  6066. /*
  6067. * Algorithm gets a little messy:
  6068. *
  6069. * - if the connector already has an assigned crtc, use it (but make
  6070. * sure it's on first)
  6071. *
  6072. * - try to find the first unused crtc that can drive this connector,
  6073. * and use that if we find one
  6074. */
  6075. /* See if we already have a CRTC for this connector */
  6076. if (encoder->crtc) {
  6077. crtc = encoder->crtc;
  6078. intel_crtc = to_intel_crtc(crtc);
  6079. old->dpms_mode = intel_crtc->dpms_mode;
  6080. old->load_detect_temp = false;
  6081. /* Make sure the crtc and connector are running */
  6082. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  6083. struct drm_encoder_helper_funcs *encoder_funcs;
  6084. struct drm_crtc_helper_funcs *crtc_funcs;
  6085. crtc_funcs = crtc->helper_private;
  6086. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  6087. encoder_funcs = encoder->helper_private;
  6088. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  6089. }
  6090. return true;
  6091. }
  6092. /* Find an unused one (if possible) */
  6093. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  6094. i++;
  6095. if (!(encoder->possible_crtcs & (1 << i)))
  6096. continue;
  6097. if (!possible_crtc->enabled) {
  6098. crtc = possible_crtc;
  6099. break;
  6100. }
  6101. }
  6102. /*
  6103. * If we didn't find an unused CRTC, don't use any.
  6104. */
  6105. if (!crtc) {
  6106. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  6107. return false;
  6108. }
  6109. encoder->crtc = crtc;
  6110. connector->encoder = encoder;
  6111. intel_crtc = to_intel_crtc(crtc);
  6112. old->dpms_mode = intel_crtc->dpms_mode;
  6113. old->load_detect_temp = true;
  6114. old->release_fb = NULL;
  6115. if (!mode)
  6116. mode = &load_detect_mode;
  6117. old_fb = crtc->fb;
  6118. /* We need a framebuffer large enough to accommodate all accesses
  6119. * that the plane may generate whilst we perform load detection.
  6120. * We can not rely on the fbcon either being present (we get called
  6121. * during its initialisation to detect all boot displays, or it may
  6122. * not even exist) or that it is large enough to satisfy the
  6123. * requested mode.
  6124. */
  6125. crtc->fb = mode_fits_in_fbdev(dev, mode);
  6126. if (crtc->fb == NULL) {
  6127. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  6128. crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  6129. old->release_fb = crtc->fb;
  6130. } else
  6131. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  6132. if (IS_ERR(crtc->fb)) {
  6133. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  6134. crtc->fb = old_fb;
  6135. return false;
  6136. }
  6137. if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
  6138. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  6139. if (old->release_fb)
  6140. old->release_fb->funcs->destroy(old->release_fb);
  6141. crtc->fb = old_fb;
  6142. return false;
  6143. }
  6144. /* let the connector get through one full cycle before testing */
  6145. intel_wait_for_vblank(dev, intel_crtc->pipe);
  6146. return true;
  6147. }
  6148. void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
  6149. struct drm_connector *connector,
  6150. struct intel_load_detect_pipe *old)
  6151. {
  6152. struct drm_encoder *encoder = &intel_encoder->base;
  6153. struct drm_device *dev = encoder->dev;
  6154. struct drm_crtc *crtc = encoder->crtc;
  6155. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  6156. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  6157. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6158. connector->base.id, drm_get_connector_name(connector),
  6159. encoder->base.id, drm_get_encoder_name(encoder));
  6160. if (old->load_detect_temp) {
  6161. connector->encoder = NULL;
  6162. drm_helper_disable_unused_functions(dev);
  6163. if (old->release_fb)
  6164. old->release_fb->funcs->destroy(old->release_fb);
  6165. return;
  6166. }
  6167. /* Switch crtc and encoder back off if necessary */
  6168. if (old->dpms_mode != DRM_MODE_DPMS_ON) {
  6169. encoder_funcs->dpms(encoder, old->dpms_mode);
  6170. crtc_funcs->dpms(crtc, old->dpms_mode);
  6171. }
  6172. }
  6173. /* Returns the clock of the currently programmed mode of the given pipe. */
  6174. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  6175. {
  6176. struct drm_i915_private *dev_priv = dev->dev_private;
  6177. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6178. int pipe = intel_crtc->pipe;
  6179. u32 dpll = I915_READ(DPLL(pipe));
  6180. u32 fp;
  6181. intel_clock_t clock;
  6182. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  6183. fp = I915_READ(FP0(pipe));
  6184. else
  6185. fp = I915_READ(FP1(pipe));
  6186. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  6187. if (IS_PINEVIEW(dev)) {
  6188. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  6189. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6190. } else {
  6191. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  6192. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6193. }
  6194. if (!IS_GEN2(dev)) {
  6195. if (IS_PINEVIEW(dev))
  6196. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  6197. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  6198. else
  6199. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  6200. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6201. switch (dpll & DPLL_MODE_MASK) {
  6202. case DPLLB_MODE_DAC_SERIAL:
  6203. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  6204. 5 : 10;
  6205. break;
  6206. case DPLLB_MODE_LVDS:
  6207. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  6208. 7 : 14;
  6209. break;
  6210. default:
  6211. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  6212. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  6213. return 0;
  6214. }
  6215. /* XXX: Handle the 100Mhz refclk */
  6216. intel_clock(dev, 96000, &clock);
  6217. } else {
  6218. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  6219. if (is_lvds) {
  6220. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  6221. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6222. clock.p2 = 14;
  6223. if ((dpll & PLL_REF_INPUT_MASK) ==
  6224. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  6225. /* XXX: might not be 66MHz */
  6226. intel_clock(dev, 66000, &clock);
  6227. } else
  6228. intel_clock(dev, 48000, &clock);
  6229. } else {
  6230. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  6231. clock.p1 = 2;
  6232. else {
  6233. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  6234. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  6235. }
  6236. if (dpll & PLL_P2_DIVIDE_BY_4)
  6237. clock.p2 = 4;
  6238. else
  6239. clock.p2 = 2;
  6240. intel_clock(dev, 48000, &clock);
  6241. }
  6242. }
  6243. /* XXX: It would be nice to validate the clocks, but we can't reuse
  6244. * i830PllIsValid() because it relies on the xf86_config connector
  6245. * configuration being accurate, which it isn't necessarily.
  6246. */
  6247. return clock.dot;
  6248. }
  6249. /** Returns the currently programmed mode of the given pipe. */
  6250. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  6251. struct drm_crtc *crtc)
  6252. {
  6253. struct drm_i915_private *dev_priv = dev->dev_private;
  6254. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6255. int pipe = intel_crtc->pipe;
  6256. struct drm_display_mode *mode;
  6257. int htot = I915_READ(HTOTAL(pipe));
  6258. int hsync = I915_READ(HSYNC(pipe));
  6259. int vtot = I915_READ(VTOTAL(pipe));
  6260. int vsync = I915_READ(VSYNC(pipe));
  6261. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  6262. if (!mode)
  6263. return NULL;
  6264. mode->clock = intel_crtc_clock_get(dev, crtc);
  6265. mode->hdisplay = (htot & 0xffff) + 1;
  6266. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  6267. mode->hsync_start = (hsync & 0xffff) + 1;
  6268. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  6269. mode->vdisplay = (vtot & 0xffff) + 1;
  6270. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  6271. mode->vsync_start = (vsync & 0xffff) + 1;
  6272. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  6273. drm_mode_set_name(mode);
  6274. drm_mode_set_crtcinfo(mode, 0);
  6275. return mode;
  6276. }
  6277. #define GPU_IDLE_TIMEOUT 500 /* ms */
  6278. /* When this timer fires, we've been idle for awhile */
  6279. static void intel_gpu_idle_timer(unsigned long arg)
  6280. {
  6281. struct drm_device *dev = (struct drm_device *)arg;
  6282. drm_i915_private_t *dev_priv = dev->dev_private;
  6283. if (!list_empty(&dev_priv->mm.active_list)) {
  6284. /* Still processing requests, so just re-arm the timer. */
  6285. mod_timer(&dev_priv->idle_timer, jiffies +
  6286. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  6287. return;
  6288. }
  6289. dev_priv->busy = false;
  6290. queue_work(dev_priv->wq, &dev_priv->idle_work);
  6291. }
  6292. #define CRTC_IDLE_TIMEOUT 1000 /* ms */
  6293. static void intel_crtc_idle_timer(unsigned long arg)
  6294. {
  6295. struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
  6296. struct drm_crtc *crtc = &intel_crtc->base;
  6297. drm_i915_private_t *dev_priv = crtc->dev->dev_private;
  6298. struct intel_framebuffer *intel_fb;
  6299. intel_fb = to_intel_framebuffer(crtc->fb);
  6300. if (intel_fb && intel_fb->obj->active) {
  6301. /* The framebuffer is still being accessed by the GPU. */
  6302. mod_timer(&intel_crtc->idle_timer, jiffies +
  6303. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  6304. return;
  6305. }
  6306. intel_crtc->busy = false;
  6307. queue_work(dev_priv->wq, &dev_priv->idle_work);
  6308. }
  6309. static void intel_increase_pllclock(struct drm_crtc *crtc)
  6310. {
  6311. struct drm_device *dev = crtc->dev;
  6312. drm_i915_private_t *dev_priv = dev->dev_private;
  6313. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6314. int pipe = intel_crtc->pipe;
  6315. int dpll_reg = DPLL(pipe);
  6316. int dpll;
  6317. if (HAS_PCH_SPLIT(dev))
  6318. return;
  6319. if (!dev_priv->lvds_downclock_avail)
  6320. return;
  6321. dpll = I915_READ(dpll_reg);
  6322. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  6323. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  6324. assert_panel_unlocked(dev_priv, pipe);
  6325. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  6326. I915_WRITE(dpll_reg, dpll);
  6327. intel_wait_for_vblank(dev, pipe);
  6328. dpll = I915_READ(dpll_reg);
  6329. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  6330. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  6331. }
  6332. /* Schedule downclock */
  6333. mod_timer(&intel_crtc->idle_timer, jiffies +
  6334. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  6335. }
  6336. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  6337. {
  6338. struct drm_device *dev = crtc->dev;
  6339. drm_i915_private_t *dev_priv = dev->dev_private;
  6340. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6341. int pipe = intel_crtc->pipe;
  6342. int dpll_reg = DPLL(pipe);
  6343. int dpll = I915_READ(dpll_reg);
  6344. if (HAS_PCH_SPLIT(dev))
  6345. return;
  6346. if (!dev_priv->lvds_downclock_avail)
  6347. return;
  6348. /*
  6349. * Since this is called by a timer, we should never get here in
  6350. * the manual case.
  6351. */
  6352. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6353. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6354. assert_panel_unlocked(dev_priv, pipe);
  6355. dpll |= DISPLAY_RATE_SELECT_FPA1;
  6356. I915_WRITE(dpll_reg, dpll);
  6357. intel_wait_for_vblank(dev, pipe);
  6358. dpll = I915_READ(dpll_reg);
  6359. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6360. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6361. }
  6362. }
  6363. /**
  6364. * intel_idle_update - adjust clocks for idleness
  6365. * @work: work struct
  6366. *
  6367. * Either the GPU or display (or both) went idle. Check the busy status
  6368. * here and adjust the CRTC and GPU clocks as necessary.
  6369. */
  6370. static void intel_idle_update(struct work_struct *work)
  6371. {
  6372. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  6373. idle_work);
  6374. struct drm_device *dev = dev_priv->dev;
  6375. struct drm_crtc *crtc;
  6376. struct intel_crtc *intel_crtc;
  6377. if (!i915_powersave)
  6378. return;
  6379. mutex_lock(&dev->struct_mutex);
  6380. i915_update_gfx_val(dev_priv);
  6381. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6382. /* Skip inactive CRTCs */
  6383. if (!crtc->fb)
  6384. continue;
  6385. intel_crtc = to_intel_crtc(crtc);
  6386. if (!intel_crtc->busy)
  6387. intel_decrease_pllclock(crtc);
  6388. }
  6389. mutex_unlock(&dev->struct_mutex);
  6390. }
  6391. /**
  6392. * intel_mark_busy - mark the GPU and possibly the display busy
  6393. * @dev: drm device
  6394. * @obj: object we're operating on
  6395. *
  6396. * Callers can use this function to indicate that the GPU is busy processing
  6397. * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
  6398. * buffer), we'll also mark the display as busy, so we know to increase its
  6399. * clock frequency.
  6400. */
  6401. void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
  6402. {
  6403. drm_i915_private_t *dev_priv = dev->dev_private;
  6404. struct drm_crtc *crtc = NULL;
  6405. struct intel_framebuffer *intel_fb;
  6406. struct intel_crtc *intel_crtc;
  6407. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  6408. return;
  6409. if (!dev_priv->busy)
  6410. dev_priv->busy = true;
  6411. else
  6412. mod_timer(&dev_priv->idle_timer, jiffies +
  6413. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  6414. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6415. if (!crtc->fb)
  6416. continue;
  6417. intel_crtc = to_intel_crtc(crtc);
  6418. intel_fb = to_intel_framebuffer(crtc->fb);
  6419. if (intel_fb->obj == obj) {
  6420. if (!intel_crtc->busy) {
  6421. /* Non-busy -> busy, upclock */
  6422. intel_increase_pllclock(crtc);
  6423. intel_crtc->busy = true;
  6424. } else {
  6425. /* Busy -> busy, put off timer */
  6426. mod_timer(&intel_crtc->idle_timer, jiffies +
  6427. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  6428. }
  6429. }
  6430. }
  6431. }
  6432. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6433. {
  6434. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6435. struct drm_device *dev = crtc->dev;
  6436. struct intel_unpin_work *work;
  6437. unsigned long flags;
  6438. spin_lock_irqsave(&dev->event_lock, flags);
  6439. work = intel_crtc->unpin_work;
  6440. intel_crtc->unpin_work = NULL;
  6441. spin_unlock_irqrestore(&dev->event_lock, flags);
  6442. if (work) {
  6443. cancel_work_sync(&work->work);
  6444. kfree(work);
  6445. }
  6446. drm_crtc_cleanup(crtc);
  6447. kfree(intel_crtc);
  6448. }
  6449. static void intel_unpin_work_fn(struct work_struct *__work)
  6450. {
  6451. struct intel_unpin_work *work =
  6452. container_of(__work, struct intel_unpin_work, work);
  6453. mutex_lock(&work->dev->struct_mutex);
  6454. intel_unpin_fb_obj(work->old_fb_obj);
  6455. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6456. drm_gem_object_unreference(&work->old_fb_obj->base);
  6457. intel_update_fbc(work->dev);
  6458. mutex_unlock(&work->dev->struct_mutex);
  6459. kfree(work);
  6460. }
  6461. static void do_intel_finish_page_flip(struct drm_device *dev,
  6462. struct drm_crtc *crtc)
  6463. {
  6464. drm_i915_private_t *dev_priv = dev->dev_private;
  6465. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6466. struct intel_unpin_work *work;
  6467. struct drm_i915_gem_object *obj;
  6468. struct drm_pending_vblank_event *e;
  6469. struct timeval tnow, tvbl;
  6470. unsigned long flags;
  6471. /* Ignore early vblank irqs */
  6472. if (intel_crtc == NULL)
  6473. return;
  6474. do_gettimeofday(&tnow);
  6475. spin_lock_irqsave(&dev->event_lock, flags);
  6476. work = intel_crtc->unpin_work;
  6477. if (work == NULL || !work->pending) {
  6478. spin_unlock_irqrestore(&dev->event_lock, flags);
  6479. return;
  6480. }
  6481. intel_crtc->unpin_work = NULL;
  6482. if (work->event) {
  6483. e = work->event;
  6484. e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
  6485. /* Called before vblank count and timestamps have
  6486. * been updated for the vblank interval of flip
  6487. * completion? Need to increment vblank count and
  6488. * add one videorefresh duration to returned timestamp
  6489. * to account for this. We assume this happened if we
  6490. * get called over 0.9 frame durations after the last
  6491. * timestamped vblank.
  6492. *
  6493. * This calculation can not be used with vrefresh rates
  6494. * below 5Hz (10Hz to be on the safe side) without
  6495. * promoting to 64 integers.
  6496. */
  6497. if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
  6498. 9 * crtc->framedur_ns) {
  6499. e->event.sequence++;
  6500. tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
  6501. crtc->framedur_ns);
  6502. }
  6503. e->event.tv_sec = tvbl.tv_sec;
  6504. e->event.tv_usec = tvbl.tv_usec;
  6505. list_add_tail(&e->base.link,
  6506. &e->base.file_priv->event_list);
  6507. wake_up_interruptible(&e->base.file_priv->event_wait);
  6508. }
  6509. drm_vblank_put(dev, intel_crtc->pipe);
  6510. spin_unlock_irqrestore(&dev->event_lock, flags);
  6511. obj = work->old_fb_obj;
  6512. atomic_clear_mask(1 << intel_crtc->plane,
  6513. &obj->pending_flip.counter);
  6514. if (atomic_read(&obj->pending_flip) == 0)
  6515. wake_up(&dev_priv->pending_flip_queue);
  6516. schedule_work(&work->work);
  6517. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6518. }
  6519. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6520. {
  6521. drm_i915_private_t *dev_priv = dev->dev_private;
  6522. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6523. do_intel_finish_page_flip(dev, crtc);
  6524. }
  6525. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6526. {
  6527. drm_i915_private_t *dev_priv = dev->dev_private;
  6528. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6529. do_intel_finish_page_flip(dev, crtc);
  6530. }
  6531. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6532. {
  6533. drm_i915_private_t *dev_priv = dev->dev_private;
  6534. struct intel_crtc *intel_crtc =
  6535. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6536. unsigned long flags;
  6537. spin_lock_irqsave(&dev->event_lock, flags);
  6538. if (intel_crtc->unpin_work) {
  6539. if ((++intel_crtc->unpin_work->pending) > 1)
  6540. DRM_ERROR("Prepared flip multiple times\n");
  6541. } else {
  6542. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  6543. }
  6544. spin_unlock_irqrestore(&dev->event_lock, flags);
  6545. }
  6546. static int intel_gen2_queue_flip(struct drm_device *dev,
  6547. struct drm_crtc *crtc,
  6548. struct drm_framebuffer *fb,
  6549. struct drm_i915_gem_object *obj)
  6550. {
  6551. struct drm_i915_private *dev_priv = dev->dev_private;
  6552. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6553. unsigned long offset;
  6554. u32 flip_mask;
  6555. int ret;
  6556. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6557. if (ret)
  6558. goto out;
  6559. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  6560. offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
  6561. ret = BEGIN_LP_RING(6);
  6562. if (ret)
  6563. goto out;
  6564. /* Can't queue multiple flips, so wait for the previous
  6565. * one to finish before executing the next.
  6566. */
  6567. if (intel_crtc->plane)
  6568. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6569. else
  6570. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6571. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  6572. OUT_RING(MI_NOOP);
  6573. OUT_RING(MI_DISPLAY_FLIP |
  6574. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6575. OUT_RING(fb->pitches[0]);
  6576. OUT_RING(obj->gtt_offset + offset);
  6577. OUT_RING(0); /* aux display base address, unused */
  6578. ADVANCE_LP_RING();
  6579. out:
  6580. return ret;
  6581. }
  6582. static int intel_gen3_queue_flip(struct drm_device *dev,
  6583. struct drm_crtc *crtc,
  6584. struct drm_framebuffer *fb,
  6585. struct drm_i915_gem_object *obj)
  6586. {
  6587. struct drm_i915_private *dev_priv = dev->dev_private;
  6588. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6589. unsigned long offset;
  6590. u32 flip_mask;
  6591. int ret;
  6592. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6593. if (ret)
  6594. goto out;
  6595. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  6596. offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
  6597. ret = BEGIN_LP_RING(6);
  6598. if (ret)
  6599. goto out;
  6600. if (intel_crtc->plane)
  6601. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6602. else
  6603. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6604. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  6605. OUT_RING(MI_NOOP);
  6606. OUT_RING(MI_DISPLAY_FLIP_I915 |
  6607. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6608. OUT_RING(fb->pitches[0]);
  6609. OUT_RING(obj->gtt_offset + offset);
  6610. OUT_RING(MI_NOOP);
  6611. ADVANCE_LP_RING();
  6612. out:
  6613. return ret;
  6614. }
  6615. static int intel_gen4_queue_flip(struct drm_device *dev,
  6616. struct drm_crtc *crtc,
  6617. struct drm_framebuffer *fb,
  6618. struct drm_i915_gem_object *obj)
  6619. {
  6620. struct drm_i915_private *dev_priv = dev->dev_private;
  6621. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6622. uint32_t pf, pipesrc;
  6623. int ret;
  6624. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6625. if (ret)
  6626. goto out;
  6627. ret = BEGIN_LP_RING(4);
  6628. if (ret)
  6629. goto out;
  6630. /* i965+ uses the linear or tiled offsets from the
  6631. * Display Registers (which do not change across a page-flip)
  6632. * so we need only reprogram the base address.
  6633. */
  6634. OUT_RING(MI_DISPLAY_FLIP |
  6635. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6636. OUT_RING(fb->pitches[0]);
  6637. OUT_RING(obj->gtt_offset | obj->tiling_mode);
  6638. /* XXX Enabling the panel-fitter across page-flip is so far
  6639. * untested on non-native modes, so ignore it for now.
  6640. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6641. */
  6642. pf = 0;
  6643. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6644. OUT_RING(pf | pipesrc);
  6645. ADVANCE_LP_RING();
  6646. out:
  6647. return ret;
  6648. }
  6649. static int intel_gen6_queue_flip(struct drm_device *dev,
  6650. struct drm_crtc *crtc,
  6651. struct drm_framebuffer *fb,
  6652. struct drm_i915_gem_object *obj)
  6653. {
  6654. struct drm_i915_private *dev_priv = dev->dev_private;
  6655. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6656. uint32_t pf, pipesrc;
  6657. int ret;
  6658. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6659. if (ret)
  6660. goto out;
  6661. ret = BEGIN_LP_RING(4);
  6662. if (ret)
  6663. goto out;
  6664. OUT_RING(MI_DISPLAY_FLIP |
  6665. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6666. OUT_RING(fb->pitches[0] | obj->tiling_mode);
  6667. OUT_RING(obj->gtt_offset);
  6668. pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6669. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6670. OUT_RING(pf | pipesrc);
  6671. ADVANCE_LP_RING();
  6672. out:
  6673. return ret;
  6674. }
  6675. /*
  6676. * On gen7 we currently use the blit ring because (in early silicon at least)
  6677. * the render ring doesn't give us interrpts for page flip completion, which
  6678. * means clients will hang after the first flip is queued. Fortunately the
  6679. * blit ring generates interrupts properly, so use it instead.
  6680. */
  6681. static int intel_gen7_queue_flip(struct drm_device *dev,
  6682. struct drm_crtc *crtc,
  6683. struct drm_framebuffer *fb,
  6684. struct drm_i915_gem_object *obj)
  6685. {
  6686. struct drm_i915_private *dev_priv = dev->dev_private;
  6687. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6688. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6689. int ret;
  6690. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6691. if (ret)
  6692. goto out;
  6693. ret = intel_ring_begin(ring, 4);
  6694. if (ret)
  6695. goto out;
  6696. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
  6697. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6698. intel_ring_emit(ring, (obj->gtt_offset));
  6699. intel_ring_emit(ring, (MI_NOOP));
  6700. intel_ring_advance(ring);
  6701. out:
  6702. return ret;
  6703. }
  6704. static int intel_default_queue_flip(struct drm_device *dev,
  6705. struct drm_crtc *crtc,
  6706. struct drm_framebuffer *fb,
  6707. struct drm_i915_gem_object *obj)
  6708. {
  6709. return -ENODEV;
  6710. }
  6711. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6712. struct drm_framebuffer *fb,
  6713. struct drm_pending_vblank_event *event)
  6714. {
  6715. struct drm_device *dev = crtc->dev;
  6716. struct drm_i915_private *dev_priv = dev->dev_private;
  6717. struct intel_framebuffer *intel_fb;
  6718. struct drm_i915_gem_object *obj;
  6719. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6720. struct intel_unpin_work *work;
  6721. unsigned long flags;
  6722. int ret;
  6723. work = kzalloc(sizeof *work, GFP_KERNEL);
  6724. if (work == NULL)
  6725. return -ENOMEM;
  6726. work->event = event;
  6727. work->dev = crtc->dev;
  6728. intel_fb = to_intel_framebuffer(crtc->fb);
  6729. work->old_fb_obj = intel_fb->obj;
  6730. INIT_WORK(&work->work, intel_unpin_work_fn);
  6731. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6732. if (ret)
  6733. goto free_work;
  6734. /* We borrow the event spin lock for protecting unpin_work */
  6735. spin_lock_irqsave(&dev->event_lock, flags);
  6736. if (intel_crtc->unpin_work) {
  6737. spin_unlock_irqrestore(&dev->event_lock, flags);
  6738. kfree(work);
  6739. drm_vblank_put(dev, intel_crtc->pipe);
  6740. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6741. return -EBUSY;
  6742. }
  6743. intel_crtc->unpin_work = work;
  6744. spin_unlock_irqrestore(&dev->event_lock, flags);
  6745. intel_fb = to_intel_framebuffer(fb);
  6746. obj = intel_fb->obj;
  6747. mutex_lock(&dev->struct_mutex);
  6748. /* Reference the objects for the scheduled work. */
  6749. drm_gem_object_reference(&work->old_fb_obj->base);
  6750. drm_gem_object_reference(&obj->base);
  6751. crtc->fb = fb;
  6752. work->pending_flip_obj = obj;
  6753. work->enable_stall_check = true;
  6754. /* Block clients from rendering to the new back buffer until
  6755. * the flip occurs and the object is no longer visible.
  6756. */
  6757. atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6758. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6759. if (ret)
  6760. goto cleanup_pending;
  6761. intel_disable_fbc(dev);
  6762. mutex_unlock(&dev->struct_mutex);
  6763. trace_i915_flip_request(intel_crtc->plane, obj);
  6764. return 0;
  6765. cleanup_pending:
  6766. atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6767. drm_gem_object_unreference(&work->old_fb_obj->base);
  6768. drm_gem_object_unreference(&obj->base);
  6769. mutex_unlock(&dev->struct_mutex);
  6770. spin_lock_irqsave(&dev->event_lock, flags);
  6771. intel_crtc->unpin_work = NULL;
  6772. spin_unlock_irqrestore(&dev->event_lock, flags);
  6773. drm_vblank_put(dev, intel_crtc->pipe);
  6774. free_work:
  6775. kfree(work);
  6776. return ret;
  6777. }
  6778. static void intel_sanitize_modesetting(struct drm_device *dev,
  6779. int pipe, int plane)
  6780. {
  6781. struct drm_i915_private *dev_priv = dev->dev_private;
  6782. u32 reg, val;
  6783. /* Clear any frame start delays used for debugging left by the BIOS */
  6784. for_each_pipe(pipe) {
  6785. reg = PIPECONF(pipe);
  6786. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  6787. }
  6788. if (HAS_PCH_SPLIT(dev))
  6789. return;
  6790. /* Who knows what state these registers were left in by the BIOS or
  6791. * grub?
  6792. *
  6793. * If we leave the registers in a conflicting state (e.g. with the
  6794. * display plane reading from the other pipe than the one we intend
  6795. * to use) then when we attempt to teardown the active mode, we will
  6796. * not disable the pipes and planes in the correct order -- leaving
  6797. * a plane reading from a disabled pipe and possibly leading to
  6798. * undefined behaviour.
  6799. */
  6800. reg = DSPCNTR(plane);
  6801. val = I915_READ(reg);
  6802. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  6803. return;
  6804. if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
  6805. return;
  6806. /* This display plane is active and attached to the other CPU pipe. */
  6807. pipe = !pipe;
  6808. /* Disable the plane and wait for it to stop reading from the pipe. */
  6809. intel_disable_plane(dev_priv, plane, pipe);
  6810. intel_disable_pipe(dev_priv, pipe);
  6811. }
  6812. static void intel_crtc_reset(struct drm_crtc *crtc)
  6813. {
  6814. struct drm_device *dev = crtc->dev;
  6815. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6816. /* Reset flags back to the 'unknown' status so that they
  6817. * will be correctly set on the initial modeset.
  6818. */
  6819. intel_crtc->dpms_mode = -1;
  6820. /* We need to fix up any BIOS configuration that conflicts with
  6821. * our expectations.
  6822. */
  6823. intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
  6824. }
  6825. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6826. .dpms = intel_crtc_dpms,
  6827. .mode_fixup = intel_crtc_mode_fixup,
  6828. .mode_set = intel_crtc_mode_set,
  6829. .mode_set_base = intel_pipe_set_base,
  6830. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6831. .load_lut = intel_crtc_load_lut,
  6832. .disable = intel_crtc_disable,
  6833. };
  6834. static const struct drm_crtc_funcs intel_crtc_funcs = {
  6835. .reset = intel_crtc_reset,
  6836. .cursor_set = intel_crtc_cursor_set,
  6837. .cursor_move = intel_crtc_cursor_move,
  6838. .gamma_set = intel_crtc_gamma_set,
  6839. .set_config = drm_crtc_helper_set_config,
  6840. .destroy = intel_crtc_destroy,
  6841. .page_flip = intel_crtc_page_flip,
  6842. };
  6843. static void intel_crtc_init(struct drm_device *dev, int pipe)
  6844. {
  6845. drm_i915_private_t *dev_priv = dev->dev_private;
  6846. struct intel_crtc *intel_crtc;
  6847. int i;
  6848. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  6849. if (intel_crtc == NULL)
  6850. return;
  6851. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  6852. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  6853. for (i = 0; i < 256; i++) {
  6854. intel_crtc->lut_r[i] = i;
  6855. intel_crtc->lut_g[i] = i;
  6856. intel_crtc->lut_b[i] = i;
  6857. }
  6858. /* Swap pipes & planes for FBC on pre-965 */
  6859. intel_crtc->pipe = pipe;
  6860. intel_crtc->plane = pipe;
  6861. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  6862. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  6863. intel_crtc->plane = !pipe;
  6864. }
  6865. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  6866. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  6867. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  6868. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  6869. intel_crtc_reset(&intel_crtc->base);
  6870. intel_crtc->active = true; /* force the pipe off on setup_init_config */
  6871. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  6872. if (HAS_PCH_SPLIT(dev)) {
  6873. if (pipe == 2 && IS_IVYBRIDGE(dev))
  6874. intel_crtc->no_pll = true;
  6875. intel_helper_funcs.prepare = ironlake_crtc_prepare;
  6876. intel_helper_funcs.commit = ironlake_crtc_commit;
  6877. } else {
  6878. intel_helper_funcs.prepare = i9xx_crtc_prepare;
  6879. intel_helper_funcs.commit = i9xx_crtc_commit;
  6880. }
  6881. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  6882. intel_crtc->busy = false;
  6883. setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
  6884. (unsigned long)intel_crtc);
  6885. }
  6886. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  6887. struct drm_file *file)
  6888. {
  6889. drm_i915_private_t *dev_priv = dev->dev_private;
  6890. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  6891. struct drm_mode_object *drmmode_obj;
  6892. struct intel_crtc *crtc;
  6893. if (!dev_priv) {
  6894. DRM_ERROR("called with no initialization\n");
  6895. return -EINVAL;
  6896. }
  6897. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  6898. DRM_MODE_OBJECT_CRTC);
  6899. if (!drmmode_obj) {
  6900. DRM_ERROR("no such CRTC id\n");
  6901. return -EINVAL;
  6902. }
  6903. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  6904. pipe_from_crtc_id->pipe = crtc->pipe;
  6905. return 0;
  6906. }
  6907. static int intel_encoder_clones(struct drm_device *dev, int type_mask)
  6908. {
  6909. struct intel_encoder *encoder;
  6910. int index_mask = 0;
  6911. int entry = 0;
  6912. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6913. if (type_mask & encoder->clone_mask)
  6914. index_mask |= (1 << entry);
  6915. entry++;
  6916. }
  6917. return index_mask;
  6918. }
  6919. static bool has_edp_a(struct drm_device *dev)
  6920. {
  6921. struct drm_i915_private *dev_priv = dev->dev_private;
  6922. if (!IS_MOBILE(dev))
  6923. return false;
  6924. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  6925. return false;
  6926. if (IS_GEN5(dev) &&
  6927. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  6928. return false;
  6929. return true;
  6930. }
  6931. static void intel_setup_outputs(struct drm_device *dev)
  6932. {
  6933. struct drm_i915_private *dev_priv = dev->dev_private;
  6934. struct intel_encoder *encoder;
  6935. bool dpd_is_edp = false;
  6936. bool has_lvds;
  6937. has_lvds = intel_lvds_init(dev);
  6938. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  6939. /* disable the panel fitter on everything but LVDS */
  6940. I915_WRITE(PFIT_CONTROL, 0);
  6941. }
  6942. if (HAS_PCH_SPLIT(dev)) {
  6943. dpd_is_edp = intel_dpd_is_edp(dev);
  6944. if (has_edp_a(dev))
  6945. intel_dp_init(dev, DP_A);
  6946. if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6947. intel_dp_init(dev, PCH_DP_D);
  6948. }
  6949. intel_crt_init(dev);
  6950. if (HAS_PCH_SPLIT(dev)) {
  6951. int found;
  6952. if (I915_READ(HDMIB) & PORT_DETECTED) {
  6953. /* PCH SDVOB multiplex with HDMIB */
  6954. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  6955. if (!found)
  6956. intel_hdmi_init(dev, HDMIB);
  6957. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  6958. intel_dp_init(dev, PCH_DP_B);
  6959. }
  6960. if (I915_READ(HDMIC) & PORT_DETECTED)
  6961. intel_hdmi_init(dev, HDMIC);
  6962. if (I915_READ(HDMID) & PORT_DETECTED)
  6963. intel_hdmi_init(dev, HDMID);
  6964. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  6965. intel_dp_init(dev, PCH_DP_C);
  6966. if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6967. intel_dp_init(dev, PCH_DP_D);
  6968. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  6969. bool found = false;
  6970. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6971. DRM_DEBUG_KMS("probing SDVOB\n");
  6972. found = intel_sdvo_init(dev, SDVOB, true);
  6973. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  6974. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  6975. intel_hdmi_init(dev, SDVOB);
  6976. }
  6977. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  6978. DRM_DEBUG_KMS("probing DP_B\n");
  6979. intel_dp_init(dev, DP_B);
  6980. }
  6981. }
  6982. /* Before G4X SDVOC doesn't have its own detect register */
  6983. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6984. DRM_DEBUG_KMS("probing SDVOC\n");
  6985. found = intel_sdvo_init(dev, SDVOC, false);
  6986. }
  6987. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  6988. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  6989. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  6990. intel_hdmi_init(dev, SDVOC);
  6991. }
  6992. if (SUPPORTS_INTEGRATED_DP(dev)) {
  6993. DRM_DEBUG_KMS("probing DP_C\n");
  6994. intel_dp_init(dev, DP_C);
  6995. }
  6996. }
  6997. if (SUPPORTS_INTEGRATED_DP(dev) &&
  6998. (I915_READ(DP_D) & DP_DETECTED)) {
  6999. DRM_DEBUG_KMS("probing DP_D\n");
  7000. intel_dp_init(dev, DP_D);
  7001. }
  7002. } else if (IS_GEN2(dev))
  7003. intel_dvo_init(dev);
  7004. if (SUPPORTS_TV(dev))
  7005. intel_tv_init(dev);
  7006. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7007. encoder->base.possible_crtcs = encoder->crtc_mask;
  7008. encoder->base.possible_clones =
  7009. intel_encoder_clones(dev, encoder->clone_mask);
  7010. }
  7011. /* disable all the possible outputs/crtcs before entering KMS mode */
  7012. drm_helper_disable_unused_functions(dev);
  7013. if (HAS_PCH_SPLIT(dev))
  7014. ironlake_init_pch_refclk(dev);
  7015. }
  7016. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7017. {
  7018. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7019. drm_framebuffer_cleanup(fb);
  7020. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7021. kfree(intel_fb);
  7022. }
  7023. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7024. struct drm_file *file,
  7025. unsigned int *handle)
  7026. {
  7027. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7028. struct drm_i915_gem_object *obj = intel_fb->obj;
  7029. return drm_gem_handle_create(file, &obj->base, handle);
  7030. }
  7031. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7032. .destroy = intel_user_framebuffer_destroy,
  7033. .create_handle = intel_user_framebuffer_create_handle,
  7034. };
  7035. int intel_framebuffer_init(struct drm_device *dev,
  7036. struct intel_framebuffer *intel_fb,
  7037. struct drm_mode_fb_cmd2 *mode_cmd,
  7038. struct drm_i915_gem_object *obj)
  7039. {
  7040. int ret;
  7041. if (obj->tiling_mode == I915_TILING_Y)
  7042. return -EINVAL;
  7043. if (mode_cmd->pitches[0] & 63)
  7044. return -EINVAL;
  7045. switch (mode_cmd->pixel_format) {
  7046. case DRM_FORMAT_RGB332:
  7047. case DRM_FORMAT_RGB565:
  7048. case DRM_FORMAT_XRGB8888:
  7049. case DRM_FORMAT_XBGR8888:
  7050. case DRM_FORMAT_ARGB8888:
  7051. case DRM_FORMAT_XRGB2101010:
  7052. case DRM_FORMAT_ARGB2101010:
  7053. /* RGB formats are common across chipsets */
  7054. break;
  7055. case DRM_FORMAT_YUYV:
  7056. case DRM_FORMAT_UYVY:
  7057. case DRM_FORMAT_YVYU:
  7058. case DRM_FORMAT_VYUY:
  7059. break;
  7060. default:
  7061. DRM_DEBUG_KMS("unsupported pixel format %u\n",
  7062. mode_cmd->pixel_format);
  7063. return -EINVAL;
  7064. }
  7065. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7066. if (ret) {
  7067. DRM_ERROR("framebuffer init failed %d\n", ret);
  7068. return ret;
  7069. }
  7070. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7071. intel_fb->obj = obj;
  7072. return 0;
  7073. }
  7074. static struct drm_framebuffer *
  7075. intel_user_framebuffer_create(struct drm_device *dev,
  7076. struct drm_file *filp,
  7077. struct drm_mode_fb_cmd2 *mode_cmd)
  7078. {
  7079. struct drm_i915_gem_object *obj;
  7080. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7081. mode_cmd->handles[0]));
  7082. if (&obj->base == NULL)
  7083. return ERR_PTR(-ENOENT);
  7084. return intel_framebuffer_create(dev, mode_cmd, obj);
  7085. }
  7086. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7087. .fb_create = intel_user_framebuffer_create,
  7088. .output_poll_changed = intel_fb_output_poll_changed,
  7089. };
  7090. static struct drm_i915_gem_object *
  7091. intel_alloc_context_page(struct drm_device *dev)
  7092. {
  7093. struct drm_i915_gem_object *ctx;
  7094. int ret;
  7095. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  7096. ctx = i915_gem_alloc_object(dev, 4096);
  7097. if (!ctx) {
  7098. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  7099. return NULL;
  7100. }
  7101. ret = i915_gem_object_pin(ctx, 4096, true);
  7102. if (ret) {
  7103. DRM_ERROR("failed to pin power context: %d\n", ret);
  7104. goto err_unref;
  7105. }
  7106. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  7107. if (ret) {
  7108. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  7109. goto err_unpin;
  7110. }
  7111. return ctx;
  7112. err_unpin:
  7113. i915_gem_object_unpin(ctx);
  7114. err_unref:
  7115. drm_gem_object_unreference(&ctx->base);
  7116. mutex_unlock(&dev->struct_mutex);
  7117. return NULL;
  7118. }
  7119. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  7120. {
  7121. struct drm_i915_private *dev_priv = dev->dev_private;
  7122. u16 rgvswctl;
  7123. rgvswctl = I915_READ16(MEMSWCTL);
  7124. if (rgvswctl & MEMCTL_CMD_STS) {
  7125. DRM_DEBUG("gpu busy, RCS change rejected\n");
  7126. return false; /* still busy with another command */
  7127. }
  7128. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  7129. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  7130. I915_WRITE16(MEMSWCTL, rgvswctl);
  7131. POSTING_READ16(MEMSWCTL);
  7132. rgvswctl |= MEMCTL_CMD_STS;
  7133. I915_WRITE16(MEMSWCTL, rgvswctl);
  7134. return true;
  7135. }
  7136. void ironlake_enable_drps(struct drm_device *dev)
  7137. {
  7138. struct drm_i915_private *dev_priv = dev->dev_private;
  7139. u32 rgvmodectl = I915_READ(MEMMODECTL);
  7140. u8 fmax, fmin, fstart, vstart;
  7141. /* Enable temp reporting */
  7142. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  7143. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  7144. /* 100ms RC evaluation intervals */
  7145. I915_WRITE(RCUPEI, 100000);
  7146. I915_WRITE(RCDNEI, 100000);
  7147. /* Set max/min thresholds to 90ms and 80ms respectively */
  7148. I915_WRITE(RCBMAXAVG, 90000);
  7149. I915_WRITE(RCBMINAVG, 80000);
  7150. I915_WRITE(MEMIHYST, 1);
  7151. /* Set up min, max, and cur for interrupt handling */
  7152. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  7153. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  7154. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  7155. MEMMODE_FSTART_SHIFT;
  7156. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  7157. PXVFREQ_PX_SHIFT;
  7158. dev_priv->fmax = fmax; /* IPS callback will increase this */
  7159. dev_priv->fstart = fstart;
  7160. dev_priv->max_delay = fstart;
  7161. dev_priv->min_delay = fmin;
  7162. dev_priv->cur_delay = fstart;
  7163. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  7164. fmax, fmin, fstart);
  7165. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  7166. /*
  7167. * Interrupts will be enabled in ironlake_irq_postinstall
  7168. */
  7169. I915_WRITE(VIDSTART, vstart);
  7170. POSTING_READ(VIDSTART);
  7171. rgvmodectl |= MEMMODE_SWMODE_EN;
  7172. I915_WRITE(MEMMODECTL, rgvmodectl);
  7173. if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  7174. DRM_ERROR("stuck trying to change perf mode\n");
  7175. msleep(1);
  7176. ironlake_set_drps(dev, fstart);
  7177. dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  7178. I915_READ(0x112e0);
  7179. dev_priv->last_time1 = jiffies_to_msecs(jiffies);
  7180. dev_priv->last_count2 = I915_READ(0x112f4);
  7181. getrawmonotonic(&dev_priv->last_time2);
  7182. }
  7183. void ironlake_disable_drps(struct drm_device *dev)
  7184. {
  7185. struct drm_i915_private *dev_priv = dev->dev_private;
  7186. u16 rgvswctl = I915_READ16(MEMSWCTL);
  7187. /* Ack interrupts, disable EFC interrupt */
  7188. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  7189. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  7190. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  7191. I915_WRITE(DEIIR, DE_PCU_EVENT);
  7192. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  7193. /* Go back to the starting frequency */
  7194. ironlake_set_drps(dev, dev_priv->fstart);
  7195. msleep(1);
  7196. rgvswctl |= MEMCTL_CMD_STS;
  7197. I915_WRITE(MEMSWCTL, rgvswctl);
  7198. msleep(1);
  7199. }
  7200. void gen6_set_rps(struct drm_device *dev, u8 val)
  7201. {
  7202. struct drm_i915_private *dev_priv = dev->dev_private;
  7203. u32 swreq;
  7204. swreq = (val & 0x3ff) << 25;
  7205. I915_WRITE(GEN6_RPNSWREQ, swreq);
  7206. }
  7207. void gen6_disable_rps(struct drm_device *dev)
  7208. {
  7209. struct drm_i915_private *dev_priv = dev->dev_private;
  7210. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  7211. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  7212. I915_WRITE(GEN6_PMIER, 0);
  7213. /* Complete PM interrupt masking here doesn't race with the rps work
  7214. * item again unmasking PM interrupts because that is using a different
  7215. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  7216. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  7217. spin_lock_irq(&dev_priv->rps_lock);
  7218. dev_priv->pm_iir = 0;
  7219. spin_unlock_irq(&dev_priv->rps_lock);
  7220. I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
  7221. }
  7222. static unsigned long intel_pxfreq(u32 vidfreq)
  7223. {
  7224. unsigned long freq;
  7225. int div = (vidfreq & 0x3f0000) >> 16;
  7226. int post = (vidfreq & 0x3000) >> 12;
  7227. int pre = (vidfreq & 0x7);
  7228. if (!pre)
  7229. return 0;
  7230. freq = ((div * 133333) / ((1<<post) * pre));
  7231. return freq;
  7232. }
  7233. void intel_init_emon(struct drm_device *dev)
  7234. {
  7235. struct drm_i915_private *dev_priv = dev->dev_private;
  7236. u32 lcfuse;
  7237. u8 pxw[16];
  7238. int i;
  7239. /* Disable to program */
  7240. I915_WRITE(ECR, 0);
  7241. POSTING_READ(ECR);
  7242. /* Program energy weights for various events */
  7243. I915_WRITE(SDEW, 0x15040d00);
  7244. I915_WRITE(CSIEW0, 0x007f0000);
  7245. I915_WRITE(CSIEW1, 0x1e220004);
  7246. I915_WRITE(CSIEW2, 0x04000004);
  7247. for (i = 0; i < 5; i++)
  7248. I915_WRITE(PEW + (i * 4), 0);
  7249. for (i = 0; i < 3; i++)
  7250. I915_WRITE(DEW + (i * 4), 0);
  7251. /* Program P-state weights to account for frequency power adjustment */
  7252. for (i = 0; i < 16; i++) {
  7253. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  7254. unsigned long freq = intel_pxfreq(pxvidfreq);
  7255. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  7256. PXVFREQ_PX_SHIFT;
  7257. unsigned long val;
  7258. val = vid * vid;
  7259. val *= (freq / 1000);
  7260. val *= 255;
  7261. val /= (127*127*900);
  7262. if (val > 0xff)
  7263. DRM_ERROR("bad pxval: %ld\n", val);
  7264. pxw[i] = val;
  7265. }
  7266. /* Render standby states get 0 weight */
  7267. pxw[14] = 0;
  7268. pxw[15] = 0;
  7269. for (i = 0; i < 4; i++) {
  7270. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  7271. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  7272. I915_WRITE(PXW + (i * 4), val);
  7273. }
  7274. /* Adjust magic regs to magic values (more experimental results) */
  7275. I915_WRITE(OGW0, 0);
  7276. I915_WRITE(OGW1, 0);
  7277. I915_WRITE(EG0, 0x00007f00);
  7278. I915_WRITE(EG1, 0x0000000e);
  7279. I915_WRITE(EG2, 0x000e0000);
  7280. I915_WRITE(EG3, 0x68000300);
  7281. I915_WRITE(EG4, 0x42000000);
  7282. I915_WRITE(EG5, 0x00140031);
  7283. I915_WRITE(EG6, 0);
  7284. I915_WRITE(EG7, 0);
  7285. for (i = 0; i < 8; i++)
  7286. I915_WRITE(PXWL + (i * 4), 0);
  7287. /* Enable PMON + select events */
  7288. I915_WRITE(ECR, 0x80000019);
  7289. lcfuse = I915_READ(LCFUSE02);
  7290. dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
  7291. }
  7292. int intel_enable_rc6(const struct drm_device *dev)
  7293. {
  7294. /*
  7295. * Respect the kernel parameter if it is set
  7296. */
  7297. if (i915_enable_rc6 >= 0)
  7298. return i915_enable_rc6;
  7299. /*
  7300. * Disable RC6 on Ironlake
  7301. */
  7302. if (INTEL_INFO(dev)->gen == 5)
  7303. return 0;
  7304. /*
  7305. * Disable rc6 on Sandybridge
  7306. */
  7307. if (INTEL_INFO(dev)->gen == 6) {
  7308. DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
  7309. return INTEL_RC6_ENABLE;
  7310. }
  7311. DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
  7312. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  7313. }
  7314. void gen6_enable_rps(struct drm_i915_private *dev_priv)
  7315. {
  7316. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  7317. u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  7318. u32 pcu_mbox, rc6_mask = 0;
  7319. u32 gtfifodbg;
  7320. int cur_freq, min_freq, max_freq;
  7321. int rc6_mode;
  7322. int i;
  7323. /* Here begins a magic sequence of register writes to enable
  7324. * auto-downclocking.
  7325. *
  7326. * Perhaps there might be some value in exposing these to
  7327. * userspace...
  7328. */
  7329. I915_WRITE(GEN6_RC_STATE, 0);
  7330. mutex_lock(&dev_priv->dev->struct_mutex);
  7331. /* Clear the DBG now so we don't confuse earlier errors */
  7332. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  7333. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  7334. I915_WRITE(GTFIFODBG, gtfifodbg);
  7335. }
  7336. gen6_gt_force_wake_get(dev_priv);
  7337. /* disable the counters and set deterministic thresholds */
  7338. I915_WRITE(GEN6_RC_CONTROL, 0);
  7339. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  7340. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  7341. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  7342. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  7343. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  7344. for (i = 0; i < I915_NUM_RINGS; i++)
  7345. I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
  7346. I915_WRITE(GEN6_RC_SLEEP, 0);
  7347. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  7348. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  7349. I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
  7350. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  7351. rc6_mode = intel_enable_rc6(dev_priv->dev);
  7352. if (rc6_mode & INTEL_RC6_ENABLE)
  7353. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  7354. if (rc6_mode & INTEL_RC6p_ENABLE)
  7355. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  7356. if (rc6_mode & INTEL_RC6pp_ENABLE)
  7357. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  7358. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  7359. (rc6_mode & INTEL_RC6_ENABLE) ? "on" : "off",
  7360. (rc6_mode & INTEL_RC6p_ENABLE) ? "on" : "off",
  7361. (rc6_mode & INTEL_RC6pp_ENABLE) ? "on" : "off");
  7362. I915_WRITE(GEN6_RC_CONTROL,
  7363. rc6_mask |
  7364. GEN6_RC_CTL_EI_MODE(1) |
  7365. GEN6_RC_CTL_HW_ENABLE);
  7366. I915_WRITE(GEN6_RPNSWREQ,
  7367. GEN6_FREQUENCY(10) |
  7368. GEN6_OFFSET(0) |
  7369. GEN6_AGGRESSIVE_TURBO);
  7370. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  7371. GEN6_FREQUENCY(12));
  7372. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  7373. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  7374. 18 << 24 |
  7375. 6 << 16);
  7376. I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
  7377. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
  7378. I915_WRITE(GEN6_RP_UP_EI, 100000);
  7379. I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
  7380. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  7381. I915_WRITE(GEN6_RP_CONTROL,
  7382. GEN6_RP_MEDIA_TURBO |
  7383. GEN6_RP_MEDIA_HW_MODE |
  7384. GEN6_RP_MEDIA_IS_GFX |
  7385. GEN6_RP_ENABLE |
  7386. GEN6_RP_UP_BUSY_AVG |
  7387. GEN6_RP_DOWN_IDLE_CONT);
  7388. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7389. 500))
  7390. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  7391. I915_WRITE(GEN6_PCODE_DATA, 0);
  7392. I915_WRITE(GEN6_PCODE_MAILBOX,
  7393. GEN6_PCODE_READY |
  7394. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  7395. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7396. 500))
  7397. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  7398. min_freq = (rp_state_cap & 0xff0000) >> 16;
  7399. max_freq = rp_state_cap & 0xff;
  7400. cur_freq = (gt_perf_status & 0xff00) >> 8;
  7401. /* Check for overclock support */
  7402. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7403. 500))
  7404. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  7405. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
  7406. pcu_mbox = I915_READ(GEN6_PCODE_DATA);
  7407. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7408. 500))
  7409. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  7410. if (pcu_mbox & (1<<31)) { /* OC supported */
  7411. max_freq = pcu_mbox & 0xff;
  7412. DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
  7413. }
  7414. /* In units of 100MHz */
  7415. dev_priv->max_delay = max_freq;
  7416. dev_priv->min_delay = min_freq;
  7417. dev_priv->cur_delay = cur_freq;
  7418. /* requires MSI enabled */
  7419. I915_WRITE(GEN6_PMIER,
  7420. GEN6_PM_MBOX_EVENT |
  7421. GEN6_PM_THERMAL_EVENT |
  7422. GEN6_PM_RP_DOWN_TIMEOUT |
  7423. GEN6_PM_RP_UP_THRESHOLD |
  7424. GEN6_PM_RP_DOWN_THRESHOLD |
  7425. GEN6_PM_RP_UP_EI_EXPIRED |
  7426. GEN6_PM_RP_DOWN_EI_EXPIRED);
  7427. spin_lock_irq(&dev_priv->rps_lock);
  7428. WARN_ON(dev_priv->pm_iir != 0);
  7429. I915_WRITE(GEN6_PMIMR, 0);
  7430. spin_unlock_irq(&dev_priv->rps_lock);
  7431. /* enable all PM interrupts */
  7432. I915_WRITE(GEN6_PMINTRMSK, 0);
  7433. gen6_gt_force_wake_put(dev_priv);
  7434. mutex_unlock(&dev_priv->dev->struct_mutex);
  7435. }
  7436. void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
  7437. {
  7438. int min_freq = 15;
  7439. int gpu_freq, ia_freq, max_ia_freq;
  7440. int scaling_factor = 180;
  7441. max_ia_freq = cpufreq_quick_get_max(0);
  7442. /*
  7443. * Default to measured freq if none found, PCU will ensure we don't go
  7444. * over
  7445. */
  7446. if (!max_ia_freq)
  7447. max_ia_freq = tsc_khz;
  7448. /* Convert from kHz to MHz */
  7449. max_ia_freq /= 1000;
  7450. mutex_lock(&dev_priv->dev->struct_mutex);
  7451. /*
  7452. * For each potential GPU frequency, load a ring frequency we'd like
  7453. * to use for memory access. We do this by specifying the IA frequency
  7454. * the PCU should use as a reference to determine the ring frequency.
  7455. */
  7456. for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
  7457. gpu_freq--) {
  7458. int diff = dev_priv->max_delay - gpu_freq;
  7459. /*
  7460. * For GPU frequencies less than 750MHz, just use the lowest
  7461. * ring freq.
  7462. */
  7463. if (gpu_freq < min_freq)
  7464. ia_freq = 800;
  7465. else
  7466. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  7467. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  7468. I915_WRITE(GEN6_PCODE_DATA,
  7469. (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
  7470. gpu_freq);
  7471. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
  7472. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  7473. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
  7474. GEN6_PCODE_READY) == 0, 10)) {
  7475. DRM_ERROR("pcode write of freq table timed out\n");
  7476. continue;
  7477. }
  7478. }
  7479. mutex_unlock(&dev_priv->dev->struct_mutex);
  7480. }
  7481. static void ironlake_init_clock_gating(struct drm_device *dev)
  7482. {
  7483. struct drm_i915_private *dev_priv = dev->dev_private;
  7484. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7485. /* Required for FBC */
  7486. dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
  7487. DPFCRUNIT_CLOCK_GATE_DISABLE |
  7488. DPFDUNIT_CLOCK_GATE_DISABLE;
  7489. /* Required for CxSR */
  7490. dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
  7491. I915_WRITE(PCH_3DCGDIS0,
  7492. MARIUNIT_CLOCK_GATE_DISABLE |
  7493. SVSMUNIT_CLOCK_GATE_DISABLE);
  7494. I915_WRITE(PCH_3DCGDIS1,
  7495. VFMUNIT_CLOCK_GATE_DISABLE);
  7496. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7497. /*
  7498. * According to the spec the following bits should be set in
  7499. * order to enable memory self-refresh
  7500. * The bit 22/21 of 0x42004
  7501. * The bit 5 of 0x42020
  7502. * The bit 15 of 0x45000
  7503. */
  7504. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7505. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  7506. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  7507. I915_WRITE(ILK_DSPCLK_GATE,
  7508. (I915_READ(ILK_DSPCLK_GATE) |
  7509. ILK_DPARB_CLK_GATE));
  7510. I915_WRITE(DISP_ARB_CTL,
  7511. (I915_READ(DISP_ARB_CTL) |
  7512. DISP_FBC_WM_DIS));
  7513. I915_WRITE(WM3_LP_ILK, 0);
  7514. I915_WRITE(WM2_LP_ILK, 0);
  7515. I915_WRITE(WM1_LP_ILK, 0);
  7516. /*
  7517. * Based on the document from hardware guys the following bits
  7518. * should be set unconditionally in order to enable FBC.
  7519. * The bit 22 of 0x42000
  7520. * The bit 22 of 0x42004
  7521. * The bit 7,8,9 of 0x42020.
  7522. */
  7523. if (IS_IRONLAKE_M(dev)) {
  7524. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  7525. I915_READ(ILK_DISPLAY_CHICKEN1) |
  7526. ILK_FBCQ_DIS);
  7527. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7528. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7529. ILK_DPARB_GATE);
  7530. I915_WRITE(ILK_DSPCLK_GATE,
  7531. I915_READ(ILK_DSPCLK_GATE) |
  7532. ILK_DPFC_DIS1 |
  7533. ILK_DPFC_DIS2 |
  7534. ILK_CLK_FBC);
  7535. }
  7536. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7537. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7538. ILK_ELPIN_409_SELECT);
  7539. I915_WRITE(_3D_CHICKEN2,
  7540. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  7541. _3D_CHICKEN2_WM_READ_PIPELINED);
  7542. }
  7543. static void gen6_init_clock_gating(struct drm_device *dev)
  7544. {
  7545. struct drm_i915_private *dev_priv = dev->dev_private;
  7546. int pipe;
  7547. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7548. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7549. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7550. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7551. ILK_ELPIN_409_SELECT);
  7552. I915_WRITE(WM3_LP_ILK, 0);
  7553. I915_WRITE(WM2_LP_ILK, 0);
  7554. I915_WRITE(WM1_LP_ILK, 0);
  7555. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  7556. * gating disable must be set. Failure to set it results in
  7557. * flickering pixels due to Z write ordering failures after
  7558. * some amount of runtime in the Mesa "fire" demo, and Unigine
  7559. * Sanctuary and Tropics, and apparently anything else with
  7560. * alpha test or pixel discard.
  7561. *
  7562. * According to the spec, bit 11 (RCCUNIT) must also be set,
  7563. * but we didn't debug actual testcases to find it out.
  7564. */
  7565. I915_WRITE(GEN6_UCGCTL2,
  7566. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  7567. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  7568. /*
  7569. * According to the spec the following bits should be
  7570. * set in order to enable memory self-refresh and fbc:
  7571. * The bit21 and bit22 of 0x42000
  7572. * The bit21 and bit22 of 0x42004
  7573. * The bit5 and bit7 of 0x42020
  7574. * The bit14 of 0x70180
  7575. * The bit14 of 0x71180
  7576. */
  7577. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  7578. I915_READ(ILK_DISPLAY_CHICKEN1) |
  7579. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  7580. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7581. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7582. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  7583. I915_WRITE(ILK_DSPCLK_GATE,
  7584. I915_READ(ILK_DSPCLK_GATE) |
  7585. ILK_DPARB_CLK_GATE |
  7586. ILK_DPFD_CLK_GATE);
  7587. for_each_pipe(pipe) {
  7588. I915_WRITE(DSPCNTR(pipe),
  7589. I915_READ(DSPCNTR(pipe)) |
  7590. DISPPLANE_TRICKLE_FEED_DISABLE);
  7591. intel_flush_display_plane(dev_priv, pipe);
  7592. }
  7593. }
  7594. static void ivybridge_init_clock_gating(struct drm_device *dev)
  7595. {
  7596. struct drm_i915_private *dev_priv = dev->dev_private;
  7597. int pipe;
  7598. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7599. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7600. I915_WRITE(WM3_LP_ILK, 0);
  7601. I915_WRITE(WM2_LP_ILK, 0);
  7602. I915_WRITE(WM1_LP_ILK, 0);
  7603. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  7604. * This implements the WaDisableRCZUnitClockGating workaround.
  7605. */
  7606. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  7607. I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
  7608. I915_WRITE(IVB_CHICKEN3,
  7609. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  7610. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  7611. /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
  7612. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  7613. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  7614. /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
  7615. I915_WRITE(GEN7_L3CNTLREG1,
  7616. GEN7_WA_FOR_GEN7_L3_CONTROL);
  7617. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  7618. GEN7_WA_L3_CHICKEN_MODE);
  7619. /* This is required by WaCatErrorRejectionIssue */
  7620. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  7621. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  7622. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  7623. for_each_pipe(pipe) {
  7624. I915_WRITE(DSPCNTR(pipe),
  7625. I915_READ(DSPCNTR(pipe)) |
  7626. DISPPLANE_TRICKLE_FEED_DISABLE);
  7627. intel_flush_display_plane(dev_priv, pipe);
  7628. }
  7629. }
  7630. static void valleyview_init_clock_gating(struct drm_device *dev)
  7631. {
  7632. struct drm_i915_private *dev_priv = dev->dev_private;
  7633. int pipe;
  7634. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7635. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7636. I915_WRITE(WM3_LP_ILK, 0);
  7637. I915_WRITE(WM2_LP_ILK, 0);
  7638. I915_WRITE(WM1_LP_ILK, 0);
  7639. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  7640. * This implements the WaDisableRCZUnitClockGating workaround.
  7641. */
  7642. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  7643. I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
  7644. I915_WRITE(IVB_CHICKEN3,
  7645. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  7646. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  7647. /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
  7648. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  7649. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  7650. /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
  7651. I915_WRITE(GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
  7652. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
  7653. /* This is required by WaCatErrorRejectionIssue */
  7654. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  7655. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  7656. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  7657. for_each_pipe(pipe) {
  7658. I915_WRITE(DSPCNTR(pipe),
  7659. I915_READ(DSPCNTR(pipe)) |
  7660. DISPPLANE_TRICKLE_FEED_DISABLE);
  7661. intel_flush_display_plane(dev_priv, pipe);
  7662. }
  7663. I915_WRITE(CACHE_MODE_1, I915_READ(CACHE_MODE_1) |
  7664. (PIXEL_SUBSPAN_COLLECT_OPT_DISABLE << 16) |
  7665. PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
  7666. }
  7667. static void g4x_init_clock_gating(struct drm_device *dev)
  7668. {
  7669. struct drm_i915_private *dev_priv = dev->dev_private;
  7670. uint32_t dspclk_gate;
  7671. I915_WRITE(RENCLK_GATE_D1, 0);
  7672. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  7673. GS_UNIT_CLOCK_GATE_DISABLE |
  7674. CL_UNIT_CLOCK_GATE_DISABLE);
  7675. I915_WRITE(RAMCLK_GATE_D, 0);
  7676. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  7677. OVRUNIT_CLOCK_GATE_DISABLE |
  7678. OVCUNIT_CLOCK_GATE_DISABLE;
  7679. if (IS_GM45(dev))
  7680. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  7681. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  7682. }
  7683. static void crestline_init_clock_gating(struct drm_device *dev)
  7684. {
  7685. struct drm_i915_private *dev_priv = dev->dev_private;
  7686. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  7687. I915_WRITE(RENCLK_GATE_D2, 0);
  7688. I915_WRITE(DSPCLK_GATE_D, 0);
  7689. I915_WRITE(RAMCLK_GATE_D, 0);
  7690. I915_WRITE16(DEUC, 0);
  7691. }
  7692. static void broadwater_init_clock_gating(struct drm_device *dev)
  7693. {
  7694. struct drm_i915_private *dev_priv = dev->dev_private;
  7695. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  7696. I965_RCC_CLOCK_GATE_DISABLE |
  7697. I965_RCPB_CLOCK_GATE_DISABLE |
  7698. I965_ISC_CLOCK_GATE_DISABLE |
  7699. I965_FBC_CLOCK_GATE_DISABLE);
  7700. I915_WRITE(RENCLK_GATE_D2, 0);
  7701. }
  7702. static void gen3_init_clock_gating(struct drm_device *dev)
  7703. {
  7704. struct drm_i915_private *dev_priv = dev->dev_private;
  7705. u32 dstate = I915_READ(D_STATE);
  7706. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  7707. DSTATE_DOT_CLOCK_GATING;
  7708. I915_WRITE(D_STATE, dstate);
  7709. }
  7710. static void i85x_init_clock_gating(struct drm_device *dev)
  7711. {
  7712. struct drm_i915_private *dev_priv = dev->dev_private;
  7713. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  7714. }
  7715. static void i830_init_clock_gating(struct drm_device *dev)
  7716. {
  7717. struct drm_i915_private *dev_priv = dev->dev_private;
  7718. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  7719. }
  7720. static void ibx_init_clock_gating(struct drm_device *dev)
  7721. {
  7722. struct drm_i915_private *dev_priv = dev->dev_private;
  7723. /*
  7724. * On Ibex Peak and Cougar Point, we need to disable clock
  7725. * gating for the panel power sequencer or it will fail to
  7726. * start up when no ports are active.
  7727. */
  7728. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  7729. }
  7730. static void cpt_init_clock_gating(struct drm_device *dev)
  7731. {
  7732. struct drm_i915_private *dev_priv = dev->dev_private;
  7733. int pipe;
  7734. /*
  7735. * On Ibex Peak and Cougar Point, we need to disable clock
  7736. * gating for the panel power sequencer or it will fail to
  7737. * start up when no ports are active.
  7738. */
  7739. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  7740. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  7741. DPLS_EDP_PPS_FIX_DIS);
  7742. /* Without this, mode sets may fail silently on FDI */
  7743. for_each_pipe(pipe)
  7744. I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
  7745. }
  7746. static void ironlake_teardown_rc6(struct drm_device *dev)
  7747. {
  7748. struct drm_i915_private *dev_priv = dev->dev_private;
  7749. if (dev_priv->renderctx) {
  7750. i915_gem_object_unpin(dev_priv->renderctx);
  7751. drm_gem_object_unreference(&dev_priv->renderctx->base);
  7752. dev_priv->renderctx = NULL;
  7753. }
  7754. if (dev_priv->pwrctx) {
  7755. i915_gem_object_unpin(dev_priv->pwrctx);
  7756. drm_gem_object_unreference(&dev_priv->pwrctx->base);
  7757. dev_priv->pwrctx = NULL;
  7758. }
  7759. }
  7760. static void ironlake_disable_rc6(struct drm_device *dev)
  7761. {
  7762. struct drm_i915_private *dev_priv = dev->dev_private;
  7763. if (I915_READ(PWRCTXA)) {
  7764. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  7765. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  7766. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  7767. 50);
  7768. I915_WRITE(PWRCTXA, 0);
  7769. POSTING_READ(PWRCTXA);
  7770. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  7771. POSTING_READ(RSTDBYCTL);
  7772. }
  7773. ironlake_teardown_rc6(dev);
  7774. }
  7775. static int ironlake_setup_rc6(struct drm_device *dev)
  7776. {
  7777. struct drm_i915_private *dev_priv = dev->dev_private;
  7778. if (dev_priv->renderctx == NULL)
  7779. dev_priv->renderctx = intel_alloc_context_page(dev);
  7780. if (!dev_priv->renderctx)
  7781. return -ENOMEM;
  7782. if (dev_priv->pwrctx == NULL)
  7783. dev_priv->pwrctx = intel_alloc_context_page(dev);
  7784. if (!dev_priv->pwrctx) {
  7785. ironlake_teardown_rc6(dev);
  7786. return -ENOMEM;
  7787. }
  7788. return 0;
  7789. }
  7790. void ironlake_enable_rc6(struct drm_device *dev)
  7791. {
  7792. struct drm_i915_private *dev_priv = dev->dev_private;
  7793. int ret;
  7794. /* rc6 disabled by default due to repeated reports of hanging during
  7795. * boot and resume.
  7796. */
  7797. if (!intel_enable_rc6(dev))
  7798. return;
  7799. mutex_lock(&dev->struct_mutex);
  7800. ret = ironlake_setup_rc6(dev);
  7801. if (ret) {
  7802. mutex_unlock(&dev->struct_mutex);
  7803. return;
  7804. }
  7805. /*
  7806. * GPU can automatically power down the render unit if given a page
  7807. * to save state.
  7808. */
  7809. ret = BEGIN_LP_RING(6);
  7810. if (ret) {
  7811. ironlake_teardown_rc6(dev);
  7812. mutex_unlock(&dev->struct_mutex);
  7813. return;
  7814. }
  7815. OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  7816. OUT_RING(MI_SET_CONTEXT);
  7817. OUT_RING(dev_priv->renderctx->gtt_offset |
  7818. MI_MM_SPACE_GTT |
  7819. MI_SAVE_EXT_STATE_EN |
  7820. MI_RESTORE_EXT_STATE_EN |
  7821. MI_RESTORE_INHIBIT);
  7822. OUT_RING(MI_SUSPEND_FLUSH);
  7823. OUT_RING(MI_NOOP);
  7824. OUT_RING(MI_FLUSH);
  7825. ADVANCE_LP_RING();
  7826. /*
  7827. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  7828. * does an implicit flush, combined with MI_FLUSH above, it should be
  7829. * safe to assume that renderctx is valid
  7830. */
  7831. ret = intel_wait_ring_idle(LP_RING(dev_priv));
  7832. if (ret) {
  7833. DRM_ERROR("failed to enable ironlake power power savings\n");
  7834. ironlake_teardown_rc6(dev);
  7835. mutex_unlock(&dev->struct_mutex);
  7836. return;
  7837. }
  7838. I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
  7839. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  7840. mutex_unlock(&dev->struct_mutex);
  7841. }
  7842. void intel_init_clock_gating(struct drm_device *dev)
  7843. {
  7844. struct drm_i915_private *dev_priv = dev->dev_private;
  7845. dev_priv->display.init_clock_gating(dev);
  7846. if (dev_priv->display.init_pch_clock_gating)
  7847. dev_priv->display.init_pch_clock_gating(dev);
  7848. }
  7849. /* Set up chip specific display functions */
  7850. static void intel_init_display(struct drm_device *dev)
  7851. {
  7852. struct drm_i915_private *dev_priv = dev->dev_private;
  7853. /* We always want a DPMS function */
  7854. if (HAS_PCH_SPLIT(dev)) {
  7855. dev_priv->display.dpms = ironlake_crtc_dpms;
  7856. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7857. dev_priv->display.update_plane = ironlake_update_plane;
  7858. } else {
  7859. dev_priv->display.dpms = i9xx_crtc_dpms;
  7860. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7861. dev_priv->display.update_plane = i9xx_update_plane;
  7862. }
  7863. if (I915_HAS_FBC(dev)) {
  7864. if (HAS_PCH_SPLIT(dev)) {
  7865. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  7866. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  7867. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  7868. } else if (IS_GM45(dev)) {
  7869. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  7870. dev_priv->display.enable_fbc = g4x_enable_fbc;
  7871. dev_priv->display.disable_fbc = g4x_disable_fbc;
  7872. } else if (IS_CRESTLINE(dev)) {
  7873. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  7874. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  7875. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  7876. }
  7877. /* 855GM needs testing */
  7878. }
  7879. /* Returns the core display clock speed */
  7880. if (IS_VALLEYVIEW(dev))
  7881. dev_priv->display.get_display_clock_speed =
  7882. valleyview_get_display_clock_speed;
  7883. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7884. dev_priv->display.get_display_clock_speed =
  7885. i945_get_display_clock_speed;
  7886. else if (IS_I915G(dev))
  7887. dev_priv->display.get_display_clock_speed =
  7888. i915_get_display_clock_speed;
  7889. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7890. dev_priv->display.get_display_clock_speed =
  7891. i9xx_misc_get_display_clock_speed;
  7892. else if (IS_I915GM(dev))
  7893. dev_priv->display.get_display_clock_speed =
  7894. i915gm_get_display_clock_speed;
  7895. else if (IS_I865G(dev))
  7896. dev_priv->display.get_display_clock_speed =
  7897. i865_get_display_clock_speed;
  7898. else if (IS_I85X(dev))
  7899. dev_priv->display.get_display_clock_speed =
  7900. i855_get_display_clock_speed;
  7901. else /* 852, 830 */
  7902. dev_priv->display.get_display_clock_speed =
  7903. i830_get_display_clock_speed;
  7904. /* For FIFO watermark updates */
  7905. if (HAS_PCH_SPLIT(dev)) {
  7906. dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
  7907. dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
  7908. /* IVB configs may use multi-threaded forcewake */
  7909. if (IS_IVYBRIDGE(dev)) {
  7910. u32 ecobus;
  7911. /* A small trick here - if the bios hasn't configured MT forcewake,
  7912. * and if the device is in RC6, then force_wake_mt_get will not wake
  7913. * the device and the ECOBUS read will return zero. Which will be
  7914. * (correctly) interpreted by the test below as MT forcewake being
  7915. * disabled.
  7916. */
  7917. mutex_lock(&dev->struct_mutex);
  7918. __gen6_gt_force_wake_mt_get(dev_priv);
  7919. ecobus = I915_READ_NOTRACE(ECOBUS);
  7920. __gen6_gt_force_wake_mt_put(dev_priv);
  7921. mutex_unlock(&dev->struct_mutex);
  7922. if (ecobus & FORCEWAKE_MT_ENABLE) {
  7923. DRM_DEBUG_KMS("Using MT version of forcewake\n");
  7924. dev_priv->display.force_wake_get =
  7925. __gen6_gt_force_wake_mt_get;
  7926. dev_priv->display.force_wake_put =
  7927. __gen6_gt_force_wake_mt_put;
  7928. }
  7929. }
  7930. if (HAS_PCH_IBX(dev))
  7931. dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
  7932. else if (HAS_PCH_CPT(dev))
  7933. dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
  7934. if (IS_GEN5(dev)) {
  7935. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  7936. dev_priv->display.update_wm = ironlake_update_wm;
  7937. else {
  7938. DRM_DEBUG_KMS("Failed to get proper latency. "
  7939. "Disable CxSR\n");
  7940. dev_priv->display.update_wm = NULL;
  7941. }
  7942. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7943. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  7944. dev_priv->display.write_eld = ironlake_write_eld;
  7945. } else if (IS_GEN6(dev)) {
  7946. if (SNB_READ_WM0_LATENCY()) {
  7947. dev_priv->display.update_wm = sandybridge_update_wm;
  7948. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  7949. } else {
  7950. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7951. "Disable CxSR\n");
  7952. dev_priv->display.update_wm = NULL;
  7953. }
  7954. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7955. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  7956. dev_priv->display.write_eld = ironlake_write_eld;
  7957. } else if (IS_IVYBRIDGE(dev)) {
  7958. /* FIXME: detect B0+ stepping and use auto training */
  7959. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7960. if (SNB_READ_WM0_LATENCY()) {
  7961. dev_priv->display.update_wm = sandybridge_update_wm;
  7962. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  7963. } else {
  7964. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7965. "Disable CxSR\n");
  7966. dev_priv->display.update_wm = NULL;
  7967. }
  7968. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  7969. dev_priv->display.write_eld = ironlake_write_eld;
  7970. } else
  7971. dev_priv->display.update_wm = NULL;
  7972. } else if (IS_VALLEYVIEW(dev)) {
  7973. dev_priv->display.update_wm = valleyview_update_wm;
  7974. dev_priv->display.init_clock_gating =
  7975. valleyview_init_clock_gating;
  7976. dev_priv->display.force_wake_get = vlv_force_wake_get;
  7977. dev_priv->display.force_wake_put = vlv_force_wake_put;
  7978. } else if (IS_PINEVIEW(dev)) {
  7979. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  7980. dev_priv->is_ddr3,
  7981. dev_priv->fsb_freq,
  7982. dev_priv->mem_freq)) {
  7983. DRM_INFO("failed to find known CxSR latency "
  7984. "(found ddr%s fsb freq %d, mem freq %d), "
  7985. "disabling CxSR\n",
  7986. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  7987. dev_priv->fsb_freq, dev_priv->mem_freq);
  7988. /* Disable CxSR and never update its watermark again */
  7989. pineview_disable_cxsr(dev);
  7990. dev_priv->display.update_wm = NULL;
  7991. } else
  7992. dev_priv->display.update_wm = pineview_update_wm;
  7993. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  7994. } else if (IS_G4X(dev)) {
  7995. dev_priv->display.write_eld = g4x_write_eld;
  7996. dev_priv->display.update_wm = g4x_update_wm;
  7997. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  7998. } else if (IS_GEN4(dev)) {
  7999. dev_priv->display.update_wm = i965_update_wm;
  8000. if (IS_CRESTLINE(dev))
  8001. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  8002. else if (IS_BROADWATER(dev))
  8003. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  8004. } else if (IS_GEN3(dev)) {
  8005. dev_priv->display.update_wm = i9xx_update_wm;
  8006. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  8007. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  8008. } else if (IS_I865G(dev)) {
  8009. dev_priv->display.update_wm = i830_update_wm;
  8010. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  8011. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  8012. } else if (IS_I85X(dev)) {
  8013. dev_priv->display.update_wm = i9xx_update_wm;
  8014. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  8015. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  8016. } else {
  8017. dev_priv->display.update_wm = i830_update_wm;
  8018. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  8019. if (IS_845G(dev))
  8020. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  8021. else
  8022. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  8023. }
  8024. /* Default just returns -ENODEV to indicate unsupported */
  8025. dev_priv->display.queue_flip = intel_default_queue_flip;
  8026. switch (INTEL_INFO(dev)->gen) {
  8027. case 2:
  8028. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  8029. break;
  8030. case 3:
  8031. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  8032. break;
  8033. case 4:
  8034. case 5:
  8035. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  8036. break;
  8037. case 6:
  8038. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  8039. break;
  8040. case 7:
  8041. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  8042. break;
  8043. }
  8044. }
  8045. /*
  8046. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  8047. * resume, or other times. This quirk makes sure that's the case for
  8048. * affected systems.
  8049. */
  8050. static void quirk_pipea_force(struct drm_device *dev)
  8051. {
  8052. struct drm_i915_private *dev_priv = dev->dev_private;
  8053. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  8054. DRM_INFO("applying pipe a force quirk\n");
  8055. }
  8056. /*
  8057. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  8058. */
  8059. static void quirk_ssc_force_disable(struct drm_device *dev)
  8060. {
  8061. struct drm_i915_private *dev_priv = dev->dev_private;
  8062. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  8063. DRM_INFO("applying lvds SSC disable quirk\n");
  8064. }
  8065. /*
  8066. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  8067. * brightness value
  8068. */
  8069. static void quirk_invert_brightness(struct drm_device *dev)
  8070. {
  8071. struct drm_i915_private *dev_priv = dev->dev_private;
  8072. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  8073. DRM_INFO("applying inverted panel brightness quirk\n");
  8074. }
  8075. struct intel_quirk {
  8076. int device;
  8077. int subsystem_vendor;
  8078. int subsystem_device;
  8079. void (*hook)(struct drm_device *dev);
  8080. };
  8081. struct intel_quirk intel_quirks[] = {
  8082. /* HP Mini needs pipe A force quirk (LP: #322104) */
  8083. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  8084. /* Thinkpad R31 needs pipe A force quirk */
  8085. { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
  8086. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  8087. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  8088. /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
  8089. { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
  8090. /* ThinkPad X40 needs pipe A force quirk */
  8091. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  8092. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  8093. /* 855 & before need to leave pipe A & dpll A up */
  8094. { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8095. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8096. /* Lenovo U160 cannot use SSC on LVDS */
  8097. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  8098. /* Sony Vaio Y cannot use SSC on LVDS */
  8099. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  8100. /* Acer Aspire 5734Z must invert backlight brightness */
  8101. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  8102. };
  8103. static void intel_init_quirks(struct drm_device *dev)
  8104. {
  8105. struct pci_dev *d = dev->pdev;
  8106. int i;
  8107. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  8108. struct intel_quirk *q = &intel_quirks[i];
  8109. if (d->device == q->device &&
  8110. (d->subsystem_vendor == q->subsystem_vendor ||
  8111. q->subsystem_vendor == PCI_ANY_ID) &&
  8112. (d->subsystem_device == q->subsystem_device ||
  8113. q->subsystem_device == PCI_ANY_ID))
  8114. q->hook(dev);
  8115. }
  8116. }
  8117. /* Disable the VGA plane that we never use */
  8118. static void i915_disable_vga(struct drm_device *dev)
  8119. {
  8120. struct drm_i915_private *dev_priv = dev->dev_private;
  8121. u8 sr1;
  8122. u32 vga_reg;
  8123. if (HAS_PCH_SPLIT(dev))
  8124. vga_reg = CPU_VGACNTRL;
  8125. else
  8126. vga_reg = VGACNTRL;
  8127. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8128. outb(SR01, VGA_SR_INDEX);
  8129. sr1 = inb(VGA_SR_DATA);
  8130. outb(sr1 | 1<<5, VGA_SR_DATA);
  8131. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8132. udelay(300);
  8133. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  8134. POSTING_READ(vga_reg);
  8135. }
  8136. static void ivb_pch_pwm_override(struct drm_device *dev)
  8137. {
  8138. struct drm_i915_private *dev_priv = dev->dev_private;
  8139. /*
  8140. * IVB has CPU eDP backlight regs too, set things up to let the
  8141. * PCH regs control the backlight
  8142. */
  8143. I915_WRITE(BLC_PWM_CPU_CTL2, PWM_ENABLE);
  8144. I915_WRITE(BLC_PWM_CPU_CTL, 0);
  8145. I915_WRITE(BLC_PWM_PCH_CTL1, PWM_ENABLE | (1<<30));
  8146. }
  8147. void intel_modeset_init_hw(struct drm_device *dev)
  8148. {
  8149. struct drm_i915_private *dev_priv = dev->dev_private;
  8150. intel_init_clock_gating(dev);
  8151. if (IS_IRONLAKE_M(dev)) {
  8152. ironlake_enable_drps(dev);
  8153. intel_init_emon(dev);
  8154. }
  8155. if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
  8156. gen6_enable_rps(dev_priv);
  8157. gen6_update_ring_freq(dev_priv);
  8158. }
  8159. if (IS_IVYBRIDGE(dev))
  8160. ivb_pch_pwm_override(dev);
  8161. }
  8162. void intel_modeset_init(struct drm_device *dev)
  8163. {
  8164. struct drm_i915_private *dev_priv = dev->dev_private;
  8165. int i, ret;
  8166. drm_mode_config_init(dev);
  8167. dev->mode_config.min_width = 0;
  8168. dev->mode_config.min_height = 0;
  8169. dev->mode_config.preferred_depth = 24;
  8170. dev->mode_config.prefer_shadow = 1;
  8171. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  8172. intel_init_quirks(dev);
  8173. intel_init_display(dev);
  8174. if (IS_GEN2(dev)) {
  8175. dev->mode_config.max_width = 2048;
  8176. dev->mode_config.max_height = 2048;
  8177. } else if (IS_GEN3(dev)) {
  8178. dev->mode_config.max_width = 4096;
  8179. dev->mode_config.max_height = 4096;
  8180. } else {
  8181. dev->mode_config.max_width = 8192;
  8182. dev->mode_config.max_height = 8192;
  8183. }
  8184. dev->mode_config.fb_base = dev->agp->base;
  8185. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  8186. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  8187. for (i = 0; i < dev_priv->num_pipe; i++) {
  8188. intel_crtc_init(dev, i);
  8189. ret = intel_plane_init(dev, i);
  8190. if (ret)
  8191. DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
  8192. }
  8193. /* Just disable it once at startup */
  8194. i915_disable_vga(dev);
  8195. intel_setup_outputs(dev);
  8196. intel_modeset_init_hw(dev);
  8197. INIT_WORK(&dev_priv->idle_work, intel_idle_update);
  8198. setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
  8199. (unsigned long)dev);
  8200. }
  8201. void intel_modeset_gem_init(struct drm_device *dev)
  8202. {
  8203. if (IS_IRONLAKE_M(dev))
  8204. ironlake_enable_rc6(dev);
  8205. intel_setup_overlay(dev);
  8206. }
  8207. void intel_modeset_cleanup(struct drm_device *dev)
  8208. {
  8209. struct drm_i915_private *dev_priv = dev->dev_private;
  8210. struct drm_crtc *crtc;
  8211. struct intel_crtc *intel_crtc;
  8212. drm_kms_helper_poll_fini(dev);
  8213. mutex_lock(&dev->struct_mutex);
  8214. intel_unregister_dsm_handler();
  8215. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8216. /* Skip inactive CRTCs */
  8217. if (!crtc->fb)
  8218. continue;
  8219. intel_crtc = to_intel_crtc(crtc);
  8220. intel_increase_pllclock(crtc);
  8221. }
  8222. intel_disable_fbc(dev);
  8223. if (IS_IRONLAKE_M(dev))
  8224. ironlake_disable_drps(dev);
  8225. if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev))
  8226. gen6_disable_rps(dev);
  8227. if (IS_IRONLAKE_M(dev))
  8228. ironlake_disable_rc6(dev);
  8229. if (IS_VALLEYVIEW(dev))
  8230. vlv_init_dpio(dev);
  8231. mutex_unlock(&dev->struct_mutex);
  8232. /* Disable the irq before mode object teardown, for the irq might
  8233. * enqueue unpin/hotplug work. */
  8234. drm_irq_uninstall(dev);
  8235. cancel_work_sync(&dev_priv->hotplug_work);
  8236. cancel_work_sync(&dev_priv->rps_work);
  8237. /* flush any delayed tasks or pending work */
  8238. flush_scheduled_work();
  8239. /* Shut off idle work before the crtcs get freed. */
  8240. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8241. intel_crtc = to_intel_crtc(crtc);
  8242. del_timer_sync(&intel_crtc->idle_timer);
  8243. }
  8244. del_timer_sync(&dev_priv->idle_timer);
  8245. cancel_work_sync(&dev_priv->idle_work);
  8246. drm_mode_config_cleanup(dev);
  8247. }
  8248. /*
  8249. * Return which encoder is currently attached for connector.
  8250. */
  8251. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8252. {
  8253. return &intel_attached_encoder(connector)->base;
  8254. }
  8255. void intel_connector_attach_encoder(struct intel_connector *connector,
  8256. struct intel_encoder *encoder)
  8257. {
  8258. connector->encoder = encoder;
  8259. drm_mode_connector_attach_encoder(&connector->base,
  8260. &encoder->base);
  8261. }
  8262. /*
  8263. * set vga decode state - true == enable VGA decode
  8264. */
  8265. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8266. {
  8267. struct drm_i915_private *dev_priv = dev->dev_private;
  8268. u16 gmch_ctrl;
  8269. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8270. if (state)
  8271. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8272. else
  8273. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8274. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8275. return 0;
  8276. }
  8277. #ifdef CONFIG_DEBUG_FS
  8278. #include <linux/seq_file.h>
  8279. struct intel_display_error_state {
  8280. struct intel_cursor_error_state {
  8281. u32 control;
  8282. u32 position;
  8283. u32 base;
  8284. u32 size;
  8285. } cursor[2];
  8286. struct intel_pipe_error_state {
  8287. u32 conf;
  8288. u32 source;
  8289. u32 htotal;
  8290. u32 hblank;
  8291. u32 hsync;
  8292. u32 vtotal;
  8293. u32 vblank;
  8294. u32 vsync;
  8295. } pipe[2];
  8296. struct intel_plane_error_state {
  8297. u32 control;
  8298. u32 stride;
  8299. u32 size;
  8300. u32 pos;
  8301. u32 addr;
  8302. u32 surface;
  8303. u32 tile_offset;
  8304. } plane[2];
  8305. };
  8306. struct intel_display_error_state *
  8307. intel_display_capture_error_state(struct drm_device *dev)
  8308. {
  8309. drm_i915_private_t *dev_priv = dev->dev_private;
  8310. struct intel_display_error_state *error;
  8311. int i;
  8312. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8313. if (error == NULL)
  8314. return NULL;
  8315. for (i = 0; i < 2; i++) {
  8316. error->cursor[i].control = I915_READ(CURCNTR(i));
  8317. error->cursor[i].position = I915_READ(CURPOS(i));
  8318. error->cursor[i].base = I915_READ(CURBASE(i));
  8319. error->plane[i].control = I915_READ(DSPCNTR(i));
  8320. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8321. error->plane[i].size = I915_READ(DSPSIZE(i));
  8322. error->plane[i].pos = I915_READ(DSPPOS(i));
  8323. error->plane[i].addr = I915_READ(DSPADDR(i));
  8324. if (INTEL_INFO(dev)->gen >= 4) {
  8325. error->plane[i].surface = I915_READ(DSPSURF(i));
  8326. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8327. }
  8328. error->pipe[i].conf = I915_READ(PIPECONF(i));
  8329. error->pipe[i].source = I915_READ(PIPESRC(i));
  8330. error->pipe[i].htotal = I915_READ(HTOTAL(i));
  8331. error->pipe[i].hblank = I915_READ(HBLANK(i));
  8332. error->pipe[i].hsync = I915_READ(HSYNC(i));
  8333. error->pipe[i].vtotal = I915_READ(VTOTAL(i));
  8334. error->pipe[i].vblank = I915_READ(VBLANK(i));
  8335. error->pipe[i].vsync = I915_READ(VSYNC(i));
  8336. }
  8337. return error;
  8338. }
  8339. void
  8340. intel_display_print_error_state(struct seq_file *m,
  8341. struct drm_device *dev,
  8342. struct intel_display_error_state *error)
  8343. {
  8344. int i;
  8345. for (i = 0; i < 2; i++) {
  8346. seq_printf(m, "Pipe [%d]:\n", i);
  8347. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8348. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8349. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8350. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8351. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8352. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8353. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8354. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8355. seq_printf(m, "Plane [%d]:\n", i);
  8356. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8357. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8358. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8359. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  8360. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8361. if (INTEL_INFO(dev)->gen >= 4) {
  8362. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8363. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8364. }
  8365. seq_printf(m, "Cursor [%d]:\n", i);
  8366. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8367. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  8368. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8369. }
  8370. }
  8371. #endif