paging_tmpl.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. /*
  20. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  21. * so the code in this file is compiled twice, once per pte size.
  22. */
  23. #if PTTYPE == 64
  24. #define pt_element_t u64
  25. #define guest_walker guest_walker64
  26. #define FNAME(name) paging##64_##name
  27. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  28. #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
  29. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  30. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  31. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  32. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #else
  36. #define PT_MAX_FULL_LEVELS 2
  37. #endif
  38. #elif PTTYPE == 32
  39. #define pt_element_t u32
  40. #define guest_walker guest_walker32
  41. #define FNAME(name) paging##32_##name
  42. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  43. #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
  44. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  45. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  46. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  47. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  48. #define PT_MAX_FULL_LEVELS 2
  49. #else
  50. #error Invalid PTTYPE value
  51. #endif
  52. /*
  53. * The guest_walker structure emulates the behavior of the hardware page
  54. * table walker.
  55. */
  56. struct guest_walker {
  57. int level;
  58. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  59. pt_element_t *table;
  60. pt_element_t pte;
  61. pt_element_t *ptep;
  62. struct page *page;
  63. int index;
  64. pt_element_t inherited_ar;
  65. gfn_t gfn;
  66. u32 error_code;
  67. };
  68. /*
  69. * Fetch a guest pte for a guest virtual address
  70. */
  71. static int FNAME(walk_addr)(struct guest_walker *walker,
  72. struct kvm_vcpu *vcpu, gva_t addr,
  73. int write_fault, int user_fault, int fetch_fault)
  74. {
  75. hpa_t hpa;
  76. struct kvm_memory_slot *slot;
  77. pt_element_t *ptep;
  78. pt_element_t root;
  79. gfn_t table_gfn;
  80. pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
  81. walker->level = vcpu->mmu.root_level;
  82. walker->table = NULL;
  83. walker->page = NULL;
  84. walker->ptep = NULL;
  85. root = vcpu->cr3;
  86. #if PTTYPE == 64
  87. if (!is_long_mode(vcpu)) {
  88. walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
  89. root = *walker->ptep;
  90. walker->pte = root;
  91. if (!(root & PT_PRESENT_MASK))
  92. goto not_present;
  93. --walker->level;
  94. }
  95. #endif
  96. table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  97. walker->table_gfn[walker->level - 1] = table_gfn;
  98. pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
  99. walker->level - 1, table_gfn);
  100. slot = gfn_to_memslot(vcpu->kvm, table_gfn);
  101. hpa = safe_gpa_to_hpa(vcpu, root & PT64_BASE_ADDR_MASK);
  102. walker->page = pfn_to_page(hpa >> PAGE_SHIFT);
  103. walker->table = kmap_atomic(walker->page, KM_USER0);
  104. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  105. (vcpu->cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
  106. walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
  107. for (;;) {
  108. int index = PT_INDEX(addr, walker->level);
  109. hpa_t paddr;
  110. ptep = &walker->table[index];
  111. walker->index = index;
  112. ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
  113. ((unsigned long)ptep & PAGE_MASK));
  114. if (!is_present_pte(*ptep))
  115. goto not_present;
  116. if (write_fault && !is_writeble_pte(*ptep))
  117. if (user_fault || is_write_protection(vcpu))
  118. goto access_error;
  119. if (user_fault && !(*ptep & PT_USER_MASK))
  120. goto access_error;
  121. #if PTTYPE == 64
  122. if (fetch_fault && is_nx(vcpu) && (*ptep & PT64_NX_MASK))
  123. goto access_error;
  124. #endif
  125. if (!(*ptep & PT_ACCESSED_MASK)) {
  126. mark_page_dirty(vcpu->kvm, table_gfn);
  127. *ptep |= PT_ACCESSED_MASK;
  128. }
  129. if (walker->level == PT_PAGE_TABLE_LEVEL) {
  130. walker->gfn = (*ptep & PT_BASE_ADDR_MASK)
  131. >> PAGE_SHIFT;
  132. break;
  133. }
  134. if (walker->level == PT_DIRECTORY_LEVEL
  135. && (*ptep & PT_PAGE_SIZE_MASK)
  136. && (PTTYPE == 64 || is_pse(vcpu))) {
  137. walker->gfn = (*ptep & PT_DIR_BASE_ADDR_MASK)
  138. >> PAGE_SHIFT;
  139. walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
  140. break;
  141. }
  142. walker->inherited_ar &= walker->table[index];
  143. table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
  144. kunmap_atomic(walker->table, KM_USER0);
  145. paddr = safe_gpa_to_hpa(vcpu, table_gfn << PAGE_SHIFT);
  146. walker->page = pfn_to_page(paddr >> PAGE_SHIFT);
  147. walker->table = kmap_atomic(walker->page, KM_USER0);
  148. --walker->level;
  149. walker->table_gfn[walker->level - 1] = table_gfn;
  150. pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
  151. walker->level - 1, table_gfn);
  152. }
  153. walker->pte = *ptep;
  154. if (walker->page)
  155. walker->ptep = NULL;
  156. if (walker->table)
  157. kunmap_atomic(walker->table, KM_USER0);
  158. pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)*ptep);
  159. return 1;
  160. not_present:
  161. walker->error_code = 0;
  162. goto err;
  163. access_error:
  164. walker->error_code = PFERR_PRESENT_MASK;
  165. err:
  166. if (write_fault)
  167. walker->error_code |= PFERR_WRITE_MASK;
  168. if (user_fault)
  169. walker->error_code |= PFERR_USER_MASK;
  170. if (fetch_fault)
  171. walker->error_code |= PFERR_FETCH_MASK;
  172. if (walker->table)
  173. kunmap_atomic(walker->table, KM_USER0);
  174. return 0;
  175. }
  176. static void FNAME(mark_pagetable_dirty)(struct kvm *kvm,
  177. struct guest_walker *walker)
  178. {
  179. mark_page_dirty(kvm, walker->table_gfn[walker->level - 1]);
  180. }
  181. static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
  182. u64 *shadow_pte,
  183. gpa_t gaddr,
  184. pt_element_t gpte,
  185. u64 access_bits,
  186. int user_fault,
  187. int write_fault,
  188. int *ptwrite,
  189. struct guest_walker *walker,
  190. gfn_t gfn)
  191. {
  192. hpa_t paddr;
  193. int dirty = gpte & PT_DIRTY_MASK;
  194. u64 spte;
  195. int was_rmapped = is_rmap_pte(*shadow_pte);
  196. pgprintk("%s: spte %llx gpte %llx access %llx write_fault %d"
  197. " user_fault %d gfn %lx\n",
  198. __FUNCTION__, *shadow_pte, (u64)gpte, access_bits,
  199. write_fault, user_fault, gfn);
  200. if (write_fault && !dirty) {
  201. pt_element_t *guest_ent, *tmp = NULL;
  202. if (walker->ptep)
  203. guest_ent = walker->ptep;
  204. else {
  205. tmp = kmap_atomic(walker->page, KM_USER0);
  206. guest_ent = &tmp[walker->index];
  207. }
  208. *guest_ent |= PT_DIRTY_MASK;
  209. if (!walker->ptep)
  210. kunmap_atomic(tmp, KM_USER0);
  211. dirty = 1;
  212. FNAME(mark_pagetable_dirty)(vcpu->kvm, walker);
  213. }
  214. /*
  215. * We don't set the accessed bit, since we sometimes want to see
  216. * whether the guest actually used the pte (in order to detect
  217. * demand paging).
  218. */
  219. spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
  220. spte |= gpte & PT64_NX_MASK;
  221. if (!dirty)
  222. access_bits &= ~PT_WRITABLE_MASK;
  223. paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
  224. spte |= PT_PRESENT_MASK;
  225. if (access_bits & PT_USER_MASK)
  226. spte |= PT_USER_MASK;
  227. if (is_error_hpa(paddr)) {
  228. set_shadow_pte(shadow_pte,
  229. shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
  230. return;
  231. }
  232. spte |= paddr;
  233. if ((access_bits & PT_WRITABLE_MASK)
  234. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  235. struct kvm_mmu_page *shadow;
  236. spte |= PT_WRITABLE_MASK;
  237. if (user_fault) {
  238. mmu_unshadow(vcpu->kvm, gfn);
  239. goto unshadowed;
  240. }
  241. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  242. if (shadow) {
  243. pgprintk("%s: found shadow page for %lx, marking ro\n",
  244. __FUNCTION__, gfn);
  245. access_bits &= ~PT_WRITABLE_MASK;
  246. if (is_writeble_pte(spte)) {
  247. spte &= ~PT_WRITABLE_MASK;
  248. kvm_x86_ops->tlb_flush(vcpu);
  249. }
  250. if (write_fault)
  251. *ptwrite = 1;
  252. }
  253. }
  254. unshadowed:
  255. if (access_bits & PT_WRITABLE_MASK)
  256. mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
  257. pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
  258. set_shadow_pte(shadow_pte, spte);
  259. page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
  260. if (!was_rmapped)
  261. rmap_add(vcpu, shadow_pte, (gaddr & PT64_BASE_ADDR_MASK)
  262. >> PAGE_SHIFT);
  263. if (!ptwrite || !*ptwrite)
  264. vcpu->last_pte_updated = shadow_pte;
  265. }
  266. static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t gpte,
  267. u64 *shadow_pte, u64 access_bits,
  268. int user_fault, int write_fault, int *ptwrite,
  269. struct guest_walker *walker, gfn_t gfn)
  270. {
  271. access_bits &= gpte;
  272. FNAME(set_pte_common)(vcpu, shadow_pte, gpte & PT_BASE_ADDR_MASK,
  273. gpte, access_bits, user_fault, write_fault,
  274. ptwrite, walker, gfn);
  275. }
  276. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
  277. u64 *spte, const void *pte, int bytes,
  278. int offset_in_pte)
  279. {
  280. pt_element_t gpte;
  281. gpte = *(const pt_element_t *)pte;
  282. if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
  283. if (!offset_in_pte && !is_present_pte(gpte))
  284. set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
  285. return;
  286. }
  287. if (bytes < sizeof(pt_element_t))
  288. return;
  289. pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
  290. FNAME(set_pte)(vcpu, gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
  291. 0, NULL, NULL,
  292. (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT);
  293. }
  294. static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t gpde,
  295. u64 *shadow_pte, u64 access_bits,
  296. int user_fault, int write_fault, int *ptwrite,
  297. struct guest_walker *walker, gfn_t gfn)
  298. {
  299. gpa_t gaddr;
  300. access_bits &= gpde;
  301. gaddr = (gpa_t)gfn << PAGE_SHIFT;
  302. if (PTTYPE == 32 && is_cpuid_PSE36())
  303. gaddr |= (gpde & PT32_DIR_PSE36_MASK) <<
  304. (32 - PT32_DIR_PSE36_SHIFT);
  305. FNAME(set_pte_common)(vcpu, shadow_pte, gaddr,
  306. gpde, access_bits, user_fault, write_fault,
  307. ptwrite, walker, gfn);
  308. }
  309. /*
  310. * Fetch a shadow pte for a specific level in the paging hierarchy.
  311. */
  312. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  313. struct guest_walker *walker,
  314. int user_fault, int write_fault, int *ptwrite)
  315. {
  316. hpa_t shadow_addr;
  317. int level;
  318. u64 *shadow_ent;
  319. u64 *prev_shadow_ent = NULL;
  320. if (!is_present_pte(walker->pte))
  321. return NULL;
  322. shadow_addr = vcpu->mmu.root_hpa;
  323. level = vcpu->mmu.shadow_root_level;
  324. if (level == PT32E_ROOT_LEVEL) {
  325. shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
  326. shadow_addr &= PT64_BASE_ADDR_MASK;
  327. --level;
  328. }
  329. for (; ; level--) {
  330. u32 index = SHADOW_PT_INDEX(addr, level);
  331. struct kvm_mmu_page *shadow_page;
  332. u64 shadow_pte;
  333. int metaphysical;
  334. gfn_t table_gfn;
  335. unsigned hugepage_access = 0;
  336. shadow_ent = ((u64 *)__va(shadow_addr)) + index;
  337. if (is_shadow_present_pte(*shadow_ent)) {
  338. if (level == PT_PAGE_TABLE_LEVEL)
  339. break;
  340. shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
  341. prev_shadow_ent = shadow_ent;
  342. continue;
  343. }
  344. if (level == PT_PAGE_TABLE_LEVEL)
  345. break;
  346. if (level - 1 == PT_PAGE_TABLE_LEVEL
  347. && walker->level == PT_DIRECTORY_LEVEL) {
  348. metaphysical = 1;
  349. hugepage_access = walker->pte;
  350. hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
  351. if (walker->pte & PT64_NX_MASK)
  352. hugepage_access |= (1 << 2);
  353. hugepage_access >>= PT_WRITABLE_SHIFT;
  354. table_gfn = (walker->pte & PT_BASE_ADDR_MASK)
  355. >> PAGE_SHIFT;
  356. } else {
  357. metaphysical = 0;
  358. table_gfn = walker->table_gfn[level - 2];
  359. }
  360. shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
  361. metaphysical, hugepage_access,
  362. shadow_ent);
  363. shadow_addr = __pa(shadow_page->spt);
  364. shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
  365. | PT_WRITABLE_MASK | PT_USER_MASK;
  366. *shadow_ent = shadow_pte;
  367. prev_shadow_ent = shadow_ent;
  368. }
  369. if (walker->level == PT_DIRECTORY_LEVEL) {
  370. FNAME(set_pde)(vcpu, walker->pte, shadow_ent,
  371. walker->inherited_ar, user_fault, write_fault,
  372. ptwrite, walker, walker->gfn);
  373. } else {
  374. ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
  375. FNAME(set_pte)(vcpu, walker->pte, shadow_ent,
  376. walker->inherited_ar, user_fault, write_fault,
  377. ptwrite, walker, walker->gfn);
  378. }
  379. return shadow_ent;
  380. }
  381. /*
  382. * Page fault handler. There are several causes for a page fault:
  383. * - there is no shadow pte for the guest pte
  384. * - write access through a shadow pte marked read only so that we can set
  385. * the dirty bit
  386. * - write access to a shadow pte marked read only so we can update the page
  387. * dirty bitmap, when userspace requests it
  388. * - mmio access; in this case we will never install a present shadow pte
  389. * - normal guest page fault due to the guest pte marked not present, not
  390. * writable, or not executable
  391. *
  392. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  393. * a negative value on error.
  394. */
  395. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  396. u32 error_code)
  397. {
  398. int write_fault = error_code & PFERR_WRITE_MASK;
  399. int user_fault = error_code & PFERR_USER_MASK;
  400. int fetch_fault = error_code & PFERR_FETCH_MASK;
  401. struct guest_walker walker;
  402. u64 *shadow_pte;
  403. int write_pt = 0;
  404. int r;
  405. pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
  406. kvm_mmu_audit(vcpu, "pre page fault");
  407. r = mmu_topup_memory_caches(vcpu);
  408. if (r)
  409. return r;
  410. /*
  411. * Look up the shadow pte for the faulting address.
  412. */
  413. r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
  414. fetch_fault);
  415. /*
  416. * The page is not mapped by the guest. Let the guest handle it.
  417. */
  418. if (!r) {
  419. pgprintk("%s: guest page fault\n", __FUNCTION__);
  420. inject_page_fault(vcpu, addr, walker.error_code);
  421. vcpu->last_pt_write_count = 0; /* reset fork detector */
  422. return 0;
  423. }
  424. shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  425. &write_pt);
  426. pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
  427. shadow_pte, *shadow_pte, write_pt);
  428. if (!write_pt)
  429. vcpu->last_pt_write_count = 0; /* reset fork detector */
  430. /*
  431. * mmio: emulate if accessible, otherwise its a guest fault.
  432. */
  433. if (is_io_pte(*shadow_pte))
  434. return 1;
  435. ++vcpu->stat.pf_fixed;
  436. kvm_mmu_audit(vcpu, "post page fault (fixed)");
  437. return write_pt;
  438. }
  439. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
  440. {
  441. struct guest_walker walker;
  442. gpa_t gpa = UNMAPPED_GVA;
  443. int r;
  444. r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
  445. if (r) {
  446. gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
  447. gpa |= vaddr & ~PAGE_MASK;
  448. }
  449. return gpa;
  450. }
  451. static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
  452. struct kvm_mmu_page *sp)
  453. {
  454. int i;
  455. pt_element_t *gpt;
  456. if (sp->role.metaphysical || PTTYPE == 32) {
  457. nonpaging_prefetch_page(vcpu, sp);
  458. return;
  459. }
  460. gpt = kmap_atomic(gfn_to_page(vcpu->kvm, sp->gfn), KM_USER0);
  461. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  462. if (is_present_pte(gpt[i]))
  463. sp->spt[i] = shadow_trap_nonpresent_pte;
  464. else
  465. sp->spt[i] = shadow_notrap_nonpresent_pte;
  466. kunmap_atomic(gpt, KM_USER0);
  467. }
  468. #undef pt_element_t
  469. #undef guest_walker
  470. #undef FNAME
  471. #undef PT_BASE_ADDR_MASK
  472. #undef PT_INDEX
  473. #undef SHADOW_PT_INDEX
  474. #undef PT_LEVEL_MASK
  475. #undef PT_DIR_BASE_ADDR_MASK
  476. #undef PT_LEVEL_BITS
  477. #undef PT_MAX_FULL_LEVELS