mmu.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "vmx.h"
  20. #include "kvm.h"
  21. #include <linux/types.h>
  22. #include <linux/string.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/module.h>
  26. #include <asm/page.h>
  27. #include <asm/cmpxchg.h>
  28. #undef MMU_DEBUG
  29. #undef AUDIT
  30. #ifdef AUDIT
  31. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  32. #else
  33. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  34. #endif
  35. #ifdef MMU_DEBUG
  36. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  37. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  38. #else
  39. #define pgprintk(x...) do { } while (0)
  40. #define rmap_printk(x...) do { } while (0)
  41. #endif
  42. #if defined(MMU_DEBUG) || defined(AUDIT)
  43. static int dbg = 1;
  44. #endif
  45. #ifndef MMU_DEBUG
  46. #define ASSERT(x) do { } while (0)
  47. #else
  48. #define ASSERT(x) \
  49. if (!(x)) { \
  50. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  51. __FILE__, __LINE__, #x); \
  52. }
  53. #endif
  54. #define PT64_PT_BITS 9
  55. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  56. #define PT32_PT_BITS 10
  57. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  58. #define PT_WRITABLE_SHIFT 1
  59. #define PT_PRESENT_MASK (1ULL << 0)
  60. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  61. #define PT_USER_MASK (1ULL << 2)
  62. #define PT_PWT_MASK (1ULL << 3)
  63. #define PT_PCD_MASK (1ULL << 4)
  64. #define PT_ACCESSED_MASK (1ULL << 5)
  65. #define PT_DIRTY_MASK (1ULL << 6)
  66. #define PT_PAGE_SIZE_MASK (1ULL << 7)
  67. #define PT_PAT_MASK (1ULL << 7)
  68. #define PT_GLOBAL_MASK (1ULL << 8)
  69. #define PT64_NX_MASK (1ULL << 63)
  70. #define PT_PAT_SHIFT 7
  71. #define PT_DIR_PAT_SHIFT 12
  72. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  73. #define PT32_DIR_PSE36_SIZE 4
  74. #define PT32_DIR_PSE36_SHIFT 13
  75. #define PT32_DIR_PSE36_MASK \
  76. (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  77. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  78. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  79. #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  80. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  81. #define PT64_LEVEL_BITS 9
  82. #define PT64_LEVEL_SHIFT(level) \
  83. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  84. #define PT64_LEVEL_MASK(level) \
  85. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  86. #define PT64_INDEX(address, level)\
  87. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  88. #define PT32_LEVEL_BITS 10
  89. #define PT32_LEVEL_SHIFT(level) \
  90. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  91. #define PT32_LEVEL_MASK(level) \
  92. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  93. #define PT32_INDEX(address, level)\
  94. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  95. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  96. #define PT64_DIR_BASE_ADDR_MASK \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  98. #define PT32_BASE_ADDR_MASK PAGE_MASK
  99. #define PT32_DIR_BASE_ADDR_MASK \
  100. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  101. #define PFERR_PRESENT_MASK (1U << 0)
  102. #define PFERR_WRITE_MASK (1U << 1)
  103. #define PFERR_USER_MASK (1U << 2)
  104. #define PFERR_FETCH_MASK (1U << 4)
  105. #define PT64_ROOT_LEVEL 4
  106. #define PT32_ROOT_LEVEL 2
  107. #define PT32E_ROOT_LEVEL 3
  108. #define PT_DIRECTORY_LEVEL 2
  109. #define PT_PAGE_TABLE_LEVEL 1
  110. #define RMAP_EXT 4
  111. struct kvm_rmap_desc {
  112. u64 *shadow_ptes[RMAP_EXT];
  113. struct kvm_rmap_desc *more;
  114. };
  115. static struct kmem_cache *pte_chain_cache;
  116. static struct kmem_cache *rmap_desc_cache;
  117. static struct kmem_cache *mmu_page_header_cache;
  118. static u64 __read_mostly shadow_trap_nonpresent_pte;
  119. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  120. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  121. {
  122. shadow_trap_nonpresent_pte = trap_pte;
  123. shadow_notrap_nonpresent_pte = notrap_pte;
  124. }
  125. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  126. static int is_write_protection(struct kvm_vcpu *vcpu)
  127. {
  128. return vcpu->cr0 & X86_CR0_WP;
  129. }
  130. static int is_cpuid_PSE36(void)
  131. {
  132. return 1;
  133. }
  134. static int is_nx(struct kvm_vcpu *vcpu)
  135. {
  136. return vcpu->shadow_efer & EFER_NX;
  137. }
  138. static int is_present_pte(unsigned long pte)
  139. {
  140. return pte & PT_PRESENT_MASK;
  141. }
  142. static int is_shadow_present_pte(u64 pte)
  143. {
  144. pte &= ~PT_SHADOW_IO_MARK;
  145. return pte != shadow_trap_nonpresent_pte
  146. && pte != shadow_notrap_nonpresent_pte;
  147. }
  148. static int is_writeble_pte(unsigned long pte)
  149. {
  150. return pte & PT_WRITABLE_MASK;
  151. }
  152. static int is_io_pte(unsigned long pte)
  153. {
  154. return pte & PT_SHADOW_IO_MARK;
  155. }
  156. static int is_rmap_pte(u64 pte)
  157. {
  158. return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
  159. == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
  160. }
  161. static void set_shadow_pte(u64 *sptep, u64 spte)
  162. {
  163. #ifdef CONFIG_X86_64
  164. set_64bit((unsigned long *)sptep, spte);
  165. #else
  166. set_64bit((unsigned long long *)sptep, spte);
  167. #endif
  168. }
  169. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  170. struct kmem_cache *base_cache, int min)
  171. {
  172. void *obj;
  173. if (cache->nobjs >= min)
  174. return 0;
  175. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  176. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  177. if (!obj)
  178. return -ENOMEM;
  179. cache->objects[cache->nobjs++] = obj;
  180. }
  181. return 0;
  182. }
  183. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  184. {
  185. while (mc->nobjs)
  186. kfree(mc->objects[--mc->nobjs]);
  187. }
  188. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  189. int min)
  190. {
  191. struct page *page;
  192. if (cache->nobjs >= min)
  193. return 0;
  194. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  195. page = alloc_page(GFP_KERNEL);
  196. if (!page)
  197. return -ENOMEM;
  198. set_page_private(page, 0);
  199. cache->objects[cache->nobjs++] = page_address(page);
  200. }
  201. return 0;
  202. }
  203. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  204. {
  205. while (mc->nobjs)
  206. free_page((unsigned long)mc->objects[--mc->nobjs]);
  207. }
  208. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  209. {
  210. int r;
  211. kvm_mmu_free_some_pages(vcpu);
  212. r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
  213. pte_chain_cache, 4);
  214. if (r)
  215. goto out;
  216. r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
  217. rmap_desc_cache, 1);
  218. if (r)
  219. goto out;
  220. r = mmu_topup_memory_cache_page(&vcpu->mmu_page_cache, 8);
  221. if (r)
  222. goto out;
  223. r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache,
  224. mmu_page_header_cache, 4);
  225. out:
  226. return r;
  227. }
  228. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  229. {
  230. mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
  231. mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
  232. mmu_free_memory_cache_page(&vcpu->mmu_page_cache);
  233. mmu_free_memory_cache(&vcpu->mmu_page_header_cache);
  234. }
  235. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  236. size_t size)
  237. {
  238. void *p;
  239. BUG_ON(!mc->nobjs);
  240. p = mc->objects[--mc->nobjs];
  241. memset(p, 0, size);
  242. return p;
  243. }
  244. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  245. {
  246. return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
  247. sizeof(struct kvm_pte_chain));
  248. }
  249. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  250. {
  251. kfree(pc);
  252. }
  253. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  254. {
  255. return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
  256. sizeof(struct kvm_rmap_desc));
  257. }
  258. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  259. {
  260. kfree(rd);
  261. }
  262. /*
  263. * Take gfn and return the reverse mapping to it.
  264. * Note: gfn must be unaliased before this function get called
  265. */
  266. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn)
  267. {
  268. struct kvm_memory_slot *slot;
  269. slot = gfn_to_memslot(kvm, gfn);
  270. return &slot->rmap[gfn - slot->base_gfn];
  271. }
  272. /*
  273. * Reverse mapping data structures:
  274. *
  275. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  276. * that points to page_address(page).
  277. *
  278. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  279. * containing more mappings.
  280. */
  281. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  282. {
  283. struct kvm_mmu_page *page;
  284. struct kvm_rmap_desc *desc;
  285. unsigned long *rmapp;
  286. int i;
  287. if (!is_rmap_pte(*spte))
  288. return;
  289. gfn = unalias_gfn(vcpu->kvm, gfn);
  290. page = page_header(__pa(spte));
  291. page->gfns[spte - page->spt] = gfn;
  292. rmapp = gfn_to_rmap(vcpu->kvm, gfn);
  293. if (!*rmapp) {
  294. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  295. *rmapp = (unsigned long)spte;
  296. } else if (!(*rmapp & 1)) {
  297. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  298. desc = mmu_alloc_rmap_desc(vcpu);
  299. desc->shadow_ptes[0] = (u64 *)*rmapp;
  300. desc->shadow_ptes[1] = spte;
  301. *rmapp = (unsigned long)desc | 1;
  302. } else {
  303. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  304. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  305. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  306. desc = desc->more;
  307. if (desc->shadow_ptes[RMAP_EXT-1]) {
  308. desc->more = mmu_alloc_rmap_desc(vcpu);
  309. desc = desc->more;
  310. }
  311. for (i = 0; desc->shadow_ptes[i]; ++i)
  312. ;
  313. desc->shadow_ptes[i] = spte;
  314. }
  315. }
  316. static void rmap_desc_remove_entry(unsigned long *rmapp,
  317. struct kvm_rmap_desc *desc,
  318. int i,
  319. struct kvm_rmap_desc *prev_desc)
  320. {
  321. int j;
  322. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  323. ;
  324. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  325. desc->shadow_ptes[j] = NULL;
  326. if (j != 0)
  327. return;
  328. if (!prev_desc && !desc->more)
  329. *rmapp = (unsigned long)desc->shadow_ptes[0];
  330. else
  331. if (prev_desc)
  332. prev_desc->more = desc->more;
  333. else
  334. *rmapp = (unsigned long)desc->more | 1;
  335. mmu_free_rmap_desc(desc);
  336. }
  337. static void rmap_remove(struct kvm *kvm, u64 *spte)
  338. {
  339. struct kvm_rmap_desc *desc;
  340. struct kvm_rmap_desc *prev_desc;
  341. struct kvm_mmu_page *page;
  342. unsigned long *rmapp;
  343. int i;
  344. if (!is_rmap_pte(*spte))
  345. return;
  346. page = page_header(__pa(spte));
  347. rmapp = gfn_to_rmap(kvm, page->gfns[spte - page->spt]);
  348. if (!*rmapp) {
  349. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  350. BUG();
  351. } else if (!(*rmapp & 1)) {
  352. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  353. if ((u64 *)*rmapp != spte) {
  354. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  355. spte, *spte);
  356. BUG();
  357. }
  358. *rmapp = 0;
  359. } else {
  360. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  361. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  362. prev_desc = NULL;
  363. while (desc) {
  364. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  365. if (desc->shadow_ptes[i] == spte) {
  366. rmap_desc_remove_entry(rmapp,
  367. desc, i,
  368. prev_desc);
  369. return;
  370. }
  371. prev_desc = desc;
  372. desc = desc->more;
  373. }
  374. BUG();
  375. }
  376. }
  377. static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
  378. {
  379. struct kvm_rmap_desc *desc;
  380. unsigned long *rmapp;
  381. u64 *spte;
  382. gfn = unalias_gfn(vcpu->kvm, gfn);
  383. rmapp = gfn_to_rmap(vcpu->kvm, gfn);
  384. while (*rmapp) {
  385. if (!(*rmapp & 1))
  386. spte = (u64 *)*rmapp;
  387. else {
  388. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  389. spte = desc->shadow_ptes[0];
  390. }
  391. BUG_ON(!spte);
  392. BUG_ON(!(*spte & PT_PRESENT_MASK));
  393. BUG_ON(!(*spte & PT_WRITABLE_MASK));
  394. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  395. rmap_remove(vcpu->kvm, spte);
  396. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  397. kvm_flush_remote_tlbs(vcpu->kvm);
  398. }
  399. }
  400. #ifdef MMU_DEBUG
  401. static int is_empty_shadow_page(u64 *spt)
  402. {
  403. u64 *pos;
  404. u64 *end;
  405. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  406. if ((*pos & ~PT_SHADOW_IO_MARK) != shadow_trap_nonpresent_pte) {
  407. printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
  408. pos, *pos);
  409. return 0;
  410. }
  411. return 1;
  412. }
  413. #endif
  414. static void kvm_mmu_free_page(struct kvm *kvm,
  415. struct kvm_mmu_page *page_head)
  416. {
  417. ASSERT(is_empty_shadow_page(page_head->spt));
  418. list_del(&page_head->link);
  419. __free_page(virt_to_page(page_head->spt));
  420. __free_page(virt_to_page(page_head->gfns));
  421. kfree(page_head);
  422. ++kvm->n_free_mmu_pages;
  423. }
  424. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  425. {
  426. return gfn;
  427. }
  428. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  429. u64 *parent_pte)
  430. {
  431. struct kvm_mmu_page *page;
  432. if (!vcpu->kvm->n_free_mmu_pages)
  433. return NULL;
  434. page = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache,
  435. sizeof *page);
  436. page->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
  437. page->gfns = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
  438. set_page_private(virt_to_page(page->spt), (unsigned long)page);
  439. list_add(&page->link, &vcpu->kvm->active_mmu_pages);
  440. ASSERT(is_empty_shadow_page(page->spt));
  441. page->slot_bitmap = 0;
  442. page->multimapped = 0;
  443. page->parent_pte = parent_pte;
  444. --vcpu->kvm->n_free_mmu_pages;
  445. return page;
  446. }
  447. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  448. struct kvm_mmu_page *page, u64 *parent_pte)
  449. {
  450. struct kvm_pte_chain *pte_chain;
  451. struct hlist_node *node;
  452. int i;
  453. if (!parent_pte)
  454. return;
  455. if (!page->multimapped) {
  456. u64 *old = page->parent_pte;
  457. if (!old) {
  458. page->parent_pte = parent_pte;
  459. return;
  460. }
  461. page->multimapped = 1;
  462. pte_chain = mmu_alloc_pte_chain(vcpu);
  463. INIT_HLIST_HEAD(&page->parent_ptes);
  464. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  465. pte_chain->parent_ptes[0] = old;
  466. }
  467. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
  468. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  469. continue;
  470. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  471. if (!pte_chain->parent_ptes[i]) {
  472. pte_chain->parent_ptes[i] = parent_pte;
  473. return;
  474. }
  475. }
  476. pte_chain = mmu_alloc_pte_chain(vcpu);
  477. BUG_ON(!pte_chain);
  478. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  479. pte_chain->parent_ptes[0] = parent_pte;
  480. }
  481. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
  482. u64 *parent_pte)
  483. {
  484. struct kvm_pte_chain *pte_chain;
  485. struct hlist_node *node;
  486. int i;
  487. if (!page->multimapped) {
  488. BUG_ON(page->parent_pte != parent_pte);
  489. page->parent_pte = NULL;
  490. return;
  491. }
  492. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
  493. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  494. if (!pte_chain->parent_ptes[i])
  495. break;
  496. if (pte_chain->parent_ptes[i] != parent_pte)
  497. continue;
  498. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  499. && pte_chain->parent_ptes[i + 1]) {
  500. pte_chain->parent_ptes[i]
  501. = pte_chain->parent_ptes[i + 1];
  502. ++i;
  503. }
  504. pte_chain->parent_ptes[i] = NULL;
  505. if (i == 0) {
  506. hlist_del(&pte_chain->link);
  507. mmu_free_pte_chain(pte_chain);
  508. if (hlist_empty(&page->parent_ptes)) {
  509. page->multimapped = 0;
  510. page->parent_pte = NULL;
  511. }
  512. }
  513. return;
  514. }
  515. BUG();
  516. }
  517. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm,
  518. gfn_t gfn)
  519. {
  520. unsigned index;
  521. struct hlist_head *bucket;
  522. struct kvm_mmu_page *page;
  523. struct hlist_node *node;
  524. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  525. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  526. bucket = &kvm->mmu_page_hash[index];
  527. hlist_for_each_entry(page, node, bucket, hash_link)
  528. if (page->gfn == gfn && !page->role.metaphysical) {
  529. pgprintk("%s: found role %x\n",
  530. __FUNCTION__, page->role.word);
  531. return page;
  532. }
  533. return NULL;
  534. }
  535. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  536. gfn_t gfn,
  537. gva_t gaddr,
  538. unsigned level,
  539. int metaphysical,
  540. unsigned hugepage_access,
  541. u64 *parent_pte)
  542. {
  543. union kvm_mmu_page_role role;
  544. unsigned index;
  545. unsigned quadrant;
  546. struct hlist_head *bucket;
  547. struct kvm_mmu_page *page;
  548. struct hlist_node *node;
  549. role.word = 0;
  550. role.glevels = vcpu->mmu.root_level;
  551. role.level = level;
  552. role.metaphysical = metaphysical;
  553. role.hugepage_access = hugepage_access;
  554. if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
  555. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  556. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  557. role.quadrant = quadrant;
  558. }
  559. pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
  560. gfn, role.word);
  561. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  562. bucket = &vcpu->kvm->mmu_page_hash[index];
  563. hlist_for_each_entry(page, node, bucket, hash_link)
  564. if (page->gfn == gfn && page->role.word == role.word) {
  565. mmu_page_add_parent_pte(vcpu, page, parent_pte);
  566. pgprintk("%s: found\n", __FUNCTION__);
  567. return page;
  568. }
  569. page = kvm_mmu_alloc_page(vcpu, parent_pte);
  570. if (!page)
  571. return page;
  572. pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
  573. page->gfn = gfn;
  574. page->role = role;
  575. hlist_add_head(&page->hash_link, bucket);
  576. vcpu->mmu.prefetch_page(vcpu, page);
  577. if (!metaphysical)
  578. rmap_write_protect(vcpu, gfn);
  579. return page;
  580. }
  581. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  582. struct kvm_mmu_page *page)
  583. {
  584. unsigned i;
  585. u64 *pt;
  586. u64 ent;
  587. pt = page->spt;
  588. if (page->role.level == PT_PAGE_TABLE_LEVEL) {
  589. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  590. if (is_shadow_present_pte(pt[i]))
  591. rmap_remove(kvm, &pt[i]);
  592. pt[i] = shadow_trap_nonpresent_pte;
  593. }
  594. kvm_flush_remote_tlbs(kvm);
  595. return;
  596. }
  597. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  598. ent = pt[i];
  599. pt[i] = shadow_trap_nonpresent_pte;
  600. if (!is_shadow_present_pte(ent))
  601. continue;
  602. ent &= PT64_BASE_ADDR_MASK;
  603. mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
  604. }
  605. kvm_flush_remote_tlbs(kvm);
  606. }
  607. static void kvm_mmu_put_page(struct kvm_mmu_page *page,
  608. u64 *parent_pte)
  609. {
  610. mmu_page_remove_parent_pte(page, parent_pte);
  611. }
  612. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  613. {
  614. int i;
  615. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  616. if (kvm->vcpus[i])
  617. kvm->vcpus[i]->last_pte_updated = NULL;
  618. }
  619. static void kvm_mmu_zap_page(struct kvm *kvm,
  620. struct kvm_mmu_page *page)
  621. {
  622. u64 *parent_pte;
  623. while (page->multimapped || page->parent_pte) {
  624. if (!page->multimapped)
  625. parent_pte = page->parent_pte;
  626. else {
  627. struct kvm_pte_chain *chain;
  628. chain = container_of(page->parent_ptes.first,
  629. struct kvm_pte_chain, link);
  630. parent_pte = chain->parent_ptes[0];
  631. }
  632. BUG_ON(!parent_pte);
  633. kvm_mmu_put_page(page, parent_pte);
  634. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  635. }
  636. kvm_mmu_page_unlink_children(kvm, page);
  637. if (!page->root_count) {
  638. hlist_del(&page->hash_link);
  639. kvm_mmu_free_page(kvm, page);
  640. } else
  641. list_move(&page->link, &kvm->active_mmu_pages);
  642. kvm_mmu_reset_last_pte_updated(kvm);
  643. }
  644. /*
  645. * Changing the number of mmu pages allocated to the vm
  646. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  647. */
  648. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  649. {
  650. /*
  651. * If we set the number of mmu pages to be smaller be than the
  652. * number of actived pages , we must to free some mmu pages before we
  653. * change the value
  654. */
  655. if ((kvm->n_alloc_mmu_pages - kvm->n_free_mmu_pages) >
  656. kvm_nr_mmu_pages) {
  657. int n_used_mmu_pages = kvm->n_alloc_mmu_pages
  658. - kvm->n_free_mmu_pages;
  659. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  660. struct kvm_mmu_page *page;
  661. page = container_of(kvm->active_mmu_pages.prev,
  662. struct kvm_mmu_page, link);
  663. kvm_mmu_zap_page(kvm, page);
  664. n_used_mmu_pages--;
  665. }
  666. kvm->n_free_mmu_pages = 0;
  667. }
  668. else
  669. kvm->n_free_mmu_pages += kvm_nr_mmu_pages
  670. - kvm->n_alloc_mmu_pages;
  671. kvm->n_alloc_mmu_pages = kvm_nr_mmu_pages;
  672. }
  673. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  674. {
  675. unsigned index;
  676. struct hlist_head *bucket;
  677. struct kvm_mmu_page *page;
  678. struct hlist_node *node, *n;
  679. int r;
  680. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  681. r = 0;
  682. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  683. bucket = &kvm->mmu_page_hash[index];
  684. hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
  685. if (page->gfn == gfn && !page->role.metaphysical) {
  686. pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
  687. page->role.word);
  688. kvm_mmu_zap_page(kvm, page);
  689. r = 1;
  690. }
  691. return r;
  692. }
  693. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  694. {
  695. struct kvm_mmu_page *page;
  696. while ((page = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
  697. pgprintk("%s: zap %lx %x\n",
  698. __FUNCTION__, gfn, page->role.word);
  699. kvm_mmu_zap_page(kvm, page);
  700. }
  701. }
  702. static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
  703. {
  704. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
  705. struct kvm_mmu_page *page_head = page_header(__pa(pte));
  706. __set_bit(slot, &page_head->slot_bitmap);
  707. }
  708. hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  709. {
  710. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  711. return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
  712. }
  713. hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  714. {
  715. struct page *page;
  716. ASSERT((gpa & HPA_ERR_MASK) == 0);
  717. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  718. if (!page)
  719. return gpa | HPA_ERR_MASK;
  720. return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
  721. | (gpa & (PAGE_SIZE-1));
  722. }
  723. hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
  724. {
  725. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  726. if (gpa == UNMAPPED_GVA)
  727. return UNMAPPED_GVA;
  728. return gpa_to_hpa(vcpu, gpa);
  729. }
  730. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  731. {
  732. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  733. if (gpa == UNMAPPED_GVA)
  734. return NULL;
  735. return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
  736. }
  737. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  738. {
  739. }
  740. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
  741. {
  742. int level = PT32E_ROOT_LEVEL;
  743. hpa_t table_addr = vcpu->mmu.root_hpa;
  744. for (; ; level--) {
  745. u32 index = PT64_INDEX(v, level);
  746. u64 *table;
  747. u64 pte;
  748. ASSERT(VALID_PAGE(table_addr));
  749. table = __va(table_addr);
  750. if (level == 1) {
  751. pte = table[index];
  752. if (is_shadow_present_pte(pte) && is_writeble_pte(pte))
  753. return 0;
  754. mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
  755. page_header_update_slot(vcpu->kvm, table, v);
  756. table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  757. PT_USER_MASK;
  758. rmap_add(vcpu, &table[index], v >> PAGE_SHIFT);
  759. return 0;
  760. }
  761. if (table[index] == shadow_trap_nonpresent_pte) {
  762. struct kvm_mmu_page *new_table;
  763. gfn_t pseudo_gfn;
  764. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  765. >> PAGE_SHIFT;
  766. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  767. v, level - 1,
  768. 1, 0, &table[index]);
  769. if (!new_table) {
  770. pgprintk("nonpaging_map: ENOMEM\n");
  771. return -ENOMEM;
  772. }
  773. table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
  774. | PT_WRITABLE_MASK | PT_USER_MASK;
  775. }
  776. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  777. }
  778. }
  779. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  780. struct kvm_mmu_page *sp)
  781. {
  782. int i;
  783. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  784. sp->spt[i] = shadow_trap_nonpresent_pte;
  785. }
  786. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  787. {
  788. int i;
  789. struct kvm_mmu_page *page;
  790. if (!VALID_PAGE(vcpu->mmu.root_hpa))
  791. return;
  792. #ifdef CONFIG_X86_64
  793. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  794. hpa_t root = vcpu->mmu.root_hpa;
  795. page = page_header(root);
  796. --page->root_count;
  797. vcpu->mmu.root_hpa = INVALID_PAGE;
  798. return;
  799. }
  800. #endif
  801. for (i = 0; i < 4; ++i) {
  802. hpa_t root = vcpu->mmu.pae_root[i];
  803. if (root) {
  804. root &= PT64_BASE_ADDR_MASK;
  805. page = page_header(root);
  806. --page->root_count;
  807. }
  808. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  809. }
  810. vcpu->mmu.root_hpa = INVALID_PAGE;
  811. }
  812. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  813. {
  814. int i;
  815. gfn_t root_gfn;
  816. struct kvm_mmu_page *page;
  817. root_gfn = vcpu->cr3 >> PAGE_SHIFT;
  818. #ifdef CONFIG_X86_64
  819. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  820. hpa_t root = vcpu->mmu.root_hpa;
  821. ASSERT(!VALID_PAGE(root));
  822. page = kvm_mmu_get_page(vcpu, root_gfn, 0,
  823. PT64_ROOT_LEVEL, 0, 0, NULL);
  824. root = __pa(page->spt);
  825. ++page->root_count;
  826. vcpu->mmu.root_hpa = root;
  827. return;
  828. }
  829. #endif
  830. for (i = 0; i < 4; ++i) {
  831. hpa_t root = vcpu->mmu.pae_root[i];
  832. ASSERT(!VALID_PAGE(root));
  833. if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
  834. if (!is_present_pte(vcpu->pdptrs[i])) {
  835. vcpu->mmu.pae_root[i] = 0;
  836. continue;
  837. }
  838. root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
  839. } else if (vcpu->mmu.root_level == 0)
  840. root_gfn = 0;
  841. page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  842. PT32_ROOT_LEVEL, !is_paging(vcpu),
  843. 0, NULL);
  844. root = __pa(page->spt);
  845. ++page->root_count;
  846. vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
  847. }
  848. vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
  849. }
  850. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  851. {
  852. return vaddr;
  853. }
  854. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  855. u32 error_code)
  856. {
  857. gpa_t addr = gva;
  858. hpa_t paddr;
  859. int r;
  860. r = mmu_topup_memory_caches(vcpu);
  861. if (r)
  862. return r;
  863. ASSERT(vcpu);
  864. ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
  865. paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
  866. if (is_error_hpa(paddr))
  867. return 1;
  868. return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
  869. }
  870. static void nonpaging_free(struct kvm_vcpu *vcpu)
  871. {
  872. mmu_free_roots(vcpu);
  873. }
  874. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  875. {
  876. struct kvm_mmu *context = &vcpu->mmu;
  877. context->new_cr3 = nonpaging_new_cr3;
  878. context->page_fault = nonpaging_page_fault;
  879. context->gva_to_gpa = nonpaging_gva_to_gpa;
  880. context->free = nonpaging_free;
  881. context->prefetch_page = nonpaging_prefetch_page;
  882. context->root_level = 0;
  883. context->shadow_root_level = PT32E_ROOT_LEVEL;
  884. context->root_hpa = INVALID_PAGE;
  885. return 0;
  886. }
  887. static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  888. {
  889. ++vcpu->stat.tlb_flush;
  890. kvm_x86_ops->tlb_flush(vcpu);
  891. }
  892. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  893. {
  894. pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
  895. mmu_free_roots(vcpu);
  896. }
  897. static void inject_page_fault(struct kvm_vcpu *vcpu,
  898. u64 addr,
  899. u32 err_code)
  900. {
  901. kvm_x86_ops->inject_page_fault(vcpu, addr, err_code);
  902. }
  903. static void paging_free(struct kvm_vcpu *vcpu)
  904. {
  905. nonpaging_free(vcpu);
  906. }
  907. #define PTTYPE 64
  908. #include "paging_tmpl.h"
  909. #undef PTTYPE
  910. #define PTTYPE 32
  911. #include "paging_tmpl.h"
  912. #undef PTTYPE
  913. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  914. {
  915. struct kvm_mmu *context = &vcpu->mmu;
  916. ASSERT(is_pae(vcpu));
  917. context->new_cr3 = paging_new_cr3;
  918. context->page_fault = paging64_page_fault;
  919. context->gva_to_gpa = paging64_gva_to_gpa;
  920. context->prefetch_page = paging64_prefetch_page;
  921. context->free = paging_free;
  922. context->root_level = level;
  923. context->shadow_root_level = level;
  924. context->root_hpa = INVALID_PAGE;
  925. return 0;
  926. }
  927. static int paging64_init_context(struct kvm_vcpu *vcpu)
  928. {
  929. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  930. }
  931. static int paging32_init_context(struct kvm_vcpu *vcpu)
  932. {
  933. struct kvm_mmu *context = &vcpu->mmu;
  934. context->new_cr3 = paging_new_cr3;
  935. context->page_fault = paging32_page_fault;
  936. context->gva_to_gpa = paging32_gva_to_gpa;
  937. context->free = paging_free;
  938. context->prefetch_page = paging32_prefetch_page;
  939. context->root_level = PT32_ROOT_LEVEL;
  940. context->shadow_root_level = PT32E_ROOT_LEVEL;
  941. context->root_hpa = INVALID_PAGE;
  942. return 0;
  943. }
  944. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  945. {
  946. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  947. }
  948. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  949. {
  950. ASSERT(vcpu);
  951. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  952. if (!is_paging(vcpu))
  953. return nonpaging_init_context(vcpu);
  954. else if (is_long_mode(vcpu))
  955. return paging64_init_context(vcpu);
  956. else if (is_pae(vcpu))
  957. return paging32E_init_context(vcpu);
  958. else
  959. return paging32_init_context(vcpu);
  960. }
  961. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  962. {
  963. ASSERT(vcpu);
  964. if (VALID_PAGE(vcpu->mmu.root_hpa)) {
  965. vcpu->mmu.free(vcpu);
  966. vcpu->mmu.root_hpa = INVALID_PAGE;
  967. }
  968. }
  969. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  970. {
  971. destroy_kvm_mmu(vcpu);
  972. return init_kvm_mmu(vcpu);
  973. }
  974. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  975. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  976. {
  977. int r;
  978. mutex_lock(&vcpu->kvm->lock);
  979. r = mmu_topup_memory_caches(vcpu);
  980. if (r)
  981. goto out;
  982. mmu_alloc_roots(vcpu);
  983. kvm_x86_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
  984. kvm_mmu_flush_tlb(vcpu);
  985. out:
  986. mutex_unlock(&vcpu->kvm->lock);
  987. return r;
  988. }
  989. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  990. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  991. {
  992. mmu_free_roots(vcpu);
  993. }
  994. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  995. struct kvm_mmu_page *page,
  996. u64 *spte)
  997. {
  998. u64 pte;
  999. struct kvm_mmu_page *child;
  1000. pte = *spte;
  1001. if (is_shadow_present_pte(pte)) {
  1002. if (page->role.level == PT_PAGE_TABLE_LEVEL)
  1003. rmap_remove(vcpu->kvm, spte);
  1004. else {
  1005. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1006. mmu_page_remove_parent_pte(child, spte);
  1007. }
  1008. }
  1009. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1010. kvm_flush_remote_tlbs(vcpu->kvm);
  1011. }
  1012. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1013. struct kvm_mmu_page *page,
  1014. u64 *spte,
  1015. const void *new, int bytes,
  1016. int offset_in_pte)
  1017. {
  1018. if (page->role.level != PT_PAGE_TABLE_LEVEL)
  1019. return;
  1020. if (page->role.glevels == PT32_ROOT_LEVEL)
  1021. paging32_update_pte(vcpu, page, spte, new, bytes,
  1022. offset_in_pte);
  1023. else
  1024. paging64_update_pte(vcpu, page, spte, new, bytes,
  1025. offset_in_pte);
  1026. }
  1027. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  1028. {
  1029. u64 *spte = vcpu->last_pte_updated;
  1030. return !!(spte && (*spte & PT_ACCESSED_MASK));
  1031. }
  1032. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1033. const u8 *new, int bytes)
  1034. {
  1035. gfn_t gfn = gpa >> PAGE_SHIFT;
  1036. struct kvm_mmu_page *page;
  1037. struct hlist_node *node, *n;
  1038. struct hlist_head *bucket;
  1039. unsigned index;
  1040. u64 *spte;
  1041. unsigned offset = offset_in_page(gpa);
  1042. unsigned pte_size;
  1043. unsigned page_offset;
  1044. unsigned misaligned;
  1045. unsigned quadrant;
  1046. int level;
  1047. int flooded = 0;
  1048. int npte;
  1049. pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
  1050. kvm_mmu_audit(vcpu, "pre pte write");
  1051. if (gfn == vcpu->last_pt_write_gfn
  1052. && !last_updated_pte_accessed(vcpu)) {
  1053. ++vcpu->last_pt_write_count;
  1054. if (vcpu->last_pt_write_count >= 3)
  1055. flooded = 1;
  1056. } else {
  1057. vcpu->last_pt_write_gfn = gfn;
  1058. vcpu->last_pt_write_count = 1;
  1059. vcpu->last_pte_updated = NULL;
  1060. }
  1061. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  1062. bucket = &vcpu->kvm->mmu_page_hash[index];
  1063. hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
  1064. if (page->gfn != gfn || page->role.metaphysical)
  1065. continue;
  1066. pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  1067. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  1068. misaligned |= bytes < 4;
  1069. if (misaligned || flooded) {
  1070. /*
  1071. * Misaligned accesses are too much trouble to fix
  1072. * up; also, they usually indicate a page is not used
  1073. * as a page table.
  1074. *
  1075. * If we're seeing too many writes to a page,
  1076. * it may no longer be a page table, or we may be
  1077. * forking, in which case it is better to unmap the
  1078. * page.
  1079. */
  1080. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  1081. gpa, bytes, page->role.word);
  1082. kvm_mmu_zap_page(vcpu->kvm, page);
  1083. continue;
  1084. }
  1085. page_offset = offset;
  1086. level = page->role.level;
  1087. npte = 1;
  1088. if (page->role.glevels == PT32_ROOT_LEVEL) {
  1089. page_offset <<= 1; /* 32->64 */
  1090. /*
  1091. * A 32-bit pde maps 4MB while the shadow pdes map
  1092. * only 2MB. So we need to double the offset again
  1093. * and zap two pdes instead of one.
  1094. */
  1095. if (level == PT32_ROOT_LEVEL) {
  1096. page_offset &= ~7; /* kill rounding error */
  1097. page_offset <<= 1;
  1098. npte = 2;
  1099. }
  1100. quadrant = page_offset >> PAGE_SHIFT;
  1101. page_offset &= ~PAGE_MASK;
  1102. if (quadrant != page->role.quadrant)
  1103. continue;
  1104. }
  1105. spte = &page->spt[page_offset / sizeof(*spte)];
  1106. while (npte--) {
  1107. mmu_pte_write_zap_pte(vcpu, page, spte);
  1108. mmu_pte_write_new_pte(vcpu, page, spte, new, bytes,
  1109. page_offset & (pte_size - 1));
  1110. ++spte;
  1111. }
  1112. }
  1113. kvm_mmu_audit(vcpu, "post pte write");
  1114. }
  1115. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1116. {
  1117. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  1118. return kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1119. }
  1120. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1121. {
  1122. while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
  1123. struct kvm_mmu_page *page;
  1124. page = container_of(vcpu->kvm->active_mmu_pages.prev,
  1125. struct kvm_mmu_page, link);
  1126. kvm_mmu_zap_page(vcpu->kvm, page);
  1127. }
  1128. }
  1129. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1130. {
  1131. struct kvm_mmu_page *page;
  1132. while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
  1133. page = container_of(vcpu->kvm->active_mmu_pages.next,
  1134. struct kvm_mmu_page, link);
  1135. kvm_mmu_zap_page(vcpu->kvm, page);
  1136. }
  1137. free_page((unsigned long)vcpu->mmu.pae_root);
  1138. }
  1139. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1140. {
  1141. struct page *page;
  1142. int i;
  1143. ASSERT(vcpu);
  1144. if (vcpu->kvm->n_requested_mmu_pages)
  1145. vcpu->kvm->n_free_mmu_pages = vcpu->kvm->n_requested_mmu_pages;
  1146. else
  1147. vcpu->kvm->n_free_mmu_pages = vcpu->kvm->n_alloc_mmu_pages;
  1148. /*
  1149. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1150. * Therefore we need to allocate shadow page tables in the first
  1151. * 4GB of memory, which happens to fit the DMA32 zone.
  1152. */
  1153. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1154. if (!page)
  1155. goto error_1;
  1156. vcpu->mmu.pae_root = page_address(page);
  1157. for (i = 0; i < 4; ++i)
  1158. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  1159. return 0;
  1160. error_1:
  1161. free_mmu_pages(vcpu);
  1162. return -ENOMEM;
  1163. }
  1164. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1165. {
  1166. ASSERT(vcpu);
  1167. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1168. return alloc_mmu_pages(vcpu);
  1169. }
  1170. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1171. {
  1172. ASSERT(vcpu);
  1173. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1174. return init_kvm_mmu(vcpu);
  1175. }
  1176. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1177. {
  1178. ASSERT(vcpu);
  1179. destroy_kvm_mmu(vcpu);
  1180. free_mmu_pages(vcpu);
  1181. mmu_free_memory_caches(vcpu);
  1182. }
  1183. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  1184. {
  1185. struct kvm_mmu_page *page;
  1186. list_for_each_entry(page, &kvm->active_mmu_pages, link) {
  1187. int i;
  1188. u64 *pt;
  1189. if (!test_bit(slot, &page->slot_bitmap))
  1190. continue;
  1191. pt = page->spt;
  1192. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1193. /* avoid RMW */
  1194. if (pt[i] & PT_WRITABLE_MASK) {
  1195. rmap_remove(kvm, &pt[i]);
  1196. pt[i] &= ~PT_WRITABLE_MASK;
  1197. }
  1198. }
  1199. }
  1200. void kvm_mmu_zap_all(struct kvm *kvm)
  1201. {
  1202. struct kvm_mmu_page *page, *node;
  1203. list_for_each_entry_safe(page, node, &kvm->active_mmu_pages, link)
  1204. kvm_mmu_zap_page(kvm, page);
  1205. kvm_flush_remote_tlbs(kvm);
  1206. }
  1207. void kvm_mmu_module_exit(void)
  1208. {
  1209. if (pte_chain_cache)
  1210. kmem_cache_destroy(pte_chain_cache);
  1211. if (rmap_desc_cache)
  1212. kmem_cache_destroy(rmap_desc_cache);
  1213. if (mmu_page_header_cache)
  1214. kmem_cache_destroy(mmu_page_header_cache);
  1215. }
  1216. int kvm_mmu_module_init(void)
  1217. {
  1218. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1219. sizeof(struct kvm_pte_chain),
  1220. 0, 0, NULL);
  1221. if (!pte_chain_cache)
  1222. goto nomem;
  1223. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1224. sizeof(struct kvm_rmap_desc),
  1225. 0, 0, NULL);
  1226. if (!rmap_desc_cache)
  1227. goto nomem;
  1228. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  1229. sizeof(struct kvm_mmu_page),
  1230. 0, 0, NULL);
  1231. if (!mmu_page_header_cache)
  1232. goto nomem;
  1233. return 0;
  1234. nomem:
  1235. kvm_mmu_module_exit();
  1236. return -ENOMEM;
  1237. }
  1238. #ifdef AUDIT
  1239. static const char *audit_msg;
  1240. static gva_t canonicalize(gva_t gva)
  1241. {
  1242. #ifdef CONFIG_X86_64
  1243. gva = (long long)(gva << 16) >> 16;
  1244. #endif
  1245. return gva;
  1246. }
  1247. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  1248. gva_t va, int level)
  1249. {
  1250. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  1251. int i;
  1252. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  1253. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  1254. u64 ent = pt[i];
  1255. if (ent == shadow_trap_nonpresent_pte)
  1256. continue;
  1257. va = canonicalize(va);
  1258. if (level > 1) {
  1259. if (ent == shadow_notrap_nonpresent_pte)
  1260. printk(KERN_ERR "audit: (%s) nontrapping pte"
  1261. " in nonleaf level: levels %d gva %lx"
  1262. " level %d pte %llx\n", audit_msg,
  1263. vcpu->mmu.root_level, va, level, ent);
  1264. audit_mappings_page(vcpu, ent, va, level - 1);
  1265. } else {
  1266. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
  1267. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  1268. if (is_shadow_present_pte(ent)
  1269. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  1270. printk(KERN_ERR "xx audit error: (%s) levels %d"
  1271. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  1272. audit_msg, vcpu->mmu.root_level,
  1273. va, gpa, hpa, ent,
  1274. is_shadow_present_pte(ent));
  1275. else if (ent == shadow_notrap_nonpresent_pte
  1276. && !is_error_hpa(hpa))
  1277. printk(KERN_ERR "audit: (%s) notrap shadow,"
  1278. " valid guest gva %lx\n", audit_msg, va);
  1279. }
  1280. }
  1281. }
  1282. static void audit_mappings(struct kvm_vcpu *vcpu)
  1283. {
  1284. unsigned i;
  1285. if (vcpu->mmu.root_level == 4)
  1286. audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
  1287. else
  1288. for (i = 0; i < 4; ++i)
  1289. if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
  1290. audit_mappings_page(vcpu,
  1291. vcpu->mmu.pae_root[i],
  1292. i << 30,
  1293. 2);
  1294. }
  1295. static int count_rmaps(struct kvm_vcpu *vcpu)
  1296. {
  1297. int nmaps = 0;
  1298. int i, j, k;
  1299. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1300. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  1301. struct kvm_rmap_desc *d;
  1302. for (j = 0; j < m->npages; ++j) {
  1303. unsigned long *rmapp = &m->rmap[j];
  1304. if (!*rmapp)
  1305. continue;
  1306. if (!(*rmapp & 1)) {
  1307. ++nmaps;
  1308. continue;
  1309. }
  1310. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  1311. while (d) {
  1312. for (k = 0; k < RMAP_EXT; ++k)
  1313. if (d->shadow_ptes[k])
  1314. ++nmaps;
  1315. else
  1316. break;
  1317. d = d->more;
  1318. }
  1319. }
  1320. }
  1321. return nmaps;
  1322. }
  1323. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  1324. {
  1325. int nmaps = 0;
  1326. struct kvm_mmu_page *page;
  1327. int i;
  1328. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1329. u64 *pt = page->spt;
  1330. if (page->role.level != PT_PAGE_TABLE_LEVEL)
  1331. continue;
  1332. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1333. u64 ent = pt[i];
  1334. if (!(ent & PT_PRESENT_MASK))
  1335. continue;
  1336. if (!(ent & PT_WRITABLE_MASK))
  1337. continue;
  1338. ++nmaps;
  1339. }
  1340. }
  1341. return nmaps;
  1342. }
  1343. static void audit_rmap(struct kvm_vcpu *vcpu)
  1344. {
  1345. int n_rmap = count_rmaps(vcpu);
  1346. int n_actual = count_writable_mappings(vcpu);
  1347. if (n_rmap != n_actual)
  1348. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  1349. __FUNCTION__, audit_msg, n_rmap, n_actual);
  1350. }
  1351. static void audit_write_protection(struct kvm_vcpu *vcpu)
  1352. {
  1353. struct kvm_mmu_page *page;
  1354. struct kvm_memory_slot *slot;
  1355. unsigned long *rmapp;
  1356. gfn_t gfn;
  1357. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1358. if (page->role.metaphysical)
  1359. continue;
  1360. slot = gfn_to_memslot(vcpu->kvm, page->gfn);
  1361. gfn = unalias_gfn(vcpu->kvm, page->gfn);
  1362. rmapp = &slot->rmap[gfn - slot->base_gfn];
  1363. if (*rmapp)
  1364. printk(KERN_ERR "%s: (%s) shadow page has writable"
  1365. " mappings: gfn %lx role %x\n",
  1366. __FUNCTION__, audit_msg, page->gfn,
  1367. page->role.word);
  1368. }
  1369. }
  1370. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  1371. {
  1372. int olddbg = dbg;
  1373. dbg = 0;
  1374. audit_msg = msg;
  1375. audit_rmap(vcpu);
  1376. audit_write_protection(vcpu);
  1377. audit_mappings(vcpu);
  1378. dbg = olddbg;
  1379. }
  1380. #endif