intel_display.c 274 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. int min, max;
  47. } intel_range_t;
  48. typedef struct {
  49. int dot_limit;
  50. int p2_slow, p2_fast;
  51. } intel_p2_t;
  52. #define INTEL_P2_NUM 2
  53. typedef struct intel_limit intel_limit_t;
  54. struct intel_limit {
  55. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  56. intel_p2_t p2;
  57. };
  58. /* FDI */
  59. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  60. int
  61. intel_pch_rawclk(struct drm_device *dev)
  62. {
  63. struct drm_i915_private *dev_priv = dev->dev_private;
  64. WARN_ON(!HAS_PCH_SPLIT(dev));
  65. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  66. }
  67. static inline u32 /* units of 100MHz */
  68. intel_fdi_link_freq(struct drm_device *dev)
  69. {
  70. if (IS_GEN5(dev)) {
  71. struct drm_i915_private *dev_priv = dev->dev_private;
  72. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  73. } else
  74. return 27;
  75. }
  76. static const intel_limit_t intel_limits_i8xx_dvo = {
  77. .dot = { .min = 25000, .max = 350000 },
  78. .vco = { .min = 930000, .max = 1400000 },
  79. .n = { .min = 3, .max = 16 },
  80. .m = { .min = 96, .max = 140 },
  81. .m1 = { .min = 18, .max = 26 },
  82. .m2 = { .min = 6, .max = 16 },
  83. .p = { .min = 4, .max = 128 },
  84. .p1 = { .min = 2, .max = 33 },
  85. .p2 = { .dot_limit = 165000,
  86. .p2_slow = 4, .p2_fast = 2 },
  87. };
  88. static const intel_limit_t intel_limits_i8xx_lvds = {
  89. .dot = { .min = 25000, .max = 350000 },
  90. .vco = { .min = 930000, .max = 1400000 },
  91. .n = { .min = 3, .max = 16 },
  92. .m = { .min = 96, .max = 140 },
  93. .m1 = { .min = 18, .max = 26 },
  94. .m2 = { .min = 6, .max = 16 },
  95. .p = { .min = 4, .max = 128 },
  96. .p1 = { .min = 1, .max = 6 },
  97. .p2 = { .dot_limit = 165000,
  98. .p2_slow = 14, .p2_fast = 7 },
  99. };
  100. static const intel_limit_t intel_limits_i9xx_sdvo = {
  101. .dot = { .min = 20000, .max = 400000 },
  102. .vco = { .min = 1400000, .max = 2800000 },
  103. .n = { .min = 1, .max = 6 },
  104. .m = { .min = 70, .max = 120 },
  105. .m1 = { .min = 8, .max = 18 },
  106. .m2 = { .min = 3, .max = 7 },
  107. .p = { .min = 5, .max = 80 },
  108. .p1 = { .min = 1, .max = 8 },
  109. .p2 = { .dot_limit = 200000,
  110. .p2_slow = 10, .p2_fast = 5 },
  111. };
  112. static const intel_limit_t intel_limits_i9xx_lvds = {
  113. .dot = { .min = 20000, .max = 400000 },
  114. .vco = { .min = 1400000, .max = 2800000 },
  115. .n = { .min = 1, .max = 6 },
  116. .m = { .min = 70, .max = 120 },
  117. .m1 = { .min = 8, .max = 18 },
  118. .m2 = { .min = 3, .max = 7 },
  119. .p = { .min = 7, .max = 98 },
  120. .p1 = { .min = 1, .max = 8 },
  121. .p2 = { .dot_limit = 112000,
  122. .p2_slow = 14, .p2_fast = 7 },
  123. };
  124. static const intel_limit_t intel_limits_g4x_sdvo = {
  125. .dot = { .min = 25000, .max = 270000 },
  126. .vco = { .min = 1750000, .max = 3500000},
  127. .n = { .min = 1, .max = 4 },
  128. .m = { .min = 104, .max = 138 },
  129. .m1 = { .min = 17, .max = 23 },
  130. .m2 = { .min = 5, .max = 11 },
  131. .p = { .min = 10, .max = 30 },
  132. .p1 = { .min = 1, .max = 3},
  133. .p2 = { .dot_limit = 270000,
  134. .p2_slow = 10,
  135. .p2_fast = 10
  136. },
  137. };
  138. static const intel_limit_t intel_limits_g4x_hdmi = {
  139. .dot = { .min = 22000, .max = 400000 },
  140. .vco = { .min = 1750000, .max = 3500000},
  141. .n = { .min = 1, .max = 4 },
  142. .m = { .min = 104, .max = 138 },
  143. .m1 = { .min = 16, .max = 23 },
  144. .m2 = { .min = 5, .max = 11 },
  145. .p = { .min = 5, .max = 80 },
  146. .p1 = { .min = 1, .max = 8},
  147. .p2 = { .dot_limit = 165000,
  148. .p2_slow = 10, .p2_fast = 5 },
  149. };
  150. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  151. .dot = { .min = 20000, .max = 115000 },
  152. .vco = { .min = 1750000, .max = 3500000 },
  153. .n = { .min = 1, .max = 3 },
  154. .m = { .min = 104, .max = 138 },
  155. .m1 = { .min = 17, .max = 23 },
  156. .m2 = { .min = 5, .max = 11 },
  157. .p = { .min = 28, .max = 112 },
  158. .p1 = { .min = 2, .max = 8 },
  159. .p2 = { .dot_limit = 0,
  160. .p2_slow = 14, .p2_fast = 14
  161. },
  162. };
  163. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  164. .dot = { .min = 80000, .max = 224000 },
  165. .vco = { .min = 1750000, .max = 3500000 },
  166. .n = { .min = 1, .max = 3 },
  167. .m = { .min = 104, .max = 138 },
  168. .m1 = { .min = 17, .max = 23 },
  169. .m2 = { .min = 5, .max = 11 },
  170. .p = { .min = 14, .max = 42 },
  171. .p1 = { .min = 2, .max = 6 },
  172. .p2 = { .dot_limit = 0,
  173. .p2_slow = 7, .p2_fast = 7
  174. },
  175. };
  176. static const intel_limit_t intel_limits_pineview_sdvo = {
  177. .dot = { .min = 20000, .max = 400000},
  178. .vco = { .min = 1700000, .max = 3500000 },
  179. /* Pineview's Ncounter is a ring counter */
  180. .n = { .min = 3, .max = 6 },
  181. .m = { .min = 2, .max = 256 },
  182. /* Pineview only has one combined m divider, which we treat as m2. */
  183. .m1 = { .min = 0, .max = 0 },
  184. .m2 = { .min = 0, .max = 254 },
  185. .p = { .min = 5, .max = 80 },
  186. .p1 = { .min = 1, .max = 8 },
  187. .p2 = { .dot_limit = 200000,
  188. .p2_slow = 10, .p2_fast = 5 },
  189. };
  190. static const intel_limit_t intel_limits_pineview_lvds = {
  191. .dot = { .min = 20000, .max = 400000 },
  192. .vco = { .min = 1700000, .max = 3500000 },
  193. .n = { .min = 3, .max = 6 },
  194. .m = { .min = 2, .max = 256 },
  195. .m1 = { .min = 0, .max = 0 },
  196. .m2 = { .min = 0, .max = 254 },
  197. .p = { .min = 7, .max = 112 },
  198. .p1 = { .min = 1, .max = 8 },
  199. .p2 = { .dot_limit = 112000,
  200. .p2_slow = 14, .p2_fast = 14 },
  201. };
  202. /* Ironlake / Sandybridge
  203. *
  204. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  205. * the range value for them is (actual_value - 2).
  206. */
  207. static const intel_limit_t intel_limits_ironlake_dac = {
  208. .dot = { .min = 25000, .max = 350000 },
  209. .vco = { .min = 1760000, .max = 3510000 },
  210. .n = { .min = 1, .max = 5 },
  211. .m = { .min = 79, .max = 127 },
  212. .m1 = { .min = 12, .max = 22 },
  213. .m2 = { .min = 5, .max = 9 },
  214. .p = { .min = 5, .max = 80 },
  215. .p1 = { .min = 1, .max = 8 },
  216. .p2 = { .dot_limit = 225000,
  217. .p2_slow = 10, .p2_fast = 5 },
  218. };
  219. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  220. .dot = { .min = 25000, .max = 350000 },
  221. .vco = { .min = 1760000, .max = 3510000 },
  222. .n = { .min = 1, .max = 3 },
  223. .m = { .min = 79, .max = 118 },
  224. .m1 = { .min = 12, .max = 22 },
  225. .m2 = { .min = 5, .max = 9 },
  226. .p = { .min = 28, .max = 112 },
  227. .p1 = { .min = 2, .max = 8 },
  228. .p2 = { .dot_limit = 225000,
  229. .p2_slow = 14, .p2_fast = 14 },
  230. };
  231. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  232. .dot = { .min = 25000, .max = 350000 },
  233. .vco = { .min = 1760000, .max = 3510000 },
  234. .n = { .min = 1, .max = 3 },
  235. .m = { .min = 79, .max = 127 },
  236. .m1 = { .min = 12, .max = 22 },
  237. .m2 = { .min = 5, .max = 9 },
  238. .p = { .min = 14, .max = 56 },
  239. .p1 = { .min = 2, .max = 8 },
  240. .p2 = { .dot_limit = 225000,
  241. .p2_slow = 7, .p2_fast = 7 },
  242. };
  243. /* LVDS 100mhz refclk limits. */
  244. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  245. .dot = { .min = 25000, .max = 350000 },
  246. .vco = { .min = 1760000, .max = 3510000 },
  247. .n = { .min = 1, .max = 2 },
  248. .m = { .min = 79, .max = 126 },
  249. .m1 = { .min = 12, .max = 22 },
  250. .m2 = { .min = 5, .max = 9 },
  251. .p = { .min = 28, .max = 112 },
  252. .p1 = { .min = 2, .max = 8 },
  253. .p2 = { .dot_limit = 225000,
  254. .p2_slow = 14, .p2_fast = 14 },
  255. };
  256. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  257. .dot = { .min = 25000, .max = 350000 },
  258. .vco = { .min = 1760000, .max = 3510000 },
  259. .n = { .min = 1, .max = 3 },
  260. .m = { .min = 79, .max = 126 },
  261. .m1 = { .min = 12, .max = 22 },
  262. .m2 = { .min = 5, .max = 9 },
  263. .p = { .min = 14, .max = 42 },
  264. .p1 = { .min = 2, .max = 6 },
  265. .p2 = { .dot_limit = 225000,
  266. .p2_slow = 7, .p2_fast = 7 },
  267. };
  268. static const intel_limit_t intel_limits_vlv_dac = {
  269. .dot = { .min = 25000, .max = 270000 },
  270. .vco = { .min = 4000000, .max = 6000000 },
  271. .n = { .min = 1, .max = 7 },
  272. .m = { .min = 22, .max = 450 }, /* guess */
  273. .m1 = { .min = 2, .max = 3 },
  274. .m2 = { .min = 11, .max = 156 },
  275. .p = { .min = 10, .max = 30 },
  276. .p1 = { .min = 1, .max = 3 },
  277. .p2 = { .dot_limit = 270000,
  278. .p2_slow = 2, .p2_fast = 20 },
  279. };
  280. static const intel_limit_t intel_limits_vlv_hdmi = {
  281. .dot = { .min = 25000, .max = 270000 },
  282. .vco = { .min = 4000000, .max = 6000000 },
  283. .n = { .min = 1, .max = 7 },
  284. .m = { .min = 60, .max = 300 }, /* guess */
  285. .m1 = { .min = 2, .max = 3 },
  286. .m2 = { .min = 11, .max = 156 },
  287. .p = { .min = 10, .max = 30 },
  288. .p1 = { .min = 2, .max = 3 },
  289. .p2 = { .dot_limit = 270000,
  290. .p2_slow = 2, .p2_fast = 20 },
  291. };
  292. static const intel_limit_t intel_limits_vlv_dp = {
  293. .dot = { .min = 25000, .max = 270000 },
  294. .vco = { .min = 4000000, .max = 6000000 },
  295. .n = { .min = 1, .max = 7 },
  296. .m = { .min = 22, .max = 450 },
  297. .m1 = { .min = 2, .max = 3 },
  298. .m2 = { .min = 11, .max = 156 },
  299. .p = { .min = 10, .max = 30 },
  300. .p1 = { .min = 1, .max = 3 },
  301. .p2 = { .dot_limit = 270000,
  302. .p2_slow = 2, .p2_fast = 20 },
  303. };
  304. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  305. int refclk)
  306. {
  307. struct drm_device *dev = crtc->dev;
  308. const intel_limit_t *limit;
  309. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  310. if (intel_is_dual_link_lvds(dev)) {
  311. if (refclk == 100000)
  312. limit = &intel_limits_ironlake_dual_lvds_100m;
  313. else
  314. limit = &intel_limits_ironlake_dual_lvds;
  315. } else {
  316. if (refclk == 100000)
  317. limit = &intel_limits_ironlake_single_lvds_100m;
  318. else
  319. limit = &intel_limits_ironlake_single_lvds;
  320. }
  321. } else
  322. limit = &intel_limits_ironlake_dac;
  323. return limit;
  324. }
  325. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  326. {
  327. struct drm_device *dev = crtc->dev;
  328. const intel_limit_t *limit;
  329. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  330. if (intel_is_dual_link_lvds(dev))
  331. limit = &intel_limits_g4x_dual_channel_lvds;
  332. else
  333. limit = &intel_limits_g4x_single_channel_lvds;
  334. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  335. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  336. limit = &intel_limits_g4x_hdmi;
  337. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  338. limit = &intel_limits_g4x_sdvo;
  339. } else /* The option is for other outputs */
  340. limit = &intel_limits_i9xx_sdvo;
  341. return limit;
  342. }
  343. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  344. {
  345. struct drm_device *dev = crtc->dev;
  346. const intel_limit_t *limit;
  347. if (HAS_PCH_SPLIT(dev))
  348. limit = intel_ironlake_limit(crtc, refclk);
  349. else if (IS_G4X(dev)) {
  350. limit = intel_g4x_limit(crtc);
  351. } else if (IS_PINEVIEW(dev)) {
  352. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  353. limit = &intel_limits_pineview_lvds;
  354. else
  355. limit = &intel_limits_pineview_sdvo;
  356. } else if (IS_VALLEYVIEW(dev)) {
  357. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  358. limit = &intel_limits_vlv_dac;
  359. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  360. limit = &intel_limits_vlv_hdmi;
  361. else
  362. limit = &intel_limits_vlv_dp;
  363. } else if (!IS_GEN2(dev)) {
  364. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  365. limit = &intel_limits_i9xx_lvds;
  366. else
  367. limit = &intel_limits_i9xx_sdvo;
  368. } else {
  369. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  370. limit = &intel_limits_i8xx_lvds;
  371. else
  372. limit = &intel_limits_i8xx_dvo;
  373. }
  374. return limit;
  375. }
  376. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  377. static void pineview_clock(int refclk, intel_clock_t *clock)
  378. {
  379. clock->m = clock->m2 + 2;
  380. clock->p = clock->p1 * clock->p2;
  381. clock->vco = refclk * clock->m / clock->n;
  382. clock->dot = clock->vco / clock->p;
  383. }
  384. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  385. {
  386. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  387. }
  388. static void i9xx_clock(int refclk, intel_clock_t *clock)
  389. {
  390. clock->m = i9xx_dpll_compute_m(clock);
  391. clock->p = clock->p1 * clock->p2;
  392. clock->vco = refclk * clock->m / (clock->n + 2);
  393. clock->dot = clock->vco / clock->p;
  394. }
  395. /**
  396. * Returns whether any output on the specified pipe is of the specified type
  397. */
  398. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  399. {
  400. struct drm_device *dev = crtc->dev;
  401. struct intel_encoder *encoder;
  402. for_each_encoder_on_crtc(dev, crtc, encoder)
  403. if (encoder->type == type)
  404. return true;
  405. return false;
  406. }
  407. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  408. /**
  409. * Returns whether the given set of divisors are valid for a given refclk with
  410. * the given connectors.
  411. */
  412. static bool intel_PLL_is_valid(struct drm_device *dev,
  413. const intel_limit_t *limit,
  414. const intel_clock_t *clock)
  415. {
  416. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  417. INTELPllInvalid("p1 out of range\n");
  418. if (clock->p < limit->p.min || limit->p.max < clock->p)
  419. INTELPllInvalid("p out of range\n");
  420. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  421. INTELPllInvalid("m2 out of range\n");
  422. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  423. INTELPllInvalid("m1 out of range\n");
  424. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  425. INTELPllInvalid("m1 <= m2\n");
  426. if (clock->m < limit->m.min || limit->m.max < clock->m)
  427. INTELPllInvalid("m out of range\n");
  428. if (clock->n < limit->n.min || limit->n.max < clock->n)
  429. INTELPllInvalid("n out of range\n");
  430. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  431. INTELPllInvalid("vco out of range\n");
  432. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  433. * connector, etc., rather than just a single range.
  434. */
  435. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  436. INTELPllInvalid("dot out of range\n");
  437. return true;
  438. }
  439. static bool
  440. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  441. int target, int refclk, intel_clock_t *match_clock,
  442. intel_clock_t *best_clock)
  443. {
  444. struct drm_device *dev = crtc->dev;
  445. intel_clock_t clock;
  446. int err = target;
  447. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  448. /*
  449. * For LVDS just rely on its current settings for dual-channel.
  450. * We haven't figured out how to reliably set up different
  451. * single/dual channel state, if we even can.
  452. */
  453. if (intel_is_dual_link_lvds(dev))
  454. clock.p2 = limit->p2.p2_fast;
  455. else
  456. clock.p2 = limit->p2.p2_slow;
  457. } else {
  458. if (target < limit->p2.dot_limit)
  459. clock.p2 = limit->p2.p2_slow;
  460. else
  461. clock.p2 = limit->p2.p2_fast;
  462. }
  463. memset(best_clock, 0, sizeof(*best_clock));
  464. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  465. clock.m1++) {
  466. for (clock.m2 = limit->m2.min;
  467. clock.m2 <= limit->m2.max; clock.m2++) {
  468. if (clock.m2 >= clock.m1)
  469. break;
  470. for (clock.n = limit->n.min;
  471. clock.n <= limit->n.max; clock.n++) {
  472. for (clock.p1 = limit->p1.min;
  473. clock.p1 <= limit->p1.max; clock.p1++) {
  474. int this_err;
  475. i9xx_clock(refclk, &clock);
  476. if (!intel_PLL_is_valid(dev, limit,
  477. &clock))
  478. continue;
  479. if (match_clock &&
  480. clock.p != match_clock->p)
  481. continue;
  482. this_err = abs(clock.dot - target);
  483. if (this_err < err) {
  484. *best_clock = clock;
  485. err = this_err;
  486. }
  487. }
  488. }
  489. }
  490. }
  491. return (err != target);
  492. }
  493. static bool
  494. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  495. int target, int refclk, intel_clock_t *match_clock,
  496. intel_clock_t *best_clock)
  497. {
  498. struct drm_device *dev = crtc->dev;
  499. intel_clock_t clock;
  500. int err = target;
  501. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  502. /*
  503. * For LVDS just rely on its current settings for dual-channel.
  504. * We haven't figured out how to reliably set up different
  505. * single/dual channel state, if we even can.
  506. */
  507. if (intel_is_dual_link_lvds(dev))
  508. clock.p2 = limit->p2.p2_fast;
  509. else
  510. clock.p2 = limit->p2.p2_slow;
  511. } else {
  512. if (target < limit->p2.dot_limit)
  513. clock.p2 = limit->p2.p2_slow;
  514. else
  515. clock.p2 = limit->p2.p2_fast;
  516. }
  517. memset(best_clock, 0, sizeof(*best_clock));
  518. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  519. clock.m1++) {
  520. for (clock.m2 = limit->m2.min;
  521. clock.m2 <= limit->m2.max; clock.m2++) {
  522. for (clock.n = limit->n.min;
  523. clock.n <= limit->n.max; clock.n++) {
  524. for (clock.p1 = limit->p1.min;
  525. clock.p1 <= limit->p1.max; clock.p1++) {
  526. int this_err;
  527. pineview_clock(refclk, &clock);
  528. if (!intel_PLL_is_valid(dev, limit,
  529. &clock))
  530. continue;
  531. if (match_clock &&
  532. clock.p != match_clock->p)
  533. continue;
  534. this_err = abs(clock.dot - target);
  535. if (this_err < err) {
  536. *best_clock = clock;
  537. err = this_err;
  538. }
  539. }
  540. }
  541. }
  542. }
  543. return (err != target);
  544. }
  545. static bool
  546. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  547. int target, int refclk, intel_clock_t *match_clock,
  548. intel_clock_t *best_clock)
  549. {
  550. struct drm_device *dev = crtc->dev;
  551. intel_clock_t clock;
  552. int max_n;
  553. bool found;
  554. /* approximately equals target * 0.00585 */
  555. int err_most = (target >> 8) + (target >> 9);
  556. found = false;
  557. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  558. if (intel_is_dual_link_lvds(dev))
  559. clock.p2 = limit->p2.p2_fast;
  560. else
  561. clock.p2 = limit->p2.p2_slow;
  562. } else {
  563. if (target < limit->p2.dot_limit)
  564. clock.p2 = limit->p2.p2_slow;
  565. else
  566. clock.p2 = limit->p2.p2_fast;
  567. }
  568. memset(best_clock, 0, sizeof(*best_clock));
  569. max_n = limit->n.max;
  570. /* based on hardware requirement, prefer smaller n to precision */
  571. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  572. /* based on hardware requirement, prefere larger m1,m2 */
  573. for (clock.m1 = limit->m1.max;
  574. clock.m1 >= limit->m1.min; clock.m1--) {
  575. for (clock.m2 = limit->m2.max;
  576. clock.m2 >= limit->m2.min; clock.m2--) {
  577. for (clock.p1 = limit->p1.max;
  578. clock.p1 >= limit->p1.min; clock.p1--) {
  579. int this_err;
  580. i9xx_clock(refclk, &clock);
  581. if (!intel_PLL_is_valid(dev, limit,
  582. &clock))
  583. continue;
  584. this_err = abs(clock.dot - target);
  585. if (this_err < err_most) {
  586. *best_clock = clock;
  587. err_most = this_err;
  588. max_n = clock.n;
  589. found = true;
  590. }
  591. }
  592. }
  593. }
  594. }
  595. return found;
  596. }
  597. static bool
  598. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  599. int target, int refclk, intel_clock_t *match_clock,
  600. intel_clock_t *best_clock)
  601. {
  602. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  603. u32 m, n, fastclk;
  604. u32 updrate, minupdate, fracbits, p;
  605. unsigned long bestppm, ppm, absppm;
  606. int dotclk, flag;
  607. flag = 0;
  608. dotclk = target * 1000;
  609. bestppm = 1000000;
  610. ppm = absppm = 0;
  611. fastclk = dotclk / (2*100);
  612. updrate = 0;
  613. minupdate = 19200;
  614. fracbits = 1;
  615. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  616. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  617. /* based on hardware requirement, prefer smaller n to precision */
  618. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  619. updrate = refclk / n;
  620. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  621. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  622. if (p2 > 10)
  623. p2 = p2 - 1;
  624. p = p1 * p2;
  625. /* based on hardware requirement, prefer bigger m1,m2 values */
  626. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  627. m2 = (((2*(fastclk * p * n / m1 )) +
  628. refclk) / (2*refclk));
  629. m = m1 * m2;
  630. vco = updrate * m;
  631. if (vco >= limit->vco.min && vco < limit->vco.max) {
  632. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  633. absppm = (ppm > 0) ? ppm : (-ppm);
  634. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  635. bestppm = 0;
  636. flag = 1;
  637. }
  638. if (absppm < bestppm - 10) {
  639. bestppm = absppm;
  640. flag = 1;
  641. }
  642. if (flag) {
  643. bestn = n;
  644. bestm1 = m1;
  645. bestm2 = m2;
  646. bestp1 = p1;
  647. bestp2 = p2;
  648. flag = 0;
  649. }
  650. }
  651. }
  652. }
  653. }
  654. }
  655. best_clock->n = bestn;
  656. best_clock->m1 = bestm1;
  657. best_clock->m2 = bestm2;
  658. best_clock->p1 = bestp1;
  659. best_clock->p2 = bestp2;
  660. return true;
  661. }
  662. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  663. enum pipe pipe)
  664. {
  665. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  666. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  667. return intel_crtc->config.cpu_transcoder;
  668. }
  669. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  670. {
  671. struct drm_i915_private *dev_priv = dev->dev_private;
  672. u32 frame, frame_reg = PIPEFRAME(pipe);
  673. frame = I915_READ(frame_reg);
  674. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  675. DRM_DEBUG_KMS("vblank wait timed out\n");
  676. }
  677. /**
  678. * intel_wait_for_vblank - wait for vblank on a given pipe
  679. * @dev: drm device
  680. * @pipe: pipe to wait for
  681. *
  682. * Wait for vblank to occur on a given pipe. Needed for various bits of
  683. * mode setting code.
  684. */
  685. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  686. {
  687. struct drm_i915_private *dev_priv = dev->dev_private;
  688. int pipestat_reg = PIPESTAT(pipe);
  689. if (INTEL_INFO(dev)->gen >= 5) {
  690. ironlake_wait_for_vblank(dev, pipe);
  691. return;
  692. }
  693. /* Clear existing vblank status. Note this will clear any other
  694. * sticky status fields as well.
  695. *
  696. * This races with i915_driver_irq_handler() with the result
  697. * that either function could miss a vblank event. Here it is not
  698. * fatal, as we will either wait upon the next vblank interrupt or
  699. * timeout. Generally speaking intel_wait_for_vblank() is only
  700. * called during modeset at which time the GPU should be idle and
  701. * should *not* be performing page flips and thus not waiting on
  702. * vblanks...
  703. * Currently, the result of us stealing a vblank from the irq
  704. * handler is that a single frame will be skipped during swapbuffers.
  705. */
  706. I915_WRITE(pipestat_reg,
  707. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  708. /* Wait for vblank interrupt bit to set */
  709. if (wait_for(I915_READ(pipestat_reg) &
  710. PIPE_VBLANK_INTERRUPT_STATUS,
  711. 50))
  712. DRM_DEBUG_KMS("vblank wait timed out\n");
  713. }
  714. /*
  715. * intel_wait_for_pipe_off - wait for pipe to turn off
  716. * @dev: drm device
  717. * @pipe: pipe to wait for
  718. *
  719. * After disabling a pipe, we can't wait for vblank in the usual way,
  720. * spinning on the vblank interrupt status bit, since we won't actually
  721. * see an interrupt when the pipe is disabled.
  722. *
  723. * On Gen4 and above:
  724. * wait for the pipe register state bit to turn off
  725. *
  726. * Otherwise:
  727. * wait for the display line value to settle (it usually
  728. * ends up stopping at the start of the next frame).
  729. *
  730. */
  731. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  732. {
  733. struct drm_i915_private *dev_priv = dev->dev_private;
  734. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  735. pipe);
  736. if (INTEL_INFO(dev)->gen >= 4) {
  737. int reg = PIPECONF(cpu_transcoder);
  738. /* Wait for the Pipe State to go off */
  739. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  740. 100))
  741. WARN(1, "pipe_off wait timed out\n");
  742. } else {
  743. u32 last_line, line_mask;
  744. int reg = PIPEDSL(pipe);
  745. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  746. if (IS_GEN2(dev))
  747. line_mask = DSL_LINEMASK_GEN2;
  748. else
  749. line_mask = DSL_LINEMASK_GEN3;
  750. /* Wait for the display line to settle */
  751. do {
  752. last_line = I915_READ(reg) & line_mask;
  753. mdelay(5);
  754. } while (((I915_READ(reg) & line_mask) != last_line) &&
  755. time_after(timeout, jiffies));
  756. if (time_after(jiffies, timeout))
  757. WARN(1, "pipe_off wait timed out\n");
  758. }
  759. }
  760. /*
  761. * ibx_digital_port_connected - is the specified port connected?
  762. * @dev_priv: i915 private structure
  763. * @port: the port to test
  764. *
  765. * Returns true if @port is connected, false otherwise.
  766. */
  767. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  768. struct intel_digital_port *port)
  769. {
  770. u32 bit;
  771. if (HAS_PCH_IBX(dev_priv->dev)) {
  772. switch(port->port) {
  773. case PORT_B:
  774. bit = SDE_PORTB_HOTPLUG;
  775. break;
  776. case PORT_C:
  777. bit = SDE_PORTC_HOTPLUG;
  778. break;
  779. case PORT_D:
  780. bit = SDE_PORTD_HOTPLUG;
  781. break;
  782. default:
  783. return true;
  784. }
  785. } else {
  786. switch(port->port) {
  787. case PORT_B:
  788. bit = SDE_PORTB_HOTPLUG_CPT;
  789. break;
  790. case PORT_C:
  791. bit = SDE_PORTC_HOTPLUG_CPT;
  792. break;
  793. case PORT_D:
  794. bit = SDE_PORTD_HOTPLUG_CPT;
  795. break;
  796. default:
  797. return true;
  798. }
  799. }
  800. return I915_READ(SDEISR) & bit;
  801. }
  802. static const char *state_string(bool enabled)
  803. {
  804. return enabled ? "on" : "off";
  805. }
  806. /* Only for pre-ILK configs */
  807. void assert_pll(struct drm_i915_private *dev_priv,
  808. enum pipe pipe, bool state)
  809. {
  810. int reg;
  811. u32 val;
  812. bool cur_state;
  813. reg = DPLL(pipe);
  814. val = I915_READ(reg);
  815. cur_state = !!(val & DPLL_VCO_ENABLE);
  816. WARN(cur_state != state,
  817. "PLL state assertion failure (expected %s, current %s)\n",
  818. state_string(state), state_string(cur_state));
  819. }
  820. struct intel_shared_dpll *
  821. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  822. {
  823. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  824. if (crtc->config.shared_dpll < 0)
  825. return NULL;
  826. return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  827. }
  828. /* For ILK+ */
  829. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  830. struct intel_shared_dpll *pll,
  831. bool state)
  832. {
  833. bool cur_state;
  834. struct intel_dpll_hw_state hw_state;
  835. if (HAS_PCH_LPT(dev_priv->dev)) {
  836. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  837. return;
  838. }
  839. if (WARN (!pll,
  840. "asserting DPLL %s with no DPLL\n", state_string(state)))
  841. return;
  842. cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  843. WARN(cur_state != state,
  844. "%s assertion failure (expected %s, current %s)\n",
  845. pll->name, state_string(state), state_string(cur_state));
  846. }
  847. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  848. enum pipe pipe, bool state)
  849. {
  850. int reg;
  851. u32 val;
  852. bool cur_state;
  853. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  854. pipe);
  855. if (HAS_DDI(dev_priv->dev)) {
  856. /* DDI does not have a specific FDI_TX register */
  857. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  858. val = I915_READ(reg);
  859. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  860. } else {
  861. reg = FDI_TX_CTL(pipe);
  862. val = I915_READ(reg);
  863. cur_state = !!(val & FDI_TX_ENABLE);
  864. }
  865. WARN(cur_state != state,
  866. "FDI TX state assertion failure (expected %s, current %s)\n",
  867. state_string(state), state_string(cur_state));
  868. }
  869. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  870. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  871. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  872. enum pipe pipe, bool state)
  873. {
  874. int reg;
  875. u32 val;
  876. bool cur_state;
  877. reg = FDI_RX_CTL(pipe);
  878. val = I915_READ(reg);
  879. cur_state = !!(val & FDI_RX_ENABLE);
  880. WARN(cur_state != state,
  881. "FDI RX state assertion failure (expected %s, current %s)\n",
  882. state_string(state), state_string(cur_state));
  883. }
  884. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  885. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  886. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  887. enum pipe pipe)
  888. {
  889. int reg;
  890. u32 val;
  891. /* ILK FDI PLL is always enabled */
  892. if (dev_priv->info->gen == 5)
  893. return;
  894. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  895. if (HAS_DDI(dev_priv->dev))
  896. return;
  897. reg = FDI_TX_CTL(pipe);
  898. val = I915_READ(reg);
  899. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  900. }
  901. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  902. enum pipe pipe, bool state)
  903. {
  904. int reg;
  905. u32 val;
  906. bool cur_state;
  907. reg = FDI_RX_CTL(pipe);
  908. val = I915_READ(reg);
  909. cur_state = !!(val & FDI_RX_PLL_ENABLE);
  910. WARN(cur_state != state,
  911. "FDI RX PLL assertion failure (expected %s, current %s)\n",
  912. state_string(state), state_string(cur_state));
  913. }
  914. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  915. enum pipe pipe)
  916. {
  917. int pp_reg, lvds_reg;
  918. u32 val;
  919. enum pipe panel_pipe = PIPE_A;
  920. bool locked = true;
  921. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  922. pp_reg = PCH_PP_CONTROL;
  923. lvds_reg = PCH_LVDS;
  924. } else {
  925. pp_reg = PP_CONTROL;
  926. lvds_reg = LVDS;
  927. }
  928. val = I915_READ(pp_reg);
  929. if (!(val & PANEL_POWER_ON) ||
  930. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  931. locked = false;
  932. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  933. panel_pipe = PIPE_B;
  934. WARN(panel_pipe == pipe && locked,
  935. "panel assertion failure, pipe %c regs locked\n",
  936. pipe_name(pipe));
  937. }
  938. void assert_pipe(struct drm_i915_private *dev_priv,
  939. enum pipe pipe, bool state)
  940. {
  941. int reg;
  942. u32 val;
  943. bool cur_state;
  944. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  945. pipe);
  946. /* if we need the pipe A quirk it must be always on */
  947. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  948. state = true;
  949. if (!intel_display_power_enabled(dev_priv->dev,
  950. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  951. cur_state = false;
  952. } else {
  953. reg = PIPECONF(cpu_transcoder);
  954. val = I915_READ(reg);
  955. cur_state = !!(val & PIPECONF_ENABLE);
  956. }
  957. WARN(cur_state != state,
  958. "pipe %c assertion failure (expected %s, current %s)\n",
  959. pipe_name(pipe), state_string(state), state_string(cur_state));
  960. }
  961. static void assert_plane(struct drm_i915_private *dev_priv,
  962. enum plane plane, bool state)
  963. {
  964. int reg;
  965. u32 val;
  966. bool cur_state;
  967. reg = DSPCNTR(plane);
  968. val = I915_READ(reg);
  969. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  970. WARN(cur_state != state,
  971. "plane %c assertion failure (expected %s, current %s)\n",
  972. plane_name(plane), state_string(state), state_string(cur_state));
  973. }
  974. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  975. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  976. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  977. enum pipe pipe)
  978. {
  979. struct drm_device *dev = dev_priv->dev;
  980. int reg, i;
  981. u32 val;
  982. int cur_pipe;
  983. /* Primary planes are fixed to pipes on gen4+ */
  984. if (INTEL_INFO(dev)->gen >= 4) {
  985. reg = DSPCNTR(pipe);
  986. val = I915_READ(reg);
  987. WARN((val & DISPLAY_PLANE_ENABLE),
  988. "plane %c assertion failure, should be disabled but not\n",
  989. plane_name(pipe));
  990. return;
  991. }
  992. /* Need to check both planes against the pipe */
  993. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  994. reg = DSPCNTR(i);
  995. val = I915_READ(reg);
  996. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  997. DISPPLANE_SEL_PIPE_SHIFT;
  998. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  999. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1000. plane_name(i), pipe_name(pipe));
  1001. }
  1002. }
  1003. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1004. enum pipe pipe)
  1005. {
  1006. struct drm_device *dev = dev_priv->dev;
  1007. int reg, i;
  1008. u32 val;
  1009. if (IS_VALLEYVIEW(dev)) {
  1010. for (i = 0; i < dev_priv->num_plane; i++) {
  1011. reg = SPCNTR(pipe, i);
  1012. val = I915_READ(reg);
  1013. WARN((val & SP_ENABLE),
  1014. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1015. sprite_name(pipe, i), pipe_name(pipe));
  1016. }
  1017. } else if (INTEL_INFO(dev)->gen >= 7) {
  1018. reg = SPRCTL(pipe);
  1019. val = I915_READ(reg);
  1020. WARN((val & SPRITE_ENABLE),
  1021. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1022. plane_name(pipe), pipe_name(pipe));
  1023. } else if (INTEL_INFO(dev)->gen >= 5) {
  1024. reg = DVSCNTR(pipe);
  1025. val = I915_READ(reg);
  1026. WARN((val & DVS_ENABLE),
  1027. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1028. plane_name(pipe), pipe_name(pipe));
  1029. }
  1030. }
  1031. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1032. {
  1033. u32 val;
  1034. bool enabled;
  1035. if (HAS_PCH_LPT(dev_priv->dev)) {
  1036. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1037. return;
  1038. }
  1039. val = I915_READ(PCH_DREF_CONTROL);
  1040. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1041. DREF_SUPERSPREAD_SOURCE_MASK));
  1042. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1043. }
  1044. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1045. enum pipe pipe)
  1046. {
  1047. int reg;
  1048. u32 val;
  1049. bool enabled;
  1050. reg = PCH_TRANSCONF(pipe);
  1051. val = I915_READ(reg);
  1052. enabled = !!(val & TRANS_ENABLE);
  1053. WARN(enabled,
  1054. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1055. pipe_name(pipe));
  1056. }
  1057. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1058. enum pipe pipe, u32 port_sel, u32 val)
  1059. {
  1060. if ((val & DP_PORT_EN) == 0)
  1061. return false;
  1062. if (HAS_PCH_CPT(dev_priv->dev)) {
  1063. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1064. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1065. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1066. return false;
  1067. } else {
  1068. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1069. return false;
  1070. }
  1071. return true;
  1072. }
  1073. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1074. enum pipe pipe, u32 val)
  1075. {
  1076. if ((val & SDVO_ENABLE) == 0)
  1077. return false;
  1078. if (HAS_PCH_CPT(dev_priv->dev)) {
  1079. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1080. return false;
  1081. } else {
  1082. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1083. return false;
  1084. }
  1085. return true;
  1086. }
  1087. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1088. enum pipe pipe, u32 val)
  1089. {
  1090. if ((val & LVDS_PORT_EN) == 0)
  1091. return false;
  1092. if (HAS_PCH_CPT(dev_priv->dev)) {
  1093. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1094. return false;
  1095. } else {
  1096. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1097. return false;
  1098. }
  1099. return true;
  1100. }
  1101. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1102. enum pipe pipe, u32 val)
  1103. {
  1104. if ((val & ADPA_DAC_ENABLE) == 0)
  1105. return false;
  1106. if (HAS_PCH_CPT(dev_priv->dev)) {
  1107. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1108. return false;
  1109. } else {
  1110. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1111. return false;
  1112. }
  1113. return true;
  1114. }
  1115. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1116. enum pipe pipe, int reg, u32 port_sel)
  1117. {
  1118. u32 val = I915_READ(reg);
  1119. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1120. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1121. reg, pipe_name(pipe));
  1122. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1123. && (val & DP_PIPEB_SELECT),
  1124. "IBX PCH dp port still using transcoder B\n");
  1125. }
  1126. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1127. enum pipe pipe, int reg)
  1128. {
  1129. u32 val = I915_READ(reg);
  1130. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1131. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1132. reg, pipe_name(pipe));
  1133. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1134. && (val & SDVO_PIPE_B_SELECT),
  1135. "IBX PCH hdmi port still using transcoder B\n");
  1136. }
  1137. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1138. enum pipe pipe)
  1139. {
  1140. int reg;
  1141. u32 val;
  1142. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1143. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1144. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1145. reg = PCH_ADPA;
  1146. val = I915_READ(reg);
  1147. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1148. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1149. pipe_name(pipe));
  1150. reg = PCH_LVDS;
  1151. val = I915_READ(reg);
  1152. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1153. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1154. pipe_name(pipe));
  1155. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1156. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1157. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1158. }
  1159. static void vlv_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1160. {
  1161. int reg;
  1162. u32 val;
  1163. assert_pipe_disabled(dev_priv, pipe);
  1164. /* No really, not for ILK+ */
  1165. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1166. /* PLL is protected by panel, make sure we can write it */
  1167. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1168. assert_panel_unlocked(dev_priv, pipe);
  1169. reg = DPLL(pipe);
  1170. val = I915_READ(reg);
  1171. val |= DPLL_VCO_ENABLE;
  1172. /* We do this three times for luck */
  1173. I915_WRITE(reg, val);
  1174. POSTING_READ(reg);
  1175. udelay(150); /* wait for warmup */
  1176. I915_WRITE(reg, val);
  1177. POSTING_READ(reg);
  1178. udelay(150); /* wait for warmup */
  1179. I915_WRITE(reg, val);
  1180. POSTING_READ(reg);
  1181. udelay(150); /* wait for warmup */
  1182. }
  1183. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1184. {
  1185. struct drm_device *dev = crtc->base.dev;
  1186. struct drm_i915_private *dev_priv = dev->dev_private;
  1187. int reg = DPLL(crtc->pipe);
  1188. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1189. assert_pipe_disabled(dev_priv, crtc->pipe);
  1190. /* No really, not for ILK+ */
  1191. BUG_ON(dev_priv->info->gen >= 5);
  1192. /* PLL is protected by panel, make sure we can write it */
  1193. if (IS_MOBILE(dev) && !IS_I830(dev))
  1194. assert_panel_unlocked(dev_priv, crtc->pipe);
  1195. I915_WRITE(reg, dpll);
  1196. /* Wait for the clocks to stabilize. */
  1197. POSTING_READ(reg);
  1198. udelay(150);
  1199. if (INTEL_INFO(dev)->gen >= 4) {
  1200. I915_WRITE(DPLL_MD(crtc->pipe),
  1201. crtc->config.dpll_hw_state.dpll_md);
  1202. } else {
  1203. /* The pixel multiplier can only be updated once the
  1204. * DPLL is enabled and the clocks are stable.
  1205. *
  1206. * So write it again.
  1207. */
  1208. I915_WRITE(reg, dpll);
  1209. }
  1210. /* We do this three times for luck */
  1211. I915_WRITE(reg, dpll);
  1212. POSTING_READ(reg);
  1213. udelay(150); /* wait for warmup */
  1214. I915_WRITE(reg, dpll);
  1215. POSTING_READ(reg);
  1216. udelay(150); /* wait for warmup */
  1217. I915_WRITE(reg, dpll);
  1218. POSTING_READ(reg);
  1219. udelay(150); /* wait for warmup */
  1220. }
  1221. /**
  1222. * intel_disable_pll - disable a PLL
  1223. * @dev_priv: i915 private structure
  1224. * @pipe: pipe PLL to disable
  1225. *
  1226. * Disable the PLL for @pipe, making sure the pipe is off first.
  1227. *
  1228. * Note! This is for pre-ILK only.
  1229. */
  1230. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1231. {
  1232. int reg;
  1233. u32 val;
  1234. /* Don't disable pipe A or pipe A PLLs if needed */
  1235. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1236. return;
  1237. /* Make sure the pipe isn't still relying on us */
  1238. assert_pipe_disabled(dev_priv, pipe);
  1239. reg = DPLL(pipe);
  1240. val = I915_READ(reg);
  1241. val &= ~DPLL_VCO_ENABLE;
  1242. I915_WRITE(reg, val);
  1243. POSTING_READ(reg);
  1244. }
  1245. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1246. {
  1247. u32 port_mask;
  1248. if (!port)
  1249. port_mask = DPLL_PORTB_READY_MASK;
  1250. else
  1251. port_mask = DPLL_PORTC_READY_MASK;
  1252. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1253. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1254. 'B' + port, I915_READ(DPLL(0)));
  1255. }
  1256. /**
  1257. * ironlake_enable_shared_dpll - enable PCH PLL
  1258. * @dev_priv: i915 private structure
  1259. * @pipe: pipe PLL to enable
  1260. *
  1261. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1262. * drives the transcoder clock.
  1263. */
  1264. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1265. {
  1266. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1267. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1268. /* PCH PLLs only available on ILK, SNB and IVB */
  1269. BUG_ON(dev_priv->info->gen < 5);
  1270. if (WARN_ON(pll == NULL))
  1271. return;
  1272. if (WARN_ON(pll->refcount == 0))
  1273. return;
  1274. DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1275. pll->name, pll->active, pll->on,
  1276. crtc->base.base.id);
  1277. if (pll->active++) {
  1278. WARN_ON(!pll->on);
  1279. assert_shared_dpll_enabled(dev_priv, pll);
  1280. return;
  1281. }
  1282. WARN_ON(pll->on);
  1283. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1284. pll->enable(dev_priv, pll);
  1285. pll->on = true;
  1286. }
  1287. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1288. {
  1289. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1290. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1291. /* PCH only available on ILK+ */
  1292. BUG_ON(dev_priv->info->gen < 5);
  1293. if (WARN_ON(pll == NULL))
  1294. return;
  1295. if (WARN_ON(pll->refcount == 0))
  1296. return;
  1297. DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1298. pll->name, pll->active, pll->on,
  1299. crtc->base.base.id);
  1300. if (WARN_ON(pll->active == 0)) {
  1301. assert_shared_dpll_disabled(dev_priv, pll);
  1302. return;
  1303. }
  1304. assert_shared_dpll_enabled(dev_priv, pll);
  1305. WARN_ON(!pll->on);
  1306. if (--pll->active)
  1307. return;
  1308. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1309. pll->disable(dev_priv, pll);
  1310. pll->on = false;
  1311. }
  1312. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1313. enum pipe pipe)
  1314. {
  1315. struct drm_device *dev = dev_priv->dev;
  1316. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1317. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1318. uint32_t reg, val, pipeconf_val;
  1319. /* PCH only available on ILK+ */
  1320. BUG_ON(dev_priv->info->gen < 5);
  1321. /* Make sure PCH DPLL is enabled */
  1322. assert_shared_dpll_enabled(dev_priv,
  1323. intel_crtc_to_shared_dpll(intel_crtc));
  1324. /* FDI must be feeding us bits for PCH ports */
  1325. assert_fdi_tx_enabled(dev_priv, pipe);
  1326. assert_fdi_rx_enabled(dev_priv, pipe);
  1327. if (HAS_PCH_CPT(dev)) {
  1328. /* Workaround: Set the timing override bit before enabling the
  1329. * pch transcoder. */
  1330. reg = TRANS_CHICKEN2(pipe);
  1331. val = I915_READ(reg);
  1332. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1333. I915_WRITE(reg, val);
  1334. }
  1335. reg = PCH_TRANSCONF(pipe);
  1336. val = I915_READ(reg);
  1337. pipeconf_val = I915_READ(PIPECONF(pipe));
  1338. if (HAS_PCH_IBX(dev_priv->dev)) {
  1339. /*
  1340. * make the BPC in transcoder be consistent with
  1341. * that in pipeconf reg.
  1342. */
  1343. val &= ~PIPECONF_BPC_MASK;
  1344. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1345. }
  1346. val &= ~TRANS_INTERLACE_MASK;
  1347. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1348. if (HAS_PCH_IBX(dev_priv->dev) &&
  1349. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1350. val |= TRANS_LEGACY_INTERLACED_ILK;
  1351. else
  1352. val |= TRANS_INTERLACED;
  1353. else
  1354. val |= TRANS_PROGRESSIVE;
  1355. I915_WRITE(reg, val | TRANS_ENABLE);
  1356. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1357. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1358. }
  1359. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1360. enum transcoder cpu_transcoder)
  1361. {
  1362. u32 val, pipeconf_val;
  1363. /* PCH only available on ILK+ */
  1364. BUG_ON(dev_priv->info->gen < 5);
  1365. /* FDI must be feeding us bits for PCH ports */
  1366. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1367. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1368. /* Workaround: set timing override bit. */
  1369. val = I915_READ(_TRANSA_CHICKEN2);
  1370. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1371. I915_WRITE(_TRANSA_CHICKEN2, val);
  1372. val = TRANS_ENABLE;
  1373. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1374. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1375. PIPECONF_INTERLACED_ILK)
  1376. val |= TRANS_INTERLACED;
  1377. else
  1378. val |= TRANS_PROGRESSIVE;
  1379. I915_WRITE(LPT_TRANSCONF, val);
  1380. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1381. DRM_ERROR("Failed to enable PCH transcoder\n");
  1382. }
  1383. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1384. enum pipe pipe)
  1385. {
  1386. struct drm_device *dev = dev_priv->dev;
  1387. uint32_t reg, val;
  1388. /* FDI relies on the transcoder */
  1389. assert_fdi_tx_disabled(dev_priv, pipe);
  1390. assert_fdi_rx_disabled(dev_priv, pipe);
  1391. /* Ports must be off as well */
  1392. assert_pch_ports_disabled(dev_priv, pipe);
  1393. reg = PCH_TRANSCONF(pipe);
  1394. val = I915_READ(reg);
  1395. val &= ~TRANS_ENABLE;
  1396. I915_WRITE(reg, val);
  1397. /* wait for PCH transcoder off, transcoder state */
  1398. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1399. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1400. if (!HAS_PCH_IBX(dev)) {
  1401. /* Workaround: Clear the timing override chicken bit again. */
  1402. reg = TRANS_CHICKEN2(pipe);
  1403. val = I915_READ(reg);
  1404. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1405. I915_WRITE(reg, val);
  1406. }
  1407. }
  1408. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1409. {
  1410. u32 val;
  1411. val = I915_READ(LPT_TRANSCONF);
  1412. val &= ~TRANS_ENABLE;
  1413. I915_WRITE(LPT_TRANSCONF, val);
  1414. /* wait for PCH transcoder off, transcoder state */
  1415. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1416. DRM_ERROR("Failed to disable PCH transcoder\n");
  1417. /* Workaround: clear timing override bit. */
  1418. val = I915_READ(_TRANSA_CHICKEN2);
  1419. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1420. I915_WRITE(_TRANSA_CHICKEN2, val);
  1421. }
  1422. /**
  1423. * intel_enable_pipe - enable a pipe, asserting requirements
  1424. * @dev_priv: i915 private structure
  1425. * @pipe: pipe to enable
  1426. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1427. *
  1428. * Enable @pipe, making sure that various hardware specific requirements
  1429. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1430. *
  1431. * @pipe should be %PIPE_A or %PIPE_B.
  1432. *
  1433. * Will wait until the pipe is actually running (i.e. first vblank) before
  1434. * returning.
  1435. */
  1436. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1437. bool pch_port)
  1438. {
  1439. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1440. pipe);
  1441. enum pipe pch_transcoder;
  1442. int reg;
  1443. u32 val;
  1444. assert_planes_disabled(dev_priv, pipe);
  1445. assert_sprites_disabled(dev_priv, pipe);
  1446. if (HAS_PCH_LPT(dev_priv->dev))
  1447. pch_transcoder = TRANSCODER_A;
  1448. else
  1449. pch_transcoder = pipe;
  1450. /*
  1451. * A pipe without a PLL won't actually be able to drive bits from
  1452. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1453. * need the check.
  1454. */
  1455. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1456. assert_pll_enabled(dev_priv, pipe);
  1457. else {
  1458. if (pch_port) {
  1459. /* if driving the PCH, we need FDI enabled */
  1460. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1461. assert_fdi_tx_pll_enabled(dev_priv,
  1462. (enum pipe) cpu_transcoder);
  1463. }
  1464. /* FIXME: assert CPU port conditions for SNB+ */
  1465. }
  1466. reg = PIPECONF(cpu_transcoder);
  1467. val = I915_READ(reg);
  1468. if (val & PIPECONF_ENABLE)
  1469. return;
  1470. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1471. intel_wait_for_vblank(dev_priv->dev, pipe);
  1472. }
  1473. /**
  1474. * intel_disable_pipe - disable a pipe, asserting requirements
  1475. * @dev_priv: i915 private structure
  1476. * @pipe: pipe to disable
  1477. *
  1478. * Disable @pipe, making sure that various hardware specific requirements
  1479. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1480. *
  1481. * @pipe should be %PIPE_A or %PIPE_B.
  1482. *
  1483. * Will wait until the pipe has shut down before returning.
  1484. */
  1485. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1486. enum pipe pipe)
  1487. {
  1488. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1489. pipe);
  1490. int reg;
  1491. u32 val;
  1492. /*
  1493. * Make sure planes won't keep trying to pump pixels to us,
  1494. * or we might hang the display.
  1495. */
  1496. assert_planes_disabled(dev_priv, pipe);
  1497. assert_sprites_disabled(dev_priv, pipe);
  1498. /* Don't disable pipe A or pipe A PLLs if needed */
  1499. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1500. return;
  1501. reg = PIPECONF(cpu_transcoder);
  1502. val = I915_READ(reg);
  1503. if ((val & PIPECONF_ENABLE) == 0)
  1504. return;
  1505. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1506. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1507. }
  1508. /*
  1509. * Plane regs are double buffered, going from enabled->disabled needs a
  1510. * trigger in order to latch. The display address reg provides this.
  1511. */
  1512. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1513. enum plane plane)
  1514. {
  1515. if (dev_priv->info->gen >= 4)
  1516. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1517. else
  1518. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1519. }
  1520. /**
  1521. * intel_enable_plane - enable a display plane on a given pipe
  1522. * @dev_priv: i915 private structure
  1523. * @plane: plane to enable
  1524. * @pipe: pipe being fed
  1525. *
  1526. * Enable @plane on @pipe, making sure that @pipe is running first.
  1527. */
  1528. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1529. enum plane plane, enum pipe pipe)
  1530. {
  1531. int reg;
  1532. u32 val;
  1533. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1534. assert_pipe_enabled(dev_priv, pipe);
  1535. reg = DSPCNTR(plane);
  1536. val = I915_READ(reg);
  1537. if (val & DISPLAY_PLANE_ENABLE)
  1538. return;
  1539. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1540. intel_flush_display_plane(dev_priv, plane);
  1541. intel_wait_for_vblank(dev_priv->dev, pipe);
  1542. }
  1543. /**
  1544. * intel_disable_plane - disable a display plane
  1545. * @dev_priv: i915 private structure
  1546. * @plane: plane to disable
  1547. * @pipe: pipe consuming the data
  1548. *
  1549. * Disable @plane; should be an independent operation.
  1550. */
  1551. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1552. enum plane plane, enum pipe pipe)
  1553. {
  1554. int reg;
  1555. u32 val;
  1556. reg = DSPCNTR(plane);
  1557. val = I915_READ(reg);
  1558. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1559. return;
  1560. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1561. intel_flush_display_plane(dev_priv, plane);
  1562. intel_wait_for_vblank(dev_priv->dev, pipe);
  1563. }
  1564. static bool need_vtd_wa(struct drm_device *dev)
  1565. {
  1566. #ifdef CONFIG_INTEL_IOMMU
  1567. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1568. return true;
  1569. #endif
  1570. return false;
  1571. }
  1572. int
  1573. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1574. struct drm_i915_gem_object *obj,
  1575. struct intel_ring_buffer *pipelined)
  1576. {
  1577. struct drm_i915_private *dev_priv = dev->dev_private;
  1578. u32 alignment;
  1579. int ret;
  1580. switch (obj->tiling_mode) {
  1581. case I915_TILING_NONE:
  1582. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1583. alignment = 128 * 1024;
  1584. else if (INTEL_INFO(dev)->gen >= 4)
  1585. alignment = 4 * 1024;
  1586. else
  1587. alignment = 64 * 1024;
  1588. break;
  1589. case I915_TILING_X:
  1590. /* pin() will align the object as required by fence */
  1591. alignment = 0;
  1592. break;
  1593. case I915_TILING_Y:
  1594. /* Despite that we check this in framebuffer_init userspace can
  1595. * screw us over and change the tiling after the fact. Only
  1596. * pinned buffers can't change their tiling. */
  1597. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1598. return -EINVAL;
  1599. default:
  1600. BUG();
  1601. }
  1602. /* Note that the w/a also requires 64 PTE of padding following the
  1603. * bo. We currently fill all unused PTE with the shadow page and so
  1604. * we should always have valid PTE following the scanout preventing
  1605. * the VT-d warning.
  1606. */
  1607. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1608. alignment = 256 * 1024;
  1609. dev_priv->mm.interruptible = false;
  1610. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1611. if (ret)
  1612. goto err_interruptible;
  1613. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1614. * fence, whereas 965+ only requires a fence if using
  1615. * framebuffer compression. For simplicity, we always install
  1616. * a fence as the cost is not that onerous.
  1617. */
  1618. ret = i915_gem_object_get_fence(obj);
  1619. if (ret)
  1620. goto err_unpin;
  1621. i915_gem_object_pin_fence(obj);
  1622. dev_priv->mm.interruptible = true;
  1623. return 0;
  1624. err_unpin:
  1625. i915_gem_object_unpin(obj);
  1626. err_interruptible:
  1627. dev_priv->mm.interruptible = true;
  1628. return ret;
  1629. }
  1630. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1631. {
  1632. i915_gem_object_unpin_fence(obj);
  1633. i915_gem_object_unpin(obj);
  1634. }
  1635. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1636. * is assumed to be a power-of-two. */
  1637. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1638. unsigned int tiling_mode,
  1639. unsigned int cpp,
  1640. unsigned int pitch)
  1641. {
  1642. if (tiling_mode != I915_TILING_NONE) {
  1643. unsigned int tile_rows, tiles;
  1644. tile_rows = *y / 8;
  1645. *y %= 8;
  1646. tiles = *x / (512/cpp);
  1647. *x %= 512/cpp;
  1648. return tile_rows * pitch * 8 + tiles * 4096;
  1649. } else {
  1650. unsigned int offset;
  1651. offset = *y * pitch + *x * cpp;
  1652. *y = 0;
  1653. *x = (offset & 4095) / cpp;
  1654. return offset & -4096;
  1655. }
  1656. }
  1657. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1658. int x, int y)
  1659. {
  1660. struct drm_device *dev = crtc->dev;
  1661. struct drm_i915_private *dev_priv = dev->dev_private;
  1662. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1663. struct intel_framebuffer *intel_fb;
  1664. struct drm_i915_gem_object *obj;
  1665. int plane = intel_crtc->plane;
  1666. unsigned long linear_offset;
  1667. u32 dspcntr;
  1668. u32 reg;
  1669. switch (plane) {
  1670. case 0:
  1671. case 1:
  1672. break;
  1673. default:
  1674. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1675. return -EINVAL;
  1676. }
  1677. intel_fb = to_intel_framebuffer(fb);
  1678. obj = intel_fb->obj;
  1679. reg = DSPCNTR(plane);
  1680. dspcntr = I915_READ(reg);
  1681. /* Mask out pixel format bits in case we change it */
  1682. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1683. switch (fb->pixel_format) {
  1684. case DRM_FORMAT_C8:
  1685. dspcntr |= DISPPLANE_8BPP;
  1686. break;
  1687. case DRM_FORMAT_XRGB1555:
  1688. case DRM_FORMAT_ARGB1555:
  1689. dspcntr |= DISPPLANE_BGRX555;
  1690. break;
  1691. case DRM_FORMAT_RGB565:
  1692. dspcntr |= DISPPLANE_BGRX565;
  1693. break;
  1694. case DRM_FORMAT_XRGB8888:
  1695. case DRM_FORMAT_ARGB8888:
  1696. dspcntr |= DISPPLANE_BGRX888;
  1697. break;
  1698. case DRM_FORMAT_XBGR8888:
  1699. case DRM_FORMAT_ABGR8888:
  1700. dspcntr |= DISPPLANE_RGBX888;
  1701. break;
  1702. case DRM_FORMAT_XRGB2101010:
  1703. case DRM_FORMAT_ARGB2101010:
  1704. dspcntr |= DISPPLANE_BGRX101010;
  1705. break;
  1706. case DRM_FORMAT_XBGR2101010:
  1707. case DRM_FORMAT_ABGR2101010:
  1708. dspcntr |= DISPPLANE_RGBX101010;
  1709. break;
  1710. default:
  1711. BUG();
  1712. }
  1713. if (INTEL_INFO(dev)->gen >= 4) {
  1714. if (obj->tiling_mode != I915_TILING_NONE)
  1715. dspcntr |= DISPPLANE_TILED;
  1716. else
  1717. dspcntr &= ~DISPPLANE_TILED;
  1718. }
  1719. if (IS_G4X(dev))
  1720. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1721. I915_WRITE(reg, dspcntr);
  1722. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1723. if (INTEL_INFO(dev)->gen >= 4) {
  1724. intel_crtc->dspaddr_offset =
  1725. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1726. fb->bits_per_pixel / 8,
  1727. fb->pitches[0]);
  1728. linear_offset -= intel_crtc->dspaddr_offset;
  1729. } else {
  1730. intel_crtc->dspaddr_offset = linear_offset;
  1731. }
  1732. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1733. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1734. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1735. if (INTEL_INFO(dev)->gen >= 4) {
  1736. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1737. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1738. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1739. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1740. } else
  1741. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1742. POSTING_READ(reg);
  1743. return 0;
  1744. }
  1745. static int ironlake_update_plane(struct drm_crtc *crtc,
  1746. struct drm_framebuffer *fb, int x, int y)
  1747. {
  1748. struct drm_device *dev = crtc->dev;
  1749. struct drm_i915_private *dev_priv = dev->dev_private;
  1750. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1751. struct intel_framebuffer *intel_fb;
  1752. struct drm_i915_gem_object *obj;
  1753. int plane = intel_crtc->plane;
  1754. unsigned long linear_offset;
  1755. u32 dspcntr;
  1756. u32 reg;
  1757. switch (plane) {
  1758. case 0:
  1759. case 1:
  1760. case 2:
  1761. break;
  1762. default:
  1763. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1764. return -EINVAL;
  1765. }
  1766. intel_fb = to_intel_framebuffer(fb);
  1767. obj = intel_fb->obj;
  1768. reg = DSPCNTR(plane);
  1769. dspcntr = I915_READ(reg);
  1770. /* Mask out pixel format bits in case we change it */
  1771. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1772. switch (fb->pixel_format) {
  1773. case DRM_FORMAT_C8:
  1774. dspcntr |= DISPPLANE_8BPP;
  1775. break;
  1776. case DRM_FORMAT_RGB565:
  1777. dspcntr |= DISPPLANE_BGRX565;
  1778. break;
  1779. case DRM_FORMAT_XRGB8888:
  1780. case DRM_FORMAT_ARGB8888:
  1781. dspcntr |= DISPPLANE_BGRX888;
  1782. break;
  1783. case DRM_FORMAT_XBGR8888:
  1784. case DRM_FORMAT_ABGR8888:
  1785. dspcntr |= DISPPLANE_RGBX888;
  1786. break;
  1787. case DRM_FORMAT_XRGB2101010:
  1788. case DRM_FORMAT_ARGB2101010:
  1789. dspcntr |= DISPPLANE_BGRX101010;
  1790. break;
  1791. case DRM_FORMAT_XBGR2101010:
  1792. case DRM_FORMAT_ABGR2101010:
  1793. dspcntr |= DISPPLANE_RGBX101010;
  1794. break;
  1795. default:
  1796. BUG();
  1797. }
  1798. if (obj->tiling_mode != I915_TILING_NONE)
  1799. dspcntr |= DISPPLANE_TILED;
  1800. else
  1801. dspcntr &= ~DISPPLANE_TILED;
  1802. /* must disable */
  1803. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1804. I915_WRITE(reg, dspcntr);
  1805. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1806. intel_crtc->dspaddr_offset =
  1807. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1808. fb->bits_per_pixel / 8,
  1809. fb->pitches[0]);
  1810. linear_offset -= intel_crtc->dspaddr_offset;
  1811. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1812. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1813. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1814. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1815. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1816. if (IS_HASWELL(dev)) {
  1817. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1818. } else {
  1819. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1820. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1821. }
  1822. POSTING_READ(reg);
  1823. return 0;
  1824. }
  1825. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1826. static int
  1827. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1828. int x, int y, enum mode_set_atomic state)
  1829. {
  1830. struct drm_device *dev = crtc->dev;
  1831. struct drm_i915_private *dev_priv = dev->dev_private;
  1832. if (dev_priv->display.disable_fbc)
  1833. dev_priv->display.disable_fbc(dev);
  1834. intel_increase_pllclock(crtc);
  1835. return dev_priv->display.update_plane(crtc, fb, x, y);
  1836. }
  1837. void intel_display_handle_reset(struct drm_device *dev)
  1838. {
  1839. struct drm_i915_private *dev_priv = dev->dev_private;
  1840. struct drm_crtc *crtc;
  1841. /*
  1842. * Flips in the rings have been nuked by the reset,
  1843. * so complete all pending flips so that user space
  1844. * will get its events and not get stuck.
  1845. *
  1846. * Also update the base address of all primary
  1847. * planes to the the last fb to make sure we're
  1848. * showing the correct fb after a reset.
  1849. *
  1850. * Need to make two loops over the crtcs so that we
  1851. * don't try to grab a crtc mutex before the
  1852. * pending_flip_queue really got woken up.
  1853. */
  1854. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1855. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1856. enum plane plane = intel_crtc->plane;
  1857. intel_prepare_page_flip(dev, plane);
  1858. intel_finish_page_flip_plane(dev, plane);
  1859. }
  1860. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1861. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1862. mutex_lock(&crtc->mutex);
  1863. if (intel_crtc->active)
  1864. dev_priv->display.update_plane(crtc, crtc->fb,
  1865. crtc->x, crtc->y);
  1866. mutex_unlock(&crtc->mutex);
  1867. }
  1868. }
  1869. static int
  1870. intel_finish_fb(struct drm_framebuffer *old_fb)
  1871. {
  1872. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1873. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1874. bool was_interruptible = dev_priv->mm.interruptible;
  1875. int ret;
  1876. /* Big Hammer, we also need to ensure that any pending
  1877. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1878. * current scanout is retired before unpinning the old
  1879. * framebuffer.
  1880. *
  1881. * This should only fail upon a hung GPU, in which case we
  1882. * can safely continue.
  1883. */
  1884. dev_priv->mm.interruptible = false;
  1885. ret = i915_gem_object_finish_gpu(obj);
  1886. dev_priv->mm.interruptible = was_interruptible;
  1887. return ret;
  1888. }
  1889. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1890. {
  1891. struct drm_device *dev = crtc->dev;
  1892. struct drm_i915_master_private *master_priv;
  1893. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1894. if (!dev->primary->master)
  1895. return;
  1896. master_priv = dev->primary->master->driver_priv;
  1897. if (!master_priv->sarea_priv)
  1898. return;
  1899. switch (intel_crtc->pipe) {
  1900. case 0:
  1901. master_priv->sarea_priv->pipeA_x = x;
  1902. master_priv->sarea_priv->pipeA_y = y;
  1903. break;
  1904. case 1:
  1905. master_priv->sarea_priv->pipeB_x = x;
  1906. master_priv->sarea_priv->pipeB_y = y;
  1907. break;
  1908. default:
  1909. break;
  1910. }
  1911. }
  1912. static int
  1913. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1914. struct drm_framebuffer *fb)
  1915. {
  1916. struct drm_device *dev = crtc->dev;
  1917. struct drm_i915_private *dev_priv = dev->dev_private;
  1918. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1919. struct drm_framebuffer *old_fb;
  1920. int ret;
  1921. /* no fb bound */
  1922. if (!fb) {
  1923. DRM_ERROR("No FB bound\n");
  1924. return 0;
  1925. }
  1926. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1927. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1928. plane_name(intel_crtc->plane),
  1929. INTEL_INFO(dev)->num_pipes);
  1930. return -EINVAL;
  1931. }
  1932. mutex_lock(&dev->struct_mutex);
  1933. ret = intel_pin_and_fence_fb_obj(dev,
  1934. to_intel_framebuffer(fb)->obj,
  1935. NULL);
  1936. if (ret != 0) {
  1937. mutex_unlock(&dev->struct_mutex);
  1938. DRM_ERROR("pin & fence failed\n");
  1939. return ret;
  1940. }
  1941. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1942. if (ret) {
  1943. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1944. mutex_unlock(&dev->struct_mutex);
  1945. DRM_ERROR("failed to update base address\n");
  1946. return ret;
  1947. }
  1948. old_fb = crtc->fb;
  1949. crtc->fb = fb;
  1950. crtc->x = x;
  1951. crtc->y = y;
  1952. if (old_fb) {
  1953. if (intel_crtc->active && old_fb != fb)
  1954. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1955. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  1956. }
  1957. intel_update_fbc(dev);
  1958. mutex_unlock(&dev->struct_mutex);
  1959. intel_crtc_update_sarea_pos(crtc, x, y);
  1960. return 0;
  1961. }
  1962. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  1963. {
  1964. struct drm_device *dev = crtc->dev;
  1965. struct drm_i915_private *dev_priv = dev->dev_private;
  1966. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1967. int pipe = intel_crtc->pipe;
  1968. u32 reg, temp;
  1969. /* enable normal train */
  1970. reg = FDI_TX_CTL(pipe);
  1971. temp = I915_READ(reg);
  1972. if (IS_IVYBRIDGE(dev)) {
  1973. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  1974. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  1975. } else {
  1976. temp &= ~FDI_LINK_TRAIN_NONE;
  1977. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  1978. }
  1979. I915_WRITE(reg, temp);
  1980. reg = FDI_RX_CTL(pipe);
  1981. temp = I915_READ(reg);
  1982. if (HAS_PCH_CPT(dev)) {
  1983. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1984. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  1985. } else {
  1986. temp &= ~FDI_LINK_TRAIN_NONE;
  1987. temp |= FDI_LINK_TRAIN_NONE;
  1988. }
  1989. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  1990. /* wait one idle pattern time */
  1991. POSTING_READ(reg);
  1992. udelay(1000);
  1993. /* IVB wants error correction enabled */
  1994. if (IS_IVYBRIDGE(dev))
  1995. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  1996. FDI_FE_ERRC_ENABLE);
  1997. }
  1998. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  1999. {
  2000. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  2001. }
  2002. static void ivb_modeset_global_resources(struct drm_device *dev)
  2003. {
  2004. struct drm_i915_private *dev_priv = dev->dev_private;
  2005. struct intel_crtc *pipe_B_crtc =
  2006. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2007. struct intel_crtc *pipe_C_crtc =
  2008. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2009. uint32_t temp;
  2010. /*
  2011. * When everything is off disable fdi C so that we could enable fdi B
  2012. * with all lanes. Note that we don't care about enabled pipes without
  2013. * an enabled pch encoder.
  2014. */
  2015. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2016. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2017. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2018. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2019. temp = I915_READ(SOUTH_CHICKEN1);
  2020. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2021. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2022. I915_WRITE(SOUTH_CHICKEN1, temp);
  2023. }
  2024. }
  2025. /* The FDI link training functions for ILK/Ibexpeak. */
  2026. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2027. {
  2028. struct drm_device *dev = crtc->dev;
  2029. struct drm_i915_private *dev_priv = dev->dev_private;
  2030. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2031. int pipe = intel_crtc->pipe;
  2032. int plane = intel_crtc->plane;
  2033. u32 reg, temp, tries;
  2034. /* FDI needs bits from pipe & plane first */
  2035. assert_pipe_enabled(dev_priv, pipe);
  2036. assert_plane_enabled(dev_priv, plane);
  2037. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2038. for train result */
  2039. reg = FDI_RX_IMR(pipe);
  2040. temp = I915_READ(reg);
  2041. temp &= ~FDI_RX_SYMBOL_LOCK;
  2042. temp &= ~FDI_RX_BIT_LOCK;
  2043. I915_WRITE(reg, temp);
  2044. I915_READ(reg);
  2045. udelay(150);
  2046. /* enable CPU FDI TX and PCH FDI RX */
  2047. reg = FDI_TX_CTL(pipe);
  2048. temp = I915_READ(reg);
  2049. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2050. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2051. temp &= ~FDI_LINK_TRAIN_NONE;
  2052. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2053. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2054. reg = FDI_RX_CTL(pipe);
  2055. temp = I915_READ(reg);
  2056. temp &= ~FDI_LINK_TRAIN_NONE;
  2057. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2058. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2059. POSTING_READ(reg);
  2060. udelay(150);
  2061. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2062. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2063. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2064. FDI_RX_PHASE_SYNC_POINTER_EN);
  2065. reg = FDI_RX_IIR(pipe);
  2066. for (tries = 0; tries < 5; tries++) {
  2067. temp = I915_READ(reg);
  2068. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2069. if ((temp & FDI_RX_BIT_LOCK)) {
  2070. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2071. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2072. break;
  2073. }
  2074. }
  2075. if (tries == 5)
  2076. DRM_ERROR("FDI train 1 fail!\n");
  2077. /* Train 2 */
  2078. reg = FDI_TX_CTL(pipe);
  2079. temp = I915_READ(reg);
  2080. temp &= ~FDI_LINK_TRAIN_NONE;
  2081. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2082. I915_WRITE(reg, temp);
  2083. reg = FDI_RX_CTL(pipe);
  2084. temp = I915_READ(reg);
  2085. temp &= ~FDI_LINK_TRAIN_NONE;
  2086. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2087. I915_WRITE(reg, temp);
  2088. POSTING_READ(reg);
  2089. udelay(150);
  2090. reg = FDI_RX_IIR(pipe);
  2091. for (tries = 0; tries < 5; tries++) {
  2092. temp = I915_READ(reg);
  2093. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2094. if (temp & FDI_RX_SYMBOL_LOCK) {
  2095. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2096. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2097. break;
  2098. }
  2099. }
  2100. if (tries == 5)
  2101. DRM_ERROR("FDI train 2 fail!\n");
  2102. DRM_DEBUG_KMS("FDI train done\n");
  2103. }
  2104. static const int snb_b_fdi_train_param[] = {
  2105. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2106. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2107. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2108. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2109. };
  2110. /* The FDI link training functions for SNB/Cougarpoint. */
  2111. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2112. {
  2113. struct drm_device *dev = crtc->dev;
  2114. struct drm_i915_private *dev_priv = dev->dev_private;
  2115. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2116. int pipe = intel_crtc->pipe;
  2117. u32 reg, temp, i, retry;
  2118. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2119. for train result */
  2120. reg = FDI_RX_IMR(pipe);
  2121. temp = I915_READ(reg);
  2122. temp &= ~FDI_RX_SYMBOL_LOCK;
  2123. temp &= ~FDI_RX_BIT_LOCK;
  2124. I915_WRITE(reg, temp);
  2125. POSTING_READ(reg);
  2126. udelay(150);
  2127. /* enable CPU FDI TX and PCH FDI RX */
  2128. reg = FDI_TX_CTL(pipe);
  2129. temp = I915_READ(reg);
  2130. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2131. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2132. temp &= ~FDI_LINK_TRAIN_NONE;
  2133. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2134. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2135. /* SNB-B */
  2136. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2137. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2138. I915_WRITE(FDI_RX_MISC(pipe),
  2139. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2140. reg = FDI_RX_CTL(pipe);
  2141. temp = I915_READ(reg);
  2142. if (HAS_PCH_CPT(dev)) {
  2143. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2144. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2145. } else {
  2146. temp &= ~FDI_LINK_TRAIN_NONE;
  2147. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2148. }
  2149. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2150. POSTING_READ(reg);
  2151. udelay(150);
  2152. for (i = 0; i < 4; i++) {
  2153. reg = FDI_TX_CTL(pipe);
  2154. temp = I915_READ(reg);
  2155. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2156. temp |= snb_b_fdi_train_param[i];
  2157. I915_WRITE(reg, temp);
  2158. POSTING_READ(reg);
  2159. udelay(500);
  2160. for (retry = 0; retry < 5; retry++) {
  2161. reg = FDI_RX_IIR(pipe);
  2162. temp = I915_READ(reg);
  2163. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2164. if (temp & FDI_RX_BIT_LOCK) {
  2165. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2166. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2167. break;
  2168. }
  2169. udelay(50);
  2170. }
  2171. if (retry < 5)
  2172. break;
  2173. }
  2174. if (i == 4)
  2175. DRM_ERROR("FDI train 1 fail!\n");
  2176. /* Train 2 */
  2177. reg = FDI_TX_CTL(pipe);
  2178. temp = I915_READ(reg);
  2179. temp &= ~FDI_LINK_TRAIN_NONE;
  2180. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2181. if (IS_GEN6(dev)) {
  2182. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2183. /* SNB-B */
  2184. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2185. }
  2186. I915_WRITE(reg, temp);
  2187. reg = FDI_RX_CTL(pipe);
  2188. temp = I915_READ(reg);
  2189. if (HAS_PCH_CPT(dev)) {
  2190. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2191. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2192. } else {
  2193. temp &= ~FDI_LINK_TRAIN_NONE;
  2194. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2195. }
  2196. I915_WRITE(reg, temp);
  2197. POSTING_READ(reg);
  2198. udelay(150);
  2199. for (i = 0; i < 4; i++) {
  2200. reg = FDI_TX_CTL(pipe);
  2201. temp = I915_READ(reg);
  2202. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2203. temp |= snb_b_fdi_train_param[i];
  2204. I915_WRITE(reg, temp);
  2205. POSTING_READ(reg);
  2206. udelay(500);
  2207. for (retry = 0; retry < 5; retry++) {
  2208. reg = FDI_RX_IIR(pipe);
  2209. temp = I915_READ(reg);
  2210. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2211. if (temp & FDI_RX_SYMBOL_LOCK) {
  2212. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2213. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2214. break;
  2215. }
  2216. udelay(50);
  2217. }
  2218. if (retry < 5)
  2219. break;
  2220. }
  2221. if (i == 4)
  2222. DRM_ERROR("FDI train 2 fail!\n");
  2223. DRM_DEBUG_KMS("FDI train done.\n");
  2224. }
  2225. /* Manual link training for Ivy Bridge A0 parts */
  2226. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2227. {
  2228. struct drm_device *dev = crtc->dev;
  2229. struct drm_i915_private *dev_priv = dev->dev_private;
  2230. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2231. int pipe = intel_crtc->pipe;
  2232. u32 reg, temp, i;
  2233. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2234. for train result */
  2235. reg = FDI_RX_IMR(pipe);
  2236. temp = I915_READ(reg);
  2237. temp &= ~FDI_RX_SYMBOL_LOCK;
  2238. temp &= ~FDI_RX_BIT_LOCK;
  2239. I915_WRITE(reg, temp);
  2240. POSTING_READ(reg);
  2241. udelay(150);
  2242. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2243. I915_READ(FDI_RX_IIR(pipe)));
  2244. /* enable CPU FDI TX and PCH FDI RX */
  2245. reg = FDI_TX_CTL(pipe);
  2246. temp = I915_READ(reg);
  2247. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2248. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2249. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2250. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2251. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2252. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2253. temp |= FDI_COMPOSITE_SYNC;
  2254. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2255. I915_WRITE(FDI_RX_MISC(pipe),
  2256. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2257. reg = FDI_RX_CTL(pipe);
  2258. temp = I915_READ(reg);
  2259. temp &= ~FDI_LINK_TRAIN_AUTO;
  2260. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2261. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2262. temp |= FDI_COMPOSITE_SYNC;
  2263. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2264. POSTING_READ(reg);
  2265. udelay(150);
  2266. for (i = 0; i < 4; i++) {
  2267. reg = FDI_TX_CTL(pipe);
  2268. temp = I915_READ(reg);
  2269. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2270. temp |= snb_b_fdi_train_param[i];
  2271. I915_WRITE(reg, temp);
  2272. POSTING_READ(reg);
  2273. udelay(500);
  2274. reg = FDI_RX_IIR(pipe);
  2275. temp = I915_READ(reg);
  2276. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2277. if (temp & FDI_RX_BIT_LOCK ||
  2278. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2279. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2280. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2281. break;
  2282. }
  2283. }
  2284. if (i == 4)
  2285. DRM_ERROR("FDI train 1 fail!\n");
  2286. /* Train 2 */
  2287. reg = FDI_TX_CTL(pipe);
  2288. temp = I915_READ(reg);
  2289. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2290. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2291. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2292. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2293. I915_WRITE(reg, temp);
  2294. reg = FDI_RX_CTL(pipe);
  2295. temp = I915_READ(reg);
  2296. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2297. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2298. I915_WRITE(reg, temp);
  2299. POSTING_READ(reg);
  2300. udelay(150);
  2301. for (i = 0; i < 4; i++) {
  2302. reg = FDI_TX_CTL(pipe);
  2303. temp = I915_READ(reg);
  2304. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2305. temp |= snb_b_fdi_train_param[i];
  2306. I915_WRITE(reg, temp);
  2307. POSTING_READ(reg);
  2308. udelay(500);
  2309. reg = FDI_RX_IIR(pipe);
  2310. temp = I915_READ(reg);
  2311. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2312. if (temp & FDI_RX_SYMBOL_LOCK) {
  2313. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2314. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2315. break;
  2316. }
  2317. }
  2318. if (i == 4)
  2319. DRM_ERROR("FDI train 2 fail!\n");
  2320. DRM_DEBUG_KMS("FDI train done.\n");
  2321. }
  2322. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2323. {
  2324. struct drm_device *dev = intel_crtc->base.dev;
  2325. struct drm_i915_private *dev_priv = dev->dev_private;
  2326. int pipe = intel_crtc->pipe;
  2327. u32 reg, temp;
  2328. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2329. reg = FDI_RX_CTL(pipe);
  2330. temp = I915_READ(reg);
  2331. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2332. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2333. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2334. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2335. POSTING_READ(reg);
  2336. udelay(200);
  2337. /* Switch from Rawclk to PCDclk */
  2338. temp = I915_READ(reg);
  2339. I915_WRITE(reg, temp | FDI_PCDCLK);
  2340. POSTING_READ(reg);
  2341. udelay(200);
  2342. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2343. reg = FDI_TX_CTL(pipe);
  2344. temp = I915_READ(reg);
  2345. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2346. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2347. POSTING_READ(reg);
  2348. udelay(100);
  2349. }
  2350. }
  2351. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2352. {
  2353. struct drm_device *dev = intel_crtc->base.dev;
  2354. struct drm_i915_private *dev_priv = dev->dev_private;
  2355. int pipe = intel_crtc->pipe;
  2356. u32 reg, temp;
  2357. /* Switch from PCDclk to Rawclk */
  2358. reg = FDI_RX_CTL(pipe);
  2359. temp = I915_READ(reg);
  2360. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2361. /* Disable CPU FDI TX PLL */
  2362. reg = FDI_TX_CTL(pipe);
  2363. temp = I915_READ(reg);
  2364. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2365. POSTING_READ(reg);
  2366. udelay(100);
  2367. reg = FDI_RX_CTL(pipe);
  2368. temp = I915_READ(reg);
  2369. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2370. /* Wait for the clocks to turn off. */
  2371. POSTING_READ(reg);
  2372. udelay(100);
  2373. }
  2374. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2375. {
  2376. struct drm_device *dev = crtc->dev;
  2377. struct drm_i915_private *dev_priv = dev->dev_private;
  2378. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2379. int pipe = intel_crtc->pipe;
  2380. u32 reg, temp;
  2381. /* disable CPU FDI tx and PCH FDI rx */
  2382. reg = FDI_TX_CTL(pipe);
  2383. temp = I915_READ(reg);
  2384. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2385. POSTING_READ(reg);
  2386. reg = FDI_RX_CTL(pipe);
  2387. temp = I915_READ(reg);
  2388. temp &= ~(0x7 << 16);
  2389. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2390. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2391. POSTING_READ(reg);
  2392. udelay(100);
  2393. /* Ironlake workaround, disable clock pointer after downing FDI */
  2394. if (HAS_PCH_IBX(dev)) {
  2395. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2396. }
  2397. /* still set train pattern 1 */
  2398. reg = FDI_TX_CTL(pipe);
  2399. temp = I915_READ(reg);
  2400. temp &= ~FDI_LINK_TRAIN_NONE;
  2401. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2402. I915_WRITE(reg, temp);
  2403. reg = FDI_RX_CTL(pipe);
  2404. temp = I915_READ(reg);
  2405. if (HAS_PCH_CPT(dev)) {
  2406. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2407. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2408. } else {
  2409. temp &= ~FDI_LINK_TRAIN_NONE;
  2410. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2411. }
  2412. /* BPC in FDI rx is consistent with that in PIPECONF */
  2413. temp &= ~(0x07 << 16);
  2414. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2415. I915_WRITE(reg, temp);
  2416. POSTING_READ(reg);
  2417. udelay(100);
  2418. }
  2419. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2420. {
  2421. struct drm_device *dev = crtc->dev;
  2422. struct drm_i915_private *dev_priv = dev->dev_private;
  2423. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2424. unsigned long flags;
  2425. bool pending;
  2426. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2427. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2428. return false;
  2429. spin_lock_irqsave(&dev->event_lock, flags);
  2430. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2431. spin_unlock_irqrestore(&dev->event_lock, flags);
  2432. return pending;
  2433. }
  2434. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2435. {
  2436. struct drm_device *dev = crtc->dev;
  2437. struct drm_i915_private *dev_priv = dev->dev_private;
  2438. if (crtc->fb == NULL)
  2439. return;
  2440. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2441. wait_event(dev_priv->pending_flip_queue,
  2442. !intel_crtc_has_pending_flip(crtc));
  2443. mutex_lock(&dev->struct_mutex);
  2444. intel_finish_fb(crtc->fb);
  2445. mutex_unlock(&dev->struct_mutex);
  2446. }
  2447. /* Program iCLKIP clock to the desired frequency */
  2448. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2449. {
  2450. struct drm_device *dev = crtc->dev;
  2451. struct drm_i915_private *dev_priv = dev->dev_private;
  2452. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2453. u32 temp;
  2454. mutex_lock(&dev_priv->dpio_lock);
  2455. /* It is necessary to ungate the pixclk gate prior to programming
  2456. * the divisors, and gate it back when it is done.
  2457. */
  2458. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2459. /* Disable SSCCTL */
  2460. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2461. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2462. SBI_SSCCTL_DISABLE,
  2463. SBI_ICLK);
  2464. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2465. if (crtc->mode.clock == 20000) {
  2466. auxdiv = 1;
  2467. divsel = 0x41;
  2468. phaseinc = 0x20;
  2469. } else {
  2470. /* The iCLK virtual clock root frequency is in MHz,
  2471. * but the crtc->mode.clock in in KHz. To get the divisors,
  2472. * it is necessary to divide one by another, so we
  2473. * convert the virtual clock precision to KHz here for higher
  2474. * precision.
  2475. */
  2476. u32 iclk_virtual_root_freq = 172800 * 1000;
  2477. u32 iclk_pi_range = 64;
  2478. u32 desired_divisor, msb_divisor_value, pi_value;
  2479. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2480. msb_divisor_value = desired_divisor / iclk_pi_range;
  2481. pi_value = desired_divisor % iclk_pi_range;
  2482. auxdiv = 0;
  2483. divsel = msb_divisor_value - 2;
  2484. phaseinc = pi_value;
  2485. }
  2486. /* This should not happen with any sane values */
  2487. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2488. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2489. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2490. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2491. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2492. crtc->mode.clock,
  2493. auxdiv,
  2494. divsel,
  2495. phasedir,
  2496. phaseinc);
  2497. /* Program SSCDIVINTPHASE6 */
  2498. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2499. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2500. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2501. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2502. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2503. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2504. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2505. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2506. /* Program SSCAUXDIV */
  2507. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2508. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2509. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2510. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2511. /* Enable modulator and associated divider */
  2512. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2513. temp &= ~SBI_SSCCTL_DISABLE;
  2514. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2515. /* Wait for initialization time */
  2516. udelay(24);
  2517. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2518. mutex_unlock(&dev_priv->dpio_lock);
  2519. }
  2520. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2521. enum pipe pch_transcoder)
  2522. {
  2523. struct drm_device *dev = crtc->base.dev;
  2524. struct drm_i915_private *dev_priv = dev->dev_private;
  2525. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2526. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2527. I915_READ(HTOTAL(cpu_transcoder)));
  2528. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2529. I915_READ(HBLANK(cpu_transcoder)));
  2530. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2531. I915_READ(HSYNC(cpu_transcoder)));
  2532. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2533. I915_READ(VTOTAL(cpu_transcoder)));
  2534. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2535. I915_READ(VBLANK(cpu_transcoder)));
  2536. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2537. I915_READ(VSYNC(cpu_transcoder)));
  2538. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2539. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2540. }
  2541. /*
  2542. * Enable PCH resources required for PCH ports:
  2543. * - PCH PLLs
  2544. * - FDI training & RX/TX
  2545. * - update transcoder timings
  2546. * - DP transcoding bits
  2547. * - transcoder
  2548. */
  2549. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2550. {
  2551. struct drm_device *dev = crtc->dev;
  2552. struct drm_i915_private *dev_priv = dev->dev_private;
  2553. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2554. int pipe = intel_crtc->pipe;
  2555. u32 reg, temp;
  2556. assert_pch_transcoder_disabled(dev_priv, pipe);
  2557. /* Write the TU size bits before fdi link training, so that error
  2558. * detection works. */
  2559. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2560. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2561. /* For PCH output, training FDI link */
  2562. dev_priv->display.fdi_link_train(crtc);
  2563. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2564. * transcoder, and we actually should do this to not upset any PCH
  2565. * transcoder that already use the clock when we share it.
  2566. *
  2567. * Note that enable_shared_dpll tries to do the right thing, but
  2568. * get_shared_dpll unconditionally resets the pll - we need that to have
  2569. * the right LVDS enable sequence. */
  2570. ironlake_enable_shared_dpll(intel_crtc);
  2571. if (HAS_PCH_CPT(dev)) {
  2572. u32 sel;
  2573. temp = I915_READ(PCH_DPLL_SEL);
  2574. temp |= TRANS_DPLL_ENABLE(pipe);
  2575. sel = TRANS_DPLLB_SEL(pipe);
  2576. if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  2577. temp |= sel;
  2578. else
  2579. temp &= ~sel;
  2580. I915_WRITE(PCH_DPLL_SEL, temp);
  2581. }
  2582. /* set transcoder timing, panel must allow it */
  2583. assert_panel_unlocked(dev_priv, pipe);
  2584. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2585. intel_fdi_normal_train(crtc);
  2586. /* For PCH DP, enable TRANS_DP_CTL */
  2587. if (HAS_PCH_CPT(dev) &&
  2588. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2589. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2590. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2591. reg = TRANS_DP_CTL(pipe);
  2592. temp = I915_READ(reg);
  2593. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2594. TRANS_DP_SYNC_MASK |
  2595. TRANS_DP_BPC_MASK);
  2596. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2597. TRANS_DP_ENH_FRAMING);
  2598. temp |= bpc << 9; /* same format but at 11:9 */
  2599. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2600. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2601. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2602. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2603. switch (intel_trans_dp_port_sel(crtc)) {
  2604. case PCH_DP_B:
  2605. temp |= TRANS_DP_PORT_SEL_B;
  2606. break;
  2607. case PCH_DP_C:
  2608. temp |= TRANS_DP_PORT_SEL_C;
  2609. break;
  2610. case PCH_DP_D:
  2611. temp |= TRANS_DP_PORT_SEL_D;
  2612. break;
  2613. default:
  2614. BUG();
  2615. }
  2616. I915_WRITE(reg, temp);
  2617. }
  2618. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2619. }
  2620. static void lpt_pch_enable(struct drm_crtc *crtc)
  2621. {
  2622. struct drm_device *dev = crtc->dev;
  2623. struct drm_i915_private *dev_priv = dev->dev_private;
  2624. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2625. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2626. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2627. lpt_program_iclkip(crtc);
  2628. /* Set transcoder timing. */
  2629. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2630. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2631. }
  2632. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  2633. {
  2634. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2635. if (pll == NULL)
  2636. return;
  2637. if (pll->refcount == 0) {
  2638. WARN(1, "bad %s refcount\n", pll->name);
  2639. return;
  2640. }
  2641. if (--pll->refcount == 0) {
  2642. WARN_ON(pll->on);
  2643. WARN_ON(pll->active);
  2644. }
  2645. crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  2646. }
  2647. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
  2648. {
  2649. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2650. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2651. enum intel_dpll_id i;
  2652. if (pll) {
  2653. DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  2654. crtc->base.base.id, pll->name);
  2655. intel_put_shared_dpll(crtc);
  2656. }
  2657. if (HAS_PCH_IBX(dev_priv->dev)) {
  2658. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2659. i = crtc->pipe;
  2660. pll = &dev_priv->shared_dplls[i];
  2661. DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  2662. crtc->base.base.id, pll->name);
  2663. goto found;
  2664. }
  2665. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2666. pll = &dev_priv->shared_dplls[i];
  2667. /* Only want to check enabled timings first */
  2668. if (pll->refcount == 0)
  2669. continue;
  2670. if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
  2671. sizeof(pll->hw_state)) == 0) {
  2672. DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  2673. crtc->base.base.id,
  2674. pll->name, pll->refcount, pll->active);
  2675. goto found;
  2676. }
  2677. }
  2678. /* Ok no matching timings, maybe there's a free one? */
  2679. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2680. pll = &dev_priv->shared_dplls[i];
  2681. if (pll->refcount == 0) {
  2682. DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  2683. crtc->base.base.id, pll->name);
  2684. goto found;
  2685. }
  2686. }
  2687. return NULL;
  2688. found:
  2689. crtc->config.shared_dpll = i;
  2690. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  2691. pipe_name(crtc->pipe));
  2692. if (pll->active == 0) {
  2693. memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  2694. sizeof(pll->hw_state));
  2695. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  2696. WARN_ON(pll->on);
  2697. assert_shared_dpll_disabled(dev_priv, pll);
  2698. pll->mode_set(dev_priv, pll);
  2699. }
  2700. pll->refcount++;
  2701. return pll;
  2702. }
  2703. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2704. {
  2705. struct drm_i915_private *dev_priv = dev->dev_private;
  2706. int dslreg = PIPEDSL(pipe);
  2707. u32 temp;
  2708. temp = I915_READ(dslreg);
  2709. udelay(500);
  2710. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2711. if (wait_for(I915_READ(dslreg) != temp, 5))
  2712. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2713. }
  2714. }
  2715. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2716. {
  2717. struct drm_device *dev = crtc->base.dev;
  2718. struct drm_i915_private *dev_priv = dev->dev_private;
  2719. int pipe = crtc->pipe;
  2720. if (crtc->config.pch_pfit.size) {
  2721. /* Force use of hard-coded filter coefficients
  2722. * as some pre-programmed values are broken,
  2723. * e.g. x201.
  2724. */
  2725. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2726. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2727. PF_PIPE_SEL_IVB(pipe));
  2728. else
  2729. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2730. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2731. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2732. }
  2733. }
  2734. static void intel_enable_planes(struct drm_crtc *crtc)
  2735. {
  2736. struct drm_device *dev = crtc->dev;
  2737. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2738. struct intel_plane *intel_plane;
  2739. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2740. if (intel_plane->pipe == pipe)
  2741. intel_plane_restore(&intel_plane->base);
  2742. }
  2743. static void intel_disable_planes(struct drm_crtc *crtc)
  2744. {
  2745. struct drm_device *dev = crtc->dev;
  2746. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2747. struct intel_plane *intel_plane;
  2748. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2749. if (intel_plane->pipe == pipe)
  2750. intel_plane_disable(&intel_plane->base);
  2751. }
  2752. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2753. {
  2754. struct drm_device *dev = crtc->dev;
  2755. struct drm_i915_private *dev_priv = dev->dev_private;
  2756. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2757. struct intel_encoder *encoder;
  2758. int pipe = intel_crtc->pipe;
  2759. int plane = intel_crtc->plane;
  2760. WARN_ON(!crtc->enabled);
  2761. if (intel_crtc->active)
  2762. return;
  2763. intel_crtc->active = true;
  2764. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2765. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2766. intel_update_watermarks(dev);
  2767. for_each_encoder_on_crtc(dev, crtc, encoder)
  2768. if (encoder->pre_enable)
  2769. encoder->pre_enable(encoder);
  2770. if (intel_crtc->config.has_pch_encoder) {
  2771. /* Note: FDI PLL enabling _must_ be done before we enable the
  2772. * cpu pipes, hence this is separate from all the other fdi/pch
  2773. * enabling. */
  2774. ironlake_fdi_pll_enable(intel_crtc);
  2775. } else {
  2776. assert_fdi_tx_disabled(dev_priv, pipe);
  2777. assert_fdi_rx_disabled(dev_priv, pipe);
  2778. }
  2779. ironlake_pfit_enable(intel_crtc);
  2780. /*
  2781. * On ILK+ LUT must be loaded before the pipe is running but with
  2782. * clocks enabled
  2783. */
  2784. intel_crtc_load_lut(crtc);
  2785. intel_enable_pipe(dev_priv, pipe,
  2786. intel_crtc->config.has_pch_encoder);
  2787. intel_enable_plane(dev_priv, plane, pipe);
  2788. intel_enable_planes(crtc);
  2789. intel_crtc_update_cursor(crtc, true);
  2790. if (intel_crtc->config.has_pch_encoder)
  2791. ironlake_pch_enable(crtc);
  2792. mutex_lock(&dev->struct_mutex);
  2793. intel_update_fbc(dev);
  2794. mutex_unlock(&dev->struct_mutex);
  2795. for_each_encoder_on_crtc(dev, crtc, encoder)
  2796. encoder->enable(encoder);
  2797. if (HAS_PCH_CPT(dev))
  2798. cpt_verify_modeset(dev, intel_crtc->pipe);
  2799. /*
  2800. * There seems to be a race in PCH platform hw (at least on some
  2801. * outputs) where an enabled pipe still completes any pageflip right
  2802. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2803. * as the first vblank happend, everything works as expected. Hence just
  2804. * wait for one vblank before returning to avoid strange things
  2805. * happening.
  2806. */
  2807. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2808. }
  2809. /* IPS only exists on ULT machines and is tied to pipe A. */
  2810. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2811. {
  2812. return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  2813. }
  2814. static void hsw_enable_ips(struct intel_crtc *crtc)
  2815. {
  2816. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2817. if (!crtc->config.ips_enabled)
  2818. return;
  2819. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2820. * We guarantee that the plane is enabled by calling intel_enable_ips
  2821. * only after intel_enable_plane. And intel_enable_plane already waits
  2822. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2823. assert_plane_enabled(dev_priv, crtc->plane);
  2824. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2825. }
  2826. static void hsw_disable_ips(struct intel_crtc *crtc)
  2827. {
  2828. struct drm_device *dev = crtc->base.dev;
  2829. struct drm_i915_private *dev_priv = dev->dev_private;
  2830. if (!crtc->config.ips_enabled)
  2831. return;
  2832. assert_plane_enabled(dev_priv, crtc->plane);
  2833. I915_WRITE(IPS_CTL, 0);
  2834. /* We need to wait for a vblank before we can disable the plane. */
  2835. intel_wait_for_vblank(dev, crtc->pipe);
  2836. }
  2837. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2838. {
  2839. struct drm_device *dev = crtc->dev;
  2840. struct drm_i915_private *dev_priv = dev->dev_private;
  2841. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2842. struct intel_encoder *encoder;
  2843. int pipe = intel_crtc->pipe;
  2844. int plane = intel_crtc->plane;
  2845. WARN_ON(!crtc->enabled);
  2846. if (intel_crtc->active)
  2847. return;
  2848. intel_crtc->active = true;
  2849. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2850. if (intel_crtc->config.has_pch_encoder)
  2851. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2852. intel_update_watermarks(dev);
  2853. if (intel_crtc->config.has_pch_encoder)
  2854. dev_priv->display.fdi_link_train(crtc);
  2855. for_each_encoder_on_crtc(dev, crtc, encoder)
  2856. if (encoder->pre_enable)
  2857. encoder->pre_enable(encoder);
  2858. intel_ddi_enable_pipe_clock(intel_crtc);
  2859. ironlake_pfit_enable(intel_crtc);
  2860. /*
  2861. * On ILK+ LUT must be loaded before the pipe is running but with
  2862. * clocks enabled
  2863. */
  2864. intel_crtc_load_lut(crtc);
  2865. intel_ddi_set_pipe_settings(crtc);
  2866. intel_ddi_enable_transcoder_func(crtc);
  2867. intel_enable_pipe(dev_priv, pipe,
  2868. intel_crtc->config.has_pch_encoder);
  2869. intel_enable_plane(dev_priv, plane, pipe);
  2870. intel_enable_planes(crtc);
  2871. intel_crtc_update_cursor(crtc, true);
  2872. hsw_enable_ips(intel_crtc);
  2873. if (intel_crtc->config.has_pch_encoder)
  2874. lpt_pch_enable(crtc);
  2875. mutex_lock(&dev->struct_mutex);
  2876. intel_update_fbc(dev);
  2877. mutex_unlock(&dev->struct_mutex);
  2878. for_each_encoder_on_crtc(dev, crtc, encoder)
  2879. encoder->enable(encoder);
  2880. /*
  2881. * There seems to be a race in PCH platform hw (at least on some
  2882. * outputs) where an enabled pipe still completes any pageflip right
  2883. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2884. * as the first vblank happend, everything works as expected. Hence just
  2885. * wait for one vblank before returning to avoid strange things
  2886. * happening.
  2887. */
  2888. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2889. }
  2890. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  2891. {
  2892. struct drm_device *dev = crtc->base.dev;
  2893. struct drm_i915_private *dev_priv = dev->dev_private;
  2894. int pipe = crtc->pipe;
  2895. /* To avoid upsetting the power well on haswell only disable the pfit if
  2896. * it's in use. The hw state code will make sure we get this right. */
  2897. if (crtc->config.pch_pfit.size) {
  2898. I915_WRITE(PF_CTL(pipe), 0);
  2899. I915_WRITE(PF_WIN_POS(pipe), 0);
  2900. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2901. }
  2902. }
  2903. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2904. {
  2905. struct drm_device *dev = crtc->dev;
  2906. struct drm_i915_private *dev_priv = dev->dev_private;
  2907. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2908. struct intel_encoder *encoder;
  2909. int pipe = intel_crtc->pipe;
  2910. int plane = intel_crtc->plane;
  2911. u32 reg, temp;
  2912. if (!intel_crtc->active)
  2913. return;
  2914. for_each_encoder_on_crtc(dev, crtc, encoder)
  2915. encoder->disable(encoder);
  2916. intel_crtc_wait_for_pending_flips(crtc);
  2917. drm_vblank_off(dev, pipe);
  2918. if (dev_priv->cfb_plane == plane)
  2919. intel_disable_fbc(dev);
  2920. intel_crtc_update_cursor(crtc, false);
  2921. intel_disable_planes(crtc);
  2922. intel_disable_plane(dev_priv, plane, pipe);
  2923. if (intel_crtc->config.has_pch_encoder)
  2924. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2925. intel_disable_pipe(dev_priv, pipe);
  2926. ironlake_pfit_disable(intel_crtc);
  2927. for_each_encoder_on_crtc(dev, crtc, encoder)
  2928. if (encoder->post_disable)
  2929. encoder->post_disable(encoder);
  2930. if (intel_crtc->config.has_pch_encoder) {
  2931. ironlake_fdi_disable(crtc);
  2932. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2933. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2934. if (HAS_PCH_CPT(dev)) {
  2935. /* disable TRANS_DP_CTL */
  2936. reg = TRANS_DP_CTL(pipe);
  2937. temp = I915_READ(reg);
  2938. temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  2939. TRANS_DP_PORT_SEL_MASK);
  2940. temp |= TRANS_DP_PORT_SEL_NONE;
  2941. I915_WRITE(reg, temp);
  2942. /* disable DPLL_SEL */
  2943. temp = I915_READ(PCH_DPLL_SEL);
  2944. temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  2945. I915_WRITE(PCH_DPLL_SEL, temp);
  2946. }
  2947. /* disable PCH DPLL */
  2948. intel_disable_shared_dpll(intel_crtc);
  2949. ironlake_fdi_pll_disable(intel_crtc);
  2950. }
  2951. intel_crtc->active = false;
  2952. intel_update_watermarks(dev);
  2953. mutex_lock(&dev->struct_mutex);
  2954. intel_update_fbc(dev);
  2955. mutex_unlock(&dev->struct_mutex);
  2956. }
  2957. static void haswell_crtc_disable(struct drm_crtc *crtc)
  2958. {
  2959. struct drm_device *dev = crtc->dev;
  2960. struct drm_i915_private *dev_priv = dev->dev_private;
  2961. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2962. struct intel_encoder *encoder;
  2963. int pipe = intel_crtc->pipe;
  2964. int plane = intel_crtc->plane;
  2965. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2966. if (!intel_crtc->active)
  2967. return;
  2968. for_each_encoder_on_crtc(dev, crtc, encoder)
  2969. encoder->disable(encoder);
  2970. intel_crtc_wait_for_pending_flips(crtc);
  2971. drm_vblank_off(dev, pipe);
  2972. /* FBC must be disabled before disabling the plane on HSW. */
  2973. if (dev_priv->cfb_plane == plane)
  2974. intel_disable_fbc(dev);
  2975. hsw_disable_ips(intel_crtc);
  2976. intel_crtc_update_cursor(crtc, false);
  2977. intel_disable_planes(crtc);
  2978. intel_disable_plane(dev_priv, plane, pipe);
  2979. if (intel_crtc->config.has_pch_encoder)
  2980. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  2981. intel_disable_pipe(dev_priv, pipe);
  2982. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  2983. ironlake_pfit_disable(intel_crtc);
  2984. intel_ddi_disable_pipe_clock(intel_crtc);
  2985. for_each_encoder_on_crtc(dev, crtc, encoder)
  2986. if (encoder->post_disable)
  2987. encoder->post_disable(encoder);
  2988. if (intel_crtc->config.has_pch_encoder) {
  2989. lpt_disable_pch_transcoder(dev_priv);
  2990. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2991. intel_ddi_fdi_disable(crtc);
  2992. }
  2993. intel_crtc->active = false;
  2994. intel_update_watermarks(dev);
  2995. mutex_lock(&dev->struct_mutex);
  2996. intel_update_fbc(dev);
  2997. mutex_unlock(&dev->struct_mutex);
  2998. }
  2999. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3000. {
  3001. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3002. intel_put_shared_dpll(intel_crtc);
  3003. }
  3004. static void haswell_crtc_off(struct drm_crtc *crtc)
  3005. {
  3006. intel_ddi_put_crtc_pll(crtc);
  3007. }
  3008. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3009. {
  3010. if (!enable && intel_crtc->overlay) {
  3011. struct drm_device *dev = intel_crtc->base.dev;
  3012. struct drm_i915_private *dev_priv = dev->dev_private;
  3013. mutex_lock(&dev->struct_mutex);
  3014. dev_priv->mm.interruptible = false;
  3015. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3016. dev_priv->mm.interruptible = true;
  3017. mutex_unlock(&dev->struct_mutex);
  3018. }
  3019. /* Let userspace switch the overlay on again. In most cases userspace
  3020. * has to recompute where to put it anyway.
  3021. */
  3022. }
  3023. /**
  3024. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3025. * cursor plane briefly if not already running after enabling the display
  3026. * plane.
  3027. * This workaround avoids occasional blank screens when self refresh is
  3028. * enabled.
  3029. */
  3030. static void
  3031. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3032. {
  3033. u32 cntl = I915_READ(CURCNTR(pipe));
  3034. if ((cntl & CURSOR_MODE) == 0) {
  3035. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3036. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3037. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3038. intel_wait_for_vblank(dev_priv->dev, pipe);
  3039. I915_WRITE(CURCNTR(pipe), cntl);
  3040. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3041. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3042. }
  3043. }
  3044. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3045. {
  3046. struct drm_device *dev = crtc->base.dev;
  3047. struct drm_i915_private *dev_priv = dev->dev_private;
  3048. struct intel_crtc_config *pipe_config = &crtc->config;
  3049. if (!crtc->config.gmch_pfit.control)
  3050. return;
  3051. /*
  3052. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3053. * according to register description and PRM.
  3054. */
  3055. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3056. assert_pipe_disabled(dev_priv, crtc->pipe);
  3057. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3058. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3059. /* Border color in case we don't scale up to the full screen. Black by
  3060. * default, change to something else for debugging. */
  3061. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3062. }
  3063. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3064. {
  3065. struct drm_device *dev = crtc->dev;
  3066. struct drm_i915_private *dev_priv = dev->dev_private;
  3067. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3068. struct intel_encoder *encoder;
  3069. int pipe = intel_crtc->pipe;
  3070. int plane = intel_crtc->plane;
  3071. WARN_ON(!crtc->enabled);
  3072. if (intel_crtc->active)
  3073. return;
  3074. intel_crtc->active = true;
  3075. intel_update_watermarks(dev);
  3076. mutex_lock(&dev_priv->dpio_lock);
  3077. for_each_encoder_on_crtc(dev, crtc, encoder)
  3078. if (encoder->pre_pll_enable)
  3079. encoder->pre_pll_enable(encoder);
  3080. vlv_enable_pll(dev_priv, pipe);
  3081. for_each_encoder_on_crtc(dev, crtc, encoder)
  3082. if (encoder->pre_enable)
  3083. encoder->pre_enable(encoder);
  3084. /* VLV wants encoder enabling _before_ the pipe is up. */
  3085. for_each_encoder_on_crtc(dev, crtc, encoder)
  3086. encoder->enable(encoder);
  3087. i9xx_pfit_enable(intel_crtc);
  3088. intel_crtc_load_lut(crtc);
  3089. intel_enable_pipe(dev_priv, pipe, false);
  3090. intel_enable_plane(dev_priv, plane, pipe);
  3091. intel_enable_planes(crtc);
  3092. intel_crtc_update_cursor(crtc, true);
  3093. intel_update_fbc(dev);
  3094. mutex_unlock(&dev_priv->dpio_lock);
  3095. }
  3096. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3097. {
  3098. struct drm_device *dev = crtc->dev;
  3099. struct drm_i915_private *dev_priv = dev->dev_private;
  3100. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3101. struct intel_encoder *encoder;
  3102. int pipe = intel_crtc->pipe;
  3103. int plane = intel_crtc->plane;
  3104. WARN_ON(!crtc->enabled);
  3105. if (intel_crtc->active)
  3106. return;
  3107. intel_crtc->active = true;
  3108. intel_update_watermarks(dev);
  3109. for_each_encoder_on_crtc(dev, crtc, encoder)
  3110. if (encoder->pre_enable)
  3111. encoder->pre_enable(encoder);
  3112. i9xx_enable_pll(intel_crtc);
  3113. i9xx_pfit_enable(intel_crtc);
  3114. intel_crtc_load_lut(crtc);
  3115. intel_enable_pipe(dev_priv, pipe, false);
  3116. intel_enable_plane(dev_priv, plane, pipe);
  3117. intel_enable_planes(crtc);
  3118. /* The fixup needs to happen before cursor is enabled */
  3119. if (IS_G4X(dev))
  3120. g4x_fixup_plane(dev_priv, pipe);
  3121. intel_crtc_update_cursor(crtc, true);
  3122. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3123. intel_crtc_dpms_overlay(intel_crtc, true);
  3124. intel_update_fbc(dev);
  3125. for_each_encoder_on_crtc(dev, crtc, encoder)
  3126. encoder->enable(encoder);
  3127. }
  3128. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3129. {
  3130. struct drm_device *dev = crtc->base.dev;
  3131. struct drm_i915_private *dev_priv = dev->dev_private;
  3132. if (!crtc->config.gmch_pfit.control)
  3133. return;
  3134. assert_pipe_disabled(dev_priv, crtc->pipe);
  3135. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3136. I915_READ(PFIT_CONTROL));
  3137. I915_WRITE(PFIT_CONTROL, 0);
  3138. }
  3139. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3140. {
  3141. struct drm_device *dev = crtc->dev;
  3142. struct drm_i915_private *dev_priv = dev->dev_private;
  3143. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3144. struct intel_encoder *encoder;
  3145. int pipe = intel_crtc->pipe;
  3146. int plane = intel_crtc->plane;
  3147. if (!intel_crtc->active)
  3148. return;
  3149. for_each_encoder_on_crtc(dev, crtc, encoder)
  3150. encoder->disable(encoder);
  3151. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3152. intel_crtc_wait_for_pending_flips(crtc);
  3153. drm_vblank_off(dev, pipe);
  3154. if (dev_priv->cfb_plane == plane)
  3155. intel_disable_fbc(dev);
  3156. intel_crtc_dpms_overlay(intel_crtc, false);
  3157. intel_crtc_update_cursor(crtc, false);
  3158. intel_disable_planes(crtc);
  3159. intel_disable_plane(dev_priv, plane, pipe);
  3160. intel_disable_pipe(dev_priv, pipe);
  3161. i9xx_pfit_disable(intel_crtc);
  3162. for_each_encoder_on_crtc(dev, crtc, encoder)
  3163. if (encoder->post_disable)
  3164. encoder->post_disable(encoder);
  3165. intel_disable_pll(dev_priv, pipe);
  3166. intel_crtc->active = false;
  3167. intel_update_fbc(dev);
  3168. intel_update_watermarks(dev);
  3169. }
  3170. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3171. {
  3172. }
  3173. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3174. bool enabled)
  3175. {
  3176. struct drm_device *dev = crtc->dev;
  3177. struct drm_i915_master_private *master_priv;
  3178. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3179. int pipe = intel_crtc->pipe;
  3180. if (!dev->primary->master)
  3181. return;
  3182. master_priv = dev->primary->master->driver_priv;
  3183. if (!master_priv->sarea_priv)
  3184. return;
  3185. switch (pipe) {
  3186. case 0:
  3187. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3188. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3189. break;
  3190. case 1:
  3191. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3192. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3193. break;
  3194. default:
  3195. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3196. break;
  3197. }
  3198. }
  3199. /**
  3200. * Sets the power management mode of the pipe and plane.
  3201. */
  3202. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3203. {
  3204. struct drm_device *dev = crtc->dev;
  3205. struct drm_i915_private *dev_priv = dev->dev_private;
  3206. struct intel_encoder *intel_encoder;
  3207. bool enable = false;
  3208. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3209. enable |= intel_encoder->connectors_active;
  3210. if (enable)
  3211. dev_priv->display.crtc_enable(crtc);
  3212. else
  3213. dev_priv->display.crtc_disable(crtc);
  3214. intel_crtc_update_sarea(crtc, enable);
  3215. }
  3216. static void intel_crtc_disable(struct drm_crtc *crtc)
  3217. {
  3218. struct drm_device *dev = crtc->dev;
  3219. struct drm_connector *connector;
  3220. struct drm_i915_private *dev_priv = dev->dev_private;
  3221. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3222. /* crtc should still be enabled when we disable it. */
  3223. WARN_ON(!crtc->enabled);
  3224. dev_priv->display.crtc_disable(crtc);
  3225. intel_crtc->eld_vld = false;
  3226. intel_crtc_update_sarea(crtc, false);
  3227. dev_priv->display.off(crtc);
  3228. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3229. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3230. if (crtc->fb) {
  3231. mutex_lock(&dev->struct_mutex);
  3232. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3233. mutex_unlock(&dev->struct_mutex);
  3234. crtc->fb = NULL;
  3235. }
  3236. /* Update computed state. */
  3237. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3238. if (!connector->encoder || !connector->encoder->crtc)
  3239. continue;
  3240. if (connector->encoder->crtc != crtc)
  3241. continue;
  3242. connector->dpms = DRM_MODE_DPMS_OFF;
  3243. to_intel_encoder(connector->encoder)->connectors_active = false;
  3244. }
  3245. }
  3246. void intel_modeset_disable(struct drm_device *dev)
  3247. {
  3248. struct drm_crtc *crtc;
  3249. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3250. if (crtc->enabled)
  3251. intel_crtc_disable(crtc);
  3252. }
  3253. }
  3254. void intel_encoder_destroy(struct drm_encoder *encoder)
  3255. {
  3256. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3257. drm_encoder_cleanup(encoder);
  3258. kfree(intel_encoder);
  3259. }
  3260. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3261. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3262. * state of the entire output pipe. */
  3263. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3264. {
  3265. if (mode == DRM_MODE_DPMS_ON) {
  3266. encoder->connectors_active = true;
  3267. intel_crtc_update_dpms(encoder->base.crtc);
  3268. } else {
  3269. encoder->connectors_active = false;
  3270. intel_crtc_update_dpms(encoder->base.crtc);
  3271. }
  3272. }
  3273. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3274. * internal consistency). */
  3275. static void intel_connector_check_state(struct intel_connector *connector)
  3276. {
  3277. if (connector->get_hw_state(connector)) {
  3278. struct intel_encoder *encoder = connector->encoder;
  3279. struct drm_crtc *crtc;
  3280. bool encoder_enabled;
  3281. enum pipe pipe;
  3282. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3283. connector->base.base.id,
  3284. drm_get_connector_name(&connector->base));
  3285. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3286. "wrong connector dpms state\n");
  3287. WARN(connector->base.encoder != &encoder->base,
  3288. "active connector not linked to encoder\n");
  3289. WARN(!encoder->connectors_active,
  3290. "encoder->connectors_active not set\n");
  3291. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3292. WARN(!encoder_enabled, "encoder not enabled\n");
  3293. if (WARN_ON(!encoder->base.crtc))
  3294. return;
  3295. crtc = encoder->base.crtc;
  3296. WARN(!crtc->enabled, "crtc not enabled\n");
  3297. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3298. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3299. "encoder active on the wrong pipe\n");
  3300. }
  3301. }
  3302. /* Even simpler default implementation, if there's really no special case to
  3303. * consider. */
  3304. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3305. {
  3306. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3307. /* All the simple cases only support two dpms states. */
  3308. if (mode != DRM_MODE_DPMS_ON)
  3309. mode = DRM_MODE_DPMS_OFF;
  3310. if (mode == connector->dpms)
  3311. return;
  3312. connector->dpms = mode;
  3313. /* Only need to change hw state when actually enabled */
  3314. if (encoder->base.crtc)
  3315. intel_encoder_dpms(encoder, mode);
  3316. else
  3317. WARN_ON(encoder->connectors_active != false);
  3318. intel_modeset_check_state(connector->dev);
  3319. }
  3320. /* Simple connector->get_hw_state implementation for encoders that support only
  3321. * one connector and no cloning and hence the encoder state determines the state
  3322. * of the connector. */
  3323. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3324. {
  3325. enum pipe pipe = 0;
  3326. struct intel_encoder *encoder = connector->encoder;
  3327. return encoder->get_hw_state(encoder, &pipe);
  3328. }
  3329. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3330. struct intel_crtc_config *pipe_config)
  3331. {
  3332. struct drm_i915_private *dev_priv = dev->dev_private;
  3333. struct intel_crtc *pipe_B_crtc =
  3334. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3335. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3336. pipe_name(pipe), pipe_config->fdi_lanes);
  3337. if (pipe_config->fdi_lanes > 4) {
  3338. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3339. pipe_name(pipe), pipe_config->fdi_lanes);
  3340. return false;
  3341. }
  3342. if (IS_HASWELL(dev)) {
  3343. if (pipe_config->fdi_lanes > 2) {
  3344. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3345. pipe_config->fdi_lanes);
  3346. return false;
  3347. } else {
  3348. return true;
  3349. }
  3350. }
  3351. if (INTEL_INFO(dev)->num_pipes == 2)
  3352. return true;
  3353. /* Ivybridge 3 pipe is really complicated */
  3354. switch (pipe) {
  3355. case PIPE_A:
  3356. return true;
  3357. case PIPE_B:
  3358. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3359. pipe_config->fdi_lanes > 2) {
  3360. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3361. pipe_name(pipe), pipe_config->fdi_lanes);
  3362. return false;
  3363. }
  3364. return true;
  3365. case PIPE_C:
  3366. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3367. pipe_B_crtc->config.fdi_lanes <= 2) {
  3368. if (pipe_config->fdi_lanes > 2) {
  3369. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3370. pipe_name(pipe), pipe_config->fdi_lanes);
  3371. return false;
  3372. }
  3373. } else {
  3374. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3375. return false;
  3376. }
  3377. return true;
  3378. default:
  3379. BUG();
  3380. }
  3381. }
  3382. #define RETRY 1
  3383. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3384. struct intel_crtc_config *pipe_config)
  3385. {
  3386. struct drm_device *dev = intel_crtc->base.dev;
  3387. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3388. int lane, link_bw, fdi_dotclock;
  3389. bool setup_ok, needs_recompute = false;
  3390. retry:
  3391. /* FDI is a binary signal running at ~2.7GHz, encoding
  3392. * each output octet as 10 bits. The actual frequency
  3393. * is stored as a divider into a 100MHz clock, and the
  3394. * mode pixel clock is stored in units of 1KHz.
  3395. * Hence the bw of each lane in terms of the mode signal
  3396. * is:
  3397. */
  3398. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3399. fdi_dotclock = adjusted_mode->clock;
  3400. fdi_dotclock /= pipe_config->pixel_multiplier;
  3401. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3402. pipe_config->pipe_bpp);
  3403. pipe_config->fdi_lanes = lane;
  3404. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3405. link_bw, &pipe_config->fdi_m_n);
  3406. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3407. intel_crtc->pipe, pipe_config);
  3408. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3409. pipe_config->pipe_bpp -= 2*3;
  3410. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3411. pipe_config->pipe_bpp);
  3412. needs_recompute = true;
  3413. pipe_config->bw_constrained = true;
  3414. goto retry;
  3415. }
  3416. if (needs_recompute)
  3417. return RETRY;
  3418. return setup_ok ? 0 : -EINVAL;
  3419. }
  3420. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3421. struct intel_crtc_config *pipe_config)
  3422. {
  3423. pipe_config->ips_enabled = i915_enable_ips &&
  3424. hsw_crtc_supports_ips(crtc) &&
  3425. pipe_config->pipe_bpp == 24;
  3426. }
  3427. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  3428. struct intel_crtc_config *pipe_config)
  3429. {
  3430. struct drm_device *dev = crtc->base.dev;
  3431. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3432. if (HAS_PCH_SPLIT(dev)) {
  3433. /* FDI link clock is fixed at 2.7G */
  3434. if (pipe_config->requested_mode.clock * 3
  3435. > IRONLAKE_FDI_FREQ * 4)
  3436. return -EINVAL;
  3437. }
  3438. /* All interlaced capable intel hw wants timings in frames. Note though
  3439. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3440. * timings, so we need to be careful not to clobber these.*/
  3441. if (!pipe_config->timings_set)
  3442. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3443. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3444. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3445. */
  3446. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3447. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3448. return -EINVAL;
  3449. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3450. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3451. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3452. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3453. * for lvds. */
  3454. pipe_config->pipe_bpp = 8*3;
  3455. }
  3456. if (HAS_IPS(dev))
  3457. hsw_compute_ips_config(crtc, pipe_config);
  3458. /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  3459. * clock survives for now. */
  3460. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  3461. pipe_config->shared_dpll = crtc->config.shared_dpll;
  3462. if (pipe_config->has_pch_encoder)
  3463. return ironlake_fdi_compute_config(crtc, pipe_config);
  3464. return 0;
  3465. }
  3466. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3467. {
  3468. return 400000; /* FIXME */
  3469. }
  3470. static int i945_get_display_clock_speed(struct drm_device *dev)
  3471. {
  3472. return 400000;
  3473. }
  3474. static int i915_get_display_clock_speed(struct drm_device *dev)
  3475. {
  3476. return 333000;
  3477. }
  3478. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3479. {
  3480. return 200000;
  3481. }
  3482. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3483. {
  3484. u16 gcfgc = 0;
  3485. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3486. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3487. return 133000;
  3488. else {
  3489. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3490. case GC_DISPLAY_CLOCK_333_MHZ:
  3491. return 333000;
  3492. default:
  3493. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3494. return 190000;
  3495. }
  3496. }
  3497. }
  3498. static int i865_get_display_clock_speed(struct drm_device *dev)
  3499. {
  3500. return 266000;
  3501. }
  3502. static int i855_get_display_clock_speed(struct drm_device *dev)
  3503. {
  3504. u16 hpllcc = 0;
  3505. /* Assume that the hardware is in the high speed state. This
  3506. * should be the default.
  3507. */
  3508. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3509. case GC_CLOCK_133_200:
  3510. case GC_CLOCK_100_200:
  3511. return 200000;
  3512. case GC_CLOCK_166_250:
  3513. return 250000;
  3514. case GC_CLOCK_100_133:
  3515. return 133000;
  3516. }
  3517. /* Shouldn't happen */
  3518. return 0;
  3519. }
  3520. static int i830_get_display_clock_speed(struct drm_device *dev)
  3521. {
  3522. return 133000;
  3523. }
  3524. static void
  3525. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3526. {
  3527. while (*num > DATA_LINK_M_N_MASK ||
  3528. *den > DATA_LINK_M_N_MASK) {
  3529. *num >>= 1;
  3530. *den >>= 1;
  3531. }
  3532. }
  3533. static void compute_m_n(unsigned int m, unsigned int n,
  3534. uint32_t *ret_m, uint32_t *ret_n)
  3535. {
  3536. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3537. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3538. intel_reduce_m_n_ratio(ret_m, ret_n);
  3539. }
  3540. void
  3541. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3542. int pixel_clock, int link_clock,
  3543. struct intel_link_m_n *m_n)
  3544. {
  3545. m_n->tu = 64;
  3546. compute_m_n(bits_per_pixel * pixel_clock,
  3547. link_clock * nlanes * 8,
  3548. &m_n->gmch_m, &m_n->gmch_n);
  3549. compute_m_n(pixel_clock, link_clock,
  3550. &m_n->link_m, &m_n->link_n);
  3551. }
  3552. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3553. {
  3554. if (i915_panel_use_ssc >= 0)
  3555. return i915_panel_use_ssc != 0;
  3556. return dev_priv->vbt.lvds_use_ssc
  3557. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3558. }
  3559. static int vlv_get_refclk(struct drm_crtc *crtc)
  3560. {
  3561. struct drm_device *dev = crtc->dev;
  3562. struct drm_i915_private *dev_priv = dev->dev_private;
  3563. int refclk = 27000; /* for DP & HDMI */
  3564. return 100000; /* only one validated so far */
  3565. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3566. refclk = 96000;
  3567. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3568. if (intel_panel_use_ssc(dev_priv))
  3569. refclk = 100000;
  3570. else
  3571. refclk = 96000;
  3572. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3573. refclk = 100000;
  3574. }
  3575. return refclk;
  3576. }
  3577. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3578. {
  3579. struct drm_device *dev = crtc->dev;
  3580. struct drm_i915_private *dev_priv = dev->dev_private;
  3581. int refclk;
  3582. if (IS_VALLEYVIEW(dev)) {
  3583. refclk = vlv_get_refclk(crtc);
  3584. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3585. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3586. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3587. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3588. refclk / 1000);
  3589. } else if (!IS_GEN2(dev)) {
  3590. refclk = 96000;
  3591. } else {
  3592. refclk = 48000;
  3593. }
  3594. return refclk;
  3595. }
  3596. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3597. {
  3598. return (1 << dpll->n) << 16 | dpll->m2;
  3599. }
  3600. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3601. {
  3602. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3603. }
  3604. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3605. intel_clock_t *reduced_clock)
  3606. {
  3607. struct drm_device *dev = crtc->base.dev;
  3608. struct drm_i915_private *dev_priv = dev->dev_private;
  3609. int pipe = crtc->pipe;
  3610. u32 fp, fp2 = 0;
  3611. if (IS_PINEVIEW(dev)) {
  3612. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3613. if (reduced_clock)
  3614. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3615. } else {
  3616. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3617. if (reduced_clock)
  3618. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3619. }
  3620. I915_WRITE(FP0(pipe), fp);
  3621. crtc->config.dpll_hw_state.fp0 = fp;
  3622. crtc->lowfreq_avail = false;
  3623. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3624. reduced_clock && i915_powersave) {
  3625. I915_WRITE(FP1(pipe), fp2);
  3626. crtc->config.dpll_hw_state.fp1 = fp2;
  3627. crtc->lowfreq_avail = true;
  3628. } else {
  3629. I915_WRITE(FP1(pipe), fp);
  3630. crtc->config.dpll_hw_state.fp1 = fp;
  3631. }
  3632. }
  3633. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
  3634. {
  3635. u32 reg_val;
  3636. /*
  3637. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3638. * and set it to a reasonable value instead.
  3639. */
  3640. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3641. reg_val &= 0xffffff00;
  3642. reg_val |= 0x00000030;
  3643. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3644. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3645. reg_val &= 0x8cffffff;
  3646. reg_val = 0x8c000000;
  3647. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3648. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3649. reg_val &= 0xffffff00;
  3650. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3651. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3652. reg_val &= 0x00ffffff;
  3653. reg_val |= 0xb0000000;
  3654. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3655. }
  3656. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3657. struct intel_link_m_n *m_n)
  3658. {
  3659. struct drm_device *dev = crtc->base.dev;
  3660. struct drm_i915_private *dev_priv = dev->dev_private;
  3661. int pipe = crtc->pipe;
  3662. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3663. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3664. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3665. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3666. }
  3667. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3668. struct intel_link_m_n *m_n)
  3669. {
  3670. struct drm_device *dev = crtc->base.dev;
  3671. struct drm_i915_private *dev_priv = dev->dev_private;
  3672. int pipe = crtc->pipe;
  3673. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3674. if (INTEL_INFO(dev)->gen >= 5) {
  3675. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3676. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3677. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3678. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3679. } else {
  3680. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3681. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3682. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3683. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3684. }
  3685. }
  3686. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3687. {
  3688. if (crtc->config.has_pch_encoder)
  3689. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3690. else
  3691. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3692. }
  3693. static void vlv_update_pll(struct intel_crtc *crtc)
  3694. {
  3695. struct drm_device *dev = crtc->base.dev;
  3696. struct drm_i915_private *dev_priv = dev->dev_private;
  3697. struct intel_encoder *encoder;
  3698. int pipe = crtc->pipe;
  3699. u32 dpll, mdiv;
  3700. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3701. bool is_hdmi;
  3702. u32 coreclk, reg_val, dpll_md;
  3703. mutex_lock(&dev_priv->dpio_lock);
  3704. is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3705. bestn = crtc->config.dpll.n;
  3706. bestm1 = crtc->config.dpll.m1;
  3707. bestm2 = crtc->config.dpll.m2;
  3708. bestp1 = crtc->config.dpll.p1;
  3709. bestp2 = crtc->config.dpll.p2;
  3710. /* See eDP HDMI DPIO driver vbios notes doc */
  3711. /* PLL B needs special handling */
  3712. if (pipe)
  3713. vlv_pllb_recal_opamp(dev_priv);
  3714. /* Set up Tx target for periodic Rcomp update */
  3715. vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
  3716. /* Disable target IRef on PLL */
  3717. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
  3718. reg_val &= 0x00ffffff;
  3719. vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
  3720. /* Disable fast lock */
  3721. vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
  3722. /* Set idtafcrecal before PLL is enabled */
  3723. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3724. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3725. mdiv |= ((bestn << DPIO_N_SHIFT));
  3726. mdiv |= (1 << DPIO_K_SHIFT);
  3727. /*
  3728. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3729. * but we don't support that).
  3730. * Note: don't use the DAC post divider as it seems unstable.
  3731. */
  3732. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3733. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3734. mdiv |= DPIO_ENABLE_CALIBRATION;
  3735. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3736. /* Set HBR and RBR LPF coefficients */
  3737. if (crtc->config.port_clock == 162000 ||
  3738. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
  3739. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3740. vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
  3741. 0x005f0021);
  3742. else
  3743. vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
  3744. 0x00d0000f);
  3745. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3746. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3747. /* Use SSC source */
  3748. if (!pipe)
  3749. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3750. 0x0df40000);
  3751. else
  3752. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3753. 0x0df70000);
  3754. } else { /* HDMI or VGA */
  3755. /* Use bend source */
  3756. if (!pipe)
  3757. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3758. 0x0df70000);
  3759. else
  3760. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3761. 0x0df40000);
  3762. }
  3763. coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
  3764. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3765. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3766. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3767. coreclk |= 0x01000000;
  3768. vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
  3769. vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
  3770. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3771. if (encoder->pre_pll_enable)
  3772. encoder->pre_pll_enable(encoder);
  3773. /* Enable DPIO clock input */
  3774. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3775. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3776. if (pipe)
  3777. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3778. dpll |= DPLL_VCO_ENABLE;
  3779. crtc->config.dpll_hw_state.dpll = dpll;
  3780. I915_WRITE(DPLL(pipe), dpll);
  3781. POSTING_READ(DPLL(pipe));
  3782. udelay(150);
  3783. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3784. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3785. dpll_md = (crtc->config.pixel_multiplier - 1)
  3786. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3787. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3788. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3789. POSTING_READ(DPLL_MD(pipe));
  3790. if (crtc->config.has_dp_encoder)
  3791. intel_dp_set_m_n(crtc);
  3792. mutex_unlock(&dev_priv->dpio_lock);
  3793. }
  3794. static void i9xx_update_pll(struct intel_crtc *crtc,
  3795. intel_clock_t *reduced_clock,
  3796. int num_connectors)
  3797. {
  3798. struct drm_device *dev = crtc->base.dev;
  3799. struct drm_i915_private *dev_priv = dev->dev_private;
  3800. u32 dpll;
  3801. bool is_sdvo;
  3802. struct dpll *clock = &crtc->config.dpll;
  3803. i9xx_update_pll_dividers(crtc, reduced_clock);
  3804. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3805. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3806. dpll = DPLL_VGA_MODE_DIS;
  3807. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3808. dpll |= DPLLB_MODE_LVDS;
  3809. else
  3810. dpll |= DPLLB_MODE_DAC_SERIAL;
  3811. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  3812. dpll |= (crtc->config.pixel_multiplier - 1)
  3813. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3814. }
  3815. if (is_sdvo)
  3816. dpll |= DPLL_DVO_HIGH_SPEED;
  3817. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3818. dpll |= DPLL_DVO_HIGH_SPEED;
  3819. /* compute bitmask from p1 value */
  3820. if (IS_PINEVIEW(dev))
  3821. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3822. else {
  3823. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3824. if (IS_G4X(dev) && reduced_clock)
  3825. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3826. }
  3827. switch (clock->p2) {
  3828. case 5:
  3829. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3830. break;
  3831. case 7:
  3832. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3833. break;
  3834. case 10:
  3835. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3836. break;
  3837. case 14:
  3838. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3839. break;
  3840. }
  3841. if (INTEL_INFO(dev)->gen >= 4)
  3842. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3843. if (crtc->config.sdvo_tv_clock)
  3844. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3845. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3846. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3847. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3848. else
  3849. dpll |= PLL_REF_INPUT_DREFCLK;
  3850. dpll |= DPLL_VCO_ENABLE;
  3851. crtc->config.dpll_hw_state.dpll = dpll;
  3852. if (INTEL_INFO(dev)->gen >= 4) {
  3853. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  3854. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3855. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3856. }
  3857. if (crtc->config.has_dp_encoder)
  3858. intel_dp_set_m_n(crtc);
  3859. }
  3860. static void i8xx_update_pll(struct intel_crtc *crtc,
  3861. intel_clock_t *reduced_clock,
  3862. int num_connectors)
  3863. {
  3864. struct drm_device *dev = crtc->base.dev;
  3865. struct drm_i915_private *dev_priv = dev->dev_private;
  3866. u32 dpll;
  3867. struct dpll *clock = &crtc->config.dpll;
  3868. i9xx_update_pll_dividers(crtc, reduced_clock);
  3869. dpll = DPLL_VGA_MODE_DIS;
  3870. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3871. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3872. } else {
  3873. if (clock->p1 == 2)
  3874. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3875. else
  3876. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3877. if (clock->p2 == 4)
  3878. dpll |= PLL_P2_DIVIDE_BY_4;
  3879. }
  3880. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3881. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3882. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3883. else
  3884. dpll |= PLL_REF_INPUT_DREFCLK;
  3885. dpll |= DPLL_VCO_ENABLE;
  3886. crtc->config.dpll_hw_state.dpll = dpll;
  3887. }
  3888. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  3889. {
  3890. struct drm_device *dev = intel_crtc->base.dev;
  3891. struct drm_i915_private *dev_priv = dev->dev_private;
  3892. enum pipe pipe = intel_crtc->pipe;
  3893. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3894. struct drm_display_mode *adjusted_mode =
  3895. &intel_crtc->config.adjusted_mode;
  3896. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  3897. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3898. /* We need to be careful not to changed the adjusted mode, for otherwise
  3899. * the hw state checker will get angry at the mismatch. */
  3900. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3901. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3902. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3903. /* the chip adds 2 halflines automatically */
  3904. crtc_vtotal -= 1;
  3905. crtc_vblank_end -= 1;
  3906. vsyncshift = adjusted_mode->crtc_hsync_start
  3907. - adjusted_mode->crtc_htotal / 2;
  3908. } else {
  3909. vsyncshift = 0;
  3910. }
  3911. if (INTEL_INFO(dev)->gen > 3)
  3912. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3913. I915_WRITE(HTOTAL(cpu_transcoder),
  3914. (adjusted_mode->crtc_hdisplay - 1) |
  3915. ((adjusted_mode->crtc_htotal - 1) << 16));
  3916. I915_WRITE(HBLANK(cpu_transcoder),
  3917. (adjusted_mode->crtc_hblank_start - 1) |
  3918. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3919. I915_WRITE(HSYNC(cpu_transcoder),
  3920. (adjusted_mode->crtc_hsync_start - 1) |
  3921. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3922. I915_WRITE(VTOTAL(cpu_transcoder),
  3923. (adjusted_mode->crtc_vdisplay - 1) |
  3924. ((crtc_vtotal - 1) << 16));
  3925. I915_WRITE(VBLANK(cpu_transcoder),
  3926. (adjusted_mode->crtc_vblank_start - 1) |
  3927. ((crtc_vblank_end - 1) << 16));
  3928. I915_WRITE(VSYNC(cpu_transcoder),
  3929. (adjusted_mode->crtc_vsync_start - 1) |
  3930. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3931. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3932. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3933. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3934. * bits. */
  3935. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3936. (pipe == PIPE_B || pipe == PIPE_C))
  3937. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3938. /* pipesrc controls the size that is scaled from, which should
  3939. * always be the user's requested size.
  3940. */
  3941. I915_WRITE(PIPESRC(pipe),
  3942. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3943. }
  3944. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  3945. struct intel_crtc_config *pipe_config)
  3946. {
  3947. struct drm_device *dev = crtc->base.dev;
  3948. struct drm_i915_private *dev_priv = dev->dev_private;
  3949. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  3950. uint32_t tmp;
  3951. tmp = I915_READ(HTOTAL(cpu_transcoder));
  3952. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  3953. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  3954. tmp = I915_READ(HBLANK(cpu_transcoder));
  3955. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  3956. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  3957. tmp = I915_READ(HSYNC(cpu_transcoder));
  3958. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  3959. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  3960. tmp = I915_READ(VTOTAL(cpu_transcoder));
  3961. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  3962. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  3963. tmp = I915_READ(VBLANK(cpu_transcoder));
  3964. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  3965. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  3966. tmp = I915_READ(VSYNC(cpu_transcoder));
  3967. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  3968. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  3969. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  3970. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  3971. pipe_config->adjusted_mode.crtc_vtotal += 1;
  3972. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  3973. }
  3974. tmp = I915_READ(PIPESRC(crtc->pipe));
  3975. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  3976. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  3977. }
  3978. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  3979. {
  3980. struct drm_device *dev = intel_crtc->base.dev;
  3981. struct drm_i915_private *dev_priv = dev->dev_private;
  3982. uint32_t pipeconf;
  3983. pipeconf = 0;
  3984. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  3985. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  3986. * core speed.
  3987. *
  3988. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  3989. * pipe == 0 check?
  3990. */
  3991. if (intel_crtc->config.requested_mode.clock >
  3992. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  3993. pipeconf |= PIPECONF_DOUBLE_WIDE;
  3994. }
  3995. /* only g4x and later have fancy bpc/dither controls */
  3996. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  3997. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  3998. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  3999. pipeconf |= PIPECONF_DITHER_EN |
  4000. PIPECONF_DITHER_TYPE_SP;
  4001. switch (intel_crtc->config.pipe_bpp) {
  4002. case 18:
  4003. pipeconf |= PIPECONF_6BPC;
  4004. break;
  4005. case 24:
  4006. pipeconf |= PIPECONF_8BPC;
  4007. break;
  4008. case 30:
  4009. pipeconf |= PIPECONF_10BPC;
  4010. break;
  4011. default:
  4012. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4013. BUG();
  4014. }
  4015. }
  4016. if (HAS_PIPE_CXSR(dev)) {
  4017. if (intel_crtc->lowfreq_avail) {
  4018. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4019. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4020. } else {
  4021. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4022. }
  4023. }
  4024. if (!IS_GEN2(dev) &&
  4025. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4026. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4027. else
  4028. pipeconf |= PIPECONF_PROGRESSIVE;
  4029. if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
  4030. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4031. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4032. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4033. }
  4034. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4035. int x, int y,
  4036. struct drm_framebuffer *fb)
  4037. {
  4038. struct drm_device *dev = crtc->dev;
  4039. struct drm_i915_private *dev_priv = dev->dev_private;
  4040. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4041. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4042. int pipe = intel_crtc->pipe;
  4043. int plane = intel_crtc->plane;
  4044. int refclk, num_connectors = 0;
  4045. intel_clock_t clock, reduced_clock;
  4046. u32 dspcntr;
  4047. bool ok, has_reduced_clock = false;
  4048. bool is_lvds = false;
  4049. struct intel_encoder *encoder;
  4050. const intel_limit_t *limit;
  4051. int ret;
  4052. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4053. switch (encoder->type) {
  4054. case INTEL_OUTPUT_LVDS:
  4055. is_lvds = true;
  4056. break;
  4057. }
  4058. num_connectors++;
  4059. }
  4060. refclk = i9xx_get_refclk(crtc, num_connectors);
  4061. /*
  4062. * Returns a set of divisors for the desired target clock with the given
  4063. * refclk, or FALSE. The returned values represent the clock equation:
  4064. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4065. */
  4066. limit = intel_limit(crtc, refclk);
  4067. ok = dev_priv->display.find_dpll(limit, crtc,
  4068. intel_crtc->config.port_clock,
  4069. refclk, NULL, &clock);
  4070. if (!ok && !intel_crtc->config.clock_set) {
  4071. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4072. return -EINVAL;
  4073. }
  4074. /* Ensure that the cursor is valid for the new mode before changing... */
  4075. intel_crtc_update_cursor(crtc, true);
  4076. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4077. /*
  4078. * Ensure we match the reduced clock's P to the target clock.
  4079. * If the clocks don't match, we can't switch the display clock
  4080. * by using the FP0/FP1. In such case we will disable the LVDS
  4081. * downclock feature.
  4082. */
  4083. has_reduced_clock =
  4084. dev_priv->display.find_dpll(limit, crtc,
  4085. dev_priv->lvds_downclock,
  4086. refclk, &clock,
  4087. &reduced_clock);
  4088. }
  4089. /* Compat-code for transition, will disappear. */
  4090. if (!intel_crtc->config.clock_set) {
  4091. intel_crtc->config.dpll.n = clock.n;
  4092. intel_crtc->config.dpll.m1 = clock.m1;
  4093. intel_crtc->config.dpll.m2 = clock.m2;
  4094. intel_crtc->config.dpll.p1 = clock.p1;
  4095. intel_crtc->config.dpll.p2 = clock.p2;
  4096. }
  4097. if (IS_GEN2(dev))
  4098. i8xx_update_pll(intel_crtc,
  4099. has_reduced_clock ? &reduced_clock : NULL,
  4100. num_connectors);
  4101. else if (IS_VALLEYVIEW(dev))
  4102. vlv_update_pll(intel_crtc);
  4103. else
  4104. i9xx_update_pll(intel_crtc,
  4105. has_reduced_clock ? &reduced_clock : NULL,
  4106. num_connectors);
  4107. /* Set up the display plane register */
  4108. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4109. if (!IS_VALLEYVIEW(dev)) {
  4110. if (pipe == 0)
  4111. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4112. else
  4113. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4114. }
  4115. intel_set_pipe_timings(intel_crtc);
  4116. /* pipesrc and dspsize control the size that is scaled from,
  4117. * which should always be the user's requested size.
  4118. */
  4119. I915_WRITE(DSPSIZE(plane),
  4120. ((mode->vdisplay - 1) << 16) |
  4121. (mode->hdisplay - 1));
  4122. I915_WRITE(DSPPOS(plane), 0);
  4123. i9xx_set_pipeconf(intel_crtc);
  4124. I915_WRITE(DSPCNTR(plane), dspcntr);
  4125. POSTING_READ(DSPCNTR(plane));
  4126. ret = intel_pipe_set_base(crtc, x, y, fb);
  4127. intel_update_watermarks(dev);
  4128. return ret;
  4129. }
  4130. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4131. struct intel_crtc_config *pipe_config)
  4132. {
  4133. struct drm_device *dev = crtc->base.dev;
  4134. struct drm_i915_private *dev_priv = dev->dev_private;
  4135. uint32_t tmp;
  4136. tmp = I915_READ(PFIT_CONTROL);
  4137. if (INTEL_INFO(dev)->gen < 4) {
  4138. if (crtc->pipe != PIPE_B)
  4139. return;
  4140. /* gen2/3 store dither state in pfit control, needs to match */
  4141. pipe_config->gmch_pfit.control = tmp & PANEL_8TO6_DITHER_ENABLE;
  4142. } else {
  4143. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4144. return;
  4145. }
  4146. if (!(tmp & PFIT_ENABLE))
  4147. return;
  4148. pipe_config->gmch_pfit.control = I915_READ(PFIT_CONTROL);
  4149. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4150. if (INTEL_INFO(dev)->gen < 5)
  4151. pipe_config->gmch_pfit.lvds_border_bits =
  4152. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4153. }
  4154. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4155. struct intel_crtc_config *pipe_config)
  4156. {
  4157. struct drm_device *dev = crtc->base.dev;
  4158. struct drm_i915_private *dev_priv = dev->dev_private;
  4159. uint32_t tmp;
  4160. pipe_config->cpu_transcoder = crtc->pipe;
  4161. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4162. tmp = I915_READ(PIPECONF(crtc->pipe));
  4163. if (!(tmp & PIPECONF_ENABLE))
  4164. return false;
  4165. intel_get_pipe_timings(crtc, pipe_config);
  4166. i9xx_get_pfit_config(crtc, pipe_config);
  4167. if (INTEL_INFO(dev)->gen >= 4) {
  4168. tmp = I915_READ(DPLL_MD(crtc->pipe));
  4169. pipe_config->pixel_multiplier =
  4170. ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  4171. >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  4172. pipe_config->dpll_hw_state.dpll_md = tmp;
  4173. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4174. tmp = I915_READ(DPLL(crtc->pipe));
  4175. pipe_config->pixel_multiplier =
  4176. ((tmp & SDVO_MULTIPLIER_MASK)
  4177. >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  4178. } else {
  4179. /* Note that on i915G/GM the pixel multiplier is in the sdvo
  4180. * port and will be fixed up in the encoder->get_config
  4181. * function. */
  4182. pipe_config->pixel_multiplier = 1;
  4183. }
  4184. pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  4185. if (!IS_VALLEYVIEW(dev)) {
  4186. pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  4187. pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  4188. }
  4189. return true;
  4190. }
  4191. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4192. {
  4193. struct drm_i915_private *dev_priv = dev->dev_private;
  4194. struct drm_mode_config *mode_config = &dev->mode_config;
  4195. struct intel_encoder *encoder;
  4196. u32 val, final;
  4197. bool has_lvds = false;
  4198. bool has_cpu_edp = false;
  4199. bool has_panel = false;
  4200. bool has_ck505 = false;
  4201. bool can_ssc = false;
  4202. /* We need to take the global config into account */
  4203. list_for_each_entry(encoder, &mode_config->encoder_list,
  4204. base.head) {
  4205. switch (encoder->type) {
  4206. case INTEL_OUTPUT_LVDS:
  4207. has_panel = true;
  4208. has_lvds = true;
  4209. break;
  4210. case INTEL_OUTPUT_EDP:
  4211. has_panel = true;
  4212. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4213. has_cpu_edp = true;
  4214. break;
  4215. }
  4216. }
  4217. if (HAS_PCH_IBX(dev)) {
  4218. has_ck505 = dev_priv->vbt.display_clock_mode;
  4219. can_ssc = has_ck505;
  4220. } else {
  4221. has_ck505 = false;
  4222. can_ssc = true;
  4223. }
  4224. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4225. has_panel, has_lvds, has_ck505);
  4226. /* Ironlake: try to setup display ref clock before DPLL
  4227. * enabling. This is only under driver's control after
  4228. * PCH B stepping, previous chipset stepping should be
  4229. * ignoring this setting.
  4230. */
  4231. val = I915_READ(PCH_DREF_CONTROL);
  4232. /* As we must carefully and slowly disable/enable each source in turn,
  4233. * compute the final state we want first and check if we need to
  4234. * make any changes at all.
  4235. */
  4236. final = val;
  4237. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4238. if (has_ck505)
  4239. final |= DREF_NONSPREAD_CK505_ENABLE;
  4240. else
  4241. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4242. final &= ~DREF_SSC_SOURCE_MASK;
  4243. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4244. final &= ~DREF_SSC1_ENABLE;
  4245. if (has_panel) {
  4246. final |= DREF_SSC_SOURCE_ENABLE;
  4247. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4248. final |= DREF_SSC1_ENABLE;
  4249. if (has_cpu_edp) {
  4250. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4251. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4252. else
  4253. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4254. } else
  4255. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4256. } else {
  4257. final |= DREF_SSC_SOURCE_DISABLE;
  4258. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4259. }
  4260. if (final == val)
  4261. return;
  4262. /* Always enable nonspread source */
  4263. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4264. if (has_ck505)
  4265. val |= DREF_NONSPREAD_CK505_ENABLE;
  4266. else
  4267. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4268. if (has_panel) {
  4269. val &= ~DREF_SSC_SOURCE_MASK;
  4270. val |= DREF_SSC_SOURCE_ENABLE;
  4271. /* SSC must be turned on before enabling the CPU output */
  4272. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4273. DRM_DEBUG_KMS("Using SSC on panel\n");
  4274. val |= DREF_SSC1_ENABLE;
  4275. } else
  4276. val &= ~DREF_SSC1_ENABLE;
  4277. /* Get SSC going before enabling the outputs */
  4278. I915_WRITE(PCH_DREF_CONTROL, val);
  4279. POSTING_READ(PCH_DREF_CONTROL);
  4280. udelay(200);
  4281. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4282. /* Enable CPU source on CPU attached eDP */
  4283. if (has_cpu_edp) {
  4284. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4285. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4286. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4287. }
  4288. else
  4289. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4290. } else
  4291. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4292. I915_WRITE(PCH_DREF_CONTROL, val);
  4293. POSTING_READ(PCH_DREF_CONTROL);
  4294. udelay(200);
  4295. } else {
  4296. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4297. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4298. /* Turn off CPU output */
  4299. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4300. I915_WRITE(PCH_DREF_CONTROL, val);
  4301. POSTING_READ(PCH_DREF_CONTROL);
  4302. udelay(200);
  4303. /* Turn off the SSC source */
  4304. val &= ~DREF_SSC_SOURCE_MASK;
  4305. val |= DREF_SSC_SOURCE_DISABLE;
  4306. /* Turn off SSC1 */
  4307. val &= ~DREF_SSC1_ENABLE;
  4308. I915_WRITE(PCH_DREF_CONTROL, val);
  4309. POSTING_READ(PCH_DREF_CONTROL);
  4310. udelay(200);
  4311. }
  4312. BUG_ON(val != final);
  4313. }
  4314. /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
  4315. static void lpt_init_pch_refclk(struct drm_device *dev)
  4316. {
  4317. struct drm_i915_private *dev_priv = dev->dev_private;
  4318. struct drm_mode_config *mode_config = &dev->mode_config;
  4319. struct intel_encoder *encoder;
  4320. bool has_vga = false;
  4321. bool is_sdv = false;
  4322. u32 tmp;
  4323. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4324. switch (encoder->type) {
  4325. case INTEL_OUTPUT_ANALOG:
  4326. has_vga = true;
  4327. break;
  4328. }
  4329. }
  4330. if (!has_vga)
  4331. return;
  4332. mutex_lock(&dev_priv->dpio_lock);
  4333. /* XXX: Rip out SDV support once Haswell ships for real. */
  4334. if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
  4335. is_sdv = true;
  4336. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4337. tmp &= ~SBI_SSCCTL_DISABLE;
  4338. tmp |= SBI_SSCCTL_PATHALT;
  4339. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4340. udelay(24);
  4341. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4342. tmp &= ~SBI_SSCCTL_PATHALT;
  4343. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4344. if (!is_sdv) {
  4345. tmp = I915_READ(SOUTH_CHICKEN2);
  4346. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4347. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4348. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4349. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4350. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4351. tmp = I915_READ(SOUTH_CHICKEN2);
  4352. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4353. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4354. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4355. FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
  4356. 100))
  4357. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4358. }
  4359. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4360. tmp &= ~(0xFF << 24);
  4361. tmp |= (0x12 << 24);
  4362. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4363. if (is_sdv) {
  4364. tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
  4365. tmp |= 0x7FFF;
  4366. intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
  4367. }
  4368. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4369. tmp |= (1 << 11);
  4370. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4371. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4372. tmp |= (1 << 11);
  4373. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4374. if (is_sdv) {
  4375. tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
  4376. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4377. intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
  4378. tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
  4379. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4380. intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
  4381. tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
  4382. tmp |= (0x3F << 8);
  4383. intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
  4384. tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
  4385. tmp |= (0x3F << 8);
  4386. intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
  4387. }
  4388. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4389. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4390. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4391. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4392. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4393. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4394. if (!is_sdv) {
  4395. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4396. tmp &= ~(7 << 13);
  4397. tmp |= (5 << 13);
  4398. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4399. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4400. tmp &= ~(7 << 13);
  4401. tmp |= (5 << 13);
  4402. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4403. }
  4404. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4405. tmp &= ~0xFF;
  4406. tmp |= 0x1C;
  4407. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4408. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4409. tmp &= ~0xFF;
  4410. tmp |= 0x1C;
  4411. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4412. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4413. tmp &= ~(0xFF << 16);
  4414. tmp |= (0x1C << 16);
  4415. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4416. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4417. tmp &= ~(0xFF << 16);
  4418. tmp |= (0x1C << 16);
  4419. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4420. if (!is_sdv) {
  4421. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4422. tmp |= (1 << 27);
  4423. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4424. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4425. tmp |= (1 << 27);
  4426. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4427. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4428. tmp &= ~(0xF << 28);
  4429. tmp |= (4 << 28);
  4430. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4431. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4432. tmp &= ~(0xF << 28);
  4433. tmp |= (4 << 28);
  4434. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4435. }
  4436. /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
  4437. tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
  4438. tmp |= SBI_DBUFF0_ENABLE;
  4439. intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
  4440. mutex_unlock(&dev_priv->dpio_lock);
  4441. }
  4442. /*
  4443. * Initialize reference clocks when the driver loads
  4444. */
  4445. void intel_init_pch_refclk(struct drm_device *dev)
  4446. {
  4447. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4448. ironlake_init_pch_refclk(dev);
  4449. else if (HAS_PCH_LPT(dev))
  4450. lpt_init_pch_refclk(dev);
  4451. }
  4452. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4453. {
  4454. struct drm_device *dev = crtc->dev;
  4455. struct drm_i915_private *dev_priv = dev->dev_private;
  4456. struct intel_encoder *encoder;
  4457. int num_connectors = 0;
  4458. bool is_lvds = false;
  4459. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4460. switch (encoder->type) {
  4461. case INTEL_OUTPUT_LVDS:
  4462. is_lvds = true;
  4463. break;
  4464. }
  4465. num_connectors++;
  4466. }
  4467. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4468. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4469. dev_priv->vbt.lvds_ssc_freq);
  4470. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4471. }
  4472. return 120000;
  4473. }
  4474. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4475. {
  4476. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4477. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4478. int pipe = intel_crtc->pipe;
  4479. uint32_t val;
  4480. val = 0;
  4481. switch (intel_crtc->config.pipe_bpp) {
  4482. case 18:
  4483. val |= PIPECONF_6BPC;
  4484. break;
  4485. case 24:
  4486. val |= PIPECONF_8BPC;
  4487. break;
  4488. case 30:
  4489. val |= PIPECONF_10BPC;
  4490. break;
  4491. case 36:
  4492. val |= PIPECONF_12BPC;
  4493. break;
  4494. default:
  4495. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4496. BUG();
  4497. }
  4498. if (intel_crtc->config.dither)
  4499. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4500. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4501. val |= PIPECONF_INTERLACED_ILK;
  4502. else
  4503. val |= PIPECONF_PROGRESSIVE;
  4504. if (intel_crtc->config.limited_color_range)
  4505. val |= PIPECONF_COLOR_RANGE_SELECT;
  4506. I915_WRITE(PIPECONF(pipe), val);
  4507. POSTING_READ(PIPECONF(pipe));
  4508. }
  4509. /*
  4510. * Set up the pipe CSC unit.
  4511. *
  4512. * Currently only full range RGB to limited range RGB conversion
  4513. * is supported, but eventually this should handle various
  4514. * RGB<->YCbCr scenarios as well.
  4515. */
  4516. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4517. {
  4518. struct drm_device *dev = crtc->dev;
  4519. struct drm_i915_private *dev_priv = dev->dev_private;
  4520. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4521. int pipe = intel_crtc->pipe;
  4522. uint16_t coeff = 0x7800; /* 1.0 */
  4523. /*
  4524. * TODO: Check what kind of values actually come out of the pipe
  4525. * with these coeff/postoff values and adjust to get the best
  4526. * accuracy. Perhaps we even need to take the bpc value into
  4527. * consideration.
  4528. */
  4529. if (intel_crtc->config.limited_color_range)
  4530. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4531. /*
  4532. * GY/GU and RY/RU should be the other way around according
  4533. * to BSpec, but reality doesn't agree. Just set them up in
  4534. * a way that results in the correct picture.
  4535. */
  4536. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4537. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4538. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4539. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4540. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4541. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4542. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4543. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4544. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4545. if (INTEL_INFO(dev)->gen > 6) {
  4546. uint16_t postoff = 0;
  4547. if (intel_crtc->config.limited_color_range)
  4548. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4549. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4550. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4551. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4552. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4553. } else {
  4554. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4555. if (intel_crtc->config.limited_color_range)
  4556. mode |= CSC_BLACK_SCREEN_OFFSET;
  4557. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4558. }
  4559. }
  4560. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4561. {
  4562. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4563. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4564. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4565. uint32_t val;
  4566. val = 0;
  4567. if (intel_crtc->config.dither)
  4568. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4569. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4570. val |= PIPECONF_INTERLACED_ILK;
  4571. else
  4572. val |= PIPECONF_PROGRESSIVE;
  4573. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4574. POSTING_READ(PIPECONF(cpu_transcoder));
  4575. I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  4576. POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  4577. }
  4578. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4579. intel_clock_t *clock,
  4580. bool *has_reduced_clock,
  4581. intel_clock_t *reduced_clock)
  4582. {
  4583. struct drm_device *dev = crtc->dev;
  4584. struct drm_i915_private *dev_priv = dev->dev_private;
  4585. struct intel_encoder *intel_encoder;
  4586. int refclk;
  4587. const intel_limit_t *limit;
  4588. bool ret, is_lvds = false;
  4589. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4590. switch (intel_encoder->type) {
  4591. case INTEL_OUTPUT_LVDS:
  4592. is_lvds = true;
  4593. break;
  4594. }
  4595. }
  4596. refclk = ironlake_get_refclk(crtc);
  4597. /*
  4598. * Returns a set of divisors for the desired target clock with the given
  4599. * refclk, or FALSE. The returned values represent the clock equation:
  4600. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4601. */
  4602. limit = intel_limit(crtc, refclk);
  4603. ret = dev_priv->display.find_dpll(limit, crtc,
  4604. to_intel_crtc(crtc)->config.port_clock,
  4605. refclk, NULL, clock);
  4606. if (!ret)
  4607. return false;
  4608. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4609. /*
  4610. * Ensure we match the reduced clock's P to the target clock.
  4611. * If the clocks don't match, we can't switch the display clock
  4612. * by using the FP0/FP1. In such case we will disable the LVDS
  4613. * downclock feature.
  4614. */
  4615. *has_reduced_clock =
  4616. dev_priv->display.find_dpll(limit, crtc,
  4617. dev_priv->lvds_downclock,
  4618. refclk, clock,
  4619. reduced_clock);
  4620. }
  4621. return true;
  4622. }
  4623. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4624. {
  4625. struct drm_i915_private *dev_priv = dev->dev_private;
  4626. uint32_t temp;
  4627. temp = I915_READ(SOUTH_CHICKEN1);
  4628. if (temp & FDI_BC_BIFURCATION_SELECT)
  4629. return;
  4630. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4631. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4632. temp |= FDI_BC_BIFURCATION_SELECT;
  4633. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4634. I915_WRITE(SOUTH_CHICKEN1, temp);
  4635. POSTING_READ(SOUTH_CHICKEN1);
  4636. }
  4637. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4638. {
  4639. struct drm_device *dev = intel_crtc->base.dev;
  4640. struct drm_i915_private *dev_priv = dev->dev_private;
  4641. switch (intel_crtc->pipe) {
  4642. case PIPE_A:
  4643. break;
  4644. case PIPE_B:
  4645. if (intel_crtc->config.fdi_lanes > 2)
  4646. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4647. else
  4648. cpt_enable_fdi_bc_bifurcation(dev);
  4649. break;
  4650. case PIPE_C:
  4651. cpt_enable_fdi_bc_bifurcation(dev);
  4652. break;
  4653. default:
  4654. BUG();
  4655. }
  4656. }
  4657. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4658. {
  4659. /*
  4660. * Account for spread spectrum to avoid
  4661. * oversubscribing the link. Max center spread
  4662. * is 2.5%; use 5% for safety's sake.
  4663. */
  4664. u32 bps = target_clock * bpp * 21 / 20;
  4665. return bps / (link_bw * 8) + 1;
  4666. }
  4667. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4668. {
  4669. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4670. }
  4671. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4672. u32 *fp,
  4673. intel_clock_t *reduced_clock, u32 *fp2)
  4674. {
  4675. struct drm_crtc *crtc = &intel_crtc->base;
  4676. struct drm_device *dev = crtc->dev;
  4677. struct drm_i915_private *dev_priv = dev->dev_private;
  4678. struct intel_encoder *intel_encoder;
  4679. uint32_t dpll;
  4680. int factor, num_connectors = 0;
  4681. bool is_lvds = false, is_sdvo = false;
  4682. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4683. switch (intel_encoder->type) {
  4684. case INTEL_OUTPUT_LVDS:
  4685. is_lvds = true;
  4686. break;
  4687. case INTEL_OUTPUT_SDVO:
  4688. case INTEL_OUTPUT_HDMI:
  4689. is_sdvo = true;
  4690. break;
  4691. }
  4692. num_connectors++;
  4693. }
  4694. /* Enable autotuning of the PLL clock (if permissible) */
  4695. factor = 21;
  4696. if (is_lvds) {
  4697. if ((intel_panel_use_ssc(dev_priv) &&
  4698. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4699. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4700. factor = 25;
  4701. } else if (intel_crtc->config.sdvo_tv_clock)
  4702. factor = 20;
  4703. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4704. *fp |= FP_CB_TUNE;
  4705. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4706. *fp2 |= FP_CB_TUNE;
  4707. dpll = 0;
  4708. if (is_lvds)
  4709. dpll |= DPLLB_MODE_LVDS;
  4710. else
  4711. dpll |= DPLLB_MODE_DAC_SERIAL;
  4712. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4713. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4714. if (is_sdvo)
  4715. dpll |= DPLL_DVO_HIGH_SPEED;
  4716. if (intel_crtc->config.has_dp_encoder)
  4717. dpll |= DPLL_DVO_HIGH_SPEED;
  4718. /* compute bitmask from p1 value */
  4719. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4720. /* also FPA1 */
  4721. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4722. switch (intel_crtc->config.dpll.p2) {
  4723. case 5:
  4724. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4725. break;
  4726. case 7:
  4727. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4728. break;
  4729. case 10:
  4730. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4731. break;
  4732. case 14:
  4733. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4734. break;
  4735. }
  4736. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4737. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4738. else
  4739. dpll |= PLL_REF_INPUT_DREFCLK;
  4740. return dpll | DPLL_VCO_ENABLE;
  4741. }
  4742. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4743. int x, int y,
  4744. struct drm_framebuffer *fb)
  4745. {
  4746. struct drm_device *dev = crtc->dev;
  4747. struct drm_i915_private *dev_priv = dev->dev_private;
  4748. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4749. int pipe = intel_crtc->pipe;
  4750. int plane = intel_crtc->plane;
  4751. int num_connectors = 0;
  4752. intel_clock_t clock, reduced_clock;
  4753. u32 dpll = 0, fp = 0, fp2 = 0;
  4754. bool ok, has_reduced_clock = false;
  4755. bool is_lvds = false;
  4756. struct intel_encoder *encoder;
  4757. struct intel_shared_dpll *pll;
  4758. int ret;
  4759. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4760. switch (encoder->type) {
  4761. case INTEL_OUTPUT_LVDS:
  4762. is_lvds = true;
  4763. break;
  4764. }
  4765. num_connectors++;
  4766. }
  4767. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4768. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4769. ok = ironlake_compute_clocks(crtc, &clock,
  4770. &has_reduced_clock, &reduced_clock);
  4771. if (!ok && !intel_crtc->config.clock_set) {
  4772. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4773. return -EINVAL;
  4774. }
  4775. /* Compat-code for transition, will disappear. */
  4776. if (!intel_crtc->config.clock_set) {
  4777. intel_crtc->config.dpll.n = clock.n;
  4778. intel_crtc->config.dpll.m1 = clock.m1;
  4779. intel_crtc->config.dpll.m2 = clock.m2;
  4780. intel_crtc->config.dpll.p1 = clock.p1;
  4781. intel_crtc->config.dpll.p2 = clock.p2;
  4782. }
  4783. /* Ensure that the cursor is valid for the new mode before changing... */
  4784. intel_crtc_update_cursor(crtc, true);
  4785. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4786. if (intel_crtc->config.has_pch_encoder) {
  4787. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4788. if (has_reduced_clock)
  4789. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4790. dpll = ironlake_compute_dpll(intel_crtc,
  4791. &fp, &reduced_clock,
  4792. has_reduced_clock ? &fp2 : NULL);
  4793. intel_crtc->config.dpll_hw_state.dpll = dpll;
  4794. intel_crtc->config.dpll_hw_state.fp0 = fp;
  4795. if (has_reduced_clock)
  4796. intel_crtc->config.dpll_hw_state.fp1 = fp2;
  4797. else
  4798. intel_crtc->config.dpll_hw_state.fp1 = fp;
  4799. pll = intel_get_shared_dpll(intel_crtc);
  4800. if (pll == NULL) {
  4801. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4802. pipe_name(pipe));
  4803. return -EINVAL;
  4804. }
  4805. } else
  4806. intel_put_shared_dpll(intel_crtc);
  4807. if (intel_crtc->config.has_dp_encoder)
  4808. intel_dp_set_m_n(intel_crtc);
  4809. if (is_lvds && has_reduced_clock && i915_powersave)
  4810. intel_crtc->lowfreq_avail = true;
  4811. else
  4812. intel_crtc->lowfreq_avail = false;
  4813. if (intel_crtc->config.has_pch_encoder) {
  4814. pll = intel_crtc_to_shared_dpll(intel_crtc);
  4815. }
  4816. intel_set_pipe_timings(intel_crtc);
  4817. if (intel_crtc->config.has_pch_encoder) {
  4818. intel_cpu_transcoder_set_m_n(intel_crtc,
  4819. &intel_crtc->config.fdi_m_n);
  4820. }
  4821. if (IS_IVYBRIDGE(dev))
  4822. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4823. ironlake_set_pipeconf(crtc);
  4824. /* Set up the display plane register */
  4825. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4826. POSTING_READ(DSPCNTR(plane));
  4827. ret = intel_pipe_set_base(crtc, x, y, fb);
  4828. intel_update_watermarks(dev);
  4829. return ret;
  4830. }
  4831. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  4832. struct intel_crtc_config *pipe_config)
  4833. {
  4834. struct drm_device *dev = crtc->base.dev;
  4835. struct drm_i915_private *dev_priv = dev->dev_private;
  4836. enum transcoder transcoder = pipe_config->cpu_transcoder;
  4837. pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4838. pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4839. pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4840. & ~TU_SIZE_MASK;
  4841. pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4842. pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4843. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4844. }
  4845. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  4846. struct intel_crtc_config *pipe_config)
  4847. {
  4848. struct drm_device *dev = crtc->base.dev;
  4849. struct drm_i915_private *dev_priv = dev->dev_private;
  4850. uint32_t tmp;
  4851. tmp = I915_READ(PF_CTL(crtc->pipe));
  4852. if (tmp & PF_ENABLE) {
  4853. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  4854. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  4855. /* We currently do not free assignements of panel fitters on
  4856. * ivb/hsw (since we don't use the higher upscaling modes which
  4857. * differentiates them) so just WARN about this case for now. */
  4858. if (IS_GEN7(dev)) {
  4859. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  4860. PF_PIPE_SEL_IVB(crtc->pipe));
  4861. }
  4862. }
  4863. }
  4864. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4865. struct intel_crtc_config *pipe_config)
  4866. {
  4867. struct drm_device *dev = crtc->base.dev;
  4868. struct drm_i915_private *dev_priv = dev->dev_private;
  4869. uint32_t tmp;
  4870. pipe_config->cpu_transcoder = crtc->pipe;
  4871. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4872. tmp = I915_READ(PIPECONF(crtc->pipe));
  4873. if (!(tmp & PIPECONF_ENABLE))
  4874. return false;
  4875. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  4876. struct intel_shared_dpll *pll;
  4877. pipe_config->has_pch_encoder = true;
  4878. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  4879. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  4880. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  4881. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  4882. /* XXX: Can't properly read out the pch dpll pixel multiplier
  4883. * since we don't have state tracking for pch clocks yet. */
  4884. pipe_config->pixel_multiplier = 1;
  4885. if (HAS_PCH_IBX(dev_priv->dev)) {
  4886. pipe_config->shared_dpll = crtc->pipe;
  4887. } else {
  4888. tmp = I915_READ(PCH_DPLL_SEL);
  4889. if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  4890. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  4891. else
  4892. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  4893. }
  4894. pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  4895. WARN_ON(!pll->get_hw_state(dev_priv, pll,
  4896. &pipe_config->dpll_hw_state));
  4897. } else {
  4898. pipe_config->pixel_multiplier = 1;
  4899. }
  4900. intel_get_pipe_timings(crtc, pipe_config);
  4901. ironlake_get_pfit_config(crtc, pipe_config);
  4902. return true;
  4903. }
  4904. static void haswell_modeset_global_resources(struct drm_device *dev)
  4905. {
  4906. bool enable = false;
  4907. struct intel_crtc *crtc;
  4908. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  4909. if (!crtc->base.enabled)
  4910. continue;
  4911. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
  4912. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  4913. enable = true;
  4914. }
  4915. intel_set_power_well(dev, enable);
  4916. }
  4917. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4918. int x, int y,
  4919. struct drm_framebuffer *fb)
  4920. {
  4921. struct drm_device *dev = crtc->dev;
  4922. struct drm_i915_private *dev_priv = dev->dev_private;
  4923. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4924. int plane = intel_crtc->plane;
  4925. int ret;
  4926. if (!intel_ddi_pll_mode_set(crtc))
  4927. return -EINVAL;
  4928. /* Ensure that the cursor is valid for the new mode before changing... */
  4929. intel_crtc_update_cursor(crtc, true);
  4930. if (intel_crtc->config.has_dp_encoder)
  4931. intel_dp_set_m_n(intel_crtc);
  4932. intel_crtc->lowfreq_avail = false;
  4933. intel_set_pipe_timings(intel_crtc);
  4934. if (intel_crtc->config.has_pch_encoder) {
  4935. intel_cpu_transcoder_set_m_n(intel_crtc,
  4936. &intel_crtc->config.fdi_m_n);
  4937. }
  4938. haswell_set_pipeconf(crtc);
  4939. intel_set_pipe_csc(crtc);
  4940. /* Set up the display plane register */
  4941. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  4942. POSTING_READ(DSPCNTR(plane));
  4943. ret = intel_pipe_set_base(crtc, x, y, fb);
  4944. intel_update_watermarks(dev);
  4945. return ret;
  4946. }
  4947. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  4948. struct intel_crtc_config *pipe_config)
  4949. {
  4950. struct drm_device *dev = crtc->base.dev;
  4951. struct drm_i915_private *dev_priv = dev->dev_private;
  4952. enum intel_display_power_domain pfit_domain;
  4953. uint32_t tmp;
  4954. pipe_config->cpu_transcoder = crtc->pipe;
  4955. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4956. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  4957. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  4958. enum pipe trans_edp_pipe;
  4959. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  4960. default:
  4961. WARN(1, "unknown pipe linked to edp transcoder\n");
  4962. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  4963. case TRANS_DDI_EDP_INPUT_A_ON:
  4964. trans_edp_pipe = PIPE_A;
  4965. break;
  4966. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  4967. trans_edp_pipe = PIPE_B;
  4968. break;
  4969. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  4970. trans_edp_pipe = PIPE_C;
  4971. break;
  4972. }
  4973. if (trans_edp_pipe == crtc->pipe)
  4974. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  4975. }
  4976. if (!intel_display_power_enabled(dev,
  4977. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  4978. return false;
  4979. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  4980. if (!(tmp & PIPECONF_ENABLE))
  4981. return false;
  4982. /*
  4983. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  4984. * DDI E. So just check whether this pipe is wired to DDI E and whether
  4985. * the PCH transcoder is on.
  4986. */
  4987. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  4988. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  4989. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  4990. pipe_config->has_pch_encoder = true;
  4991. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  4992. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  4993. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  4994. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  4995. }
  4996. intel_get_pipe_timings(crtc, pipe_config);
  4997. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  4998. if (intel_display_power_enabled(dev, pfit_domain))
  4999. ironlake_get_pfit_config(crtc, pipe_config);
  5000. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5001. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5002. pipe_config->pixel_multiplier = 1;
  5003. return true;
  5004. }
  5005. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5006. int x, int y,
  5007. struct drm_framebuffer *fb)
  5008. {
  5009. struct drm_device *dev = crtc->dev;
  5010. struct drm_i915_private *dev_priv = dev->dev_private;
  5011. struct drm_encoder_helper_funcs *encoder_funcs;
  5012. struct intel_encoder *encoder;
  5013. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5014. struct drm_display_mode *adjusted_mode =
  5015. &intel_crtc->config.adjusted_mode;
  5016. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5017. int pipe = intel_crtc->pipe;
  5018. int ret;
  5019. drm_vblank_pre_modeset(dev, pipe);
  5020. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5021. drm_vblank_post_modeset(dev, pipe);
  5022. if (ret != 0)
  5023. return ret;
  5024. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5025. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5026. encoder->base.base.id,
  5027. drm_get_encoder_name(&encoder->base),
  5028. mode->base.id, mode->name);
  5029. if (encoder->mode_set) {
  5030. encoder->mode_set(encoder);
  5031. } else {
  5032. encoder_funcs = encoder->base.helper_private;
  5033. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  5034. }
  5035. }
  5036. return 0;
  5037. }
  5038. static bool intel_eld_uptodate(struct drm_connector *connector,
  5039. int reg_eldv, uint32_t bits_eldv,
  5040. int reg_elda, uint32_t bits_elda,
  5041. int reg_edid)
  5042. {
  5043. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5044. uint8_t *eld = connector->eld;
  5045. uint32_t i;
  5046. i = I915_READ(reg_eldv);
  5047. i &= bits_eldv;
  5048. if (!eld[0])
  5049. return !i;
  5050. if (!i)
  5051. return false;
  5052. i = I915_READ(reg_elda);
  5053. i &= ~bits_elda;
  5054. I915_WRITE(reg_elda, i);
  5055. for (i = 0; i < eld[2]; i++)
  5056. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5057. return false;
  5058. return true;
  5059. }
  5060. static void g4x_write_eld(struct drm_connector *connector,
  5061. struct drm_crtc *crtc)
  5062. {
  5063. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5064. uint8_t *eld = connector->eld;
  5065. uint32_t eldv;
  5066. uint32_t len;
  5067. uint32_t i;
  5068. i = I915_READ(G4X_AUD_VID_DID);
  5069. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5070. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5071. else
  5072. eldv = G4X_ELDV_DEVCTG;
  5073. if (intel_eld_uptodate(connector,
  5074. G4X_AUD_CNTL_ST, eldv,
  5075. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5076. G4X_HDMIW_HDMIEDID))
  5077. return;
  5078. i = I915_READ(G4X_AUD_CNTL_ST);
  5079. i &= ~(eldv | G4X_ELD_ADDR);
  5080. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5081. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5082. if (!eld[0])
  5083. return;
  5084. len = min_t(uint8_t, eld[2], len);
  5085. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5086. for (i = 0; i < len; i++)
  5087. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5088. i = I915_READ(G4X_AUD_CNTL_ST);
  5089. i |= eldv;
  5090. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5091. }
  5092. static void haswell_write_eld(struct drm_connector *connector,
  5093. struct drm_crtc *crtc)
  5094. {
  5095. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5096. uint8_t *eld = connector->eld;
  5097. struct drm_device *dev = crtc->dev;
  5098. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5099. uint32_t eldv;
  5100. uint32_t i;
  5101. int len;
  5102. int pipe = to_intel_crtc(crtc)->pipe;
  5103. int tmp;
  5104. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5105. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5106. int aud_config = HSW_AUD_CFG(pipe);
  5107. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5108. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5109. /* Audio output enable */
  5110. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5111. tmp = I915_READ(aud_cntrl_st2);
  5112. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5113. I915_WRITE(aud_cntrl_st2, tmp);
  5114. /* Wait for 1 vertical blank */
  5115. intel_wait_for_vblank(dev, pipe);
  5116. /* Set ELD valid state */
  5117. tmp = I915_READ(aud_cntrl_st2);
  5118. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5119. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5120. I915_WRITE(aud_cntrl_st2, tmp);
  5121. tmp = I915_READ(aud_cntrl_st2);
  5122. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5123. /* Enable HDMI mode */
  5124. tmp = I915_READ(aud_config);
  5125. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5126. /* clear N_programing_enable and N_value_index */
  5127. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5128. I915_WRITE(aud_config, tmp);
  5129. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5130. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5131. intel_crtc->eld_vld = true;
  5132. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5133. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5134. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5135. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5136. } else
  5137. I915_WRITE(aud_config, 0);
  5138. if (intel_eld_uptodate(connector,
  5139. aud_cntrl_st2, eldv,
  5140. aud_cntl_st, IBX_ELD_ADDRESS,
  5141. hdmiw_hdmiedid))
  5142. return;
  5143. i = I915_READ(aud_cntrl_st2);
  5144. i &= ~eldv;
  5145. I915_WRITE(aud_cntrl_st2, i);
  5146. if (!eld[0])
  5147. return;
  5148. i = I915_READ(aud_cntl_st);
  5149. i &= ~IBX_ELD_ADDRESS;
  5150. I915_WRITE(aud_cntl_st, i);
  5151. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5152. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5153. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5154. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5155. for (i = 0; i < len; i++)
  5156. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5157. i = I915_READ(aud_cntrl_st2);
  5158. i |= eldv;
  5159. I915_WRITE(aud_cntrl_st2, i);
  5160. }
  5161. static void ironlake_write_eld(struct drm_connector *connector,
  5162. struct drm_crtc *crtc)
  5163. {
  5164. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5165. uint8_t *eld = connector->eld;
  5166. uint32_t eldv;
  5167. uint32_t i;
  5168. int len;
  5169. int hdmiw_hdmiedid;
  5170. int aud_config;
  5171. int aud_cntl_st;
  5172. int aud_cntrl_st2;
  5173. int pipe = to_intel_crtc(crtc)->pipe;
  5174. if (HAS_PCH_IBX(connector->dev)) {
  5175. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5176. aud_config = IBX_AUD_CFG(pipe);
  5177. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5178. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5179. } else {
  5180. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5181. aud_config = CPT_AUD_CFG(pipe);
  5182. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5183. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5184. }
  5185. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5186. i = I915_READ(aud_cntl_st);
  5187. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5188. if (!i) {
  5189. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5190. /* operate blindly on all ports */
  5191. eldv = IBX_ELD_VALIDB;
  5192. eldv |= IBX_ELD_VALIDB << 4;
  5193. eldv |= IBX_ELD_VALIDB << 8;
  5194. } else {
  5195. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5196. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5197. }
  5198. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5199. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5200. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5201. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5202. } else
  5203. I915_WRITE(aud_config, 0);
  5204. if (intel_eld_uptodate(connector,
  5205. aud_cntrl_st2, eldv,
  5206. aud_cntl_st, IBX_ELD_ADDRESS,
  5207. hdmiw_hdmiedid))
  5208. return;
  5209. i = I915_READ(aud_cntrl_st2);
  5210. i &= ~eldv;
  5211. I915_WRITE(aud_cntrl_st2, i);
  5212. if (!eld[0])
  5213. return;
  5214. i = I915_READ(aud_cntl_st);
  5215. i &= ~IBX_ELD_ADDRESS;
  5216. I915_WRITE(aud_cntl_st, i);
  5217. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5218. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5219. for (i = 0; i < len; i++)
  5220. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5221. i = I915_READ(aud_cntrl_st2);
  5222. i |= eldv;
  5223. I915_WRITE(aud_cntrl_st2, i);
  5224. }
  5225. void intel_write_eld(struct drm_encoder *encoder,
  5226. struct drm_display_mode *mode)
  5227. {
  5228. struct drm_crtc *crtc = encoder->crtc;
  5229. struct drm_connector *connector;
  5230. struct drm_device *dev = encoder->dev;
  5231. struct drm_i915_private *dev_priv = dev->dev_private;
  5232. connector = drm_select_eld(encoder, mode);
  5233. if (!connector)
  5234. return;
  5235. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5236. connector->base.id,
  5237. drm_get_connector_name(connector),
  5238. connector->encoder->base.id,
  5239. drm_get_encoder_name(connector->encoder));
  5240. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5241. if (dev_priv->display.write_eld)
  5242. dev_priv->display.write_eld(connector, crtc);
  5243. }
  5244. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5245. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5246. {
  5247. struct drm_device *dev = crtc->dev;
  5248. struct drm_i915_private *dev_priv = dev->dev_private;
  5249. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5250. enum pipe pipe = intel_crtc->pipe;
  5251. int palreg = PALETTE(pipe);
  5252. int i;
  5253. bool reenable_ips = false;
  5254. /* The clocks have to be on to load the palette. */
  5255. if (!crtc->enabled || !intel_crtc->active)
  5256. return;
  5257. if (!HAS_PCH_SPLIT(dev_priv->dev))
  5258. assert_pll_enabled(dev_priv, pipe);
  5259. /* use legacy palette for Ironlake */
  5260. if (HAS_PCH_SPLIT(dev))
  5261. palreg = LGC_PALETTE(pipe);
  5262. /* Workaround : Do not read or write the pipe palette/gamma data while
  5263. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  5264. */
  5265. if (intel_crtc->config.ips_enabled &&
  5266. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  5267. GAMMA_MODE_MODE_SPLIT)) {
  5268. hsw_disable_ips(intel_crtc);
  5269. reenable_ips = true;
  5270. }
  5271. for (i = 0; i < 256; i++) {
  5272. I915_WRITE(palreg + 4 * i,
  5273. (intel_crtc->lut_r[i] << 16) |
  5274. (intel_crtc->lut_g[i] << 8) |
  5275. intel_crtc->lut_b[i]);
  5276. }
  5277. if (reenable_ips)
  5278. hsw_enable_ips(intel_crtc);
  5279. }
  5280. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5281. {
  5282. struct drm_device *dev = crtc->dev;
  5283. struct drm_i915_private *dev_priv = dev->dev_private;
  5284. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5285. bool visible = base != 0;
  5286. u32 cntl;
  5287. if (intel_crtc->cursor_visible == visible)
  5288. return;
  5289. cntl = I915_READ(_CURACNTR);
  5290. if (visible) {
  5291. /* On these chipsets we can only modify the base whilst
  5292. * the cursor is disabled.
  5293. */
  5294. I915_WRITE(_CURABASE, base);
  5295. cntl &= ~(CURSOR_FORMAT_MASK);
  5296. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5297. cntl |= CURSOR_ENABLE |
  5298. CURSOR_GAMMA_ENABLE |
  5299. CURSOR_FORMAT_ARGB;
  5300. } else
  5301. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5302. I915_WRITE(_CURACNTR, cntl);
  5303. intel_crtc->cursor_visible = visible;
  5304. }
  5305. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5306. {
  5307. struct drm_device *dev = crtc->dev;
  5308. struct drm_i915_private *dev_priv = dev->dev_private;
  5309. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5310. int pipe = intel_crtc->pipe;
  5311. bool visible = base != 0;
  5312. if (intel_crtc->cursor_visible != visible) {
  5313. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5314. if (base) {
  5315. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5316. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5317. cntl |= pipe << 28; /* Connect to correct pipe */
  5318. } else {
  5319. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5320. cntl |= CURSOR_MODE_DISABLE;
  5321. }
  5322. I915_WRITE(CURCNTR(pipe), cntl);
  5323. intel_crtc->cursor_visible = visible;
  5324. }
  5325. /* and commit changes on next vblank */
  5326. I915_WRITE(CURBASE(pipe), base);
  5327. }
  5328. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5329. {
  5330. struct drm_device *dev = crtc->dev;
  5331. struct drm_i915_private *dev_priv = dev->dev_private;
  5332. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5333. int pipe = intel_crtc->pipe;
  5334. bool visible = base != 0;
  5335. if (intel_crtc->cursor_visible != visible) {
  5336. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5337. if (base) {
  5338. cntl &= ~CURSOR_MODE;
  5339. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5340. } else {
  5341. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5342. cntl |= CURSOR_MODE_DISABLE;
  5343. }
  5344. if (IS_HASWELL(dev))
  5345. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5346. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5347. intel_crtc->cursor_visible = visible;
  5348. }
  5349. /* and commit changes on next vblank */
  5350. I915_WRITE(CURBASE_IVB(pipe), base);
  5351. }
  5352. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5353. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5354. bool on)
  5355. {
  5356. struct drm_device *dev = crtc->dev;
  5357. struct drm_i915_private *dev_priv = dev->dev_private;
  5358. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5359. int pipe = intel_crtc->pipe;
  5360. int x = intel_crtc->cursor_x;
  5361. int y = intel_crtc->cursor_y;
  5362. u32 base, pos;
  5363. bool visible;
  5364. pos = 0;
  5365. if (on && crtc->enabled && crtc->fb) {
  5366. base = intel_crtc->cursor_addr;
  5367. if (x > (int) crtc->fb->width)
  5368. base = 0;
  5369. if (y > (int) crtc->fb->height)
  5370. base = 0;
  5371. } else
  5372. base = 0;
  5373. if (x < 0) {
  5374. if (x + intel_crtc->cursor_width < 0)
  5375. base = 0;
  5376. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5377. x = -x;
  5378. }
  5379. pos |= x << CURSOR_X_SHIFT;
  5380. if (y < 0) {
  5381. if (y + intel_crtc->cursor_height < 0)
  5382. base = 0;
  5383. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5384. y = -y;
  5385. }
  5386. pos |= y << CURSOR_Y_SHIFT;
  5387. visible = base != 0;
  5388. if (!visible && !intel_crtc->cursor_visible)
  5389. return;
  5390. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5391. I915_WRITE(CURPOS_IVB(pipe), pos);
  5392. ivb_update_cursor(crtc, base);
  5393. } else {
  5394. I915_WRITE(CURPOS(pipe), pos);
  5395. if (IS_845G(dev) || IS_I865G(dev))
  5396. i845_update_cursor(crtc, base);
  5397. else
  5398. i9xx_update_cursor(crtc, base);
  5399. }
  5400. }
  5401. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5402. struct drm_file *file,
  5403. uint32_t handle,
  5404. uint32_t width, uint32_t height)
  5405. {
  5406. struct drm_device *dev = crtc->dev;
  5407. struct drm_i915_private *dev_priv = dev->dev_private;
  5408. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5409. struct drm_i915_gem_object *obj;
  5410. uint32_t addr;
  5411. int ret;
  5412. /* if we want to turn off the cursor ignore width and height */
  5413. if (!handle) {
  5414. DRM_DEBUG_KMS("cursor off\n");
  5415. addr = 0;
  5416. obj = NULL;
  5417. mutex_lock(&dev->struct_mutex);
  5418. goto finish;
  5419. }
  5420. /* Currently we only support 64x64 cursors */
  5421. if (width != 64 || height != 64) {
  5422. DRM_ERROR("we currently only support 64x64 cursors\n");
  5423. return -EINVAL;
  5424. }
  5425. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5426. if (&obj->base == NULL)
  5427. return -ENOENT;
  5428. if (obj->base.size < width * height * 4) {
  5429. DRM_ERROR("buffer is to small\n");
  5430. ret = -ENOMEM;
  5431. goto fail;
  5432. }
  5433. /* we only need to pin inside GTT if cursor is non-phy */
  5434. mutex_lock(&dev->struct_mutex);
  5435. if (!dev_priv->info->cursor_needs_physical) {
  5436. unsigned alignment;
  5437. if (obj->tiling_mode) {
  5438. DRM_ERROR("cursor cannot be tiled\n");
  5439. ret = -EINVAL;
  5440. goto fail_locked;
  5441. }
  5442. /* Note that the w/a also requires 2 PTE of padding following
  5443. * the bo. We currently fill all unused PTE with the shadow
  5444. * page and so we should always have valid PTE following the
  5445. * cursor preventing the VT-d warning.
  5446. */
  5447. alignment = 0;
  5448. if (need_vtd_wa(dev))
  5449. alignment = 64*1024;
  5450. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5451. if (ret) {
  5452. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5453. goto fail_locked;
  5454. }
  5455. ret = i915_gem_object_put_fence(obj);
  5456. if (ret) {
  5457. DRM_ERROR("failed to release fence for cursor");
  5458. goto fail_unpin;
  5459. }
  5460. addr = obj->gtt_offset;
  5461. } else {
  5462. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5463. ret = i915_gem_attach_phys_object(dev, obj,
  5464. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5465. align);
  5466. if (ret) {
  5467. DRM_ERROR("failed to attach phys object\n");
  5468. goto fail_locked;
  5469. }
  5470. addr = obj->phys_obj->handle->busaddr;
  5471. }
  5472. if (IS_GEN2(dev))
  5473. I915_WRITE(CURSIZE, (height << 12) | width);
  5474. finish:
  5475. if (intel_crtc->cursor_bo) {
  5476. if (dev_priv->info->cursor_needs_physical) {
  5477. if (intel_crtc->cursor_bo != obj)
  5478. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5479. } else
  5480. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5481. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5482. }
  5483. mutex_unlock(&dev->struct_mutex);
  5484. intel_crtc->cursor_addr = addr;
  5485. intel_crtc->cursor_bo = obj;
  5486. intel_crtc->cursor_width = width;
  5487. intel_crtc->cursor_height = height;
  5488. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5489. return 0;
  5490. fail_unpin:
  5491. i915_gem_object_unpin(obj);
  5492. fail_locked:
  5493. mutex_unlock(&dev->struct_mutex);
  5494. fail:
  5495. drm_gem_object_unreference_unlocked(&obj->base);
  5496. return ret;
  5497. }
  5498. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5499. {
  5500. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5501. intel_crtc->cursor_x = x;
  5502. intel_crtc->cursor_y = y;
  5503. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5504. return 0;
  5505. }
  5506. /** Sets the color ramps on behalf of RandR */
  5507. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5508. u16 blue, int regno)
  5509. {
  5510. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5511. intel_crtc->lut_r[regno] = red >> 8;
  5512. intel_crtc->lut_g[regno] = green >> 8;
  5513. intel_crtc->lut_b[regno] = blue >> 8;
  5514. }
  5515. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5516. u16 *blue, int regno)
  5517. {
  5518. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5519. *red = intel_crtc->lut_r[regno] << 8;
  5520. *green = intel_crtc->lut_g[regno] << 8;
  5521. *blue = intel_crtc->lut_b[regno] << 8;
  5522. }
  5523. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5524. u16 *blue, uint32_t start, uint32_t size)
  5525. {
  5526. int end = (start + size > 256) ? 256 : start + size, i;
  5527. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5528. for (i = start; i < end; i++) {
  5529. intel_crtc->lut_r[i] = red[i] >> 8;
  5530. intel_crtc->lut_g[i] = green[i] >> 8;
  5531. intel_crtc->lut_b[i] = blue[i] >> 8;
  5532. }
  5533. intel_crtc_load_lut(crtc);
  5534. }
  5535. /* VESA 640x480x72Hz mode to set on the pipe */
  5536. static struct drm_display_mode load_detect_mode = {
  5537. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5538. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5539. };
  5540. static struct drm_framebuffer *
  5541. intel_framebuffer_create(struct drm_device *dev,
  5542. struct drm_mode_fb_cmd2 *mode_cmd,
  5543. struct drm_i915_gem_object *obj)
  5544. {
  5545. struct intel_framebuffer *intel_fb;
  5546. int ret;
  5547. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5548. if (!intel_fb) {
  5549. drm_gem_object_unreference_unlocked(&obj->base);
  5550. return ERR_PTR(-ENOMEM);
  5551. }
  5552. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5553. if (ret) {
  5554. drm_gem_object_unreference_unlocked(&obj->base);
  5555. kfree(intel_fb);
  5556. return ERR_PTR(ret);
  5557. }
  5558. return &intel_fb->base;
  5559. }
  5560. static u32
  5561. intel_framebuffer_pitch_for_width(int width, int bpp)
  5562. {
  5563. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5564. return ALIGN(pitch, 64);
  5565. }
  5566. static u32
  5567. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5568. {
  5569. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5570. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5571. }
  5572. static struct drm_framebuffer *
  5573. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5574. struct drm_display_mode *mode,
  5575. int depth, int bpp)
  5576. {
  5577. struct drm_i915_gem_object *obj;
  5578. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5579. obj = i915_gem_alloc_object(dev,
  5580. intel_framebuffer_size_for_mode(mode, bpp));
  5581. if (obj == NULL)
  5582. return ERR_PTR(-ENOMEM);
  5583. mode_cmd.width = mode->hdisplay;
  5584. mode_cmd.height = mode->vdisplay;
  5585. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5586. bpp);
  5587. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5588. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5589. }
  5590. static struct drm_framebuffer *
  5591. mode_fits_in_fbdev(struct drm_device *dev,
  5592. struct drm_display_mode *mode)
  5593. {
  5594. struct drm_i915_private *dev_priv = dev->dev_private;
  5595. struct drm_i915_gem_object *obj;
  5596. struct drm_framebuffer *fb;
  5597. if (dev_priv->fbdev == NULL)
  5598. return NULL;
  5599. obj = dev_priv->fbdev->ifb.obj;
  5600. if (obj == NULL)
  5601. return NULL;
  5602. fb = &dev_priv->fbdev->ifb.base;
  5603. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5604. fb->bits_per_pixel))
  5605. return NULL;
  5606. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5607. return NULL;
  5608. return fb;
  5609. }
  5610. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5611. struct drm_display_mode *mode,
  5612. struct intel_load_detect_pipe *old)
  5613. {
  5614. struct intel_crtc *intel_crtc;
  5615. struct intel_encoder *intel_encoder =
  5616. intel_attached_encoder(connector);
  5617. struct drm_crtc *possible_crtc;
  5618. struct drm_encoder *encoder = &intel_encoder->base;
  5619. struct drm_crtc *crtc = NULL;
  5620. struct drm_device *dev = encoder->dev;
  5621. struct drm_framebuffer *fb;
  5622. int i = -1;
  5623. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5624. connector->base.id, drm_get_connector_name(connector),
  5625. encoder->base.id, drm_get_encoder_name(encoder));
  5626. /*
  5627. * Algorithm gets a little messy:
  5628. *
  5629. * - if the connector already has an assigned crtc, use it (but make
  5630. * sure it's on first)
  5631. *
  5632. * - try to find the first unused crtc that can drive this connector,
  5633. * and use that if we find one
  5634. */
  5635. /* See if we already have a CRTC for this connector */
  5636. if (encoder->crtc) {
  5637. crtc = encoder->crtc;
  5638. mutex_lock(&crtc->mutex);
  5639. old->dpms_mode = connector->dpms;
  5640. old->load_detect_temp = false;
  5641. /* Make sure the crtc and connector are running */
  5642. if (connector->dpms != DRM_MODE_DPMS_ON)
  5643. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5644. return true;
  5645. }
  5646. /* Find an unused one (if possible) */
  5647. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5648. i++;
  5649. if (!(encoder->possible_crtcs & (1 << i)))
  5650. continue;
  5651. if (!possible_crtc->enabled) {
  5652. crtc = possible_crtc;
  5653. break;
  5654. }
  5655. }
  5656. /*
  5657. * If we didn't find an unused CRTC, don't use any.
  5658. */
  5659. if (!crtc) {
  5660. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5661. return false;
  5662. }
  5663. mutex_lock(&crtc->mutex);
  5664. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5665. to_intel_connector(connector)->new_encoder = intel_encoder;
  5666. intel_crtc = to_intel_crtc(crtc);
  5667. old->dpms_mode = connector->dpms;
  5668. old->load_detect_temp = true;
  5669. old->release_fb = NULL;
  5670. if (!mode)
  5671. mode = &load_detect_mode;
  5672. /* We need a framebuffer large enough to accommodate all accesses
  5673. * that the plane may generate whilst we perform load detection.
  5674. * We can not rely on the fbcon either being present (we get called
  5675. * during its initialisation to detect all boot displays, or it may
  5676. * not even exist) or that it is large enough to satisfy the
  5677. * requested mode.
  5678. */
  5679. fb = mode_fits_in_fbdev(dev, mode);
  5680. if (fb == NULL) {
  5681. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5682. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5683. old->release_fb = fb;
  5684. } else
  5685. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5686. if (IS_ERR(fb)) {
  5687. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5688. mutex_unlock(&crtc->mutex);
  5689. return false;
  5690. }
  5691. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  5692. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5693. if (old->release_fb)
  5694. old->release_fb->funcs->destroy(old->release_fb);
  5695. mutex_unlock(&crtc->mutex);
  5696. return false;
  5697. }
  5698. /* let the connector get through one full cycle before testing */
  5699. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5700. return true;
  5701. }
  5702. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5703. struct intel_load_detect_pipe *old)
  5704. {
  5705. struct intel_encoder *intel_encoder =
  5706. intel_attached_encoder(connector);
  5707. struct drm_encoder *encoder = &intel_encoder->base;
  5708. struct drm_crtc *crtc = encoder->crtc;
  5709. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5710. connector->base.id, drm_get_connector_name(connector),
  5711. encoder->base.id, drm_get_encoder_name(encoder));
  5712. if (old->load_detect_temp) {
  5713. to_intel_connector(connector)->new_encoder = NULL;
  5714. intel_encoder->new_crtc = NULL;
  5715. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5716. if (old->release_fb) {
  5717. drm_framebuffer_unregister_private(old->release_fb);
  5718. drm_framebuffer_unreference(old->release_fb);
  5719. }
  5720. mutex_unlock(&crtc->mutex);
  5721. return;
  5722. }
  5723. /* Switch crtc and encoder back off if necessary */
  5724. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5725. connector->funcs->dpms(connector, old->dpms_mode);
  5726. mutex_unlock(&crtc->mutex);
  5727. }
  5728. /* Returns the clock of the currently programmed mode of the given pipe. */
  5729. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5730. {
  5731. struct drm_i915_private *dev_priv = dev->dev_private;
  5732. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5733. int pipe = intel_crtc->pipe;
  5734. u32 dpll = I915_READ(DPLL(pipe));
  5735. u32 fp;
  5736. intel_clock_t clock;
  5737. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5738. fp = I915_READ(FP0(pipe));
  5739. else
  5740. fp = I915_READ(FP1(pipe));
  5741. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5742. if (IS_PINEVIEW(dev)) {
  5743. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5744. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5745. } else {
  5746. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5747. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5748. }
  5749. if (!IS_GEN2(dev)) {
  5750. if (IS_PINEVIEW(dev))
  5751. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5752. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5753. else
  5754. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5755. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5756. switch (dpll & DPLL_MODE_MASK) {
  5757. case DPLLB_MODE_DAC_SERIAL:
  5758. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5759. 5 : 10;
  5760. break;
  5761. case DPLLB_MODE_LVDS:
  5762. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5763. 7 : 14;
  5764. break;
  5765. default:
  5766. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5767. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5768. return 0;
  5769. }
  5770. if (IS_PINEVIEW(dev))
  5771. pineview_clock(96000, &clock);
  5772. else
  5773. i9xx_clock(96000, &clock);
  5774. } else {
  5775. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5776. if (is_lvds) {
  5777. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5778. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5779. clock.p2 = 14;
  5780. if ((dpll & PLL_REF_INPUT_MASK) ==
  5781. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5782. /* XXX: might not be 66MHz */
  5783. i9xx_clock(66000, &clock);
  5784. } else
  5785. i9xx_clock(48000, &clock);
  5786. } else {
  5787. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5788. clock.p1 = 2;
  5789. else {
  5790. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5791. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5792. }
  5793. if (dpll & PLL_P2_DIVIDE_BY_4)
  5794. clock.p2 = 4;
  5795. else
  5796. clock.p2 = 2;
  5797. i9xx_clock(48000, &clock);
  5798. }
  5799. }
  5800. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5801. * i830PllIsValid() because it relies on the xf86_config connector
  5802. * configuration being accurate, which it isn't necessarily.
  5803. */
  5804. return clock.dot;
  5805. }
  5806. /** Returns the currently programmed mode of the given pipe. */
  5807. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5808. struct drm_crtc *crtc)
  5809. {
  5810. struct drm_i915_private *dev_priv = dev->dev_private;
  5811. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5812. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  5813. struct drm_display_mode *mode;
  5814. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5815. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5816. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5817. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5818. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5819. if (!mode)
  5820. return NULL;
  5821. mode->clock = intel_crtc_clock_get(dev, crtc);
  5822. mode->hdisplay = (htot & 0xffff) + 1;
  5823. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5824. mode->hsync_start = (hsync & 0xffff) + 1;
  5825. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5826. mode->vdisplay = (vtot & 0xffff) + 1;
  5827. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5828. mode->vsync_start = (vsync & 0xffff) + 1;
  5829. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5830. drm_mode_set_name(mode);
  5831. return mode;
  5832. }
  5833. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5834. {
  5835. struct drm_device *dev = crtc->dev;
  5836. drm_i915_private_t *dev_priv = dev->dev_private;
  5837. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5838. int pipe = intel_crtc->pipe;
  5839. int dpll_reg = DPLL(pipe);
  5840. int dpll;
  5841. if (HAS_PCH_SPLIT(dev))
  5842. return;
  5843. if (!dev_priv->lvds_downclock_avail)
  5844. return;
  5845. dpll = I915_READ(dpll_reg);
  5846. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5847. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5848. assert_panel_unlocked(dev_priv, pipe);
  5849. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5850. I915_WRITE(dpll_reg, dpll);
  5851. intel_wait_for_vblank(dev, pipe);
  5852. dpll = I915_READ(dpll_reg);
  5853. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5854. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5855. }
  5856. }
  5857. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5858. {
  5859. struct drm_device *dev = crtc->dev;
  5860. drm_i915_private_t *dev_priv = dev->dev_private;
  5861. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5862. if (HAS_PCH_SPLIT(dev))
  5863. return;
  5864. if (!dev_priv->lvds_downclock_avail)
  5865. return;
  5866. /*
  5867. * Since this is called by a timer, we should never get here in
  5868. * the manual case.
  5869. */
  5870. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5871. int pipe = intel_crtc->pipe;
  5872. int dpll_reg = DPLL(pipe);
  5873. int dpll;
  5874. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5875. assert_panel_unlocked(dev_priv, pipe);
  5876. dpll = I915_READ(dpll_reg);
  5877. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5878. I915_WRITE(dpll_reg, dpll);
  5879. intel_wait_for_vblank(dev, pipe);
  5880. dpll = I915_READ(dpll_reg);
  5881. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5882. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5883. }
  5884. }
  5885. void intel_mark_busy(struct drm_device *dev)
  5886. {
  5887. i915_update_gfx_val(dev->dev_private);
  5888. }
  5889. void intel_mark_idle(struct drm_device *dev)
  5890. {
  5891. struct drm_crtc *crtc;
  5892. if (!i915_powersave)
  5893. return;
  5894. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5895. if (!crtc->fb)
  5896. continue;
  5897. intel_decrease_pllclock(crtc);
  5898. }
  5899. }
  5900. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  5901. struct intel_ring_buffer *ring)
  5902. {
  5903. struct drm_device *dev = obj->base.dev;
  5904. struct drm_crtc *crtc;
  5905. if (!i915_powersave)
  5906. return;
  5907. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5908. if (!crtc->fb)
  5909. continue;
  5910. if (to_intel_framebuffer(crtc->fb)->obj != obj)
  5911. continue;
  5912. intel_increase_pllclock(crtc);
  5913. if (ring && intel_fbc_enabled(dev))
  5914. ring->fbc_dirty = true;
  5915. }
  5916. }
  5917. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5918. {
  5919. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5920. struct drm_device *dev = crtc->dev;
  5921. struct intel_unpin_work *work;
  5922. unsigned long flags;
  5923. spin_lock_irqsave(&dev->event_lock, flags);
  5924. work = intel_crtc->unpin_work;
  5925. intel_crtc->unpin_work = NULL;
  5926. spin_unlock_irqrestore(&dev->event_lock, flags);
  5927. if (work) {
  5928. cancel_work_sync(&work->work);
  5929. kfree(work);
  5930. }
  5931. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  5932. drm_crtc_cleanup(crtc);
  5933. kfree(intel_crtc);
  5934. }
  5935. static void intel_unpin_work_fn(struct work_struct *__work)
  5936. {
  5937. struct intel_unpin_work *work =
  5938. container_of(__work, struct intel_unpin_work, work);
  5939. struct drm_device *dev = work->crtc->dev;
  5940. mutex_lock(&dev->struct_mutex);
  5941. intel_unpin_fb_obj(work->old_fb_obj);
  5942. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5943. drm_gem_object_unreference(&work->old_fb_obj->base);
  5944. intel_update_fbc(dev);
  5945. mutex_unlock(&dev->struct_mutex);
  5946. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  5947. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  5948. kfree(work);
  5949. }
  5950. static void do_intel_finish_page_flip(struct drm_device *dev,
  5951. struct drm_crtc *crtc)
  5952. {
  5953. drm_i915_private_t *dev_priv = dev->dev_private;
  5954. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5955. struct intel_unpin_work *work;
  5956. unsigned long flags;
  5957. /* Ignore early vblank irqs */
  5958. if (intel_crtc == NULL)
  5959. return;
  5960. spin_lock_irqsave(&dev->event_lock, flags);
  5961. work = intel_crtc->unpin_work;
  5962. /* Ensure we don't miss a work->pending update ... */
  5963. smp_rmb();
  5964. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  5965. spin_unlock_irqrestore(&dev->event_lock, flags);
  5966. return;
  5967. }
  5968. /* and that the unpin work is consistent wrt ->pending. */
  5969. smp_rmb();
  5970. intel_crtc->unpin_work = NULL;
  5971. if (work->event)
  5972. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  5973. drm_vblank_put(dev, intel_crtc->pipe);
  5974. spin_unlock_irqrestore(&dev->event_lock, flags);
  5975. wake_up_all(&dev_priv->pending_flip_queue);
  5976. queue_work(dev_priv->wq, &work->work);
  5977. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  5978. }
  5979. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  5980. {
  5981. drm_i915_private_t *dev_priv = dev->dev_private;
  5982. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  5983. do_intel_finish_page_flip(dev, crtc);
  5984. }
  5985. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  5986. {
  5987. drm_i915_private_t *dev_priv = dev->dev_private;
  5988. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  5989. do_intel_finish_page_flip(dev, crtc);
  5990. }
  5991. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  5992. {
  5993. drm_i915_private_t *dev_priv = dev->dev_private;
  5994. struct intel_crtc *intel_crtc =
  5995. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  5996. unsigned long flags;
  5997. /* NB: An MMIO update of the plane base pointer will also
  5998. * generate a page-flip completion irq, i.e. every modeset
  5999. * is also accompanied by a spurious intel_prepare_page_flip().
  6000. */
  6001. spin_lock_irqsave(&dev->event_lock, flags);
  6002. if (intel_crtc->unpin_work)
  6003. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6004. spin_unlock_irqrestore(&dev->event_lock, flags);
  6005. }
  6006. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6007. {
  6008. /* Ensure that the work item is consistent when activating it ... */
  6009. smp_wmb();
  6010. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6011. /* and that it is marked active as soon as the irq could fire. */
  6012. smp_wmb();
  6013. }
  6014. static int intel_gen2_queue_flip(struct drm_device *dev,
  6015. struct drm_crtc *crtc,
  6016. struct drm_framebuffer *fb,
  6017. struct drm_i915_gem_object *obj)
  6018. {
  6019. struct drm_i915_private *dev_priv = dev->dev_private;
  6020. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6021. u32 flip_mask;
  6022. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6023. int ret;
  6024. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6025. if (ret)
  6026. goto err;
  6027. ret = intel_ring_begin(ring, 6);
  6028. if (ret)
  6029. goto err_unpin;
  6030. /* Can't queue multiple flips, so wait for the previous
  6031. * one to finish before executing the next.
  6032. */
  6033. if (intel_crtc->plane)
  6034. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6035. else
  6036. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6037. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6038. intel_ring_emit(ring, MI_NOOP);
  6039. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6040. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6041. intel_ring_emit(ring, fb->pitches[0]);
  6042. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6043. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6044. intel_mark_page_flip_active(intel_crtc);
  6045. intel_ring_advance(ring);
  6046. return 0;
  6047. err_unpin:
  6048. intel_unpin_fb_obj(obj);
  6049. err:
  6050. return ret;
  6051. }
  6052. static int intel_gen3_queue_flip(struct drm_device *dev,
  6053. struct drm_crtc *crtc,
  6054. struct drm_framebuffer *fb,
  6055. struct drm_i915_gem_object *obj)
  6056. {
  6057. struct drm_i915_private *dev_priv = dev->dev_private;
  6058. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6059. u32 flip_mask;
  6060. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6061. int ret;
  6062. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6063. if (ret)
  6064. goto err;
  6065. ret = intel_ring_begin(ring, 6);
  6066. if (ret)
  6067. goto err_unpin;
  6068. if (intel_crtc->plane)
  6069. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6070. else
  6071. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6072. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6073. intel_ring_emit(ring, MI_NOOP);
  6074. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6075. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6076. intel_ring_emit(ring, fb->pitches[0]);
  6077. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6078. intel_ring_emit(ring, MI_NOOP);
  6079. intel_mark_page_flip_active(intel_crtc);
  6080. intel_ring_advance(ring);
  6081. return 0;
  6082. err_unpin:
  6083. intel_unpin_fb_obj(obj);
  6084. err:
  6085. return ret;
  6086. }
  6087. static int intel_gen4_queue_flip(struct drm_device *dev,
  6088. struct drm_crtc *crtc,
  6089. struct drm_framebuffer *fb,
  6090. struct drm_i915_gem_object *obj)
  6091. {
  6092. struct drm_i915_private *dev_priv = dev->dev_private;
  6093. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6094. uint32_t pf, pipesrc;
  6095. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6096. int ret;
  6097. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6098. if (ret)
  6099. goto err;
  6100. ret = intel_ring_begin(ring, 4);
  6101. if (ret)
  6102. goto err_unpin;
  6103. /* i965+ uses the linear or tiled offsets from the
  6104. * Display Registers (which do not change across a page-flip)
  6105. * so we need only reprogram the base address.
  6106. */
  6107. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6108. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6109. intel_ring_emit(ring, fb->pitches[0]);
  6110. intel_ring_emit(ring,
  6111. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  6112. obj->tiling_mode);
  6113. /* XXX Enabling the panel-fitter across page-flip is so far
  6114. * untested on non-native modes, so ignore it for now.
  6115. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6116. */
  6117. pf = 0;
  6118. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6119. intel_ring_emit(ring, pf | pipesrc);
  6120. intel_mark_page_flip_active(intel_crtc);
  6121. intel_ring_advance(ring);
  6122. return 0;
  6123. err_unpin:
  6124. intel_unpin_fb_obj(obj);
  6125. err:
  6126. return ret;
  6127. }
  6128. static int intel_gen6_queue_flip(struct drm_device *dev,
  6129. struct drm_crtc *crtc,
  6130. struct drm_framebuffer *fb,
  6131. struct drm_i915_gem_object *obj)
  6132. {
  6133. struct drm_i915_private *dev_priv = dev->dev_private;
  6134. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6135. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6136. uint32_t pf, pipesrc;
  6137. int ret;
  6138. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6139. if (ret)
  6140. goto err;
  6141. ret = intel_ring_begin(ring, 4);
  6142. if (ret)
  6143. goto err_unpin;
  6144. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6145. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6146. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6147. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6148. /* Contrary to the suggestions in the documentation,
  6149. * "Enable Panel Fitter" does not seem to be required when page
  6150. * flipping with a non-native mode, and worse causes a normal
  6151. * modeset to fail.
  6152. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6153. */
  6154. pf = 0;
  6155. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6156. intel_ring_emit(ring, pf | pipesrc);
  6157. intel_mark_page_flip_active(intel_crtc);
  6158. intel_ring_advance(ring);
  6159. return 0;
  6160. err_unpin:
  6161. intel_unpin_fb_obj(obj);
  6162. err:
  6163. return ret;
  6164. }
  6165. /*
  6166. * On gen7 we currently use the blit ring because (in early silicon at least)
  6167. * the render ring doesn't give us interrpts for page flip completion, which
  6168. * means clients will hang after the first flip is queued. Fortunately the
  6169. * blit ring generates interrupts properly, so use it instead.
  6170. */
  6171. static int intel_gen7_queue_flip(struct drm_device *dev,
  6172. struct drm_crtc *crtc,
  6173. struct drm_framebuffer *fb,
  6174. struct drm_i915_gem_object *obj)
  6175. {
  6176. struct drm_i915_private *dev_priv = dev->dev_private;
  6177. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6178. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6179. uint32_t plane_bit = 0;
  6180. int ret;
  6181. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6182. if (ret)
  6183. goto err;
  6184. switch(intel_crtc->plane) {
  6185. case PLANE_A:
  6186. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6187. break;
  6188. case PLANE_B:
  6189. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6190. break;
  6191. case PLANE_C:
  6192. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6193. break;
  6194. default:
  6195. WARN_ONCE(1, "unknown plane in flip command\n");
  6196. ret = -ENODEV;
  6197. goto err_unpin;
  6198. }
  6199. ret = intel_ring_begin(ring, 4);
  6200. if (ret)
  6201. goto err_unpin;
  6202. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6203. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6204. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6205. intel_ring_emit(ring, (MI_NOOP));
  6206. intel_mark_page_flip_active(intel_crtc);
  6207. intel_ring_advance(ring);
  6208. return 0;
  6209. err_unpin:
  6210. intel_unpin_fb_obj(obj);
  6211. err:
  6212. return ret;
  6213. }
  6214. static int intel_default_queue_flip(struct drm_device *dev,
  6215. struct drm_crtc *crtc,
  6216. struct drm_framebuffer *fb,
  6217. struct drm_i915_gem_object *obj)
  6218. {
  6219. return -ENODEV;
  6220. }
  6221. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6222. struct drm_framebuffer *fb,
  6223. struct drm_pending_vblank_event *event)
  6224. {
  6225. struct drm_device *dev = crtc->dev;
  6226. struct drm_i915_private *dev_priv = dev->dev_private;
  6227. struct drm_framebuffer *old_fb = crtc->fb;
  6228. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6229. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6230. struct intel_unpin_work *work;
  6231. unsigned long flags;
  6232. int ret;
  6233. /* Can't change pixel format via MI display flips. */
  6234. if (fb->pixel_format != crtc->fb->pixel_format)
  6235. return -EINVAL;
  6236. /*
  6237. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6238. * Note that pitch changes could also affect these register.
  6239. */
  6240. if (INTEL_INFO(dev)->gen > 3 &&
  6241. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6242. fb->pitches[0] != crtc->fb->pitches[0]))
  6243. return -EINVAL;
  6244. work = kzalloc(sizeof *work, GFP_KERNEL);
  6245. if (work == NULL)
  6246. return -ENOMEM;
  6247. work->event = event;
  6248. work->crtc = crtc;
  6249. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6250. INIT_WORK(&work->work, intel_unpin_work_fn);
  6251. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6252. if (ret)
  6253. goto free_work;
  6254. /* We borrow the event spin lock for protecting unpin_work */
  6255. spin_lock_irqsave(&dev->event_lock, flags);
  6256. if (intel_crtc->unpin_work) {
  6257. spin_unlock_irqrestore(&dev->event_lock, flags);
  6258. kfree(work);
  6259. drm_vblank_put(dev, intel_crtc->pipe);
  6260. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6261. return -EBUSY;
  6262. }
  6263. intel_crtc->unpin_work = work;
  6264. spin_unlock_irqrestore(&dev->event_lock, flags);
  6265. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6266. flush_workqueue(dev_priv->wq);
  6267. ret = i915_mutex_lock_interruptible(dev);
  6268. if (ret)
  6269. goto cleanup;
  6270. /* Reference the objects for the scheduled work. */
  6271. drm_gem_object_reference(&work->old_fb_obj->base);
  6272. drm_gem_object_reference(&obj->base);
  6273. crtc->fb = fb;
  6274. work->pending_flip_obj = obj;
  6275. work->enable_stall_check = true;
  6276. atomic_inc(&intel_crtc->unpin_work_count);
  6277. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6278. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6279. if (ret)
  6280. goto cleanup_pending;
  6281. intel_disable_fbc(dev);
  6282. intel_mark_fb_busy(obj, NULL);
  6283. mutex_unlock(&dev->struct_mutex);
  6284. trace_i915_flip_request(intel_crtc->plane, obj);
  6285. return 0;
  6286. cleanup_pending:
  6287. atomic_dec(&intel_crtc->unpin_work_count);
  6288. crtc->fb = old_fb;
  6289. drm_gem_object_unreference(&work->old_fb_obj->base);
  6290. drm_gem_object_unreference(&obj->base);
  6291. mutex_unlock(&dev->struct_mutex);
  6292. cleanup:
  6293. spin_lock_irqsave(&dev->event_lock, flags);
  6294. intel_crtc->unpin_work = NULL;
  6295. spin_unlock_irqrestore(&dev->event_lock, flags);
  6296. drm_vblank_put(dev, intel_crtc->pipe);
  6297. free_work:
  6298. kfree(work);
  6299. return ret;
  6300. }
  6301. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6302. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6303. .load_lut = intel_crtc_load_lut,
  6304. };
  6305. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6306. struct drm_crtc *crtc)
  6307. {
  6308. struct drm_device *dev;
  6309. struct drm_crtc *tmp;
  6310. int crtc_mask = 1;
  6311. WARN(!crtc, "checking null crtc?\n");
  6312. dev = crtc->dev;
  6313. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6314. if (tmp == crtc)
  6315. break;
  6316. crtc_mask <<= 1;
  6317. }
  6318. if (encoder->possible_crtcs & crtc_mask)
  6319. return true;
  6320. return false;
  6321. }
  6322. /**
  6323. * intel_modeset_update_staged_output_state
  6324. *
  6325. * Updates the staged output configuration state, e.g. after we've read out the
  6326. * current hw state.
  6327. */
  6328. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6329. {
  6330. struct intel_encoder *encoder;
  6331. struct intel_connector *connector;
  6332. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6333. base.head) {
  6334. connector->new_encoder =
  6335. to_intel_encoder(connector->base.encoder);
  6336. }
  6337. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6338. base.head) {
  6339. encoder->new_crtc =
  6340. to_intel_crtc(encoder->base.crtc);
  6341. }
  6342. }
  6343. /**
  6344. * intel_modeset_commit_output_state
  6345. *
  6346. * This function copies the stage display pipe configuration to the real one.
  6347. */
  6348. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6349. {
  6350. struct intel_encoder *encoder;
  6351. struct intel_connector *connector;
  6352. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6353. base.head) {
  6354. connector->base.encoder = &connector->new_encoder->base;
  6355. }
  6356. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6357. base.head) {
  6358. encoder->base.crtc = &encoder->new_crtc->base;
  6359. }
  6360. }
  6361. static void
  6362. connected_sink_compute_bpp(struct intel_connector * connector,
  6363. struct intel_crtc_config *pipe_config)
  6364. {
  6365. int bpp = pipe_config->pipe_bpp;
  6366. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6367. connector->base.base.id,
  6368. drm_get_connector_name(&connector->base));
  6369. /* Don't use an invalid EDID bpc value */
  6370. if (connector->base.display_info.bpc &&
  6371. connector->base.display_info.bpc * 3 < bpp) {
  6372. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6373. bpp, connector->base.display_info.bpc*3);
  6374. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6375. }
  6376. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6377. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6378. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6379. bpp);
  6380. pipe_config->pipe_bpp = 24;
  6381. }
  6382. }
  6383. static int
  6384. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6385. struct drm_framebuffer *fb,
  6386. struct intel_crtc_config *pipe_config)
  6387. {
  6388. struct drm_device *dev = crtc->base.dev;
  6389. struct intel_connector *connector;
  6390. int bpp;
  6391. switch (fb->pixel_format) {
  6392. case DRM_FORMAT_C8:
  6393. bpp = 8*3; /* since we go through a colormap */
  6394. break;
  6395. case DRM_FORMAT_XRGB1555:
  6396. case DRM_FORMAT_ARGB1555:
  6397. /* checked in intel_framebuffer_init already */
  6398. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6399. return -EINVAL;
  6400. case DRM_FORMAT_RGB565:
  6401. bpp = 6*3; /* min is 18bpp */
  6402. break;
  6403. case DRM_FORMAT_XBGR8888:
  6404. case DRM_FORMAT_ABGR8888:
  6405. /* checked in intel_framebuffer_init already */
  6406. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6407. return -EINVAL;
  6408. case DRM_FORMAT_XRGB8888:
  6409. case DRM_FORMAT_ARGB8888:
  6410. bpp = 8*3;
  6411. break;
  6412. case DRM_FORMAT_XRGB2101010:
  6413. case DRM_FORMAT_ARGB2101010:
  6414. case DRM_FORMAT_XBGR2101010:
  6415. case DRM_FORMAT_ABGR2101010:
  6416. /* checked in intel_framebuffer_init already */
  6417. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6418. return -EINVAL;
  6419. bpp = 10*3;
  6420. break;
  6421. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6422. default:
  6423. DRM_DEBUG_KMS("unsupported depth\n");
  6424. return -EINVAL;
  6425. }
  6426. pipe_config->pipe_bpp = bpp;
  6427. /* Clamp display bpp to EDID value */
  6428. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6429. base.head) {
  6430. if (!connector->new_encoder ||
  6431. connector->new_encoder->new_crtc != crtc)
  6432. continue;
  6433. connected_sink_compute_bpp(connector, pipe_config);
  6434. }
  6435. return bpp;
  6436. }
  6437. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6438. struct intel_crtc_config *pipe_config,
  6439. const char *context)
  6440. {
  6441. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6442. context, pipe_name(crtc->pipe));
  6443. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6444. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6445. pipe_config->pipe_bpp, pipe_config->dither);
  6446. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6447. pipe_config->has_pch_encoder,
  6448. pipe_config->fdi_lanes,
  6449. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6450. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6451. pipe_config->fdi_m_n.tu);
  6452. DRM_DEBUG_KMS("requested mode:\n");
  6453. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6454. DRM_DEBUG_KMS("adjusted mode:\n");
  6455. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6456. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6457. pipe_config->gmch_pfit.control,
  6458. pipe_config->gmch_pfit.pgm_ratios,
  6459. pipe_config->gmch_pfit.lvds_border_bits);
  6460. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
  6461. pipe_config->pch_pfit.pos,
  6462. pipe_config->pch_pfit.size);
  6463. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  6464. }
  6465. static bool check_encoder_cloning(struct drm_crtc *crtc)
  6466. {
  6467. int num_encoders = 0;
  6468. bool uncloneable_encoders = false;
  6469. struct intel_encoder *encoder;
  6470. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  6471. base.head) {
  6472. if (&encoder->new_crtc->base != crtc)
  6473. continue;
  6474. num_encoders++;
  6475. if (!encoder->cloneable)
  6476. uncloneable_encoders = true;
  6477. }
  6478. return !(num_encoders > 1 && uncloneable_encoders);
  6479. }
  6480. static struct intel_crtc_config *
  6481. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6482. struct drm_framebuffer *fb,
  6483. struct drm_display_mode *mode)
  6484. {
  6485. struct drm_device *dev = crtc->dev;
  6486. struct drm_encoder_helper_funcs *encoder_funcs;
  6487. struct intel_encoder *encoder;
  6488. struct intel_crtc_config *pipe_config;
  6489. int plane_bpp, ret = -EINVAL;
  6490. bool retry = true;
  6491. if (!check_encoder_cloning(crtc)) {
  6492. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  6493. return ERR_PTR(-EINVAL);
  6494. }
  6495. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6496. if (!pipe_config)
  6497. return ERR_PTR(-ENOMEM);
  6498. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6499. drm_mode_copy(&pipe_config->requested_mode, mode);
  6500. pipe_config->cpu_transcoder = to_intel_crtc(crtc)->pipe;
  6501. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  6502. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  6503. * plane pixel format and any sink constraints into account. Returns the
  6504. * source plane bpp so that dithering can be selected on mismatches
  6505. * after encoders and crtc also have had their say. */
  6506. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  6507. fb, pipe_config);
  6508. if (plane_bpp < 0)
  6509. goto fail;
  6510. encoder_retry:
  6511. /* Ensure the port clock defaults are reset when retrying. */
  6512. pipe_config->port_clock = 0;
  6513. pipe_config->pixel_multiplier = 1;
  6514. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6515. * adjust it according to limitations or connector properties, and also
  6516. * a chance to reject the mode entirely.
  6517. */
  6518. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6519. base.head) {
  6520. if (&encoder->new_crtc->base != crtc)
  6521. continue;
  6522. if (encoder->compute_config) {
  6523. if (!(encoder->compute_config(encoder, pipe_config))) {
  6524. DRM_DEBUG_KMS("Encoder config failure\n");
  6525. goto fail;
  6526. }
  6527. continue;
  6528. }
  6529. encoder_funcs = encoder->base.helper_private;
  6530. if (!(encoder_funcs->mode_fixup(&encoder->base,
  6531. &pipe_config->requested_mode,
  6532. &pipe_config->adjusted_mode))) {
  6533. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6534. goto fail;
  6535. }
  6536. }
  6537. /* Set default port clock if not overwritten by the encoder. Needs to be
  6538. * done afterwards in case the encoder adjusts the mode. */
  6539. if (!pipe_config->port_clock)
  6540. pipe_config->port_clock = pipe_config->adjusted_mode.clock;
  6541. ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  6542. if (ret < 0) {
  6543. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6544. goto fail;
  6545. }
  6546. if (ret == RETRY) {
  6547. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  6548. ret = -EINVAL;
  6549. goto fail;
  6550. }
  6551. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  6552. retry = false;
  6553. goto encoder_retry;
  6554. }
  6555. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6556. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6557. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6558. return pipe_config;
  6559. fail:
  6560. kfree(pipe_config);
  6561. return ERR_PTR(ret);
  6562. }
  6563. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6564. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6565. static void
  6566. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6567. unsigned *prepare_pipes, unsigned *disable_pipes)
  6568. {
  6569. struct intel_crtc *intel_crtc;
  6570. struct drm_device *dev = crtc->dev;
  6571. struct intel_encoder *encoder;
  6572. struct intel_connector *connector;
  6573. struct drm_crtc *tmp_crtc;
  6574. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6575. /* Check which crtcs have changed outputs connected to them, these need
  6576. * to be part of the prepare_pipes mask. We don't (yet) support global
  6577. * modeset across multiple crtcs, so modeset_pipes will only have one
  6578. * bit set at most. */
  6579. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6580. base.head) {
  6581. if (connector->base.encoder == &connector->new_encoder->base)
  6582. continue;
  6583. if (connector->base.encoder) {
  6584. tmp_crtc = connector->base.encoder->crtc;
  6585. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6586. }
  6587. if (connector->new_encoder)
  6588. *prepare_pipes |=
  6589. 1 << connector->new_encoder->new_crtc->pipe;
  6590. }
  6591. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6592. base.head) {
  6593. if (encoder->base.crtc == &encoder->new_crtc->base)
  6594. continue;
  6595. if (encoder->base.crtc) {
  6596. tmp_crtc = encoder->base.crtc;
  6597. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6598. }
  6599. if (encoder->new_crtc)
  6600. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6601. }
  6602. /* Check for any pipes that will be fully disabled ... */
  6603. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6604. base.head) {
  6605. bool used = false;
  6606. /* Don't try to disable disabled crtcs. */
  6607. if (!intel_crtc->base.enabled)
  6608. continue;
  6609. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6610. base.head) {
  6611. if (encoder->new_crtc == intel_crtc)
  6612. used = true;
  6613. }
  6614. if (!used)
  6615. *disable_pipes |= 1 << intel_crtc->pipe;
  6616. }
  6617. /* set_mode is also used to update properties on life display pipes. */
  6618. intel_crtc = to_intel_crtc(crtc);
  6619. if (crtc->enabled)
  6620. *prepare_pipes |= 1 << intel_crtc->pipe;
  6621. /*
  6622. * For simplicity do a full modeset on any pipe where the output routing
  6623. * changed. We could be more clever, but that would require us to be
  6624. * more careful with calling the relevant encoder->mode_set functions.
  6625. */
  6626. if (*prepare_pipes)
  6627. *modeset_pipes = *prepare_pipes;
  6628. /* ... and mask these out. */
  6629. *modeset_pipes &= ~(*disable_pipes);
  6630. *prepare_pipes &= ~(*disable_pipes);
  6631. /*
  6632. * HACK: We don't (yet) fully support global modesets. intel_set_config
  6633. * obies this rule, but the modeset restore mode of
  6634. * intel_modeset_setup_hw_state does not.
  6635. */
  6636. *modeset_pipes &= 1 << intel_crtc->pipe;
  6637. *prepare_pipes &= 1 << intel_crtc->pipe;
  6638. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6639. *modeset_pipes, *prepare_pipes, *disable_pipes);
  6640. }
  6641. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6642. {
  6643. struct drm_encoder *encoder;
  6644. struct drm_device *dev = crtc->dev;
  6645. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6646. if (encoder->crtc == crtc)
  6647. return true;
  6648. return false;
  6649. }
  6650. static void
  6651. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6652. {
  6653. struct intel_encoder *intel_encoder;
  6654. struct intel_crtc *intel_crtc;
  6655. struct drm_connector *connector;
  6656. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6657. base.head) {
  6658. if (!intel_encoder->base.crtc)
  6659. continue;
  6660. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6661. if (prepare_pipes & (1 << intel_crtc->pipe))
  6662. intel_encoder->connectors_active = false;
  6663. }
  6664. intel_modeset_commit_output_state(dev);
  6665. /* Update computed state. */
  6666. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6667. base.head) {
  6668. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6669. }
  6670. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6671. if (!connector->encoder || !connector->encoder->crtc)
  6672. continue;
  6673. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6674. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6675. struct drm_property *dpms_property =
  6676. dev->mode_config.dpms_property;
  6677. connector->dpms = DRM_MODE_DPMS_ON;
  6678. drm_object_property_set_value(&connector->base,
  6679. dpms_property,
  6680. DRM_MODE_DPMS_ON);
  6681. intel_encoder = to_intel_encoder(connector->encoder);
  6682. intel_encoder->connectors_active = true;
  6683. }
  6684. }
  6685. }
  6686. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6687. list_for_each_entry((intel_crtc), \
  6688. &(dev)->mode_config.crtc_list, \
  6689. base.head) \
  6690. if (mask & (1 <<(intel_crtc)->pipe))
  6691. static bool
  6692. intel_pipe_config_compare(struct drm_device *dev,
  6693. struct intel_crtc_config *current_config,
  6694. struct intel_crtc_config *pipe_config)
  6695. {
  6696. #define PIPE_CONF_CHECK_X(name) \
  6697. if (current_config->name != pipe_config->name) { \
  6698. DRM_ERROR("mismatch in " #name " " \
  6699. "(expected 0x%08x, found 0x%08x)\n", \
  6700. current_config->name, \
  6701. pipe_config->name); \
  6702. return false; \
  6703. }
  6704. #define PIPE_CONF_CHECK_I(name) \
  6705. if (current_config->name != pipe_config->name) { \
  6706. DRM_ERROR("mismatch in " #name " " \
  6707. "(expected %i, found %i)\n", \
  6708. current_config->name, \
  6709. pipe_config->name); \
  6710. return false; \
  6711. }
  6712. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  6713. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  6714. DRM_ERROR("mismatch in " #name " " \
  6715. "(expected %i, found %i)\n", \
  6716. current_config->name & (mask), \
  6717. pipe_config->name & (mask)); \
  6718. return false; \
  6719. }
  6720. #define PIPE_CONF_QUIRK(quirk) \
  6721. ((current_config->quirks | pipe_config->quirks) & (quirk))
  6722. PIPE_CONF_CHECK_I(cpu_transcoder);
  6723. PIPE_CONF_CHECK_I(has_pch_encoder);
  6724. PIPE_CONF_CHECK_I(fdi_lanes);
  6725. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  6726. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  6727. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  6728. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  6729. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  6730. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  6731. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  6732. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  6733. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  6734. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  6735. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  6736. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  6737. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  6738. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  6739. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  6740. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  6741. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  6742. if (!HAS_PCH_SPLIT(dev))
  6743. PIPE_CONF_CHECK_I(pixel_multiplier);
  6744. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6745. DRM_MODE_FLAG_INTERLACE);
  6746. if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  6747. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6748. DRM_MODE_FLAG_PHSYNC);
  6749. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6750. DRM_MODE_FLAG_NHSYNC);
  6751. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6752. DRM_MODE_FLAG_PVSYNC);
  6753. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6754. DRM_MODE_FLAG_NVSYNC);
  6755. }
  6756. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  6757. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  6758. PIPE_CONF_CHECK_I(gmch_pfit.control);
  6759. /* pfit ratios are autocomputed by the hw on gen4+ */
  6760. if (INTEL_INFO(dev)->gen < 4)
  6761. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  6762. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  6763. PIPE_CONF_CHECK_I(pch_pfit.pos);
  6764. PIPE_CONF_CHECK_I(pch_pfit.size);
  6765. PIPE_CONF_CHECK_I(ips_enabled);
  6766. PIPE_CONF_CHECK_I(shared_dpll);
  6767. PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  6768. PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  6769. PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  6770. PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  6771. #undef PIPE_CONF_CHECK_X
  6772. #undef PIPE_CONF_CHECK_I
  6773. #undef PIPE_CONF_CHECK_FLAGS
  6774. #undef PIPE_CONF_QUIRK
  6775. return true;
  6776. }
  6777. static void
  6778. check_connector_state(struct drm_device *dev)
  6779. {
  6780. struct intel_connector *connector;
  6781. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6782. base.head) {
  6783. /* This also checks the encoder/connector hw state with the
  6784. * ->get_hw_state callbacks. */
  6785. intel_connector_check_state(connector);
  6786. WARN(&connector->new_encoder->base != connector->base.encoder,
  6787. "connector's staged encoder doesn't match current encoder\n");
  6788. }
  6789. }
  6790. static void
  6791. check_encoder_state(struct drm_device *dev)
  6792. {
  6793. struct intel_encoder *encoder;
  6794. struct intel_connector *connector;
  6795. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6796. base.head) {
  6797. bool enabled = false;
  6798. bool active = false;
  6799. enum pipe pipe, tracked_pipe;
  6800. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6801. encoder->base.base.id,
  6802. drm_get_encoder_name(&encoder->base));
  6803. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6804. "encoder's stage crtc doesn't match current crtc\n");
  6805. WARN(encoder->connectors_active && !encoder->base.crtc,
  6806. "encoder's active_connectors set, but no crtc\n");
  6807. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6808. base.head) {
  6809. if (connector->base.encoder != &encoder->base)
  6810. continue;
  6811. enabled = true;
  6812. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6813. active = true;
  6814. }
  6815. WARN(!!encoder->base.crtc != enabled,
  6816. "encoder's enabled state mismatch "
  6817. "(expected %i, found %i)\n",
  6818. !!encoder->base.crtc, enabled);
  6819. WARN(active && !encoder->base.crtc,
  6820. "active encoder with no crtc\n");
  6821. WARN(encoder->connectors_active != active,
  6822. "encoder's computed active state doesn't match tracked active state "
  6823. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6824. active = encoder->get_hw_state(encoder, &pipe);
  6825. WARN(active != encoder->connectors_active,
  6826. "encoder's hw state doesn't match sw tracking "
  6827. "(expected %i, found %i)\n",
  6828. encoder->connectors_active, active);
  6829. if (!encoder->base.crtc)
  6830. continue;
  6831. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6832. WARN(active && pipe != tracked_pipe,
  6833. "active encoder's pipe doesn't match"
  6834. "(expected %i, found %i)\n",
  6835. tracked_pipe, pipe);
  6836. }
  6837. }
  6838. static void
  6839. check_crtc_state(struct drm_device *dev)
  6840. {
  6841. drm_i915_private_t *dev_priv = dev->dev_private;
  6842. struct intel_crtc *crtc;
  6843. struct intel_encoder *encoder;
  6844. struct intel_crtc_config pipe_config;
  6845. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6846. base.head) {
  6847. bool enabled = false;
  6848. bool active = false;
  6849. memset(&pipe_config, 0, sizeof(pipe_config));
  6850. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6851. crtc->base.base.id);
  6852. WARN(crtc->active && !crtc->base.enabled,
  6853. "active crtc, but not enabled in sw tracking\n");
  6854. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6855. base.head) {
  6856. if (encoder->base.crtc != &crtc->base)
  6857. continue;
  6858. enabled = true;
  6859. if (encoder->connectors_active)
  6860. active = true;
  6861. }
  6862. WARN(active != crtc->active,
  6863. "crtc's computed active state doesn't match tracked active state "
  6864. "(expected %i, found %i)\n", active, crtc->active);
  6865. WARN(enabled != crtc->base.enabled,
  6866. "crtc's computed enabled state doesn't match tracked enabled state "
  6867. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6868. active = dev_priv->display.get_pipe_config(crtc,
  6869. &pipe_config);
  6870. /* hw state is inconsistent with the pipe A quirk */
  6871. if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  6872. active = crtc->active;
  6873. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6874. base.head) {
  6875. if (encoder->base.crtc != &crtc->base)
  6876. continue;
  6877. if (encoder->get_config)
  6878. encoder->get_config(encoder, &pipe_config);
  6879. }
  6880. WARN(crtc->active != active,
  6881. "crtc active state doesn't match with hw state "
  6882. "(expected %i, found %i)\n", crtc->active, active);
  6883. if (active &&
  6884. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  6885. WARN(1, "pipe state doesn't match!\n");
  6886. intel_dump_pipe_config(crtc, &pipe_config,
  6887. "[hw state]");
  6888. intel_dump_pipe_config(crtc, &crtc->config,
  6889. "[sw state]");
  6890. }
  6891. }
  6892. }
  6893. static void
  6894. check_shared_dpll_state(struct drm_device *dev)
  6895. {
  6896. drm_i915_private_t *dev_priv = dev->dev_private;
  6897. struct intel_crtc *crtc;
  6898. struct intel_dpll_hw_state dpll_hw_state;
  6899. int i;
  6900. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  6901. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  6902. int enabled_crtcs = 0, active_crtcs = 0;
  6903. bool active;
  6904. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  6905. DRM_DEBUG_KMS("%s\n", pll->name);
  6906. active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  6907. WARN(pll->active > pll->refcount,
  6908. "more active pll users than references: %i vs %i\n",
  6909. pll->active, pll->refcount);
  6910. WARN(pll->active && !pll->on,
  6911. "pll in active use but not on in sw tracking\n");
  6912. WARN(pll->on != active,
  6913. "pll on state mismatch (expected %i, found %i)\n",
  6914. pll->on, active);
  6915. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6916. base.head) {
  6917. if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  6918. enabled_crtcs++;
  6919. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  6920. active_crtcs++;
  6921. }
  6922. WARN(pll->active != active_crtcs,
  6923. "pll active crtcs mismatch (expected %i, found %i)\n",
  6924. pll->active, active_crtcs);
  6925. WARN(pll->refcount != enabled_crtcs,
  6926. "pll enabled crtcs mismatch (expected %i, found %i)\n",
  6927. pll->refcount, enabled_crtcs);
  6928. WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  6929. sizeof(dpll_hw_state)),
  6930. "pll hw state mismatch\n");
  6931. }
  6932. }
  6933. void
  6934. intel_modeset_check_state(struct drm_device *dev)
  6935. {
  6936. check_connector_state(dev);
  6937. check_encoder_state(dev);
  6938. check_crtc_state(dev);
  6939. check_shared_dpll_state(dev);
  6940. }
  6941. static int __intel_set_mode(struct drm_crtc *crtc,
  6942. struct drm_display_mode *mode,
  6943. int x, int y, struct drm_framebuffer *fb)
  6944. {
  6945. struct drm_device *dev = crtc->dev;
  6946. drm_i915_private_t *dev_priv = dev->dev_private;
  6947. struct drm_display_mode *saved_mode, *saved_hwmode;
  6948. struct intel_crtc_config *pipe_config = NULL;
  6949. struct intel_crtc *intel_crtc;
  6950. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6951. int ret = 0;
  6952. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  6953. if (!saved_mode)
  6954. return -ENOMEM;
  6955. saved_hwmode = saved_mode + 1;
  6956. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6957. &prepare_pipes, &disable_pipes);
  6958. *saved_hwmode = crtc->hwmode;
  6959. *saved_mode = crtc->mode;
  6960. /* Hack: Because we don't (yet) support global modeset on multiple
  6961. * crtcs, we don't keep track of the new mode for more than one crtc.
  6962. * Hence simply check whether any bit is set in modeset_pipes in all the
  6963. * pieces of code that are not yet converted to deal with mutliple crtcs
  6964. * changing their mode at the same time. */
  6965. if (modeset_pipes) {
  6966. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  6967. if (IS_ERR(pipe_config)) {
  6968. ret = PTR_ERR(pipe_config);
  6969. pipe_config = NULL;
  6970. goto out;
  6971. }
  6972. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  6973. "[modeset]");
  6974. }
  6975. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6976. intel_crtc_disable(&intel_crtc->base);
  6977. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6978. if (intel_crtc->base.enabled)
  6979. dev_priv->display.crtc_disable(&intel_crtc->base);
  6980. }
  6981. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6982. * to set it here already despite that we pass it down the callchain.
  6983. */
  6984. if (modeset_pipes) {
  6985. crtc->mode = *mode;
  6986. /* mode_set/enable/disable functions rely on a correct pipe
  6987. * config. */
  6988. to_intel_crtc(crtc)->config = *pipe_config;
  6989. }
  6990. /* Only after disabling all output pipelines that will be changed can we
  6991. * update the the output configuration. */
  6992. intel_modeset_update_state(dev, prepare_pipes);
  6993. if (dev_priv->display.modeset_global_resources)
  6994. dev_priv->display.modeset_global_resources(dev);
  6995. /* Set up the DPLL and any encoders state that needs to adjust or depend
  6996. * on the DPLL.
  6997. */
  6998. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  6999. ret = intel_crtc_mode_set(&intel_crtc->base,
  7000. x, y, fb);
  7001. if (ret)
  7002. goto done;
  7003. }
  7004. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7005. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7006. dev_priv->display.crtc_enable(&intel_crtc->base);
  7007. if (modeset_pipes) {
  7008. /* Store real post-adjustment hardware mode. */
  7009. crtc->hwmode = pipe_config->adjusted_mode;
  7010. /* Calculate and store various constants which
  7011. * are later needed by vblank and swap-completion
  7012. * timestamping. They are derived from true hwmode.
  7013. */
  7014. drm_calc_timestamping_constants(crtc);
  7015. }
  7016. /* FIXME: add subpixel order */
  7017. done:
  7018. if (ret && crtc->enabled) {
  7019. crtc->hwmode = *saved_hwmode;
  7020. crtc->mode = *saved_mode;
  7021. }
  7022. out:
  7023. kfree(pipe_config);
  7024. kfree(saved_mode);
  7025. return ret;
  7026. }
  7027. int intel_set_mode(struct drm_crtc *crtc,
  7028. struct drm_display_mode *mode,
  7029. int x, int y, struct drm_framebuffer *fb)
  7030. {
  7031. int ret;
  7032. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7033. if (ret == 0)
  7034. intel_modeset_check_state(crtc->dev);
  7035. return ret;
  7036. }
  7037. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7038. {
  7039. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7040. }
  7041. #undef for_each_intel_crtc_masked
  7042. static void intel_set_config_free(struct intel_set_config *config)
  7043. {
  7044. if (!config)
  7045. return;
  7046. kfree(config->save_connector_encoders);
  7047. kfree(config->save_encoder_crtcs);
  7048. kfree(config);
  7049. }
  7050. static int intel_set_config_save_state(struct drm_device *dev,
  7051. struct intel_set_config *config)
  7052. {
  7053. struct drm_encoder *encoder;
  7054. struct drm_connector *connector;
  7055. int count;
  7056. config->save_encoder_crtcs =
  7057. kcalloc(dev->mode_config.num_encoder,
  7058. sizeof(struct drm_crtc *), GFP_KERNEL);
  7059. if (!config->save_encoder_crtcs)
  7060. return -ENOMEM;
  7061. config->save_connector_encoders =
  7062. kcalloc(dev->mode_config.num_connector,
  7063. sizeof(struct drm_encoder *), GFP_KERNEL);
  7064. if (!config->save_connector_encoders)
  7065. return -ENOMEM;
  7066. /* Copy data. Note that driver private data is not affected.
  7067. * Should anything bad happen only the expected state is
  7068. * restored, not the drivers personal bookkeeping.
  7069. */
  7070. count = 0;
  7071. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7072. config->save_encoder_crtcs[count++] = encoder->crtc;
  7073. }
  7074. count = 0;
  7075. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7076. config->save_connector_encoders[count++] = connector->encoder;
  7077. }
  7078. return 0;
  7079. }
  7080. static void intel_set_config_restore_state(struct drm_device *dev,
  7081. struct intel_set_config *config)
  7082. {
  7083. struct intel_encoder *encoder;
  7084. struct intel_connector *connector;
  7085. int count;
  7086. count = 0;
  7087. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7088. encoder->new_crtc =
  7089. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7090. }
  7091. count = 0;
  7092. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7093. connector->new_encoder =
  7094. to_intel_encoder(config->save_connector_encoders[count++]);
  7095. }
  7096. }
  7097. static bool
  7098. is_crtc_connector_off(struct drm_crtc *crtc, struct drm_connector *connectors,
  7099. int num_connectors)
  7100. {
  7101. int i;
  7102. for (i = 0; i < num_connectors; i++)
  7103. if (connectors[i].encoder &&
  7104. connectors[i].encoder->crtc == crtc &&
  7105. connectors[i].dpms != DRM_MODE_DPMS_ON)
  7106. return true;
  7107. return false;
  7108. }
  7109. static void
  7110. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7111. struct intel_set_config *config)
  7112. {
  7113. /* We should be able to check here if the fb has the same properties
  7114. * and then just flip_or_move it */
  7115. if (set->connectors != NULL &&
  7116. is_crtc_connector_off(set->crtc, *set->connectors,
  7117. set->num_connectors)) {
  7118. config->mode_changed = true;
  7119. } else if (set->crtc->fb != set->fb) {
  7120. /* If we have no fb then treat it as a full mode set */
  7121. if (set->crtc->fb == NULL) {
  7122. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  7123. config->mode_changed = true;
  7124. } else if (set->fb == NULL) {
  7125. config->mode_changed = true;
  7126. } else if (set->fb->pixel_format !=
  7127. set->crtc->fb->pixel_format) {
  7128. config->mode_changed = true;
  7129. } else {
  7130. config->fb_changed = true;
  7131. }
  7132. }
  7133. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7134. config->fb_changed = true;
  7135. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7136. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7137. drm_mode_debug_printmodeline(&set->crtc->mode);
  7138. drm_mode_debug_printmodeline(set->mode);
  7139. config->mode_changed = true;
  7140. }
  7141. }
  7142. static int
  7143. intel_modeset_stage_output_state(struct drm_device *dev,
  7144. struct drm_mode_set *set,
  7145. struct intel_set_config *config)
  7146. {
  7147. struct drm_crtc *new_crtc;
  7148. struct intel_connector *connector;
  7149. struct intel_encoder *encoder;
  7150. int count, ro;
  7151. /* The upper layers ensure that we either disable a crtc or have a list
  7152. * of connectors. For paranoia, double-check this. */
  7153. WARN_ON(!set->fb && (set->num_connectors != 0));
  7154. WARN_ON(set->fb && (set->num_connectors == 0));
  7155. count = 0;
  7156. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7157. base.head) {
  7158. /* Otherwise traverse passed in connector list and get encoders
  7159. * for them. */
  7160. for (ro = 0; ro < set->num_connectors; ro++) {
  7161. if (set->connectors[ro] == &connector->base) {
  7162. connector->new_encoder = connector->encoder;
  7163. break;
  7164. }
  7165. }
  7166. /* If we disable the crtc, disable all its connectors. Also, if
  7167. * the connector is on the changing crtc but not on the new
  7168. * connector list, disable it. */
  7169. if ((!set->fb || ro == set->num_connectors) &&
  7170. connector->base.encoder &&
  7171. connector->base.encoder->crtc == set->crtc) {
  7172. connector->new_encoder = NULL;
  7173. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7174. connector->base.base.id,
  7175. drm_get_connector_name(&connector->base));
  7176. }
  7177. if (&connector->new_encoder->base != connector->base.encoder) {
  7178. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7179. config->mode_changed = true;
  7180. }
  7181. }
  7182. /* connector->new_encoder is now updated for all connectors. */
  7183. /* Update crtc of enabled connectors. */
  7184. count = 0;
  7185. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7186. base.head) {
  7187. if (!connector->new_encoder)
  7188. continue;
  7189. new_crtc = connector->new_encoder->base.crtc;
  7190. for (ro = 0; ro < set->num_connectors; ro++) {
  7191. if (set->connectors[ro] == &connector->base)
  7192. new_crtc = set->crtc;
  7193. }
  7194. /* Make sure the new CRTC will work with the encoder */
  7195. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7196. new_crtc)) {
  7197. return -EINVAL;
  7198. }
  7199. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7200. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7201. connector->base.base.id,
  7202. drm_get_connector_name(&connector->base),
  7203. new_crtc->base.id);
  7204. }
  7205. /* Check for any encoders that needs to be disabled. */
  7206. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7207. base.head) {
  7208. list_for_each_entry(connector,
  7209. &dev->mode_config.connector_list,
  7210. base.head) {
  7211. if (connector->new_encoder == encoder) {
  7212. WARN_ON(!connector->new_encoder->new_crtc);
  7213. goto next_encoder;
  7214. }
  7215. }
  7216. encoder->new_crtc = NULL;
  7217. next_encoder:
  7218. /* Only now check for crtc changes so we don't miss encoders
  7219. * that will be disabled. */
  7220. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7221. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7222. config->mode_changed = true;
  7223. }
  7224. }
  7225. /* Now we've also updated encoder->new_crtc for all encoders. */
  7226. return 0;
  7227. }
  7228. static int intel_crtc_set_config(struct drm_mode_set *set)
  7229. {
  7230. struct drm_device *dev;
  7231. struct drm_mode_set save_set;
  7232. struct intel_set_config *config;
  7233. int ret;
  7234. BUG_ON(!set);
  7235. BUG_ON(!set->crtc);
  7236. BUG_ON(!set->crtc->helper_private);
  7237. /* Enforce sane interface api - has been abused by the fb helper. */
  7238. BUG_ON(!set->mode && set->fb);
  7239. BUG_ON(set->fb && set->num_connectors == 0);
  7240. if (set->fb) {
  7241. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7242. set->crtc->base.id, set->fb->base.id,
  7243. (int)set->num_connectors, set->x, set->y);
  7244. } else {
  7245. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7246. }
  7247. dev = set->crtc->dev;
  7248. ret = -ENOMEM;
  7249. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7250. if (!config)
  7251. goto out_config;
  7252. ret = intel_set_config_save_state(dev, config);
  7253. if (ret)
  7254. goto out_config;
  7255. save_set.crtc = set->crtc;
  7256. save_set.mode = &set->crtc->mode;
  7257. save_set.x = set->crtc->x;
  7258. save_set.y = set->crtc->y;
  7259. save_set.fb = set->crtc->fb;
  7260. /* Compute whether we need a full modeset, only an fb base update or no
  7261. * change at all. In the future we might also check whether only the
  7262. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7263. * such cases. */
  7264. intel_set_config_compute_mode_changes(set, config);
  7265. ret = intel_modeset_stage_output_state(dev, set, config);
  7266. if (ret)
  7267. goto fail;
  7268. if (config->mode_changed) {
  7269. ret = intel_set_mode(set->crtc, set->mode,
  7270. set->x, set->y, set->fb);
  7271. } else if (config->fb_changed) {
  7272. intel_crtc_wait_for_pending_flips(set->crtc);
  7273. ret = intel_pipe_set_base(set->crtc,
  7274. set->x, set->y, set->fb);
  7275. }
  7276. if (ret) {
  7277. DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
  7278. set->crtc->base.id, ret);
  7279. fail:
  7280. intel_set_config_restore_state(dev, config);
  7281. /* Try to restore the config */
  7282. if (config->mode_changed &&
  7283. intel_set_mode(save_set.crtc, save_set.mode,
  7284. save_set.x, save_set.y, save_set.fb))
  7285. DRM_ERROR("failed to restore config after modeset failure\n");
  7286. }
  7287. out_config:
  7288. intel_set_config_free(config);
  7289. return ret;
  7290. }
  7291. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7292. .cursor_set = intel_crtc_cursor_set,
  7293. .cursor_move = intel_crtc_cursor_move,
  7294. .gamma_set = intel_crtc_gamma_set,
  7295. .set_config = intel_crtc_set_config,
  7296. .destroy = intel_crtc_destroy,
  7297. .page_flip = intel_crtc_page_flip,
  7298. };
  7299. static void intel_cpu_pll_init(struct drm_device *dev)
  7300. {
  7301. if (HAS_DDI(dev))
  7302. intel_ddi_pll_init(dev);
  7303. }
  7304. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  7305. struct intel_shared_dpll *pll,
  7306. struct intel_dpll_hw_state *hw_state)
  7307. {
  7308. uint32_t val;
  7309. val = I915_READ(PCH_DPLL(pll->id));
  7310. hw_state->dpll = val;
  7311. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  7312. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  7313. return val & DPLL_VCO_ENABLE;
  7314. }
  7315. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  7316. struct intel_shared_dpll *pll)
  7317. {
  7318. I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
  7319. I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
  7320. }
  7321. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  7322. struct intel_shared_dpll *pll)
  7323. {
  7324. /* PCH refclock must be enabled first */
  7325. assert_pch_refclk_enabled(dev_priv);
  7326. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7327. /* Wait for the clocks to stabilize. */
  7328. POSTING_READ(PCH_DPLL(pll->id));
  7329. udelay(150);
  7330. /* The pixel multiplier can only be updated once the
  7331. * DPLL is enabled and the clocks are stable.
  7332. *
  7333. * So write it again.
  7334. */
  7335. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7336. POSTING_READ(PCH_DPLL(pll->id));
  7337. udelay(200);
  7338. }
  7339. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  7340. struct intel_shared_dpll *pll)
  7341. {
  7342. struct drm_device *dev = dev_priv->dev;
  7343. struct intel_crtc *crtc;
  7344. /* Make sure no transcoder isn't still depending on us. */
  7345. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  7346. if (intel_crtc_to_shared_dpll(crtc) == pll)
  7347. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  7348. }
  7349. I915_WRITE(PCH_DPLL(pll->id), 0);
  7350. POSTING_READ(PCH_DPLL(pll->id));
  7351. udelay(200);
  7352. }
  7353. static char *ibx_pch_dpll_names[] = {
  7354. "PCH DPLL A",
  7355. "PCH DPLL B",
  7356. };
  7357. static void ibx_pch_dpll_init(struct drm_device *dev)
  7358. {
  7359. struct drm_i915_private *dev_priv = dev->dev_private;
  7360. int i;
  7361. dev_priv->num_shared_dpll = 2;
  7362. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7363. dev_priv->shared_dplls[i].id = i;
  7364. dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  7365. dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  7366. dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  7367. dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  7368. dev_priv->shared_dplls[i].get_hw_state =
  7369. ibx_pch_dpll_get_hw_state;
  7370. }
  7371. }
  7372. static void intel_shared_dpll_init(struct drm_device *dev)
  7373. {
  7374. struct drm_i915_private *dev_priv = dev->dev_private;
  7375. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  7376. ibx_pch_dpll_init(dev);
  7377. else
  7378. dev_priv->num_shared_dpll = 0;
  7379. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  7380. DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  7381. dev_priv->num_shared_dpll);
  7382. }
  7383. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7384. {
  7385. drm_i915_private_t *dev_priv = dev->dev_private;
  7386. struct intel_crtc *intel_crtc;
  7387. int i;
  7388. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7389. if (intel_crtc == NULL)
  7390. return;
  7391. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7392. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7393. for (i = 0; i < 256; i++) {
  7394. intel_crtc->lut_r[i] = i;
  7395. intel_crtc->lut_g[i] = i;
  7396. intel_crtc->lut_b[i] = i;
  7397. }
  7398. /* Swap pipes & planes for FBC on pre-965 */
  7399. intel_crtc->pipe = pipe;
  7400. intel_crtc->plane = pipe;
  7401. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7402. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7403. intel_crtc->plane = !pipe;
  7404. }
  7405. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7406. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7407. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7408. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7409. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7410. }
  7411. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7412. struct drm_file *file)
  7413. {
  7414. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7415. struct drm_mode_object *drmmode_obj;
  7416. struct intel_crtc *crtc;
  7417. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7418. return -ENODEV;
  7419. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7420. DRM_MODE_OBJECT_CRTC);
  7421. if (!drmmode_obj) {
  7422. DRM_ERROR("no such CRTC id\n");
  7423. return -EINVAL;
  7424. }
  7425. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7426. pipe_from_crtc_id->pipe = crtc->pipe;
  7427. return 0;
  7428. }
  7429. static int intel_encoder_clones(struct intel_encoder *encoder)
  7430. {
  7431. struct drm_device *dev = encoder->base.dev;
  7432. struct intel_encoder *source_encoder;
  7433. int index_mask = 0;
  7434. int entry = 0;
  7435. list_for_each_entry(source_encoder,
  7436. &dev->mode_config.encoder_list, base.head) {
  7437. if (encoder == source_encoder)
  7438. index_mask |= (1 << entry);
  7439. /* Intel hw has only one MUX where enocoders could be cloned. */
  7440. if (encoder->cloneable && source_encoder->cloneable)
  7441. index_mask |= (1 << entry);
  7442. entry++;
  7443. }
  7444. return index_mask;
  7445. }
  7446. static bool has_edp_a(struct drm_device *dev)
  7447. {
  7448. struct drm_i915_private *dev_priv = dev->dev_private;
  7449. if (!IS_MOBILE(dev))
  7450. return false;
  7451. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7452. return false;
  7453. if (IS_GEN5(dev) &&
  7454. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7455. return false;
  7456. return true;
  7457. }
  7458. static void intel_setup_outputs(struct drm_device *dev)
  7459. {
  7460. struct drm_i915_private *dev_priv = dev->dev_private;
  7461. struct intel_encoder *encoder;
  7462. bool dpd_is_edp = false;
  7463. intel_lvds_init(dev);
  7464. if (!IS_ULT(dev))
  7465. intel_crt_init(dev);
  7466. if (HAS_DDI(dev)) {
  7467. int found;
  7468. /* Haswell uses DDI functions to detect digital outputs */
  7469. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7470. /* DDI A only supports eDP */
  7471. if (found)
  7472. intel_ddi_init(dev, PORT_A);
  7473. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7474. * register */
  7475. found = I915_READ(SFUSE_STRAP);
  7476. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7477. intel_ddi_init(dev, PORT_B);
  7478. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7479. intel_ddi_init(dev, PORT_C);
  7480. if (found & SFUSE_STRAP_DDID_DETECTED)
  7481. intel_ddi_init(dev, PORT_D);
  7482. } else if (HAS_PCH_SPLIT(dev)) {
  7483. int found;
  7484. dpd_is_edp = intel_dpd_is_edp(dev);
  7485. if (has_edp_a(dev))
  7486. intel_dp_init(dev, DP_A, PORT_A);
  7487. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7488. /* PCH SDVOB multiplex with HDMIB */
  7489. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7490. if (!found)
  7491. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7492. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7493. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7494. }
  7495. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7496. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7497. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7498. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7499. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7500. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7501. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7502. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7503. } else if (IS_VALLEYVIEW(dev)) {
  7504. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7505. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7506. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
  7507. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7508. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7509. PORT_B);
  7510. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7511. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7512. }
  7513. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7514. bool found = false;
  7515. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7516. DRM_DEBUG_KMS("probing SDVOB\n");
  7517. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7518. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7519. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7520. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  7521. }
  7522. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  7523. intel_dp_init(dev, DP_B, PORT_B);
  7524. }
  7525. /* Before G4X SDVOC doesn't have its own detect register */
  7526. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7527. DRM_DEBUG_KMS("probing SDVOC\n");
  7528. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  7529. }
  7530. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  7531. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7532. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7533. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  7534. }
  7535. if (SUPPORTS_INTEGRATED_DP(dev))
  7536. intel_dp_init(dev, DP_C, PORT_C);
  7537. }
  7538. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7539. (I915_READ(DP_D) & DP_DETECTED))
  7540. intel_dp_init(dev, DP_D, PORT_D);
  7541. } else if (IS_GEN2(dev))
  7542. intel_dvo_init(dev);
  7543. if (SUPPORTS_TV(dev))
  7544. intel_tv_init(dev);
  7545. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7546. encoder->base.possible_crtcs = encoder->crtc_mask;
  7547. encoder->base.possible_clones =
  7548. intel_encoder_clones(encoder);
  7549. }
  7550. intel_init_pch_refclk(dev);
  7551. drm_helper_move_panel_connectors_to_head(dev);
  7552. }
  7553. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7554. {
  7555. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7556. drm_framebuffer_cleanup(fb);
  7557. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7558. kfree(intel_fb);
  7559. }
  7560. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7561. struct drm_file *file,
  7562. unsigned int *handle)
  7563. {
  7564. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7565. struct drm_i915_gem_object *obj = intel_fb->obj;
  7566. return drm_gem_handle_create(file, &obj->base, handle);
  7567. }
  7568. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7569. .destroy = intel_user_framebuffer_destroy,
  7570. .create_handle = intel_user_framebuffer_create_handle,
  7571. };
  7572. int intel_framebuffer_init(struct drm_device *dev,
  7573. struct intel_framebuffer *intel_fb,
  7574. struct drm_mode_fb_cmd2 *mode_cmd,
  7575. struct drm_i915_gem_object *obj)
  7576. {
  7577. int pitch_limit;
  7578. int ret;
  7579. if (obj->tiling_mode == I915_TILING_Y) {
  7580. DRM_DEBUG("hardware does not support tiling Y\n");
  7581. return -EINVAL;
  7582. }
  7583. if (mode_cmd->pitches[0] & 63) {
  7584. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  7585. mode_cmd->pitches[0]);
  7586. return -EINVAL;
  7587. }
  7588. if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
  7589. pitch_limit = 32*1024;
  7590. } else if (INTEL_INFO(dev)->gen >= 4) {
  7591. if (obj->tiling_mode)
  7592. pitch_limit = 16*1024;
  7593. else
  7594. pitch_limit = 32*1024;
  7595. } else if (INTEL_INFO(dev)->gen >= 3) {
  7596. if (obj->tiling_mode)
  7597. pitch_limit = 8*1024;
  7598. else
  7599. pitch_limit = 16*1024;
  7600. } else
  7601. /* XXX DSPC is limited to 4k tiled */
  7602. pitch_limit = 8*1024;
  7603. if (mode_cmd->pitches[0] > pitch_limit) {
  7604. DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
  7605. obj->tiling_mode ? "tiled" : "linear",
  7606. mode_cmd->pitches[0], pitch_limit);
  7607. return -EINVAL;
  7608. }
  7609. if (obj->tiling_mode != I915_TILING_NONE &&
  7610. mode_cmd->pitches[0] != obj->stride) {
  7611. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  7612. mode_cmd->pitches[0], obj->stride);
  7613. return -EINVAL;
  7614. }
  7615. /* Reject formats not supported by any plane early. */
  7616. switch (mode_cmd->pixel_format) {
  7617. case DRM_FORMAT_C8:
  7618. case DRM_FORMAT_RGB565:
  7619. case DRM_FORMAT_XRGB8888:
  7620. case DRM_FORMAT_ARGB8888:
  7621. break;
  7622. case DRM_FORMAT_XRGB1555:
  7623. case DRM_FORMAT_ARGB1555:
  7624. if (INTEL_INFO(dev)->gen > 3) {
  7625. DRM_DEBUG("unsupported pixel format: %s\n",
  7626. drm_get_format_name(mode_cmd->pixel_format));
  7627. return -EINVAL;
  7628. }
  7629. break;
  7630. case DRM_FORMAT_XBGR8888:
  7631. case DRM_FORMAT_ABGR8888:
  7632. case DRM_FORMAT_XRGB2101010:
  7633. case DRM_FORMAT_ARGB2101010:
  7634. case DRM_FORMAT_XBGR2101010:
  7635. case DRM_FORMAT_ABGR2101010:
  7636. if (INTEL_INFO(dev)->gen < 4) {
  7637. DRM_DEBUG("unsupported pixel format: %s\n",
  7638. drm_get_format_name(mode_cmd->pixel_format));
  7639. return -EINVAL;
  7640. }
  7641. break;
  7642. case DRM_FORMAT_YUYV:
  7643. case DRM_FORMAT_UYVY:
  7644. case DRM_FORMAT_YVYU:
  7645. case DRM_FORMAT_VYUY:
  7646. if (INTEL_INFO(dev)->gen < 5) {
  7647. DRM_DEBUG("unsupported pixel format: %s\n",
  7648. drm_get_format_name(mode_cmd->pixel_format));
  7649. return -EINVAL;
  7650. }
  7651. break;
  7652. default:
  7653. DRM_DEBUG("unsupported pixel format: %s\n",
  7654. drm_get_format_name(mode_cmd->pixel_format));
  7655. return -EINVAL;
  7656. }
  7657. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7658. if (mode_cmd->offsets[0] != 0)
  7659. return -EINVAL;
  7660. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7661. intel_fb->obj = obj;
  7662. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7663. if (ret) {
  7664. DRM_ERROR("framebuffer init failed %d\n", ret);
  7665. return ret;
  7666. }
  7667. return 0;
  7668. }
  7669. static struct drm_framebuffer *
  7670. intel_user_framebuffer_create(struct drm_device *dev,
  7671. struct drm_file *filp,
  7672. struct drm_mode_fb_cmd2 *mode_cmd)
  7673. {
  7674. struct drm_i915_gem_object *obj;
  7675. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7676. mode_cmd->handles[0]));
  7677. if (&obj->base == NULL)
  7678. return ERR_PTR(-ENOENT);
  7679. return intel_framebuffer_create(dev, mode_cmd, obj);
  7680. }
  7681. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7682. .fb_create = intel_user_framebuffer_create,
  7683. .output_poll_changed = intel_fb_output_poll_changed,
  7684. };
  7685. /* Set up chip specific display functions */
  7686. static void intel_init_display(struct drm_device *dev)
  7687. {
  7688. struct drm_i915_private *dev_priv = dev->dev_private;
  7689. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  7690. dev_priv->display.find_dpll = g4x_find_best_dpll;
  7691. else if (IS_VALLEYVIEW(dev))
  7692. dev_priv->display.find_dpll = vlv_find_best_dpll;
  7693. else if (IS_PINEVIEW(dev))
  7694. dev_priv->display.find_dpll = pnv_find_best_dpll;
  7695. else
  7696. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  7697. if (HAS_DDI(dev)) {
  7698. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  7699. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7700. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7701. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7702. dev_priv->display.off = haswell_crtc_off;
  7703. dev_priv->display.update_plane = ironlake_update_plane;
  7704. } else if (HAS_PCH_SPLIT(dev)) {
  7705. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  7706. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7707. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7708. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7709. dev_priv->display.off = ironlake_crtc_off;
  7710. dev_priv->display.update_plane = ironlake_update_plane;
  7711. } else if (IS_VALLEYVIEW(dev)) {
  7712. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7713. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7714. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  7715. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7716. dev_priv->display.off = i9xx_crtc_off;
  7717. dev_priv->display.update_plane = i9xx_update_plane;
  7718. } else {
  7719. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7720. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7721. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7722. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7723. dev_priv->display.off = i9xx_crtc_off;
  7724. dev_priv->display.update_plane = i9xx_update_plane;
  7725. }
  7726. /* Returns the core display clock speed */
  7727. if (IS_VALLEYVIEW(dev))
  7728. dev_priv->display.get_display_clock_speed =
  7729. valleyview_get_display_clock_speed;
  7730. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7731. dev_priv->display.get_display_clock_speed =
  7732. i945_get_display_clock_speed;
  7733. else if (IS_I915G(dev))
  7734. dev_priv->display.get_display_clock_speed =
  7735. i915_get_display_clock_speed;
  7736. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7737. dev_priv->display.get_display_clock_speed =
  7738. i9xx_misc_get_display_clock_speed;
  7739. else if (IS_I915GM(dev))
  7740. dev_priv->display.get_display_clock_speed =
  7741. i915gm_get_display_clock_speed;
  7742. else if (IS_I865G(dev))
  7743. dev_priv->display.get_display_clock_speed =
  7744. i865_get_display_clock_speed;
  7745. else if (IS_I85X(dev))
  7746. dev_priv->display.get_display_clock_speed =
  7747. i855_get_display_clock_speed;
  7748. else /* 852, 830 */
  7749. dev_priv->display.get_display_clock_speed =
  7750. i830_get_display_clock_speed;
  7751. if (HAS_PCH_SPLIT(dev)) {
  7752. if (IS_GEN5(dev)) {
  7753. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7754. dev_priv->display.write_eld = ironlake_write_eld;
  7755. } else if (IS_GEN6(dev)) {
  7756. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7757. dev_priv->display.write_eld = ironlake_write_eld;
  7758. } else if (IS_IVYBRIDGE(dev)) {
  7759. /* FIXME: detect B0+ stepping and use auto training */
  7760. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7761. dev_priv->display.write_eld = ironlake_write_eld;
  7762. dev_priv->display.modeset_global_resources =
  7763. ivb_modeset_global_resources;
  7764. } else if (IS_HASWELL(dev)) {
  7765. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7766. dev_priv->display.write_eld = haswell_write_eld;
  7767. dev_priv->display.modeset_global_resources =
  7768. haswell_modeset_global_resources;
  7769. }
  7770. } else if (IS_G4X(dev)) {
  7771. dev_priv->display.write_eld = g4x_write_eld;
  7772. }
  7773. /* Default just returns -ENODEV to indicate unsupported */
  7774. dev_priv->display.queue_flip = intel_default_queue_flip;
  7775. switch (INTEL_INFO(dev)->gen) {
  7776. case 2:
  7777. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7778. break;
  7779. case 3:
  7780. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7781. break;
  7782. case 4:
  7783. case 5:
  7784. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7785. break;
  7786. case 6:
  7787. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7788. break;
  7789. case 7:
  7790. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7791. break;
  7792. }
  7793. }
  7794. /*
  7795. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7796. * resume, or other times. This quirk makes sure that's the case for
  7797. * affected systems.
  7798. */
  7799. static void quirk_pipea_force(struct drm_device *dev)
  7800. {
  7801. struct drm_i915_private *dev_priv = dev->dev_private;
  7802. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7803. DRM_INFO("applying pipe a force quirk\n");
  7804. }
  7805. /*
  7806. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7807. */
  7808. static void quirk_ssc_force_disable(struct drm_device *dev)
  7809. {
  7810. struct drm_i915_private *dev_priv = dev->dev_private;
  7811. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7812. DRM_INFO("applying lvds SSC disable quirk\n");
  7813. }
  7814. /*
  7815. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7816. * brightness value
  7817. */
  7818. static void quirk_invert_brightness(struct drm_device *dev)
  7819. {
  7820. struct drm_i915_private *dev_priv = dev->dev_private;
  7821. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7822. DRM_INFO("applying inverted panel brightness quirk\n");
  7823. }
  7824. struct intel_quirk {
  7825. int device;
  7826. int subsystem_vendor;
  7827. int subsystem_device;
  7828. void (*hook)(struct drm_device *dev);
  7829. };
  7830. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7831. struct intel_dmi_quirk {
  7832. void (*hook)(struct drm_device *dev);
  7833. const struct dmi_system_id (*dmi_id_list)[];
  7834. };
  7835. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7836. {
  7837. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7838. return 1;
  7839. }
  7840. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7841. {
  7842. .dmi_id_list = &(const struct dmi_system_id[]) {
  7843. {
  7844. .callback = intel_dmi_reverse_brightness,
  7845. .ident = "NCR Corporation",
  7846. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7847. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7848. },
  7849. },
  7850. { } /* terminating entry */
  7851. },
  7852. .hook = quirk_invert_brightness,
  7853. },
  7854. };
  7855. static struct intel_quirk intel_quirks[] = {
  7856. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7857. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7858. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7859. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7860. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7861. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7862. /* 830/845 need to leave pipe A & dpll A up */
  7863. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7864. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7865. /* Lenovo U160 cannot use SSC on LVDS */
  7866. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7867. /* Sony Vaio Y cannot use SSC on LVDS */
  7868. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7869. /* Acer Aspire 5734Z must invert backlight brightness */
  7870. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7871. /* Acer/eMachines G725 */
  7872. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  7873. /* Acer/eMachines e725 */
  7874. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  7875. /* Acer/Packard Bell NCL20 */
  7876. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  7877. /* Acer Aspire 4736Z */
  7878. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  7879. };
  7880. static void intel_init_quirks(struct drm_device *dev)
  7881. {
  7882. struct pci_dev *d = dev->pdev;
  7883. int i;
  7884. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7885. struct intel_quirk *q = &intel_quirks[i];
  7886. if (d->device == q->device &&
  7887. (d->subsystem_vendor == q->subsystem_vendor ||
  7888. q->subsystem_vendor == PCI_ANY_ID) &&
  7889. (d->subsystem_device == q->subsystem_device ||
  7890. q->subsystem_device == PCI_ANY_ID))
  7891. q->hook(dev);
  7892. }
  7893. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7894. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7895. intel_dmi_quirks[i].hook(dev);
  7896. }
  7897. }
  7898. /* Disable the VGA plane that we never use */
  7899. static void i915_disable_vga(struct drm_device *dev)
  7900. {
  7901. struct drm_i915_private *dev_priv = dev->dev_private;
  7902. u8 sr1;
  7903. u32 vga_reg = i915_vgacntrl_reg(dev);
  7904. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7905. outb(SR01, VGA_SR_INDEX);
  7906. sr1 = inb(VGA_SR_DATA);
  7907. outb(sr1 | 1<<5, VGA_SR_DATA);
  7908. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7909. udelay(300);
  7910. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7911. POSTING_READ(vga_reg);
  7912. }
  7913. void intel_modeset_init_hw(struct drm_device *dev)
  7914. {
  7915. intel_init_power_well(dev);
  7916. intel_prepare_ddi(dev);
  7917. intel_init_clock_gating(dev);
  7918. mutex_lock(&dev->struct_mutex);
  7919. intel_enable_gt_powersave(dev);
  7920. mutex_unlock(&dev->struct_mutex);
  7921. }
  7922. void intel_modeset_suspend_hw(struct drm_device *dev)
  7923. {
  7924. intel_suspend_hw(dev);
  7925. }
  7926. void intel_modeset_init(struct drm_device *dev)
  7927. {
  7928. struct drm_i915_private *dev_priv = dev->dev_private;
  7929. int i, j, ret;
  7930. drm_mode_config_init(dev);
  7931. dev->mode_config.min_width = 0;
  7932. dev->mode_config.min_height = 0;
  7933. dev->mode_config.preferred_depth = 24;
  7934. dev->mode_config.prefer_shadow = 1;
  7935. dev->mode_config.funcs = &intel_mode_funcs;
  7936. intel_init_quirks(dev);
  7937. intel_init_pm(dev);
  7938. if (INTEL_INFO(dev)->num_pipes == 0)
  7939. return;
  7940. intel_init_display(dev);
  7941. if (IS_GEN2(dev)) {
  7942. dev->mode_config.max_width = 2048;
  7943. dev->mode_config.max_height = 2048;
  7944. } else if (IS_GEN3(dev)) {
  7945. dev->mode_config.max_width = 4096;
  7946. dev->mode_config.max_height = 4096;
  7947. } else {
  7948. dev->mode_config.max_width = 8192;
  7949. dev->mode_config.max_height = 8192;
  7950. }
  7951. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  7952. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7953. INTEL_INFO(dev)->num_pipes,
  7954. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  7955. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  7956. intel_crtc_init(dev, i);
  7957. for (j = 0; j < dev_priv->num_plane; j++) {
  7958. ret = intel_plane_init(dev, i, j);
  7959. if (ret)
  7960. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  7961. pipe_name(i), sprite_name(i, j), ret);
  7962. }
  7963. }
  7964. intel_cpu_pll_init(dev);
  7965. intel_shared_dpll_init(dev);
  7966. /* Just disable it once at startup */
  7967. i915_disable_vga(dev);
  7968. intel_setup_outputs(dev);
  7969. /* Just in case the BIOS is doing something questionable. */
  7970. intel_disable_fbc(dev);
  7971. }
  7972. static void
  7973. intel_connector_break_all_links(struct intel_connector *connector)
  7974. {
  7975. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7976. connector->base.encoder = NULL;
  7977. connector->encoder->connectors_active = false;
  7978. connector->encoder->base.crtc = NULL;
  7979. }
  7980. static void intel_enable_pipe_a(struct drm_device *dev)
  7981. {
  7982. struct intel_connector *connector;
  7983. struct drm_connector *crt = NULL;
  7984. struct intel_load_detect_pipe load_detect_temp;
  7985. /* We can't just switch on the pipe A, we need to set things up with a
  7986. * proper mode and output configuration. As a gross hack, enable pipe A
  7987. * by enabling the load detect pipe once. */
  7988. list_for_each_entry(connector,
  7989. &dev->mode_config.connector_list,
  7990. base.head) {
  7991. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7992. crt = &connector->base;
  7993. break;
  7994. }
  7995. }
  7996. if (!crt)
  7997. return;
  7998. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  7999. intel_release_load_detect_pipe(crt, &load_detect_temp);
  8000. }
  8001. static bool
  8002. intel_check_plane_mapping(struct intel_crtc *crtc)
  8003. {
  8004. struct drm_device *dev = crtc->base.dev;
  8005. struct drm_i915_private *dev_priv = dev->dev_private;
  8006. u32 reg, val;
  8007. if (INTEL_INFO(dev)->num_pipes == 1)
  8008. return true;
  8009. reg = DSPCNTR(!crtc->plane);
  8010. val = I915_READ(reg);
  8011. if ((val & DISPLAY_PLANE_ENABLE) &&
  8012. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8013. return false;
  8014. return true;
  8015. }
  8016. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8017. {
  8018. struct drm_device *dev = crtc->base.dev;
  8019. struct drm_i915_private *dev_priv = dev->dev_private;
  8020. u32 reg;
  8021. /* Clear any frame start delays used for debugging left by the BIOS */
  8022. reg = PIPECONF(crtc->config.cpu_transcoder);
  8023. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8024. /* We need to sanitize the plane -> pipe mapping first because this will
  8025. * disable the crtc (and hence change the state) if it is wrong. Note
  8026. * that gen4+ has a fixed plane -> pipe mapping. */
  8027. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8028. struct intel_connector *connector;
  8029. bool plane;
  8030. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8031. crtc->base.base.id);
  8032. /* Pipe has the wrong plane attached and the plane is active.
  8033. * Temporarily change the plane mapping and disable everything
  8034. * ... */
  8035. plane = crtc->plane;
  8036. crtc->plane = !plane;
  8037. dev_priv->display.crtc_disable(&crtc->base);
  8038. crtc->plane = plane;
  8039. /* ... and break all links. */
  8040. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8041. base.head) {
  8042. if (connector->encoder->base.crtc != &crtc->base)
  8043. continue;
  8044. intel_connector_break_all_links(connector);
  8045. }
  8046. WARN_ON(crtc->active);
  8047. crtc->base.enabled = false;
  8048. }
  8049. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8050. crtc->pipe == PIPE_A && !crtc->active) {
  8051. /* BIOS forgot to enable pipe A, this mostly happens after
  8052. * resume. Force-enable the pipe to fix this, the update_dpms
  8053. * call below we restore the pipe to the right state, but leave
  8054. * the required bits on. */
  8055. intel_enable_pipe_a(dev);
  8056. }
  8057. /* Adjust the state of the output pipe according to whether we
  8058. * have active connectors/encoders. */
  8059. intel_crtc_update_dpms(&crtc->base);
  8060. if (crtc->active != crtc->base.enabled) {
  8061. struct intel_encoder *encoder;
  8062. /* This can happen either due to bugs in the get_hw_state
  8063. * functions or because the pipe is force-enabled due to the
  8064. * pipe A quirk. */
  8065. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8066. crtc->base.base.id,
  8067. crtc->base.enabled ? "enabled" : "disabled",
  8068. crtc->active ? "enabled" : "disabled");
  8069. crtc->base.enabled = crtc->active;
  8070. /* Because we only establish the connector -> encoder ->
  8071. * crtc links if something is active, this means the
  8072. * crtc is now deactivated. Break the links. connector
  8073. * -> encoder links are only establish when things are
  8074. * actually up, hence no need to break them. */
  8075. WARN_ON(crtc->active);
  8076. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8077. WARN_ON(encoder->connectors_active);
  8078. encoder->base.crtc = NULL;
  8079. }
  8080. }
  8081. }
  8082. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8083. {
  8084. struct intel_connector *connector;
  8085. struct drm_device *dev = encoder->base.dev;
  8086. /* We need to check both for a crtc link (meaning that the
  8087. * encoder is active and trying to read from a pipe) and the
  8088. * pipe itself being active. */
  8089. bool has_active_crtc = encoder->base.crtc &&
  8090. to_intel_crtc(encoder->base.crtc)->active;
  8091. if (encoder->connectors_active && !has_active_crtc) {
  8092. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  8093. encoder->base.base.id,
  8094. drm_get_encoder_name(&encoder->base));
  8095. /* Connector is active, but has no active pipe. This is
  8096. * fallout from our resume register restoring. Disable
  8097. * the encoder manually again. */
  8098. if (encoder->base.crtc) {
  8099. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  8100. encoder->base.base.id,
  8101. drm_get_encoder_name(&encoder->base));
  8102. encoder->disable(encoder);
  8103. }
  8104. /* Inconsistent output/port/pipe state happens presumably due to
  8105. * a bug in one of the get_hw_state functions. Or someplace else
  8106. * in our code, like the register restore mess on resume. Clamp
  8107. * things to off as a safer default. */
  8108. list_for_each_entry(connector,
  8109. &dev->mode_config.connector_list,
  8110. base.head) {
  8111. if (connector->encoder != encoder)
  8112. continue;
  8113. intel_connector_break_all_links(connector);
  8114. }
  8115. }
  8116. /* Enabled encoders without active connectors will be fixed in
  8117. * the crtc fixup. */
  8118. }
  8119. void i915_redisable_vga(struct drm_device *dev)
  8120. {
  8121. struct drm_i915_private *dev_priv = dev->dev_private;
  8122. u32 vga_reg = i915_vgacntrl_reg(dev);
  8123. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  8124. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  8125. i915_disable_vga(dev);
  8126. }
  8127. }
  8128. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  8129. {
  8130. struct drm_i915_private *dev_priv = dev->dev_private;
  8131. enum pipe pipe;
  8132. struct intel_crtc *crtc;
  8133. struct intel_encoder *encoder;
  8134. struct intel_connector *connector;
  8135. int i;
  8136. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8137. base.head) {
  8138. memset(&crtc->config, 0, sizeof(crtc->config));
  8139. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8140. &crtc->config);
  8141. crtc->base.enabled = crtc->active;
  8142. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8143. crtc->base.base.id,
  8144. crtc->active ? "enabled" : "disabled");
  8145. }
  8146. /* FIXME: Smash this into the new shared dpll infrastructure. */
  8147. if (HAS_DDI(dev))
  8148. intel_ddi_setup_hw_pll_state(dev);
  8149. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8150. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8151. pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  8152. pll->active = 0;
  8153. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8154. base.head) {
  8155. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  8156. pll->active++;
  8157. }
  8158. pll->refcount = pll->active;
  8159. DRM_DEBUG_KMS("%s hw state readout: refcount %i\n",
  8160. pll->name, pll->refcount);
  8161. }
  8162. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8163. base.head) {
  8164. pipe = 0;
  8165. if (encoder->get_hw_state(encoder, &pipe)) {
  8166. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8167. encoder->base.crtc = &crtc->base;
  8168. if (encoder->get_config)
  8169. encoder->get_config(encoder, &crtc->config);
  8170. } else {
  8171. encoder->base.crtc = NULL;
  8172. }
  8173. encoder->connectors_active = false;
  8174. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8175. encoder->base.base.id,
  8176. drm_get_encoder_name(&encoder->base),
  8177. encoder->base.crtc ? "enabled" : "disabled",
  8178. pipe);
  8179. }
  8180. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8181. base.head) {
  8182. if (connector->get_hw_state(connector)) {
  8183. connector->base.dpms = DRM_MODE_DPMS_ON;
  8184. connector->encoder->connectors_active = true;
  8185. connector->base.encoder = &connector->encoder->base;
  8186. } else {
  8187. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8188. connector->base.encoder = NULL;
  8189. }
  8190. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8191. connector->base.base.id,
  8192. drm_get_connector_name(&connector->base),
  8193. connector->base.encoder ? "enabled" : "disabled");
  8194. }
  8195. }
  8196. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  8197. * and i915 state tracking structures. */
  8198. void intel_modeset_setup_hw_state(struct drm_device *dev,
  8199. bool force_restore)
  8200. {
  8201. struct drm_i915_private *dev_priv = dev->dev_private;
  8202. enum pipe pipe;
  8203. struct drm_plane *plane;
  8204. struct intel_crtc *crtc;
  8205. struct intel_encoder *encoder;
  8206. intel_modeset_readout_hw_state(dev);
  8207. /* HW state is read out, now we need to sanitize this mess. */
  8208. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8209. base.head) {
  8210. intel_sanitize_encoder(encoder);
  8211. }
  8212. for_each_pipe(pipe) {
  8213. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8214. intel_sanitize_crtc(crtc);
  8215. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8216. }
  8217. if (force_restore) {
  8218. /*
  8219. * We need to use raw interfaces for restoring state to avoid
  8220. * checking (bogus) intermediate states.
  8221. */
  8222. for_each_pipe(pipe) {
  8223. struct drm_crtc *crtc =
  8224. dev_priv->pipe_to_crtc_mapping[pipe];
  8225. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8226. crtc->fb);
  8227. }
  8228. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8229. intel_plane_restore(plane);
  8230. i915_redisable_vga(dev);
  8231. } else {
  8232. intel_modeset_update_staged_output_state(dev);
  8233. }
  8234. intel_modeset_check_state(dev);
  8235. drm_mode_config_reset(dev);
  8236. }
  8237. void intel_modeset_gem_init(struct drm_device *dev)
  8238. {
  8239. intel_modeset_init_hw(dev);
  8240. intel_setup_overlay(dev);
  8241. intel_modeset_setup_hw_state(dev, false);
  8242. }
  8243. void intel_modeset_cleanup(struct drm_device *dev)
  8244. {
  8245. struct drm_i915_private *dev_priv = dev->dev_private;
  8246. struct drm_crtc *crtc;
  8247. struct intel_crtc *intel_crtc;
  8248. /*
  8249. * Interrupts and polling as the first thing to avoid creating havoc.
  8250. * Too much stuff here (turning of rps, connectors, ...) would
  8251. * experience fancy races otherwise.
  8252. */
  8253. drm_irq_uninstall(dev);
  8254. cancel_work_sync(&dev_priv->hotplug_work);
  8255. /*
  8256. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8257. * poll handlers. Hence disable polling after hpd handling is shut down.
  8258. */
  8259. drm_kms_helper_poll_fini(dev);
  8260. mutex_lock(&dev->struct_mutex);
  8261. intel_unregister_dsm_handler();
  8262. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8263. /* Skip inactive CRTCs */
  8264. if (!crtc->fb)
  8265. continue;
  8266. intel_crtc = to_intel_crtc(crtc);
  8267. intel_increase_pllclock(crtc);
  8268. }
  8269. intel_disable_fbc(dev);
  8270. intel_disable_gt_powersave(dev);
  8271. ironlake_teardown_rc6(dev);
  8272. mutex_unlock(&dev->struct_mutex);
  8273. /* flush any delayed tasks or pending work */
  8274. flush_scheduled_work();
  8275. /* destroy backlight, if any, before the connectors */
  8276. intel_panel_destroy_backlight(dev);
  8277. drm_mode_config_cleanup(dev);
  8278. intel_cleanup_overlay(dev);
  8279. }
  8280. /*
  8281. * Return which encoder is currently attached for connector.
  8282. */
  8283. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8284. {
  8285. return &intel_attached_encoder(connector)->base;
  8286. }
  8287. void intel_connector_attach_encoder(struct intel_connector *connector,
  8288. struct intel_encoder *encoder)
  8289. {
  8290. connector->encoder = encoder;
  8291. drm_mode_connector_attach_encoder(&connector->base,
  8292. &encoder->base);
  8293. }
  8294. /*
  8295. * set vga decode state - true == enable VGA decode
  8296. */
  8297. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8298. {
  8299. struct drm_i915_private *dev_priv = dev->dev_private;
  8300. u16 gmch_ctrl;
  8301. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8302. if (state)
  8303. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8304. else
  8305. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8306. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8307. return 0;
  8308. }
  8309. #ifdef CONFIG_DEBUG_FS
  8310. #include <linux/seq_file.h>
  8311. struct intel_display_error_state {
  8312. u32 power_well_driver;
  8313. struct intel_cursor_error_state {
  8314. u32 control;
  8315. u32 position;
  8316. u32 base;
  8317. u32 size;
  8318. } cursor[I915_MAX_PIPES];
  8319. struct intel_pipe_error_state {
  8320. enum transcoder cpu_transcoder;
  8321. u32 conf;
  8322. u32 source;
  8323. u32 htotal;
  8324. u32 hblank;
  8325. u32 hsync;
  8326. u32 vtotal;
  8327. u32 vblank;
  8328. u32 vsync;
  8329. } pipe[I915_MAX_PIPES];
  8330. struct intel_plane_error_state {
  8331. u32 control;
  8332. u32 stride;
  8333. u32 size;
  8334. u32 pos;
  8335. u32 addr;
  8336. u32 surface;
  8337. u32 tile_offset;
  8338. } plane[I915_MAX_PIPES];
  8339. };
  8340. struct intel_display_error_state *
  8341. intel_display_capture_error_state(struct drm_device *dev)
  8342. {
  8343. drm_i915_private_t *dev_priv = dev->dev_private;
  8344. struct intel_display_error_state *error;
  8345. enum transcoder cpu_transcoder;
  8346. int i;
  8347. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8348. if (error == NULL)
  8349. return NULL;
  8350. if (HAS_POWER_WELL(dev))
  8351. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  8352. for_each_pipe(i) {
  8353. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  8354. error->pipe[i].cpu_transcoder = cpu_transcoder;
  8355. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  8356. error->cursor[i].control = I915_READ(CURCNTR(i));
  8357. error->cursor[i].position = I915_READ(CURPOS(i));
  8358. error->cursor[i].base = I915_READ(CURBASE(i));
  8359. } else {
  8360. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8361. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8362. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8363. }
  8364. error->plane[i].control = I915_READ(DSPCNTR(i));
  8365. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8366. if (INTEL_INFO(dev)->gen <= 3) {
  8367. error->plane[i].size = I915_READ(DSPSIZE(i));
  8368. error->plane[i].pos = I915_READ(DSPPOS(i));
  8369. }
  8370. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8371. error->plane[i].addr = I915_READ(DSPADDR(i));
  8372. if (INTEL_INFO(dev)->gen >= 4) {
  8373. error->plane[i].surface = I915_READ(DSPSURF(i));
  8374. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8375. }
  8376. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8377. error->pipe[i].source = I915_READ(PIPESRC(i));
  8378. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8379. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8380. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8381. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8382. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8383. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8384. }
  8385. /* In the code above we read the registers without checking if the power
  8386. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  8387. * prevent the next I915_WRITE from detecting it and printing an error
  8388. * message. */
  8389. if (HAS_POWER_WELL(dev))
  8390. I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
  8391. return error;
  8392. }
  8393. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  8394. void
  8395. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  8396. struct drm_device *dev,
  8397. struct intel_display_error_state *error)
  8398. {
  8399. int i;
  8400. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8401. if (HAS_POWER_WELL(dev))
  8402. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  8403. error->power_well_driver);
  8404. for_each_pipe(i) {
  8405. err_printf(m, "Pipe [%d]:\n", i);
  8406. err_printf(m, " CPU transcoder: %c\n",
  8407. transcoder_name(error->pipe[i].cpu_transcoder));
  8408. err_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8409. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8410. err_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8411. err_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8412. err_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8413. err_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8414. err_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8415. err_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8416. err_printf(m, "Plane [%d]:\n", i);
  8417. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8418. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8419. if (INTEL_INFO(dev)->gen <= 3) {
  8420. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8421. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  8422. }
  8423. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8424. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8425. if (INTEL_INFO(dev)->gen >= 4) {
  8426. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8427. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8428. }
  8429. err_printf(m, "Cursor [%d]:\n", i);
  8430. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8431. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  8432. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8433. }
  8434. }
  8435. #endif