perf_event.c 121 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336
  1. /*
  2. * Performance events core code:
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7. * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8. *
  9. * For licensing details see kernel-base/COPYING
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/mm.h>
  13. #include <linux/cpu.h>
  14. #include <linux/smp.h>
  15. #include <linux/file.h>
  16. #include <linux/poll.h>
  17. #include <linux/sysfs.h>
  18. #include <linux/dcache.h>
  19. #include <linux/percpu.h>
  20. #include <linux/ptrace.h>
  21. #include <linux/vmstat.h>
  22. #include <linux/vmalloc.h>
  23. #include <linux/hardirq.h>
  24. #include <linux/rculist.h>
  25. #include <linux/uaccess.h>
  26. #include <linux/syscalls.h>
  27. #include <linux/anon_inodes.h>
  28. #include <linux/kernel_stat.h>
  29. #include <linux/perf_event.h>
  30. #include <linux/ftrace_event.h>
  31. #include <linux/hw_breakpoint.h>
  32. #include <asm/irq_regs.h>
  33. /*
  34. * Each CPU has a list of per CPU events:
  35. */
  36. DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
  37. int perf_max_events __read_mostly = 1;
  38. static int perf_reserved_percpu __read_mostly;
  39. static int perf_overcommit __read_mostly = 1;
  40. static atomic_t nr_events __read_mostly;
  41. static atomic_t nr_mmap_events __read_mostly;
  42. static atomic_t nr_comm_events __read_mostly;
  43. static atomic_t nr_task_events __read_mostly;
  44. /*
  45. * perf event paranoia level:
  46. * -1 - not paranoid at all
  47. * 0 - disallow raw tracepoint access for unpriv
  48. * 1 - disallow cpu events for unpriv
  49. * 2 - disallow kernel profiling for unpriv
  50. */
  51. int sysctl_perf_event_paranoid __read_mostly = 1;
  52. static inline bool perf_paranoid_tracepoint_raw(void)
  53. {
  54. return sysctl_perf_event_paranoid > -1;
  55. }
  56. static inline bool perf_paranoid_cpu(void)
  57. {
  58. return sysctl_perf_event_paranoid > 0;
  59. }
  60. static inline bool perf_paranoid_kernel(void)
  61. {
  62. return sysctl_perf_event_paranoid > 1;
  63. }
  64. int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
  65. /*
  66. * max perf event sample rate
  67. */
  68. int sysctl_perf_event_sample_rate __read_mostly = 100000;
  69. static atomic64_t perf_event_id;
  70. /*
  71. * Lock for (sysadmin-configurable) event reservations:
  72. */
  73. static DEFINE_SPINLOCK(perf_resource_lock);
  74. /*
  75. * Architecture provided APIs - weak aliases:
  76. */
  77. extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
  78. {
  79. return NULL;
  80. }
  81. void __weak hw_perf_disable(void) { barrier(); }
  82. void __weak hw_perf_enable(void) { barrier(); }
  83. void __weak hw_perf_event_setup(int cpu) { barrier(); }
  84. void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
  85. int __weak
  86. hw_perf_group_sched_in(struct perf_event *group_leader,
  87. struct perf_cpu_context *cpuctx,
  88. struct perf_event_context *ctx, int cpu)
  89. {
  90. return 0;
  91. }
  92. void __weak perf_event_print_debug(void) { }
  93. static DEFINE_PER_CPU(int, perf_disable_count);
  94. void __perf_disable(void)
  95. {
  96. __get_cpu_var(perf_disable_count)++;
  97. }
  98. bool __perf_enable(void)
  99. {
  100. return !--__get_cpu_var(perf_disable_count);
  101. }
  102. void perf_disable(void)
  103. {
  104. __perf_disable();
  105. hw_perf_disable();
  106. }
  107. void perf_enable(void)
  108. {
  109. if (__perf_enable())
  110. hw_perf_enable();
  111. }
  112. static void get_ctx(struct perf_event_context *ctx)
  113. {
  114. WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
  115. }
  116. static void free_ctx(struct rcu_head *head)
  117. {
  118. struct perf_event_context *ctx;
  119. ctx = container_of(head, struct perf_event_context, rcu_head);
  120. kfree(ctx);
  121. }
  122. static void put_ctx(struct perf_event_context *ctx)
  123. {
  124. if (atomic_dec_and_test(&ctx->refcount)) {
  125. if (ctx->parent_ctx)
  126. put_ctx(ctx->parent_ctx);
  127. if (ctx->task)
  128. put_task_struct(ctx->task);
  129. call_rcu(&ctx->rcu_head, free_ctx);
  130. }
  131. }
  132. static void unclone_ctx(struct perf_event_context *ctx)
  133. {
  134. if (ctx->parent_ctx) {
  135. put_ctx(ctx->parent_ctx);
  136. ctx->parent_ctx = NULL;
  137. }
  138. }
  139. /*
  140. * If we inherit events we want to return the parent event id
  141. * to userspace.
  142. */
  143. static u64 primary_event_id(struct perf_event *event)
  144. {
  145. u64 id = event->id;
  146. if (event->parent)
  147. id = event->parent->id;
  148. return id;
  149. }
  150. /*
  151. * Get the perf_event_context for a task and lock it.
  152. * This has to cope with with the fact that until it is locked,
  153. * the context could get moved to another task.
  154. */
  155. static struct perf_event_context *
  156. perf_lock_task_context(struct task_struct *task, unsigned long *flags)
  157. {
  158. struct perf_event_context *ctx;
  159. rcu_read_lock();
  160. retry:
  161. ctx = rcu_dereference(task->perf_event_ctxp);
  162. if (ctx) {
  163. /*
  164. * If this context is a clone of another, it might
  165. * get swapped for another underneath us by
  166. * perf_event_task_sched_out, though the
  167. * rcu_read_lock() protects us from any context
  168. * getting freed. Lock the context and check if it
  169. * got swapped before we could get the lock, and retry
  170. * if so. If we locked the right context, then it
  171. * can't get swapped on us any more.
  172. */
  173. spin_lock_irqsave(&ctx->lock, *flags);
  174. if (ctx != rcu_dereference(task->perf_event_ctxp)) {
  175. spin_unlock_irqrestore(&ctx->lock, *flags);
  176. goto retry;
  177. }
  178. if (!atomic_inc_not_zero(&ctx->refcount)) {
  179. spin_unlock_irqrestore(&ctx->lock, *flags);
  180. ctx = NULL;
  181. }
  182. }
  183. rcu_read_unlock();
  184. return ctx;
  185. }
  186. /*
  187. * Get the context for a task and increment its pin_count so it
  188. * can't get swapped to another task. This also increments its
  189. * reference count so that the context can't get freed.
  190. */
  191. static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
  192. {
  193. struct perf_event_context *ctx;
  194. unsigned long flags;
  195. ctx = perf_lock_task_context(task, &flags);
  196. if (ctx) {
  197. ++ctx->pin_count;
  198. spin_unlock_irqrestore(&ctx->lock, flags);
  199. }
  200. return ctx;
  201. }
  202. static void perf_unpin_context(struct perf_event_context *ctx)
  203. {
  204. unsigned long flags;
  205. spin_lock_irqsave(&ctx->lock, flags);
  206. --ctx->pin_count;
  207. spin_unlock_irqrestore(&ctx->lock, flags);
  208. put_ctx(ctx);
  209. }
  210. static inline u64 perf_clock(void)
  211. {
  212. return cpu_clock(smp_processor_id());
  213. }
  214. /*
  215. * Update the record of the current time in a context.
  216. */
  217. static void update_context_time(struct perf_event_context *ctx)
  218. {
  219. u64 now = perf_clock();
  220. ctx->time += now - ctx->timestamp;
  221. ctx->timestamp = now;
  222. }
  223. /*
  224. * Update the total_time_enabled and total_time_running fields for a event.
  225. */
  226. static void update_event_times(struct perf_event *event)
  227. {
  228. struct perf_event_context *ctx = event->ctx;
  229. u64 run_end;
  230. if (event->state < PERF_EVENT_STATE_INACTIVE ||
  231. event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
  232. return;
  233. event->total_time_enabled = ctx->time - event->tstamp_enabled;
  234. if (event->state == PERF_EVENT_STATE_INACTIVE)
  235. run_end = event->tstamp_stopped;
  236. else
  237. run_end = ctx->time;
  238. event->total_time_running = run_end - event->tstamp_running;
  239. }
  240. /*
  241. * Add a event from the lists for its context.
  242. * Must be called with ctx->mutex and ctx->lock held.
  243. */
  244. static void
  245. list_add_event(struct perf_event *event, struct perf_event_context *ctx)
  246. {
  247. struct perf_event *group_leader = event->group_leader;
  248. /*
  249. * Depending on whether it is a standalone or sibling event,
  250. * add it straight to the context's event list, or to the group
  251. * leader's sibling list:
  252. */
  253. if (group_leader == event)
  254. list_add_tail(&event->group_entry, &ctx->group_list);
  255. else {
  256. list_add_tail(&event->group_entry, &group_leader->sibling_list);
  257. group_leader->nr_siblings++;
  258. }
  259. list_add_rcu(&event->event_entry, &ctx->event_list);
  260. ctx->nr_events++;
  261. if (event->attr.inherit_stat)
  262. ctx->nr_stat++;
  263. }
  264. /*
  265. * Remove a event from the lists for its context.
  266. * Must be called with ctx->mutex and ctx->lock held.
  267. */
  268. static void
  269. list_del_event(struct perf_event *event, struct perf_event_context *ctx)
  270. {
  271. struct perf_event *sibling, *tmp;
  272. if (list_empty(&event->group_entry))
  273. return;
  274. ctx->nr_events--;
  275. if (event->attr.inherit_stat)
  276. ctx->nr_stat--;
  277. list_del_init(&event->group_entry);
  278. list_del_rcu(&event->event_entry);
  279. if (event->group_leader != event)
  280. event->group_leader->nr_siblings--;
  281. update_event_times(event);
  282. event->state = PERF_EVENT_STATE_OFF;
  283. /*
  284. * If this was a group event with sibling events then
  285. * upgrade the siblings to singleton events by adding them
  286. * to the context list directly:
  287. */
  288. list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
  289. list_move_tail(&sibling->group_entry, &ctx->group_list);
  290. sibling->group_leader = sibling;
  291. }
  292. }
  293. static void
  294. event_sched_out(struct perf_event *event,
  295. struct perf_cpu_context *cpuctx,
  296. struct perf_event_context *ctx)
  297. {
  298. if (event->state != PERF_EVENT_STATE_ACTIVE)
  299. return;
  300. event->state = PERF_EVENT_STATE_INACTIVE;
  301. if (event->pending_disable) {
  302. event->pending_disable = 0;
  303. event->state = PERF_EVENT_STATE_OFF;
  304. }
  305. event->tstamp_stopped = ctx->time;
  306. event->pmu->disable(event);
  307. event->oncpu = -1;
  308. if (!is_software_event(event))
  309. cpuctx->active_oncpu--;
  310. ctx->nr_active--;
  311. if (event->attr.exclusive || !cpuctx->active_oncpu)
  312. cpuctx->exclusive = 0;
  313. }
  314. static void
  315. group_sched_out(struct perf_event *group_event,
  316. struct perf_cpu_context *cpuctx,
  317. struct perf_event_context *ctx)
  318. {
  319. struct perf_event *event;
  320. if (group_event->state != PERF_EVENT_STATE_ACTIVE)
  321. return;
  322. event_sched_out(group_event, cpuctx, ctx);
  323. /*
  324. * Schedule out siblings (if any):
  325. */
  326. list_for_each_entry(event, &group_event->sibling_list, group_entry)
  327. event_sched_out(event, cpuctx, ctx);
  328. if (group_event->attr.exclusive)
  329. cpuctx->exclusive = 0;
  330. }
  331. /*
  332. * Cross CPU call to remove a performance event
  333. *
  334. * We disable the event on the hardware level first. After that we
  335. * remove it from the context list.
  336. */
  337. static void __perf_event_remove_from_context(void *info)
  338. {
  339. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  340. struct perf_event *event = info;
  341. struct perf_event_context *ctx = event->ctx;
  342. /*
  343. * If this is a task context, we need to check whether it is
  344. * the current task context of this cpu. If not it has been
  345. * scheduled out before the smp call arrived.
  346. */
  347. if (ctx->task && cpuctx->task_ctx != ctx)
  348. return;
  349. spin_lock(&ctx->lock);
  350. /*
  351. * Protect the list operation against NMI by disabling the
  352. * events on a global level.
  353. */
  354. perf_disable();
  355. event_sched_out(event, cpuctx, ctx);
  356. list_del_event(event, ctx);
  357. if (!ctx->task) {
  358. /*
  359. * Allow more per task events with respect to the
  360. * reservation:
  361. */
  362. cpuctx->max_pertask =
  363. min(perf_max_events - ctx->nr_events,
  364. perf_max_events - perf_reserved_percpu);
  365. }
  366. perf_enable();
  367. spin_unlock(&ctx->lock);
  368. }
  369. /*
  370. * Remove the event from a task's (or a CPU's) list of events.
  371. *
  372. * Must be called with ctx->mutex held.
  373. *
  374. * CPU events are removed with a smp call. For task events we only
  375. * call when the task is on a CPU.
  376. *
  377. * If event->ctx is a cloned context, callers must make sure that
  378. * every task struct that event->ctx->task could possibly point to
  379. * remains valid. This is OK when called from perf_release since
  380. * that only calls us on the top-level context, which can't be a clone.
  381. * When called from perf_event_exit_task, it's OK because the
  382. * context has been detached from its task.
  383. */
  384. static void perf_event_remove_from_context(struct perf_event *event)
  385. {
  386. struct perf_event_context *ctx = event->ctx;
  387. struct task_struct *task = ctx->task;
  388. if (!task) {
  389. /*
  390. * Per cpu events are removed via an smp call and
  391. * the removal is always sucessful.
  392. */
  393. smp_call_function_single(event->cpu,
  394. __perf_event_remove_from_context,
  395. event, 1);
  396. return;
  397. }
  398. retry:
  399. task_oncpu_function_call(task, __perf_event_remove_from_context,
  400. event);
  401. spin_lock_irq(&ctx->lock);
  402. /*
  403. * If the context is active we need to retry the smp call.
  404. */
  405. if (ctx->nr_active && !list_empty(&event->group_entry)) {
  406. spin_unlock_irq(&ctx->lock);
  407. goto retry;
  408. }
  409. /*
  410. * The lock prevents that this context is scheduled in so we
  411. * can remove the event safely, if the call above did not
  412. * succeed.
  413. */
  414. if (!list_empty(&event->group_entry))
  415. list_del_event(event, ctx);
  416. spin_unlock_irq(&ctx->lock);
  417. }
  418. /*
  419. * Update total_time_enabled and total_time_running for all events in a group.
  420. */
  421. static void update_group_times(struct perf_event *leader)
  422. {
  423. struct perf_event *event;
  424. update_event_times(leader);
  425. list_for_each_entry(event, &leader->sibling_list, group_entry)
  426. update_event_times(event);
  427. }
  428. /*
  429. * Cross CPU call to disable a performance event
  430. */
  431. static void __perf_event_disable(void *info)
  432. {
  433. struct perf_event *event = info;
  434. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  435. struct perf_event_context *ctx = event->ctx;
  436. /*
  437. * If this is a per-task event, need to check whether this
  438. * event's task is the current task on this cpu.
  439. */
  440. if (ctx->task && cpuctx->task_ctx != ctx)
  441. return;
  442. spin_lock(&ctx->lock);
  443. /*
  444. * If the event is on, turn it off.
  445. * If it is in error state, leave it in error state.
  446. */
  447. if (event->state >= PERF_EVENT_STATE_INACTIVE) {
  448. update_context_time(ctx);
  449. update_group_times(event);
  450. if (event == event->group_leader)
  451. group_sched_out(event, cpuctx, ctx);
  452. else
  453. event_sched_out(event, cpuctx, ctx);
  454. event->state = PERF_EVENT_STATE_OFF;
  455. }
  456. spin_unlock(&ctx->lock);
  457. }
  458. /*
  459. * Disable a event.
  460. *
  461. * If event->ctx is a cloned context, callers must make sure that
  462. * every task struct that event->ctx->task could possibly point to
  463. * remains valid. This condition is satisifed when called through
  464. * perf_event_for_each_child or perf_event_for_each because they
  465. * hold the top-level event's child_mutex, so any descendant that
  466. * goes to exit will block in sync_child_event.
  467. * When called from perf_pending_event it's OK because event->ctx
  468. * is the current context on this CPU and preemption is disabled,
  469. * hence we can't get into perf_event_task_sched_out for this context.
  470. */
  471. static void perf_event_disable(struct perf_event *event)
  472. {
  473. struct perf_event_context *ctx = event->ctx;
  474. struct task_struct *task = ctx->task;
  475. if (!task) {
  476. /*
  477. * Disable the event on the cpu that it's on
  478. */
  479. smp_call_function_single(event->cpu, __perf_event_disable,
  480. event, 1);
  481. return;
  482. }
  483. retry:
  484. task_oncpu_function_call(task, __perf_event_disable, event);
  485. spin_lock_irq(&ctx->lock);
  486. /*
  487. * If the event is still active, we need to retry the cross-call.
  488. */
  489. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  490. spin_unlock_irq(&ctx->lock);
  491. goto retry;
  492. }
  493. /*
  494. * Since we have the lock this context can't be scheduled
  495. * in, so we can change the state safely.
  496. */
  497. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  498. update_group_times(event);
  499. event->state = PERF_EVENT_STATE_OFF;
  500. }
  501. spin_unlock_irq(&ctx->lock);
  502. }
  503. static int
  504. event_sched_in(struct perf_event *event,
  505. struct perf_cpu_context *cpuctx,
  506. struct perf_event_context *ctx,
  507. int cpu)
  508. {
  509. if (event->state <= PERF_EVENT_STATE_OFF)
  510. return 0;
  511. event->state = PERF_EVENT_STATE_ACTIVE;
  512. event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
  513. /*
  514. * The new state must be visible before we turn it on in the hardware:
  515. */
  516. smp_wmb();
  517. if (event->pmu->enable(event)) {
  518. event->state = PERF_EVENT_STATE_INACTIVE;
  519. event->oncpu = -1;
  520. return -EAGAIN;
  521. }
  522. event->tstamp_running += ctx->time - event->tstamp_stopped;
  523. if (!is_software_event(event))
  524. cpuctx->active_oncpu++;
  525. ctx->nr_active++;
  526. if (event->attr.exclusive)
  527. cpuctx->exclusive = 1;
  528. return 0;
  529. }
  530. static int
  531. group_sched_in(struct perf_event *group_event,
  532. struct perf_cpu_context *cpuctx,
  533. struct perf_event_context *ctx,
  534. int cpu)
  535. {
  536. struct perf_event *event, *partial_group;
  537. int ret;
  538. if (group_event->state == PERF_EVENT_STATE_OFF)
  539. return 0;
  540. ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
  541. if (ret)
  542. return ret < 0 ? ret : 0;
  543. if (event_sched_in(group_event, cpuctx, ctx, cpu))
  544. return -EAGAIN;
  545. /*
  546. * Schedule in siblings as one group (if any):
  547. */
  548. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  549. if (event_sched_in(event, cpuctx, ctx, cpu)) {
  550. partial_group = event;
  551. goto group_error;
  552. }
  553. }
  554. return 0;
  555. group_error:
  556. /*
  557. * Groups can be scheduled in as one unit only, so undo any
  558. * partial group before returning:
  559. */
  560. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  561. if (event == partial_group)
  562. break;
  563. event_sched_out(event, cpuctx, ctx);
  564. }
  565. event_sched_out(group_event, cpuctx, ctx);
  566. return -EAGAIN;
  567. }
  568. /*
  569. * Return 1 for a group consisting entirely of software events,
  570. * 0 if the group contains any hardware events.
  571. */
  572. static int is_software_only_group(struct perf_event *leader)
  573. {
  574. struct perf_event *event;
  575. if (!is_software_event(leader))
  576. return 0;
  577. list_for_each_entry(event, &leader->sibling_list, group_entry)
  578. if (!is_software_event(event))
  579. return 0;
  580. return 1;
  581. }
  582. /*
  583. * Work out whether we can put this event group on the CPU now.
  584. */
  585. static int group_can_go_on(struct perf_event *event,
  586. struct perf_cpu_context *cpuctx,
  587. int can_add_hw)
  588. {
  589. /*
  590. * Groups consisting entirely of software events can always go on.
  591. */
  592. if (is_software_only_group(event))
  593. return 1;
  594. /*
  595. * If an exclusive group is already on, no other hardware
  596. * events can go on.
  597. */
  598. if (cpuctx->exclusive)
  599. return 0;
  600. /*
  601. * If this group is exclusive and there are already
  602. * events on the CPU, it can't go on.
  603. */
  604. if (event->attr.exclusive && cpuctx->active_oncpu)
  605. return 0;
  606. /*
  607. * Otherwise, try to add it if all previous groups were able
  608. * to go on.
  609. */
  610. return can_add_hw;
  611. }
  612. static void add_event_to_ctx(struct perf_event *event,
  613. struct perf_event_context *ctx)
  614. {
  615. list_add_event(event, ctx);
  616. event->tstamp_enabled = ctx->time;
  617. event->tstamp_running = ctx->time;
  618. event->tstamp_stopped = ctx->time;
  619. }
  620. /*
  621. * Cross CPU call to install and enable a performance event
  622. *
  623. * Must be called with ctx->mutex held
  624. */
  625. static void __perf_install_in_context(void *info)
  626. {
  627. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  628. struct perf_event *event = info;
  629. struct perf_event_context *ctx = event->ctx;
  630. struct perf_event *leader = event->group_leader;
  631. int cpu = smp_processor_id();
  632. int err;
  633. /*
  634. * If this is a task context, we need to check whether it is
  635. * the current task context of this cpu. If not it has been
  636. * scheduled out before the smp call arrived.
  637. * Or possibly this is the right context but it isn't
  638. * on this cpu because it had no events.
  639. */
  640. if (ctx->task && cpuctx->task_ctx != ctx) {
  641. if (cpuctx->task_ctx || ctx->task != current)
  642. return;
  643. cpuctx->task_ctx = ctx;
  644. }
  645. spin_lock(&ctx->lock);
  646. ctx->is_active = 1;
  647. update_context_time(ctx);
  648. /*
  649. * Protect the list operation against NMI by disabling the
  650. * events on a global level. NOP for non NMI based events.
  651. */
  652. perf_disable();
  653. add_event_to_ctx(event, ctx);
  654. /*
  655. * Don't put the event on if it is disabled or if
  656. * it is in a group and the group isn't on.
  657. */
  658. if (event->state != PERF_EVENT_STATE_INACTIVE ||
  659. (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
  660. goto unlock;
  661. /*
  662. * An exclusive event can't go on if there are already active
  663. * hardware events, and no hardware event can go on if there
  664. * is already an exclusive event on.
  665. */
  666. if (!group_can_go_on(event, cpuctx, 1))
  667. err = -EEXIST;
  668. else
  669. err = event_sched_in(event, cpuctx, ctx, cpu);
  670. if (err) {
  671. /*
  672. * This event couldn't go on. If it is in a group
  673. * then we have to pull the whole group off.
  674. * If the event group is pinned then put it in error state.
  675. */
  676. if (leader != event)
  677. group_sched_out(leader, cpuctx, ctx);
  678. if (leader->attr.pinned) {
  679. update_group_times(leader);
  680. leader->state = PERF_EVENT_STATE_ERROR;
  681. }
  682. }
  683. if (!err && !ctx->task && cpuctx->max_pertask)
  684. cpuctx->max_pertask--;
  685. unlock:
  686. perf_enable();
  687. spin_unlock(&ctx->lock);
  688. }
  689. /*
  690. * Attach a performance event to a context
  691. *
  692. * First we add the event to the list with the hardware enable bit
  693. * in event->hw_config cleared.
  694. *
  695. * If the event is attached to a task which is on a CPU we use a smp
  696. * call to enable it in the task context. The task might have been
  697. * scheduled away, but we check this in the smp call again.
  698. *
  699. * Must be called with ctx->mutex held.
  700. */
  701. static void
  702. perf_install_in_context(struct perf_event_context *ctx,
  703. struct perf_event *event,
  704. int cpu)
  705. {
  706. struct task_struct *task = ctx->task;
  707. if (!task) {
  708. /*
  709. * Per cpu events are installed via an smp call and
  710. * the install is always sucessful.
  711. */
  712. smp_call_function_single(cpu, __perf_install_in_context,
  713. event, 1);
  714. return;
  715. }
  716. retry:
  717. task_oncpu_function_call(task, __perf_install_in_context,
  718. event);
  719. spin_lock_irq(&ctx->lock);
  720. /*
  721. * we need to retry the smp call.
  722. */
  723. if (ctx->is_active && list_empty(&event->group_entry)) {
  724. spin_unlock_irq(&ctx->lock);
  725. goto retry;
  726. }
  727. /*
  728. * The lock prevents that this context is scheduled in so we
  729. * can add the event safely, if it the call above did not
  730. * succeed.
  731. */
  732. if (list_empty(&event->group_entry))
  733. add_event_to_ctx(event, ctx);
  734. spin_unlock_irq(&ctx->lock);
  735. }
  736. /*
  737. * Put a event into inactive state and update time fields.
  738. * Enabling the leader of a group effectively enables all
  739. * the group members that aren't explicitly disabled, so we
  740. * have to update their ->tstamp_enabled also.
  741. * Note: this works for group members as well as group leaders
  742. * since the non-leader members' sibling_lists will be empty.
  743. */
  744. static void __perf_event_mark_enabled(struct perf_event *event,
  745. struct perf_event_context *ctx)
  746. {
  747. struct perf_event *sub;
  748. event->state = PERF_EVENT_STATE_INACTIVE;
  749. event->tstamp_enabled = ctx->time - event->total_time_enabled;
  750. list_for_each_entry(sub, &event->sibling_list, group_entry)
  751. if (sub->state >= PERF_EVENT_STATE_INACTIVE)
  752. sub->tstamp_enabled =
  753. ctx->time - sub->total_time_enabled;
  754. }
  755. /*
  756. * Cross CPU call to enable a performance event
  757. */
  758. static void __perf_event_enable(void *info)
  759. {
  760. struct perf_event *event = info;
  761. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  762. struct perf_event_context *ctx = event->ctx;
  763. struct perf_event *leader = event->group_leader;
  764. int err;
  765. /*
  766. * If this is a per-task event, need to check whether this
  767. * event's task is the current task on this cpu.
  768. */
  769. if (ctx->task && cpuctx->task_ctx != ctx) {
  770. if (cpuctx->task_ctx || ctx->task != current)
  771. return;
  772. cpuctx->task_ctx = ctx;
  773. }
  774. spin_lock(&ctx->lock);
  775. ctx->is_active = 1;
  776. update_context_time(ctx);
  777. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  778. goto unlock;
  779. __perf_event_mark_enabled(event, ctx);
  780. /*
  781. * If the event is in a group and isn't the group leader,
  782. * then don't put it on unless the group is on.
  783. */
  784. if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
  785. goto unlock;
  786. if (!group_can_go_on(event, cpuctx, 1)) {
  787. err = -EEXIST;
  788. } else {
  789. perf_disable();
  790. if (event == leader)
  791. err = group_sched_in(event, cpuctx, ctx,
  792. smp_processor_id());
  793. else
  794. err = event_sched_in(event, cpuctx, ctx,
  795. smp_processor_id());
  796. perf_enable();
  797. }
  798. if (err) {
  799. /*
  800. * If this event can't go on and it's part of a
  801. * group, then the whole group has to come off.
  802. */
  803. if (leader != event)
  804. group_sched_out(leader, cpuctx, ctx);
  805. if (leader->attr.pinned) {
  806. update_group_times(leader);
  807. leader->state = PERF_EVENT_STATE_ERROR;
  808. }
  809. }
  810. unlock:
  811. spin_unlock(&ctx->lock);
  812. }
  813. /*
  814. * Enable a event.
  815. *
  816. * If event->ctx is a cloned context, callers must make sure that
  817. * every task struct that event->ctx->task could possibly point to
  818. * remains valid. This condition is satisfied when called through
  819. * perf_event_for_each_child or perf_event_for_each as described
  820. * for perf_event_disable.
  821. */
  822. static void perf_event_enable(struct perf_event *event)
  823. {
  824. struct perf_event_context *ctx = event->ctx;
  825. struct task_struct *task = ctx->task;
  826. if (!task) {
  827. /*
  828. * Enable the event on the cpu that it's on
  829. */
  830. smp_call_function_single(event->cpu, __perf_event_enable,
  831. event, 1);
  832. return;
  833. }
  834. spin_lock_irq(&ctx->lock);
  835. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  836. goto out;
  837. /*
  838. * If the event is in error state, clear that first.
  839. * That way, if we see the event in error state below, we
  840. * know that it has gone back into error state, as distinct
  841. * from the task having been scheduled away before the
  842. * cross-call arrived.
  843. */
  844. if (event->state == PERF_EVENT_STATE_ERROR)
  845. event->state = PERF_EVENT_STATE_OFF;
  846. retry:
  847. spin_unlock_irq(&ctx->lock);
  848. task_oncpu_function_call(task, __perf_event_enable, event);
  849. spin_lock_irq(&ctx->lock);
  850. /*
  851. * If the context is active and the event is still off,
  852. * we need to retry the cross-call.
  853. */
  854. if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
  855. goto retry;
  856. /*
  857. * Since we have the lock this context can't be scheduled
  858. * in, so we can change the state safely.
  859. */
  860. if (event->state == PERF_EVENT_STATE_OFF)
  861. __perf_event_mark_enabled(event, ctx);
  862. out:
  863. spin_unlock_irq(&ctx->lock);
  864. }
  865. static int perf_event_refresh(struct perf_event *event, int refresh)
  866. {
  867. /*
  868. * not supported on inherited events
  869. */
  870. if (event->attr.inherit)
  871. return -EINVAL;
  872. atomic_add(refresh, &event->event_limit);
  873. perf_event_enable(event);
  874. return 0;
  875. }
  876. void __perf_event_sched_out(struct perf_event_context *ctx,
  877. struct perf_cpu_context *cpuctx)
  878. {
  879. struct perf_event *event;
  880. spin_lock(&ctx->lock);
  881. ctx->is_active = 0;
  882. if (likely(!ctx->nr_events))
  883. goto out;
  884. update_context_time(ctx);
  885. perf_disable();
  886. if (ctx->nr_active) {
  887. list_for_each_entry(event, &ctx->group_list, group_entry)
  888. group_sched_out(event, cpuctx, ctx);
  889. }
  890. perf_enable();
  891. out:
  892. spin_unlock(&ctx->lock);
  893. }
  894. /*
  895. * Test whether two contexts are equivalent, i.e. whether they
  896. * have both been cloned from the same version of the same context
  897. * and they both have the same number of enabled events.
  898. * If the number of enabled events is the same, then the set
  899. * of enabled events should be the same, because these are both
  900. * inherited contexts, therefore we can't access individual events
  901. * in them directly with an fd; we can only enable/disable all
  902. * events via prctl, or enable/disable all events in a family
  903. * via ioctl, which will have the same effect on both contexts.
  904. */
  905. static int context_equiv(struct perf_event_context *ctx1,
  906. struct perf_event_context *ctx2)
  907. {
  908. return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
  909. && ctx1->parent_gen == ctx2->parent_gen
  910. && !ctx1->pin_count && !ctx2->pin_count;
  911. }
  912. static void __perf_event_sync_stat(struct perf_event *event,
  913. struct perf_event *next_event)
  914. {
  915. u64 value;
  916. if (!event->attr.inherit_stat)
  917. return;
  918. /*
  919. * Update the event value, we cannot use perf_event_read()
  920. * because we're in the middle of a context switch and have IRQs
  921. * disabled, which upsets smp_call_function_single(), however
  922. * we know the event must be on the current CPU, therefore we
  923. * don't need to use it.
  924. */
  925. switch (event->state) {
  926. case PERF_EVENT_STATE_ACTIVE:
  927. event->pmu->read(event);
  928. /* fall-through */
  929. case PERF_EVENT_STATE_INACTIVE:
  930. update_event_times(event);
  931. break;
  932. default:
  933. break;
  934. }
  935. /*
  936. * In order to keep per-task stats reliable we need to flip the event
  937. * values when we flip the contexts.
  938. */
  939. value = atomic64_read(&next_event->count);
  940. value = atomic64_xchg(&event->count, value);
  941. atomic64_set(&next_event->count, value);
  942. swap(event->total_time_enabled, next_event->total_time_enabled);
  943. swap(event->total_time_running, next_event->total_time_running);
  944. /*
  945. * Since we swizzled the values, update the user visible data too.
  946. */
  947. perf_event_update_userpage(event);
  948. perf_event_update_userpage(next_event);
  949. }
  950. #define list_next_entry(pos, member) \
  951. list_entry(pos->member.next, typeof(*pos), member)
  952. static void perf_event_sync_stat(struct perf_event_context *ctx,
  953. struct perf_event_context *next_ctx)
  954. {
  955. struct perf_event *event, *next_event;
  956. if (!ctx->nr_stat)
  957. return;
  958. update_context_time(ctx);
  959. event = list_first_entry(&ctx->event_list,
  960. struct perf_event, event_entry);
  961. next_event = list_first_entry(&next_ctx->event_list,
  962. struct perf_event, event_entry);
  963. while (&event->event_entry != &ctx->event_list &&
  964. &next_event->event_entry != &next_ctx->event_list) {
  965. __perf_event_sync_stat(event, next_event);
  966. event = list_next_entry(event, event_entry);
  967. next_event = list_next_entry(next_event, event_entry);
  968. }
  969. }
  970. /*
  971. * Called from scheduler to remove the events of the current task,
  972. * with interrupts disabled.
  973. *
  974. * We stop each event and update the event value in event->count.
  975. *
  976. * This does not protect us against NMI, but disable()
  977. * sets the disabled bit in the control field of event _before_
  978. * accessing the event control register. If a NMI hits, then it will
  979. * not restart the event.
  980. */
  981. void perf_event_task_sched_out(struct task_struct *task,
  982. struct task_struct *next, int cpu)
  983. {
  984. struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
  985. struct perf_event_context *ctx = task->perf_event_ctxp;
  986. struct perf_event_context *next_ctx;
  987. struct perf_event_context *parent;
  988. struct pt_regs *regs;
  989. int do_switch = 1;
  990. regs = task_pt_regs(task);
  991. perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
  992. if (likely(!ctx || !cpuctx->task_ctx))
  993. return;
  994. rcu_read_lock();
  995. parent = rcu_dereference(ctx->parent_ctx);
  996. next_ctx = next->perf_event_ctxp;
  997. if (parent && next_ctx &&
  998. rcu_dereference(next_ctx->parent_ctx) == parent) {
  999. /*
  1000. * Looks like the two contexts are clones, so we might be
  1001. * able to optimize the context switch. We lock both
  1002. * contexts and check that they are clones under the
  1003. * lock (including re-checking that neither has been
  1004. * uncloned in the meantime). It doesn't matter which
  1005. * order we take the locks because no other cpu could
  1006. * be trying to lock both of these tasks.
  1007. */
  1008. spin_lock(&ctx->lock);
  1009. spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
  1010. if (context_equiv(ctx, next_ctx)) {
  1011. /*
  1012. * XXX do we need a memory barrier of sorts
  1013. * wrt to rcu_dereference() of perf_event_ctxp
  1014. */
  1015. task->perf_event_ctxp = next_ctx;
  1016. next->perf_event_ctxp = ctx;
  1017. ctx->task = next;
  1018. next_ctx->task = task;
  1019. do_switch = 0;
  1020. perf_event_sync_stat(ctx, next_ctx);
  1021. }
  1022. spin_unlock(&next_ctx->lock);
  1023. spin_unlock(&ctx->lock);
  1024. }
  1025. rcu_read_unlock();
  1026. if (do_switch) {
  1027. __perf_event_sched_out(ctx, cpuctx);
  1028. cpuctx->task_ctx = NULL;
  1029. }
  1030. }
  1031. /*
  1032. * Called with IRQs disabled
  1033. */
  1034. static void __perf_event_task_sched_out(struct perf_event_context *ctx)
  1035. {
  1036. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  1037. if (!cpuctx->task_ctx)
  1038. return;
  1039. if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
  1040. return;
  1041. __perf_event_sched_out(ctx, cpuctx);
  1042. cpuctx->task_ctx = NULL;
  1043. }
  1044. /*
  1045. * Called with IRQs disabled
  1046. */
  1047. static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
  1048. {
  1049. __perf_event_sched_out(&cpuctx->ctx, cpuctx);
  1050. }
  1051. static void
  1052. __perf_event_sched_in(struct perf_event_context *ctx,
  1053. struct perf_cpu_context *cpuctx, int cpu)
  1054. {
  1055. struct perf_event *event;
  1056. int can_add_hw = 1;
  1057. spin_lock(&ctx->lock);
  1058. ctx->is_active = 1;
  1059. if (likely(!ctx->nr_events))
  1060. goto out;
  1061. ctx->timestamp = perf_clock();
  1062. perf_disable();
  1063. /*
  1064. * First go through the list and put on any pinned groups
  1065. * in order to give them the best chance of going on.
  1066. */
  1067. list_for_each_entry(event, &ctx->group_list, group_entry) {
  1068. if (event->state <= PERF_EVENT_STATE_OFF ||
  1069. !event->attr.pinned)
  1070. continue;
  1071. if (event->cpu != -1 && event->cpu != cpu)
  1072. continue;
  1073. if (group_can_go_on(event, cpuctx, 1))
  1074. group_sched_in(event, cpuctx, ctx, cpu);
  1075. /*
  1076. * If this pinned group hasn't been scheduled,
  1077. * put it in error state.
  1078. */
  1079. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1080. update_group_times(event);
  1081. event->state = PERF_EVENT_STATE_ERROR;
  1082. }
  1083. }
  1084. list_for_each_entry(event, &ctx->group_list, group_entry) {
  1085. /*
  1086. * Ignore events in OFF or ERROR state, and
  1087. * ignore pinned events since we did them already.
  1088. */
  1089. if (event->state <= PERF_EVENT_STATE_OFF ||
  1090. event->attr.pinned)
  1091. continue;
  1092. /*
  1093. * Listen to the 'cpu' scheduling filter constraint
  1094. * of events:
  1095. */
  1096. if (event->cpu != -1 && event->cpu != cpu)
  1097. continue;
  1098. if (group_can_go_on(event, cpuctx, can_add_hw))
  1099. if (group_sched_in(event, cpuctx, ctx, cpu))
  1100. can_add_hw = 0;
  1101. }
  1102. perf_enable();
  1103. out:
  1104. spin_unlock(&ctx->lock);
  1105. }
  1106. /*
  1107. * Called from scheduler to add the events of the current task
  1108. * with interrupts disabled.
  1109. *
  1110. * We restore the event value and then enable it.
  1111. *
  1112. * This does not protect us against NMI, but enable()
  1113. * sets the enabled bit in the control field of event _before_
  1114. * accessing the event control register. If a NMI hits, then it will
  1115. * keep the event running.
  1116. */
  1117. void perf_event_task_sched_in(struct task_struct *task, int cpu)
  1118. {
  1119. struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
  1120. struct perf_event_context *ctx = task->perf_event_ctxp;
  1121. if (likely(!ctx))
  1122. return;
  1123. if (cpuctx->task_ctx == ctx)
  1124. return;
  1125. __perf_event_sched_in(ctx, cpuctx, cpu);
  1126. cpuctx->task_ctx = ctx;
  1127. }
  1128. static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
  1129. {
  1130. struct perf_event_context *ctx = &cpuctx->ctx;
  1131. __perf_event_sched_in(ctx, cpuctx, cpu);
  1132. }
  1133. #define MAX_INTERRUPTS (~0ULL)
  1134. static void perf_log_throttle(struct perf_event *event, int enable);
  1135. static void perf_adjust_period(struct perf_event *event, u64 events)
  1136. {
  1137. struct hw_perf_event *hwc = &event->hw;
  1138. u64 period, sample_period;
  1139. s64 delta;
  1140. events *= hwc->sample_period;
  1141. period = div64_u64(events, event->attr.sample_freq);
  1142. delta = (s64)(period - hwc->sample_period);
  1143. delta = (delta + 7) / 8; /* low pass filter */
  1144. sample_period = hwc->sample_period + delta;
  1145. if (!sample_period)
  1146. sample_period = 1;
  1147. hwc->sample_period = sample_period;
  1148. }
  1149. static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
  1150. {
  1151. struct perf_event *event;
  1152. struct hw_perf_event *hwc;
  1153. u64 interrupts, freq;
  1154. spin_lock(&ctx->lock);
  1155. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  1156. if (event->state != PERF_EVENT_STATE_ACTIVE)
  1157. continue;
  1158. hwc = &event->hw;
  1159. interrupts = hwc->interrupts;
  1160. hwc->interrupts = 0;
  1161. /*
  1162. * unthrottle events on the tick
  1163. */
  1164. if (interrupts == MAX_INTERRUPTS) {
  1165. perf_log_throttle(event, 1);
  1166. event->pmu->unthrottle(event);
  1167. interrupts = 2*sysctl_perf_event_sample_rate/HZ;
  1168. }
  1169. if (!event->attr.freq || !event->attr.sample_freq)
  1170. continue;
  1171. /*
  1172. * if the specified freq < HZ then we need to skip ticks
  1173. */
  1174. if (event->attr.sample_freq < HZ) {
  1175. freq = event->attr.sample_freq;
  1176. hwc->freq_count += freq;
  1177. hwc->freq_interrupts += interrupts;
  1178. if (hwc->freq_count < HZ)
  1179. continue;
  1180. interrupts = hwc->freq_interrupts;
  1181. hwc->freq_interrupts = 0;
  1182. hwc->freq_count -= HZ;
  1183. } else
  1184. freq = HZ;
  1185. perf_adjust_period(event, freq * interrupts);
  1186. /*
  1187. * In order to avoid being stalled by an (accidental) huge
  1188. * sample period, force reset the sample period if we didn't
  1189. * get any events in this freq period.
  1190. */
  1191. if (!interrupts) {
  1192. perf_disable();
  1193. event->pmu->disable(event);
  1194. atomic64_set(&hwc->period_left, 0);
  1195. event->pmu->enable(event);
  1196. perf_enable();
  1197. }
  1198. }
  1199. spin_unlock(&ctx->lock);
  1200. }
  1201. /*
  1202. * Round-robin a context's events:
  1203. */
  1204. static void rotate_ctx(struct perf_event_context *ctx)
  1205. {
  1206. struct perf_event *event;
  1207. if (!ctx->nr_events)
  1208. return;
  1209. spin_lock(&ctx->lock);
  1210. /*
  1211. * Rotate the first entry last (works just fine for group events too):
  1212. */
  1213. perf_disable();
  1214. list_for_each_entry(event, &ctx->group_list, group_entry) {
  1215. list_move_tail(&event->group_entry, &ctx->group_list);
  1216. break;
  1217. }
  1218. perf_enable();
  1219. spin_unlock(&ctx->lock);
  1220. }
  1221. void perf_event_task_tick(struct task_struct *curr, int cpu)
  1222. {
  1223. struct perf_cpu_context *cpuctx;
  1224. struct perf_event_context *ctx;
  1225. if (!atomic_read(&nr_events))
  1226. return;
  1227. cpuctx = &per_cpu(perf_cpu_context, cpu);
  1228. ctx = curr->perf_event_ctxp;
  1229. perf_ctx_adjust_freq(&cpuctx->ctx);
  1230. if (ctx)
  1231. perf_ctx_adjust_freq(ctx);
  1232. perf_event_cpu_sched_out(cpuctx);
  1233. if (ctx)
  1234. __perf_event_task_sched_out(ctx);
  1235. rotate_ctx(&cpuctx->ctx);
  1236. if (ctx)
  1237. rotate_ctx(ctx);
  1238. perf_event_cpu_sched_in(cpuctx, cpu);
  1239. if (ctx)
  1240. perf_event_task_sched_in(curr, cpu);
  1241. }
  1242. /*
  1243. * Enable all of a task's events that have been marked enable-on-exec.
  1244. * This expects task == current.
  1245. */
  1246. static void perf_event_enable_on_exec(struct task_struct *task)
  1247. {
  1248. struct perf_event_context *ctx;
  1249. struct perf_event *event;
  1250. unsigned long flags;
  1251. int enabled = 0;
  1252. local_irq_save(flags);
  1253. ctx = task->perf_event_ctxp;
  1254. if (!ctx || !ctx->nr_events)
  1255. goto out;
  1256. __perf_event_task_sched_out(ctx);
  1257. spin_lock(&ctx->lock);
  1258. list_for_each_entry(event, &ctx->group_list, group_entry) {
  1259. if (!event->attr.enable_on_exec)
  1260. continue;
  1261. event->attr.enable_on_exec = 0;
  1262. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  1263. continue;
  1264. __perf_event_mark_enabled(event, ctx);
  1265. enabled = 1;
  1266. }
  1267. /*
  1268. * Unclone this context if we enabled any event.
  1269. */
  1270. if (enabled)
  1271. unclone_ctx(ctx);
  1272. spin_unlock(&ctx->lock);
  1273. perf_event_task_sched_in(task, smp_processor_id());
  1274. out:
  1275. local_irq_restore(flags);
  1276. }
  1277. /*
  1278. * Cross CPU call to read the hardware event
  1279. */
  1280. static void __perf_event_read(void *info)
  1281. {
  1282. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  1283. struct perf_event *event = info;
  1284. struct perf_event_context *ctx = event->ctx;
  1285. /*
  1286. * If this is a task context, we need to check whether it is
  1287. * the current task context of this cpu. If not it has been
  1288. * scheduled out before the smp call arrived. In that case
  1289. * event->count would have been updated to a recent sample
  1290. * when the event was scheduled out.
  1291. */
  1292. if (ctx->task && cpuctx->task_ctx != ctx)
  1293. return;
  1294. spin_lock(&ctx->lock);
  1295. update_context_time(ctx);
  1296. update_event_times(event);
  1297. spin_unlock(&ctx->lock);
  1298. event->pmu->read(event);
  1299. }
  1300. static u64 perf_event_read(struct perf_event *event)
  1301. {
  1302. /*
  1303. * If event is enabled and currently active on a CPU, update the
  1304. * value in the event structure:
  1305. */
  1306. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  1307. smp_call_function_single(event->oncpu,
  1308. __perf_event_read, event, 1);
  1309. } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1310. struct perf_event_context *ctx = event->ctx;
  1311. unsigned long flags;
  1312. spin_lock_irqsave(&ctx->lock, flags);
  1313. update_context_time(ctx);
  1314. update_event_times(event);
  1315. spin_unlock_irqrestore(&ctx->lock, flags);
  1316. }
  1317. return atomic64_read(&event->count);
  1318. }
  1319. /*
  1320. * Initialize the perf_event context in a task_struct:
  1321. */
  1322. static void
  1323. __perf_event_init_context(struct perf_event_context *ctx,
  1324. struct task_struct *task)
  1325. {
  1326. memset(ctx, 0, sizeof(*ctx));
  1327. spin_lock_init(&ctx->lock);
  1328. mutex_init(&ctx->mutex);
  1329. INIT_LIST_HEAD(&ctx->group_list);
  1330. INIT_LIST_HEAD(&ctx->event_list);
  1331. atomic_set(&ctx->refcount, 1);
  1332. ctx->task = task;
  1333. }
  1334. static struct perf_event_context *find_get_context(pid_t pid, int cpu)
  1335. {
  1336. struct perf_event_context *ctx;
  1337. struct perf_cpu_context *cpuctx;
  1338. struct task_struct *task;
  1339. unsigned long flags;
  1340. int err;
  1341. /*
  1342. * If cpu is not a wildcard then this is a percpu event:
  1343. */
  1344. if (cpu != -1) {
  1345. /* Must be root to operate on a CPU event: */
  1346. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  1347. return ERR_PTR(-EACCES);
  1348. if (cpu < 0 || cpu > num_possible_cpus())
  1349. return ERR_PTR(-EINVAL);
  1350. /*
  1351. * We could be clever and allow to attach a event to an
  1352. * offline CPU and activate it when the CPU comes up, but
  1353. * that's for later.
  1354. */
  1355. if (!cpu_isset(cpu, cpu_online_map))
  1356. return ERR_PTR(-ENODEV);
  1357. cpuctx = &per_cpu(perf_cpu_context, cpu);
  1358. ctx = &cpuctx->ctx;
  1359. get_ctx(ctx);
  1360. return ctx;
  1361. }
  1362. rcu_read_lock();
  1363. if (!pid)
  1364. task = current;
  1365. else
  1366. task = find_task_by_vpid(pid);
  1367. if (task)
  1368. get_task_struct(task);
  1369. rcu_read_unlock();
  1370. if (!task)
  1371. return ERR_PTR(-ESRCH);
  1372. /*
  1373. * Can't attach events to a dying task.
  1374. */
  1375. err = -ESRCH;
  1376. if (task->flags & PF_EXITING)
  1377. goto errout;
  1378. /* Reuse ptrace permission checks for now. */
  1379. err = -EACCES;
  1380. if (!ptrace_may_access(task, PTRACE_MODE_READ))
  1381. goto errout;
  1382. retry:
  1383. ctx = perf_lock_task_context(task, &flags);
  1384. if (ctx) {
  1385. unclone_ctx(ctx);
  1386. spin_unlock_irqrestore(&ctx->lock, flags);
  1387. }
  1388. if (!ctx) {
  1389. ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
  1390. err = -ENOMEM;
  1391. if (!ctx)
  1392. goto errout;
  1393. __perf_event_init_context(ctx, task);
  1394. get_ctx(ctx);
  1395. if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
  1396. /*
  1397. * We raced with some other task; use
  1398. * the context they set.
  1399. */
  1400. kfree(ctx);
  1401. goto retry;
  1402. }
  1403. get_task_struct(task);
  1404. }
  1405. put_task_struct(task);
  1406. return ctx;
  1407. errout:
  1408. put_task_struct(task);
  1409. return ERR_PTR(err);
  1410. }
  1411. static void perf_event_free_filter(struct perf_event *event);
  1412. static void free_event_rcu(struct rcu_head *head)
  1413. {
  1414. struct perf_event *event;
  1415. event = container_of(head, struct perf_event, rcu_head);
  1416. if (event->ns)
  1417. put_pid_ns(event->ns);
  1418. perf_event_free_filter(event);
  1419. kfree(event);
  1420. }
  1421. static void perf_pending_sync(struct perf_event *event);
  1422. static void free_event(struct perf_event *event)
  1423. {
  1424. perf_pending_sync(event);
  1425. if (!event->parent) {
  1426. atomic_dec(&nr_events);
  1427. if (event->attr.mmap)
  1428. atomic_dec(&nr_mmap_events);
  1429. if (event->attr.comm)
  1430. atomic_dec(&nr_comm_events);
  1431. if (event->attr.task)
  1432. atomic_dec(&nr_task_events);
  1433. }
  1434. if (event->output) {
  1435. fput(event->output->filp);
  1436. event->output = NULL;
  1437. }
  1438. if (event->destroy)
  1439. event->destroy(event);
  1440. put_ctx(event->ctx);
  1441. call_rcu(&event->rcu_head, free_event_rcu);
  1442. }
  1443. int perf_event_release_kernel(struct perf_event *event)
  1444. {
  1445. struct perf_event_context *ctx = event->ctx;
  1446. WARN_ON_ONCE(ctx->parent_ctx);
  1447. mutex_lock(&ctx->mutex);
  1448. perf_event_remove_from_context(event);
  1449. mutex_unlock(&ctx->mutex);
  1450. mutex_lock(&event->owner->perf_event_mutex);
  1451. list_del_init(&event->owner_entry);
  1452. mutex_unlock(&event->owner->perf_event_mutex);
  1453. put_task_struct(event->owner);
  1454. free_event(event);
  1455. return 0;
  1456. }
  1457. EXPORT_SYMBOL_GPL(perf_event_release_kernel);
  1458. /*
  1459. * Called when the last reference to the file is gone.
  1460. */
  1461. static int perf_release(struct inode *inode, struct file *file)
  1462. {
  1463. struct perf_event *event = file->private_data;
  1464. file->private_data = NULL;
  1465. return perf_event_release_kernel(event);
  1466. }
  1467. static int perf_event_read_size(struct perf_event *event)
  1468. {
  1469. int entry = sizeof(u64); /* value */
  1470. int size = 0;
  1471. int nr = 1;
  1472. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  1473. size += sizeof(u64);
  1474. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  1475. size += sizeof(u64);
  1476. if (event->attr.read_format & PERF_FORMAT_ID)
  1477. entry += sizeof(u64);
  1478. if (event->attr.read_format & PERF_FORMAT_GROUP) {
  1479. nr += event->group_leader->nr_siblings;
  1480. size += sizeof(u64);
  1481. }
  1482. size += entry * nr;
  1483. return size;
  1484. }
  1485. u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
  1486. {
  1487. struct perf_event *child;
  1488. u64 total = 0;
  1489. *enabled = 0;
  1490. *running = 0;
  1491. mutex_lock(&event->child_mutex);
  1492. total += perf_event_read(event);
  1493. *enabled += event->total_time_enabled +
  1494. atomic64_read(&event->child_total_time_enabled);
  1495. *running += event->total_time_running +
  1496. atomic64_read(&event->child_total_time_running);
  1497. list_for_each_entry(child, &event->child_list, child_list) {
  1498. total += perf_event_read(child);
  1499. *enabled += child->total_time_enabled;
  1500. *running += child->total_time_running;
  1501. }
  1502. mutex_unlock(&event->child_mutex);
  1503. return total;
  1504. }
  1505. EXPORT_SYMBOL_GPL(perf_event_read_value);
  1506. static int perf_event_read_group(struct perf_event *event,
  1507. u64 read_format, char __user *buf)
  1508. {
  1509. struct perf_event *leader = event->group_leader, *sub;
  1510. int n = 0, size = 0, ret = -EFAULT;
  1511. struct perf_event_context *ctx = leader->ctx;
  1512. u64 values[5];
  1513. u64 count, enabled, running;
  1514. mutex_lock(&ctx->mutex);
  1515. count = perf_event_read_value(leader, &enabled, &running);
  1516. values[n++] = 1 + leader->nr_siblings;
  1517. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  1518. values[n++] = enabled;
  1519. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  1520. values[n++] = running;
  1521. values[n++] = count;
  1522. if (read_format & PERF_FORMAT_ID)
  1523. values[n++] = primary_event_id(leader);
  1524. size = n * sizeof(u64);
  1525. if (copy_to_user(buf, values, size))
  1526. goto unlock;
  1527. ret = size;
  1528. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  1529. n = 0;
  1530. values[n++] = perf_event_read_value(sub, &enabled, &running);
  1531. if (read_format & PERF_FORMAT_ID)
  1532. values[n++] = primary_event_id(sub);
  1533. size = n * sizeof(u64);
  1534. if (copy_to_user(buf + size, values, size)) {
  1535. ret = -EFAULT;
  1536. goto unlock;
  1537. }
  1538. ret += size;
  1539. }
  1540. unlock:
  1541. mutex_unlock(&ctx->mutex);
  1542. return ret;
  1543. }
  1544. static int perf_event_read_one(struct perf_event *event,
  1545. u64 read_format, char __user *buf)
  1546. {
  1547. u64 enabled, running;
  1548. u64 values[4];
  1549. int n = 0;
  1550. values[n++] = perf_event_read_value(event, &enabled, &running);
  1551. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  1552. values[n++] = enabled;
  1553. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  1554. values[n++] = running;
  1555. if (read_format & PERF_FORMAT_ID)
  1556. values[n++] = primary_event_id(event);
  1557. if (copy_to_user(buf, values, n * sizeof(u64)))
  1558. return -EFAULT;
  1559. return n * sizeof(u64);
  1560. }
  1561. /*
  1562. * Read the performance event - simple non blocking version for now
  1563. */
  1564. static ssize_t
  1565. perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
  1566. {
  1567. u64 read_format = event->attr.read_format;
  1568. int ret;
  1569. /*
  1570. * Return end-of-file for a read on a event that is in
  1571. * error state (i.e. because it was pinned but it couldn't be
  1572. * scheduled on to the CPU at some point).
  1573. */
  1574. if (event->state == PERF_EVENT_STATE_ERROR)
  1575. return 0;
  1576. if (count < perf_event_read_size(event))
  1577. return -ENOSPC;
  1578. WARN_ON_ONCE(event->ctx->parent_ctx);
  1579. if (read_format & PERF_FORMAT_GROUP)
  1580. ret = perf_event_read_group(event, read_format, buf);
  1581. else
  1582. ret = perf_event_read_one(event, read_format, buf);
  1583. return ret;
  1584. }
  1585. static ssize_t
  1586. perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
  1587. {
  1588. struct perf_event *event = file->private_data;
  1589. return perf_read_hw(event, buf, count);
  1590. }
  1591. static unsigned int perf_poll(struct file *file, poll_table *wait)
  1592. {
  1593. struct perf_event *event = file->private_data;
  1594. struct perf_mmap_data *data;
  1595. unsigned int events = POLL_HUP;
  1596. rcu_read_lock();
  1597. data = rcu_dereference(event->data);
  1598. if (data)
  1599. events = atomic_xchg(&data->poll, 0);
  1600. rcu_read_unlock();
  1601. poll_wait(file, &event->waitq, wait);
  1602. return events;
  1603. }
  1604. static void perf_event_reset(struct perf_event *event)
  1605. {
  1606. (void)perf_event_read(event);
  1607. atomic64_set(&event->count, 0);
  1608. perf_event_update_userpage(event);
  1609. }
  1610. /*
  1611. * Holding the top-level event's child_mutex means that any
  1612. * descendant process that has inherited this event will block
  1613. * in sync_child_event if it goes to exit, thus satisfying the
  1614. * task existence requirements of perf_event_enable/disable.
  1615. */
  1616. static void perf_event_for_each_child(struct perf_event *event,
  1617. void (*func)(struct perf_event *))
  1618. {
  1619. struct perf_event *child;
  1620. WARN_ON_ONCE(event->ctx->parent_ctx);
  1621. mutex_lock(&event->child_mutex);
  1622. func(event);
  1623. list_for_each_entry(child, &event->child_list, child_list)
  1624. func(child);
  1625. mutex_unlock(&event->child_mutex);
  1626. }
  1627. static void perf_event_for_each(struct perf_event *event,
  1628. void (*func)(struct perf_event *))
  1629. {
  1630. struct perf_event_context *ctx = event->ctx;
  1631. struct perf_event *sibling;
  1632. WARN_ON_ONCE(ctx->parent_ctx);
  1633. mutex_lock(&ctx->mutex);
  1634. event = event->group_leader;
  1635. perf_event_for_each_child(event, func);
  1636. func(event);
  1637. list_for_each_entry(sibling, &event->sibling_list, group_entry)
  1638. perf_event_for_each_child(event, func);
  1639. mutex_unlock(&ctx->mutex);
  1640. }
  1641. static int perf_event_period(struct perf_event *event, u64 __user *arg)
  1642. {
  1643. struct perf_event_context *ctx = event->ctx;
  1644. unsigned long size;
  1645. int ret = 0;
  1646. u64 value;
  1647. if (!event->attr.sample_period)
  1648. return -EINVAL;
  1649. size = copy_from_user(&value, arg, sizeof(value));
  1650. if (size != sizeof(value))
  1651. return -EFAULT;
  1652. if (!value)
  1653. return -EINVAL;
  1654. spin_lock_irq(&ctx->lock);
  1655. if (event->attr.freq) {
  1656. if (value > sysctl_perf_event_sample_rate) {
  1657. ret = -EINVAL;
  1658. goto unlock;
  1659. }
  1660. event->attr.sample_freq = value;
  1661. } else {
  1662. event->attr.sample_period = value;
  1663. event->hw.sample_period = value;
  1664. }
  1665. unlock:
  1666. spin_unlock_irq(&ctx->lock);
  1667. return ret;
  1668. }
  1669. static int perf_event_set_output(struct perf_event *event, int output_fd);
  1670. static int perf_event_set_filter(struct perf_event *event, void __user *arg);
  1671. static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1672. {
  1673. struct perf_event *event = file->private_data;
  1674. void (*func)(struct perf_event *);
  1675. u32 flags = arg;
  1676. switch (cmd) {
  1677. case PERF_EVENT_IOC_ENABLE:
  1678. func = perf_event_enable;
  1679. break;
  1680. case PERF_EVENT_IOC_DISABLE:
  1681. func = perf_event_disable;
  1682. break;
  1683. case PERF_EVENT_IOC_RESET:
  1684. func = perf_event_reset;
  1685. break;
  1686. case PERF_EVENT_IOC_REFRESH:
  1687. return perf_event_refresh(event, arg);
  1688. case PERF_EVENT_IOC_PERIOD:
  1689. return perf_event_period(event, (u64 __user *)arg);
  1690. case PERF_EVENT_IOC_SET_OUTPUT:
  1691. return perf_event_set_output(event, arg);
  1692. case PERF_EVENT_IOC_SET_FILTER:
  1693. return perf_event_set_filter(event, (void __user *)arg);
  1694. default:
  1695. return -ENOTTY;
  1696. }
  1697. if (flags & PERF_IOC_FLAG_GROUP)
  1698. perf_event_for_each(event, func);
  1699. else
  1700. perf_event_for_each_child(event, func);
  1701. return 0;
  1702. }
  1703. int perf_event_task_enable(void)
  1704. {
  1705. struct perf_event *event;
  1706. mutex_lock(&current->perf_event_mutex);
  1707. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  1708. perf_event_for_each_child(event, perf_event_enable);
  1709. mutex_unlock(&current->perf_event_mutex);
  1710. return 0;
  1711. }
  1712. int perf_event_task_disable(void)
  1713. {
  1714. struct perf_event *event;
  1715. mutex_lock(&current->perf_event_mutex);
  1716. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  1717. perf_event_for_each_child(event, perf_event_disable);
  1718. mutex_unlock(&current->perf_event_mutex);
  1719. return 0;
  1720. }
  1721. #ifndef PERF_EVENT_INDEX_OFFSET
  1722. # define PERF_EVENT_INDEX_OFFSET 0
  1723. #endif
  1724. static int perf_event_index(struct perf_event *event)
  1725. {
  1726. if (event->state != PERF_EVENT_STATE_ACTIVE)
  1727. return 0;
  1728. return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
  1729. }
  1730. /*
  1731. * Callers need to ensure there can be no nesting of this function, otherwise
  1732. * the seqlock logic goes bad. We can not serialize this because the arch
  1733. * code calls this from NMI context.
  1734. */
  1735. void perf_event_update_userpage(struct perf_event *event)
  1736. {
  1737. struct perf_event_mmap_page *userpg;
  1738. struct perf_mmap_data *data;
  1739. rcu_read_lock();
  1740. data = rcu_dereference(event->data);
  1741. if (!data)
  1742. goto unlock;
  1743. userpg = data->user_page;
  1744. /*
  1745. * Disable preemption so as to not let the corresponding user-space
  1746. * spin too long if we get preempted.
  1747. */
  1748. preempt_disable();
  1749. ++userpg->lock;
  1750. barrier();
  1751. userpg->index = perf_event_index(event);
  1752. userpg->offset = atomic64_read(&event->count);
  1753. if (event->state == PERF_EVENT_STATE_ACTIVE)
  1754. userpg->offset -= atomic64_read(&event->hw.prev_count);
  1755. userpg->time_enabled = event->total_time_enabled +
  1756. atomic64_read(&event->child_total_time_enabled);
  1757. userpg->time_running = event->total_time_running +
  1758. atomic64_read(&event->child_total_time_running);
  1759. barrier();
  1760. ++userpg->lock;
  1761. preempt_enable();
  1762. unlock:
  1763. rcu_read_unlock();
  1764. }
  1765. static unsigned long perf_data_size(struct perf_mmap_data *data)
  1766. {
  1767. return data->nr_pages << (PAGE_SHIFT + data->data_order);
  1768. }
  1769. #ifndef CONFIG_PERF_USE_VMALLOC
  1770. /*
  1771. * Back perf_mmap() with regular GFP_KERNEL-0 pages.
  1772. */
  1773. static struct page *
  1774. perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
  1775. {
  1776. if (pgoff > data->nr_pages)
  1777. return NULL;
  1778. if (pgoff == 0)
  1779. return virt_to_page(data->user_page);
  1780. return virt_to_page(data->data_pages[pgoff - 1]);
  1781. }
  1782. static struct perf_mmap_data *
  1783. perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
  1784. {
  1785. struct perf_mmap_data *data;
  1786. unsigned long size;
  1787. int i;
  1788. WARN_ON(atomic_read(&event->mmap_count));
  1789. size = sizeof(struct perf_mmap_data);
  1790. size += nr_pages * sizeof(void *);
  1791. data = kzalloc(size, GFP_KERNEL);
  1792. if (!data)
  1793. goto fail;
  1794. data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
  1795. if (!data->user_page)
  1796. goto fail_user_page;
  1797. for (i = 0; i < nr_pages; i++) {
  1798. data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
  1799. if (!data->data_pages[i])
  1800. goto fail_data_pages;
  1801. }
  1802. data->data_order = 0;
  1803. data->nr_pages = nr_pages;
  1804. return data;
  1805. fail_data_pages:
  1806. for (i--; i >= 0; i--)
  1807. free_page((unsigned long)data->data_pages[i]);
  1808. free_page((unsigned long)data->user_page);
  1809. fail_user_page:
  1810. kfree(data);
  1811. fail:
  1812. return NULL;
  1813. }
  1814. static void perf_mmap_free_page(unsigned long addr)
  1815. {
  1816. struct page *page = virt_to_page((void *)addr);
  1817. page->mapping = NULL;
  1818. __free_page(page);
  1819. }
  1820. static void perf_mmap_data_free(struct perf_mmap_data *data)
  1821. {
  1822. int i;
  1823. perf_mmap_free_page((unsigned long)data->user_page);
  1824. for (i = 0; i < data->nr_pages; i++)
  1825. perf_mmap_free_page((unsigned long)data->data_pages[i]);
  1826. }
  1827. #else
  1828. /*
  1829. * Back perf_mmap() with vmalloc memory.
  1830. *
  1831. * Required for architectures that have d-cache aliasing issues.
  1832. */
  1833. static struct page *
  1834. perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
  1835. {
  1836. if (pgoff > (1UL << data->data_order))
  1837. return NULL;
  1838. return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
  1839. }
  1840. static void perf_mmap_unmark_page(void *addr)
  1841. {
  1842. struct page *page = vmalloc_to_page(addr);
  1843. page->mapping = NULL;
  1844. }
  1845. static void perf_mmap_data_free_work(struct work_struct *work)
  1846. {
  1847. struct perf_mmap_data *data;
  1848. void *base;
  1849. int i, nr;
  1850. data = container_of(work, struct perf_mmap_data, work);
  1851. nr = 1 << data->data_order;
  1852. base = data->user_page;
  1853. for (i = 0; i < nr + 1; i++)
  1854. perf_mmap_unmark_page(base + (i * PAGE_SIZE));
  1855. vfree(base);
  1856. }
  1857. static void perf_mmap_data_free(struct perf_mmap_data *data)
  1858. {
  1859. schedule_work(&data->work);
  1860. }
  1861. static struct perf_mmap_data *
  1862. perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
  1863. {
  1864. struct perf_mmap_data *data;
  1865. unsigned long size;
  1866. void *all_buf;
  1867. WARN_ON(atomic_read(&event->mmap_count));
  1868. size = sizeof(struct perf_mmap_data);
  1869. size += sizeof(void *);
  1870. data = kzalloc(size, GFP_KERNEL);
  1871. if (!data)
  1872. goto fail;
  1873. INIT_WORK(&data->work, perf_mmap_data_free_work);
  1874. all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
  1875. if (!all_buf)
  1876. goto fail_all_buf;
  1877. data->user_page = all_buf;
  1878. data->data_pages[0] = all_buf + PAGE_SIZE;
  1879. data->data_order = ilog2(nr_pages);
  1880. data->nr_pages = 1;
  1881. return data;
  1882. fail_all_buf:
  1883. kfree(data);
  1884. fail:
  1885. return NULL;
  1886. }
  1887. #endif
  1888. static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1889. {
  1890. struct perf_event *event = vma->vm_file->private_data;
  1891. struct perf_mmap_data *data;
  1892. int ret = VM_FAULT_SIGBUS;
  1893. if (vmf->flags & FAULT_FLAG_MKWRITE) {
  1894. if (vmf->pgoff == 0)
  1895. ret = 0;
  1896. return ret;
  1897. }
  1898. rcu_read_lock();
  1899. data = rcu_dereference(event->data);
  1900. if (!data)
  1901. goto unlock;
  1902. if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
  1903. goto unlock;
  1904. vmf->page = perf_mmap_to_page(data, vmf->pgoff);
  1905. if (!vmf->page)
  1906. goto unlock;
  1907. get_page(vmf->page);
  1908. vmf->page->mapping = vma->vm_file->f_mapping;
  1909. vmf->page->index = vmf->pgoff;
  1910. ret = 0;
  1911. unlock:
  1912. rcu_read_unlock();
  1913. return ret;
  1914. }
  1915. static void
  1916. perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
  1917. {
  1918. long max_size = perf_data_size(data);
  1919. atomic_set(&data->lock, -1);
  1920. if (event->attr.watermark) {
  1921. data->watermark = min_t(long, max_size,
  1922. event->attr.wakeup_watermark);
  1923. }
  1924. if (!data->watermark)
  1925. data->watermark = max_size / 2;
  1926. rcu_assign_pointer(event->data, data);
  1927. }
  1928. static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
  1929. {
  1930. struct perf_mmap_data *data;
  1931. data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
  1932. perf_mmap_data_free(data);
  1933. kfree(data);
  1934. }
  1935. static void perf_mmap_data_release(struct perf_event *event)
  1936. {
  1937. struct perf_mmap_data *data = event->data;
  1938. WARN_ON(atomic_read(&event->mmap_count));
  1939. rcu_assign_pointer(event->data, NULL);
  1940. call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
  1941. }
  1942. static void perf_mmap_open(struct vm_area_struct *vma)
  1943. {
  1944. struct perf_event *event = vma->vm_file->private_data;
  1945. atomic_inc(&event->mmap_count);
  1946. }
  1947. static void perf_mmap_close(struct vm_area_struct *vma)
  1948. {
  1949. struct perf_event *event = vma->vm_file->private_data;
  1950. WARN_ON_ONCE(event->ctx->parent_ctx);
  1951. if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
  1952. unsigned long size = perf_data_size(event->data);
  1953. struct user_struct *user = current_user();
  1954. atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
  1955. vma->vm_mm->locked_vm -= event->data->nr_locked;
  1956. perf_mmap_data_release(event);
  1957. mutex_unlock(&event->mmap_mutex);
  1958. }
  1959. }
  1960. static const struct vm_operations_struct perf_mmap_vmops = {
  1961. .open = perf_mmap_open,
  1962. .close = perf_mmap_close,
  1963. .fault = perf_mmap_fault,
  1964. .page_mkwrite = perf_mmap_fault,
  1965. };
  1966. static int perf_mmap(struct file *file, struct vm_area_struct *vma)
  1967. {
  1968. struct perf_event *event = file->private_data;
  1969. unsigned long user_locked, user_lock_limit;
  1970. struct user_struct *user = current_user();
  1971. unsigned long locked, lock_limit;
  1972. struct perf_mmap_data *data;
  1973. unsigned long vma_size;
  1974. unsigned long nr_pages;
  1975. long user_extra, extra;
  1976. int ret = 0;
  1977. if (!(vma->vm_flags & VM_SHARED))
  1978. return -EINVAL;
  1979. vma_size = vma->vm_end - vma->vm_start;
  1980. nr_pages = (vma_size / PAGE_SIZE) - 1;
  1981. /*
  1982. * If we have data pages ensure they're a power-of-two number, so we
  1983. * can do bitmasks instead of modulo.
  1984. */
  1985. if (nr_pages != 0 && !is_power_of_2(nr_pages))
  1986. return -EINVAL;
  1987. if (vma_size != PAGE_SIZE * (1 + nr_pages))
  1988. return -EINVAL;
  1989. if (vma->vm_pgoff != 0)
  1990. return -EINVAL;
  1991. WARN_ON_ONCE(event->ctx->parent_ctx);
  1992. mutex_lock(&event->mmap_mutex);
  1993. if (event->output) {
  1994. ret = -EINVAL;
  1995. goto unlock;
  1996. }
  1997. if (atomic_inc_not_zero(&event->mmap_count)) {
  1998. if (nr_pages != event->data->nr_pages)
  1999. ret = -EINVAL;
  2000. goto unlock;
  2001. }
  2002. user_extra = nr_pages + 1;
  2003. user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
  2004. /*
  2005. * Increase the limit linearly with more CPUs:
  2006. */
  2007. user_lock_limit *= num_online_cpus();
  2008. user_locked = atomic_long_read(&user->locked_vm) + user_extra;
  2009. extra = 0;
  2010. if (user_locked > user_lock_limit)
  2011. extra = user_locked - user_lock_limit;
  2012. lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
  2013. lock_limit >>= PAGE_SHIFT;
  2014. locked = vma->vm_mm->locked_vm + extra;
  2015. if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
  2016. !capable(CAP_IPC_LOCK)) {
  2017. ret = -EPERM;
  2018. goto unlock;
  2019. }
  2020. WARN_ON(event->data);
  2021. data = perf_mmap_data_alloc(event, nr_pages);
  2022. ret = -ENOMEM;
  2023. if (!data)
  2024. goto unlock;
  2025. ret = 0;
  2026. perf_mmap_data_init(event, data);
  2027. atomic_set(&event->mmap_count, 1);
  2028. atomic_long_add(user_extra, &user->locked_vm);
  2029. vma->vm_mm->locked_vm += extra;
  2030. event->data->nr_locked = extra;
  2031. if (vma->vm_flags & VM_WRITE)
  2032. event->data->writable = 1;
  2033. unlock:
  2034. mutex_unlock(&event->mmap_mutex);
  2035. vma->vm_flags |= VM_RESERVED;
  2036. vma->vm_ops = &perf_mmap_vmops;
  2037. return ret;
  2038. }
  2039. static int perf_fasync(int fd, struct file *filp, int on)
  2040. {
  2041. struct inode *inode = filp->f_path.dentry->d_inode;
  2042. struct perf_event *event = filp->private_data;
  2043. int retval;
  2044. mutex_lock(&inode->i_mutex);
  2045. retval = fasync_helper(fd, filp, on, &event->fasync);
  2046. mutex_unlock(&inode->i_mutex);
  2047. if (retval < 0)
  2048. return retval;
  2049. return 0;
  2050. }
  2051. static const struct file_operations perf_fops = {
  2052. .release = perf_release,
  2053. .read = perf_read,
  2054. .poll = perf_poll,
  2055. .unlocked_ioctl = perf_ioctl,
  2056. .compat_ioctl = perf_ioctl,
  2057. .mmap = perf_mmap,
  2058. .fasync = perf_fasync,
  2059. };
  2060. /*
  2061. * Perf event wakeup
  2062. *
  2063. * If there's data, ensure we set the poll() state and publish everything
  2064. * to user-space before waking everybody up.
  2065. */
  2066. void perf_event_wakeup(struct perf_event *event)
  2067. {
  2068. wake_up_all(&event->waitq);
  2069. if (event->pending_kill) {
  2070. kill_fasync(&event->fasync, SIGIO, event->pending_kill);
  2071. event->pending_kill = 0;
  2072. }
  2073. }
  2074. /*
  2075. * Pending wakeups
  2076. *
  2077. * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
  2078. *
  2079. * The NMI bit means we cannot possibly take locks. Therefore, maintain a
  2080. * single linked list and use cmpxchg() to add entries lockless.
  2081. */
  2082. static void perf_pending_event(struct perf_pending_entry *entry)
  2083. {
  2084. struct perf_event *event = container_of(entry,
  2085. struct perf_event, pending);
  2086. if (event->pending_disable) {
  2087. event->pending_disable = 0;
  2088. __perf_event_disable(event);
  2089. }
  2090. if (event->pending_wakeup) {
  2091. event->pending_wakeup = 0;
  2092. perf_event_wakeup(event);
  2093. }
  2094. }
  2095. #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
  2096. static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
  2097. PENDING_TAIL,
  2098. };
  2099. static void perf_pending_queue(struct perf_pending_entry *entry,
  2100. void (*func)(struct perf_pending_entry *))
  2101. {
  2102. struct perf_pending_entry **head;
  2103. if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
  2104. return;
  2105. entry->func = func;
  2106. head = &get_cpu_var(perf_pending_head);
  2107. do {
  2108. entry->next = *head;
  2109. } while (cmpxchg(head, entry->next, entry) != entry->next);
  2110. set_perf_event_pending();
  2111. put_cpu_var(perf_pending_head);
  2112. }
  2113. static int __perf_pending_run(void)
  2114. {
  2115. struct perf_pending_entry *list;
  2116. int nr = 0;
  2117. list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
  2118. while (list != PENDING_TAIL) {
  2119. void (*func)(struct perf_pending_entry *);
  2120. struct perf_pending_entry *entry = list;
  2121. list = list->next;
  2122. func = entry->func;
  2123. entry->next = NULL;
  2124. /*
  2125. * Ensure we observe the unqueue before we issue the wakeup,
  2126. * so that we won't be waiting forever.
  2127. * -- see perf_not_pending().
  2128. */
  2129. smp_wmb();
  2130. func(entry);
  2131. nr++;
  2132. }
  2133. return nr;
  2134. }
  2135. static inline int perf_not_pending(struct perf_event *event)
  2136. {
  2137. /*
  2138. * If we flush on whatever cpu we run, there is a chance we don't
  2139. * need to wait.
  2140. */
  2141. get_cpu();
  2142. __perf_pending_run();
  2143. put_cpu();
  2144. /*
  2145. * Ensure we see the proper queue state before going to sleep
  2146. * so that we do not miss the wakeup. -- see perf_pending_handle()
  2147. */
  2148. smp_rmb();
  2149. return event->pending.next == NULL;
  2150. }
  2151. static void perf_pending_sync(struct perf_event *event)
  2152. {
  2153. wait_event(event->waitq, perf_not_pending(event));
  2154. }
  2155. void perf_event_do_pending(void)
  2156. {
  2157. __perf_pending_run();
  2158. }
  2159. /*
  2160. * Callchain support -- arch specific
  2161. */
  2162. __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  2163. {
  2164. return NULL;
  2165. }
  2166. /*
  2167. * Output
  2168. */
  2169. static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
  2170. unsigned long offset, unsigned long head)
  2171. {
  2172. unsigned long mask;
  2173. if (!data->writable)
  2174. return true;
  2175. mask = perf_data_size(data) - 1;
  2176. offset = (offset - tail) & mask;
  2177. head = (head - tail) & mask;
  2178. if ((int)(head - offset) < 0)
  2179. return false;
  2180. return true;
  2181. }
  2182. static void perf_output_wakeup(struct perf_output_handle *handle)
  2183. {
  2184. atomic_set(&handle->data->poll, POLL_IN);
  2185. if (handle->nmi) {
  2186. handle->event->pending_wakeup = 1;
  2187. perf_pending_queue(&handle->event->pending,
  2188. perf_pending_event);
  2189. } else
  2190. perf_event_wakeup(handle->event);
  2191. }
  2192. /*
  2193. * Curious locking construct.
  2194. *
  2195. * We need to ensure a later event_id doesn't publish a head when a former
  2196. * event_id isn't done writing. However since we need to deal with NMIs we
  2197. * cannot fully serialize things.
  2198. *
  2199. * What we do is serialize between CPUs so we only have to deal with NMI
  2200. * nesting on a single CPU.
  2201. *
  2202. * We only publish the head (and generate a wakeup) when the outer-most
  2203. * event_id completes.
  2204. */
  2205. static void perf_output_lock(struct perf_output_handle *handle)
  2206. {
  2207. struct perf_mmap_data *data = handle->data;
  2208. int cur, cpu = get_cpu();
  2209. handle->locked = 0;
  2210. for (;;) {
  2211. cur = atomic_cmpxchg(&data->lock, -1, cpu);
  2212. if (cur == -1) {
  2213. handle->locked = 1;
  2214. break;
  2215. }
  2216. if (cur == cpu)
  2217. break;
  2218. cpu_relax();
  2219. }
  2220. }
  2221. static void perf_output_unlock(struct perf_output_handle *handle)
  2222. {
  2223. struct perf_mmap_data *data = handle->data;
  2224. unsigned long head;
  2225. int cpu;
  2226. data->done_head = data->head;
  2227. if (!handle->locked)
  2228. goto out;
  2229. again:
  2230. /*
  2231. * The xchg implies a full barrier that ensures all writes are done
  2232. * before we publish the new head, matched by a rmb() in userspace when
  2233. * reading this position.
  2234. */
  2235. while ((head = atomic_long_xchg(&data->done_head, 0)))
  2236. data->user_page->data_head = head;
  2237. /*
  2238. * NMI can happen here, which means we can miss a done_head update.
  2239. */
  2240. cpu = atomic_xchg(&data->lock, -1);
  2241. WARN_ON_ONCE(cpu != smp_processor_id());
  2242. /*
  2243. * Therefore we have to validate we did not indeed do so.
  2244. */
  2245. if (unlikely(atomic_long_read(&data->done_head))) {
  2246. /*
  2247. * Since we had it locked, we can lock it again.
  2248. */
  2249. while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
  2250. cpu_relax();
  2251. goto again;
  2252. }
  2253. if (atomic_xchg(&data->wakeup, 0))
  2254. perf_output_wakeup(handle);
  2255. out:
  2256. put_cpu();
  2257. }
  2258. void perf_output_copy(struct perf_output_handle *handle,
  2259. const void *buf, unsigned int len)
  2260. {
  2261. unsigned int pages_mask;
  2262. unsigned long offset;
  2263. unsigned int size;
  2264. void **pages;
  2265. offset = handle->offset;
  2266. pages_mask = handle->data->nr_pages - 1;
  2267. pages = handle->data->data_pages;
  2268. do {
  2269. unsigned long page_offset;
  2270. unsigned long page_size;
  2271. int nr;
  2272. nr = (offset >> PAGE_SHIFT) & pages_mask;
  2273. page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
  2274. page_offset = offset & (page_size - 1);
  2275. size = min_t(unsigned int, page_size - page_offset, len);
  2276. memcpy(pages[nr] + page_offset, buf, size);
  2277. len -= size;
  2278. buf += size;
  2279. offset += size;
  2280. } while (len);
  2281. handle->offset = offset;
  2282. /*
  2283. * Check we didn't copy past our reservation window, taking the
  2284. * possible unsigned int wrap into account.
  2285. */
  2286. WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
  2287. }
  2288. int perf_output_begin(struct perf_output_handle *handle,
  2289. struct perf_event *event, unsigned int size,
  2290. int nmi, int sample)
  2291. {
  2292. struct perf_event *output_event;
  2293. struct perf_mmap_data *data;
  2294. unsigned long tail, offset, head;
  2295. int have_lost;
  2296. struct {
  2297. struct perf_event_header header;
  2298. u64 id;
  2299. u64 lost;
  2300. } lost_event;
  2301. rcu_read_lock();
  2302. /*
  2303. * For inherited events we send all the output towards the parent.
  2304. */
  2305. if (event->parent)
  2306. event = event->parent;
  2307. output_event = rcu_dereference(event->output);
  2308. if (output_event)
  2309. event = output_event;
  2310. data = rcu_dereference(event->data);
  2311. if (!data)
  2312. goto out;
  2313. handle->data = data;
  2314. handle->event = event;
  2315. handle->nmi = nmi;
  2316. handle->sample = sample;
  2317. if (!data->nr_pages)
  2318. goto fail;
  2319. have_lost = atomic_read(&data->lost);
  2320. if (have_lost)
  2321. size += sizeof(lost_event);
  2322. perf_output_lock(handle);
  2323. do {
  2324. /*
  2325. * Userspace could choose to issue a mb() before updating the
  2326. * tail pointer. So that all reads will be completed before the
  2327. * write is issued.
  2328. */
  2329. tail = ACCESS_ONCE(data->user_page->data_tail);
  2330. smp_rmb();
  2331. offset = head = atomic_long_read(&data->head);
  2332. head += size;
  2333. if (unlikely(!perf_output_space(data, tail, offset, head)))
  2334. goto fail;
  2335. } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
  2336. handle->offset = offset;
  2337. handle->head = head;
  2338. if (head - tail > data->watermark)
  2339. atomic_set(&data->wakeup, 1);
  2340. if (have_lost) {
  2341. lost_event.header.type = PERF_RECORD_LOST;
  2342. lost_event.header.misc = 0;
  2343. lost_event.header.size = sizeof(lost_event);
  2344. lost_event.id = event->id;
  2345. lost_event.lost = atomic_xchg(&data->lost, 0);
  2346. perf_output_put(handle, lost_event);
  2347. }
  2348. return 0;
  2349. fail:
  2350. atomic_inc(&data->lost);
  2351. perf_output_unlock(handle);
  2352. out:
  2353. rcu_read_unlock();
  2354. return -ENOSPC;
  2355. }
  2356. void perf_output_end(struct perf_output_handle *handle)
  2357. {
  2358. struct perf_event *event = handle->event;
  2359. struct perf_mmap_data *data = handle->data;
  2360. int wakeup_events = event->attr.wakeup_events;
  2361. if (handle->sample && wakeup_events) {
  2362. int events = atomic_inc_return(&data->events);
  2363. if (events >= wakeup_events) {
  2364. atomic_sub(wakeup_events, &data->events);
  2365. atomic_set(&data->wakeup, 1);
  2366. }
  2367. }
  2368. perf_output_unlock(handle);
  2369. rcu_read_unlock();
  2370. }
  2371. static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
  2372. {
  2373. /*
  2374. * only top level events have the pid namespace they were created in
  2375. */
  2376. if (event->parent)
  2377. event = event->parent;
  2378. return task_tgid_nr_ns(p, event->ns);
  2379. }
  2380. static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
  2381. {
  2382. /*
  2383. * only top level events have the pid namespace they were created in
  2384. */
  2385. if (event->parent)
  2386. event = event->parent;
  2387. return task_pid_nr_ns(p, event->ns);
  2388. }
  2389. static void perf_output_read_one(struct perf_output_handle *handle,
  2390. struct perf_event *event)
  2391. {
  2392. u64 read_format = event->attr.read_format;
  2393. u64 values[4];
  2394. int n = 0;
  2395. values[n++] = atomic64_read(&event->count);
  2396. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
  2397. values[n++] = event->total_time_enabled +
  2398. atomic64_read(&event->child_total_time_enabled);
  2399. }
  2400. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
  2401. values[n++] = event->total_time_running +
  2402. atomic64_read(&event->child_total_time_running);
  2403. }
  2404. if (read_format & PERF_FORMAT_ID)
  2405. values[n++] = primary_event_id(event);
  2406. perf_output_copy(handle, values, n * sizeof(u64));
  2407. }
  2408. /*
  2409. * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
  2410. */
  2411. static void perf_output_read_group(struct perf_output_handle *handle,
  2412. struct perf_event *event)
  2413. {
  2414. struct perf_event *leader = event->group_leader, *sub;
  2415. u64 read_format = event->attr.read_format;
  2416. u64 values[5];
  2417. int n = 0;
  2418. values[n++] = 1 + leader->nr_siblings;
  2419. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  2420. values[n++] = leader->total_time_enabled;
  2421. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  2422. values[n++] = leader->total_time_running;
  2423. if (leader != event)
  2424. leader->pmu->read(leader);
  2425. values[n++] = atomic64_read(&leader->count);
  2426. if (read_format & PERF_FORMAT_ID)
  2427. values[n++] = primary_event_id(leader);
  2428. perf_output_copy(handle, values, n * sizeof(u64));
  2429. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  2430. n = 0;
  2431. if (sub != event)
  2432. sub->pmu->read(sub);
  2433. values[n++] = atomic64_read(&sub->count);
  2434. if (read_format & PERF_FORMAT_ID)
  2435. values[n++] = primary_event_id(sub);
  2436. perf_output_copy(handle, values, n * sizeof(u64));
  2437. }
  2438. }
  2439. static void perf_output_read(struct perf_output_handle *handle,
  2440. struct perf_event *event)
  2441. {
  2442. if (event->attr.read_format & PERF_FORMAT_GROUP)
  2443. perf_output_read_group(handle, event);
  2444. else
  2445. perf_output_read_one(handle, event);
  2446. }
  2447. void perf_output_sample(struct perf_output_handle *handle,
  2448. struct perf_event_header *header,
  2449. struct perf_sample_data *data,
  2450. struct perf_event *event)
  2451. {
  2452. u64 sample_type = data->type;
  2453. perf_output_put(handle, *header);
  2454. if (sample_type & PERF_SAMPLE_IP)
  2455. perf_output_put(handle, data->ip);
  2456. if (sample_type & PERF_SAMPLE_TID)
  2457. perf_output_put(handle, data->tid_entry);
  2458. if (sample_type & PERF_SAMPLE_TIME)
  2459. perf_output_put(handle, data->time);
  2460. if (sample_type & PERF_SAMPLE_ADDR)
  2461. perf_output_put(handle, data->addr);
  2462. if (sample_type & PERF_SAMPLE_ID)
  2463. perf_output_put(handle, data->id);
  2464. if (sample_type & PERF_SAMPLE_STREAM_ID)
  2465. perf_output_put(handle, data->stream_id);
  2466. if (sample_type & PERF_SAMPLE_CPU)
  2467. perf_output_put(handle, data->cpu_entry);
  2468. if (sample_type & PERF_SAMPLE_PERIOD)
  2469. perf_output_put(handle, data->period);
  2470. if (sample_type & PERF_SAMPLE_READ)
  2471. perf_output_read(handle, event);
  2472. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  2473. if (data->callchain) {
  2474. int size = 1;
  2475. if (data->callchain)
  2476. size += data->callchain->nr;
  2477. size *= sizeof(u64);
  2478. perf_output_copy(handle, data->callchain, size);
  2479. } else {
  2480. u64 nr = 0;
  2481. perf_output_put(handle, nr);
  2482. }
  2483. }
  2484. if (sample_type & PERF_SAMPLE_RAW) {
  2485. if (data->raw) {
  2486. perf_output_put(handle, data->raw->size);
  2487. perf_output_copy(handle, data->raw->data,
  2488. data->raw->size);
  2489. } else {
  2490. struct {
  2491. u32 size;
  2492. u32 data;
  2493. } raw = {
  2494. .size = sizeof(u32),
  2495. .data = 0,
  2496. };
  2497. perf_output_put(handle, raw);
  2498. }
  2499. }
  2500. }
  2501. void perf_prepare_sample(struct perf_event_header *header,
  2502. struct perf_sample_data *data,
  2503. struct perf_event *event,
  2504. struct pt_regs *regs)
  2505. {
  2506. u64 sample_type = event->attr.sample_type;
  2507. data->type = sample_type;
  2508. header->type = PERF_RECORD_SAMPLE;
  2509. header->size = sizeof(*header);
  2510. header->misc = 0;
  2511. header->misc |= perf_misc_flags(regs);
  2512. if (sample_type & PERF_SAMPLE_IP) {
  2513. data->ip = perf_instruction_pointer(regs);
  2514. header->size += sizeof(data->ip);
  2515. }
  2516. if (sample_type & PERF_SAMPLE_TID) {
  2517. /* namespace issues */
  2518. data->tid_entry.pid = perf_event_pid(event, current);
  2519. data->tid_entry.tid = perf_event_tid(event, current);
  2520. header->size += sizeof(data->tid_entry);
  2521. }
  2522. if (sample_type & PERF_SAMPLE_TIME) {
  2523. data->time = perf_clock();
  2524. header->size += sizeof(data->time);
  2525. }
  2526. if (sample_type & PERF_SAMPLE_ADDR)
  2527. header->size += sizeof(data->addr);
  2528. if (sample_type & PERF_SAMPLE_ID) {
  2529. data->id = primary_event_id(event);
  2530. header->size += sizeof(data->id);
  2531. }
  2532. if (sample_type & PERF_SAMPLE_STREAM_ID) {
  2533. data->stream_id = event->id;
  2534. header->size += sizeof(data->stream_id);
  2535. }
  2536. if (sample_type & PERF_SAMPLE_CPU) {
  2537. data->cpu_entry.cpu = raw_smp_processor_id();
  2538. data->cpu_entry.reserved = 0;
  2539. header->size += sizeof(data->cpu_entry);
  2540. }
  2541. if (sample_type & PERF_SAMPLE_PERIOD)
  2542. header->size += sizeof(data->period);
  2543. if (sample_type & PERF_SAMPLE_READ)
  2544. header->size += perf_event_read_size(event);
  2545. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  2546. int size = 1;
  2547. data->callchain = perf_callchain(regs);
  2548. if (data->callchain)
  2549. size += data->callchain->nr;
  2550. header->size += size * sizeof(u64);
  2551. }
  2552. if (sample_type & PERF_SAMPLE_RAW) {
  2553. int size = sizeof(u32);
  2554. if (data->raw)
  2555. size += data->raw->size;
  2556. else
  2557. size += sizeof(u32);
  2558. WARN_ON_ONCE(size & (sizeof(u64)-1));
  2559. header->size += size;
  2560. }
  2561. }
  2562. static void perf_event_output(struct perf_event *event, int nmi,
  2563. struct perf_sample_data *data,
  2564. struct pt_regs *regs)
  2565. {
  2566. struct perf_output_handle handle;
  2567. struct perf_event_header header;
  2568. perf_prepare_sample(&header, data, event, regs);
  2569. if (perf_output_begin(&handle, event, header.size, nmi, 1))
  2570. return;
  2571. perf_output_sample(&handle, &header, data, event);
  2572. perf_output_end(&handle);
  2573. }
  2574. /*
  2575. * read event_id
  2576. */
  2577. struct perf_read_event {
  2578. struct perf_event_header header;
  2579. u32 pid;
  2580. u32 tid;
  2581. };
  2582. static void
  2583. perf_event_read_event(struct perf_event *event,
  2584. struct task_struct *task)
  2585. {
  2586. struct perf_output_handle handle;
  2587. struct perf_read_event read_event = {
  2588. .header = {
  2589. .type = PERF_RECORD_READ,
  2590. .misc = 0,
  2591. .size = sizeof(read_event) + perf_event_read_size(event),
  2592. },
  2593. .pid = perf_event_pid(event, task),
  2594. .tid = perf_event_tid(event, task),
  2595. };
  2596. int ret;
  2597. ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
  2598. if (ret)
  2599. return;
  2600. perf_output_put(&handle, read_event);
  2601. perf_output_read(&handle, event);
  2602. perf_output_end(&handle);
  2603. }
  2604. /*
  2605. * task tracking -- fork/exit
  2606. *
  2607. * enabled by: attr.comm | attr.mmap | attr.task
  2608. */
  2609. struct perf_task_event {
  2610. struct task_struct *task;
  2611. struct perf_event_context *task_ctx;
  2612. struct {
  2613. struct perf_event_header header;
  2614. u32 pid;
  2615. u32 ppid;
  2616. u32 tid;
  2617. u32 ptid;
  2618. u64 time;
  2619. } event_id;
  2620. };
  2621. static void perf_event_task_output(struct perf_event *event,
  2622. struct perf_task_event *task_event)
  2623. {
  2624. struct perf_output_handle handle;
  2625. int size;
  2626. struct task_struct *task = task_event->task;
  2627. int ret;
  2628. size = task_event->event_id.header.size;
  2629. ret = perf_output_begin(&handle, event, size, 0, 0);
  2630. if (ret)
  2631. return;
  2632. task_event->event_id.pid = perf_event_pid(event, task);
  2633. task_event->event_id.ppid = perf_event_pid(event, current);
  2634. task_event->event_id.tid = perf_event_tid(event, task);
  2635. task_event->event_id.ptid = perf_event_tid(event, current);
  2636. task_event->event_id.time = perf_clock();
  2637. perf_output_put(&handle, task_event->event_id);
  2638. perf_output_end(&handle);
  2639. }
  2640. static int perf_event_task_match(struct perf_event *event)
  2641. {
  2642. if (event->attr.comm || event->attr.mmap || event->attr.task)
  2643. return 1;
  2644. return 0;
  2645. }
  2646. static void perf_event_task_ctx(struct perf_event_context *ctx,
  2647. struct perf_task_event *task_event)
  2648. {
  2649. struct perf_event *event;
  2650. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  2651. if (perf_event_task_match(event))
  2652. perf_event_task_output(event, task_event);
  2653. }
  2654. }
  2655. static void perf_event_task_event(struct perf_task_event *task_event)
  2656. {
  2657. struct perf_cpu_context *cpuctx;
  2658. struct perf_event_context *ctx = task_event->task_ctx;
  2659. rcu_read_lock();
  2660. cpuctx = &get_cpu_var(perf_cpu_context);
  2661. perf_event_task_ctx(&cpuctx->ctx, task_event);
  2662. put_cpu_var(perf_cpu_context);
  2663. if (!ctx)
  2664. ctx = rcu_dereference(task_event->task->perf_event_ctxp);
  2665. if (ctx)
  2666. perf_event_task_ctx(ctx, task_event);
  2667. rcu_read_unlock();
  2668. }
  2669. static void perf_event_task(struct task_struct *task,
  2670. struct perf_event_context *task_ctx,
  2671. int new)
  2672. {
  2673. struct perf_task_event task_event;
  2674. if (!atomic_read(&nr_comm_events) &&
  2675. !atomic_read(&nr_mmap_events) &&
  2676. !atomic_read(&nr_task_events))
  2677. return;
  2678. task_event = (struct perf_task_event){
  2679. .task = task,
  2680. .task_ctx = task_ctx,
  2681. .event_id = {
  2682. .header = {
  2683. .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
  2684. .misc = 0,
  2685. .size = sizeof(task_event.event_id),
  2686. },
  2687. /* .pid */
  2688. /* .ppid */
  2689. /* .tid */
  2690. /* .ptid */
  2691. },
  2692. };
  2693. perf_event_task_event(&task_event);
  2694. }
  2695. void perf_event_fork(struct task_struct *task)
  2696. {
  2697. perf_event_task(task, NULL, 1);
  2698. }
  2699. /*
  2700. * comm tracking
  2701. */
  2702. struct perf_comm_event {
  2703. struct task_struct *task;
  2704. char *comm;
  2705. int comm_size;
  2706. struct {
  2707. struct perf_event_header header;
  2708. u32 pid;
  2709. u32 tid;
  2710. } event_id;
  2711. };
  2712. static void perf_event_comm_output(struct perf_event *event,
  2713. struct perf_comm_event *comm_event)
  2714. {
  2715. struct perf_output_handle handle;
  2716. int size = comm_event->event_id.header.size;
  2717. int ret = perf_output_begin(&handle, event, size, 0, 0);
  2718. if (ret)
  2719. return;
  2720. comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
  2721. comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
  2722. perf_output_put(&handle, comm_event->event_id);
  2723. perf_output_copy(&handle, comm_event->comm,
  2724. comm_event->comm_size);
  2725. perf_output_end(&handle);
  2726. }
  2727. static int perf_event_comm_match(struct perf_event *event)
  2728. {
  2729. if (event->attr.comm)
  2730. return 1;
  2731. return 0;
  2732. }
  2733. static void perf_event_comm_ctx(struct perf_event_context *ctx,
  2734. struct perf_comm_event *comm_event)
  2735. {
  2736. struct perf_event *event;
  2737. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  2738. if (perf_event_comm_match(event))
  2739. perf_event_comm_output(event, comm_event);
  2740. }
  2741. }
  2742. static void perf_event_comm_event(struct perf_comm_event *comm_event)
  2743. {
  2744. struct perf_cpu_context *cpuctx;
  2745. struct perf_event_context *ctx;
  2746. unsigned int size;
  2747. char comm[TASK_COMM_LEN];
  2748. memset(comm, 0, sizeof(comm));
  2749. strlcpy(comm, comm_event->task->comm, sizeof(comm));
  2750. size = ALIGN(strlen(comm)+1, sizeof(u64));
  2751. comm_event->comm = comm;
  2752. comm_event->comm_size = size;
  2753. comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
  2754. rcu_read_lock();
  2755. cpuctx = &get_cpu_var(perf_cpu_context);
  2756. perf_event_comm_ctx(&cpuctx->ctx, comm_event);
  2757. put_cpu_var(perf_cpu_context);
  2758. /*
  2759. * doesn't really matter which of the child contexts the
  2760. * events ends up in.
  2761. */
  2762. ctx = rcu_dereference(current->perf_event_ctxp);
  2763. if (ctx)
  2764. perf_event_comm_ctx(ctx, comm_event);
  2765. rcu_read_unlock();
  2766. }
  2767. void perf_event_comm(struct task_struct *task)
  2768. {
  2769. struct perf_comm_event comm_event;
  2770. if (task->perf_event_ctxp)
  2771. perf_event_enable_on_exec(task);
  2772. if (!atomic_read(&nr_comm_events))
  2773. return;
  2774. comm_event = (struct perf_comm_event){
  2775. .task = task,
  2776. /* .comm */
  2777. /* .comm_size */
  2778. .event_id = {
  2779. .header = {
  2780. .type = PERF_RECORD_COMM,
  2781. .misc = 0,
  2782. /* .size */
  2783. },
  2784. /* .pid */
  2785. /* .tid */
  2786. },
  2787. };
  2788. perf_event_comm_event(&comm_event);
  2789. }
  2790. /*
  2791. * mmap tracking
  2792. */
  2793. struct perf_mmap_event {
  2794. struct vm_area_struct *vma;
  2795. const char *file_name;
  2796. int file_size;
  2797. struct {
  2798. struct perf_event_header header;
  2799. u32 pid;
  2800. u32 tid;
  2801. u64 start;
  2802. u64 len;
  2803. u64 pgoff;
  2804. } event_id;
  2805. };
  2806. static void perf_event_mmap_output(struct perf_event *event,
  2807. struct perf_mmap_event *mmap_event)
  2808. {
  2809. struct perf_output_handle handle;
  2810. int size = mmap_event->event_id.header.size;
  2811. int ret = perf_output_begin(&handle, event, size, 0, 0);
  2812. if (ret)
  2813. return;
  2814. mmap_event->event_id.pid = perf_event_pid(event, current);
  2815. mmap_event->event_id.tid = perf_event_tid(event, current);
  2816. perf_output_put(&handle, mmap_event->event_id);
  2817. perf_output_copy(&handle, mmap_event->file_name,
  2818. mmap_event->file_size);
  2819. perf_output_end(&handle);
  2820. }
  2821. static int perf_event_mmap_match(struct perf_event *event,
  2822. struct perf_mmap_event *mmap_event)
  2823. {
  2824. if (event->attr.mmap)
  2825. return 1;
  2826. return 0;
  2827. }
  2828. static void perf_event_mmap_ctx(struct perf_event_context *ctx,
  2829. struct perf_mmap_event *mmap_event)
  2830. {
  2831. struct perf_event *event;
  2832. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  2833. if (perf_event_mmap_match(event, mmap_event))
  2834. perf_event_mmap_output(event, mmap_event);
  2835. }
  2836. }
  2837. static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
  2838. {
  2839. struct perf_cpu_context *cpuctx;
  2840. struct perf_event_context *ctx;
  2841. struct vm_area_struct *vma = mmap_event->vma;
  2842. struct file *file = vma->vm_file;
  2843. unsigned int size;
  2844. char tmp[16];
  2845. char *buf = NULL;
  2846. const char *name;
  2847. memset(tmp, 0, sizeof(tmp));
  2848. if (file) {
  2849. /*
  2850. * d_path works from the end of the buffer backwards, so we
  2851. * need to add enough zero bytes after the string to handle
  2852. * the 64bit alignment we do later.
  2853. */
  2854. buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
  2855. if (!buf) {
  2856. name = strncpy(tmp, "//enomem", sizeof(tmp));
  2857. goto got_name;
  2858. }
  2859. name = d_path(&file->f_path, buf, PATH_MAX);
  2860. if (IS_ERR(name)) {
  2861. name = strncpy(tmp, "//toolong", sizeof(tmp));
  2862. goto got_name;
  2863. }
  2864. } else {
  2865. if (arch_vma_name(mmap_event->vma)) {
  2866. name = strncpy(tmp, arch_vma_name(mmap_event->vma),
  2867. sizeof(tmp));
  2868. goto got_name;
  2869. }
  2870. if (!vma->vm_mm) {
  2871. name = strncpy(tmp, "[vdso]", sizeof(tmp));
  2872. goto got_name;
  2873. }
  2874. name = strncpy(tmp, "//anon", sizeof(tmp));
  2875. goto got_name;
  2876. }
  2877. got_name:
  2878. size = ALIGN(strlen(name)+1, sizeof(u64));
  2879. mmap_event->file_name = name;
  2880. mmap_event->file_size = size;
  2881. mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
  2882. rcu_read_lock();
  2883. cpuctx = &get_cpu_var(perf_cpu_context);
  2884. perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
  2885. put_cpu_var(perf_cpu_context);
  2886. /*
  2887. * doesn't really matter which of the child contexts the
  2888. * events ends up in.
  2889. */
  2890. ctx = rcu_dereference(current->perf_event_ctxp);
  2891. if (ctx)
  2892. perf_event_mmap_ctx(ctx, mmap_event);
  2893. rcu_read_unlock();
  2894. kfree(buf);
  2895. }
  2896. void __perf_event_mmap(struct vm_area_struct *vma)
  2897. {
  2898. struct perf_mmap_event mmap_event;
  2899. if (!atomic_read(&nr_mmap_events))
  2900. return;
  2901. mmap_event = (struct perf_mmap_event){
  2902. .vma = vma,
  2903. /* .file_name */
  2904. /* .file_size */
  2905. .event_id = {
  2906. .header = {
  2907. .type = PERF_RECORD_MMAP,
  2908. .misc = 0,
  2909. /* .size */
  2910. },
  2911. /* .pid */
  2912. /* .tid */
  2913. .start = vma->vm_start,
  2914. .len = vma->vm_end - vma->vm_start,
  2915. .pgoff = vma->vm_pgoff,
  2916. },
  2917. };
  2918. perf_event_mmap_event(&mmap_event);
  2919. }
  2920. /*
  2921. * IRQ throttle logging
  2922. */
  2923. static void perf_log_throttle(struct perf_event *event, int enable)
  2924. {
  2925. struct perf_output_handle handle;
  2926. int ret;
  2927. struct {
  2928. struct perf_event_header header;
  2929. u64 time;
  2930. u64 id;
  2931. u64 stream_id;
  2932. } throttle_event = {
  2933. .header = {
  2934. .type = PERF_RECORD_THROTTLE,
  2935. .misc = 0,
  2936. .size = sizeof(throttle_event),
  2937. },
  2938. .time = perf_clock(),
  2939. .id = primary_event_id(event),
  2940. .stream_id = event->id,
  2941. };
  2942. if (enable)
  2943. throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
  2944. ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
  2945. if (ret)
  2946. return;
  2947. perf_output_put(&handle, throttle_event);
  2948. perf_output_end(&handle);
  2949. }
  2950. /*
  2951. * Generic event overflow handling, sampling.
  2952. */
  2953. static int __perf_event_overflow(struct perf_event *event, int nmi,
  2954. int throttle, struct perf_sample_data *data,
  2955. struct pt_regs *regs)
  2956. {
  2957. int events = atomic_read(&event->event_limit);
  2958. struct hw_perf_event *hwc = &event->hw;
  2959. int ret = 0;
  2960. throttle = (throttle && event->pmu->unthrottle != NULL);
  2961. if (!throttle) {
  2962. hwc->interrupts++;
  2963. } else {
  2964. if (hwc->interrupts != MAX_INTERRUPTS) {
  2965. hwc->interrupts++;
  2966. if (HZ * hwc->interrupts >
  2967. (u64)sysctl_perf_event_sample_rate) {
  2968. hwc->interrupts = MAX_INTERRUPTS;
  2969. perf_log_throttle(event, 0);
  2970. ret = 1;
  2971. }
  2972. } else {
  2973. /*
  2974. * Keep re-disabling events even though on the previous
  2975. * pass we disabled it - just in case we raced with a
  2976. * sched-in and the event got enabled again:
  2977. */
  2978. ret = 1;
  2979. }
  2980. }
  2981. if (event->attr.freq) {
  2982. u64 now = perf_clock();
  2983. s64 delta = now - hwc->freq_stamp;
  2984. hwc->freq_stamp = now;
  2985. if (delta > 0 && delta < TICK_NSEC)
  2986. perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
  2987. }
  2988. /*
  2989. * XXX event_limit might not quite work as expected on inherited
  2990. * events
  2991. */
  2992. event->pending_kill = POLL_IN;
  2993. if (events && atomic_dec_and_test(&event->event_limit)) {
  2994. ret = 1;
  2995. event->pending_kill = POLL_HUP;
  2996. if (nmi) {
  2997. event->pending_disable = 1;
  2998. perf_pending_queue(&event->pending,
  2999. perf_pending_event);
  3000. } else
  3001. perf_event_disable(event);
  3002. }
  3003. if (event->overflow_handler)
  3004. event->overflow_handler(event, nmi, data, regs);
  3005. else
  3006. perf_event_output(event, nmi, data, regs);
  3007. return ret;
  3008. }
  3009. int perf_event_overflow(struct perf_event *event, int nmi,
  3010. struct perf_sample_data *data,
  3011. struct pt_regs *regs)
  3012. {
  3013. return __perf_event_overflow(event, nmi, 1, data, regs);
  3014. }
  3015. /*
  3016. * Generic software event infrastructure
  3017. */
  3018. /*
  3019. * We directly increment event->count and keep a second value in
  3020. * event->hw.period_left to count intervals. This period event
  3021. * is kept in the range [-sample_period, 0] so that we can use the
  3022. * sign as trigger.
  3023. */
  3024. static u64 perf_swevent_set_period(struct perf_event *event)
  3025. {
  3026. struct hw_perf_event *hwc = &event->hw;
  3027. u64 period = hwc->last_period;
  3028. u64 nr, offset;
  3029. s64 old, val;
  3030. hwc->last_period = hwc->sample_period;
  3031. again:
  3032. old = val = atomic64_read(&hwc->period_left);
  3033. if (val < 0)
  3034. return 0;
  3035. nr = div64_u64(period + val, period);
  3036. offset = nr * period;
  3037. val -= offset;
  3038. if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
  3039. goto again;
  3040. return nr;
  3041. }
  3042. static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
  3043. int nmi, struct perf_sample_data *data,
  3044. struct pt_regs *regs)
  3045. {
  3046. struct hw_perf_event *hwc = &event->hw;
  3047. int throttle = 0;
  3048. data->period = event->hw.last_period;
  3049. if (!overflow)
  3050. overflow = perf_swevent_set_period(event);
  3051. if (hwc->interrupts == MAX_INTERRUPTS)
  3052. return;
  3053. for (; overflow; overflow--) {
  3054. if (__perf_event_overflow(event, nmi, throttle,
  3055. data, regs)) {
  3056. /*
  3057. * We inhibit the overflow from happening when
  3058. * hwc->interrupts == MAX_INTERRUPTS.
  3059. */
  3060. break;
  3061. }
  3062. throttle = 1;
  3063. }
  3064. }
  3065. static void perf_swevent_unthrottle(struct perf_event *event)
  3066. {
  3067. /*
  3068. * Nothing to do, we already reset hwc->interrupts.
  3069. */
  3070. }
  3071. static void perf_swevent_add(struct perf_event *event, u64 nr,
  3072. int nmi, struct perf_sample_data *data,
  3073. struct pt_regs *regs)
  3074. {
  3075. struct hw_perf_event *hwc = &event->hw;
  3076. atomic64_add(nr, &event->count);
  3077. if (!regs)
  3078. return;
  3079. if (!hwc->sample_period)
  3080. return;
  3081. if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
  3082. return perf_swevent_overflow(event, 1, nmi, data, regs);
  3083. if (atomic64_add_negative(nr, &hwc->period_left))
  3084. return;
  3085. perf_swevent_overflow(event, 0, nmi, data, regs);
  3086. }
  3087. static int perf_swevent_is_counting(struct perf_event *event)
  3088. {
  3089. /*
  3090. * The event is active, we're good!
  3091. */
  3092. if (event->state == PERF_EVENT_STATE_ACTIVE)
  3093. return 1;
  3094. /*
  3095. * The event is off/error, not counting.
  3096. */
  3097. if (event->state != PERF_EVENT_STATE_INACTIVE)
  3098. return 0;
  3099. /*
  3100. * The event is inactive, if the context is active
  3101. * we're part of a group that didn't make it on the 'pmu',
  3102. * not counting.
  3103. */
  3104. if (event->ctx->is_active)
  3105. return 0;
  3106. /*
  3107. * We're inactive and the context is too, this means the
  3108. * task is scheduled out, we're counting events that happen
  3109. * to us, like migration events.
  3110. */
  3111. return 1;
  3112. }
  3113. static int perf_tp_event_match(struct perf_event *event,
  3114. struct perf_sample_data *data);
  3115. static int perf_swevent_match(struct perf_event *event,
  3116. enum perf_type_id type,
  3117. u32 event_id,
  3118. struct perf_sample_data *data,
  3119. struct pt_regs *regs)
  3120. {
  3121. if (!perf_swevent_is_counting(event))
  3122. return 0;
  3123. if (event->attr.type != type)
  3124. return 0;
  3125. if (event->attr.config != event_id)
  3126. return 0;
  3127. if (regs) {
  3128. if (event->attr.exclude_user && user_mode(regs))
  3129. return 0;
  3130. if (event->attr.exclude_kernel && !user_mode(regs))
  3131. return 0;
  3132. }
  3133. if (event->attr.type == PERF_TYPE_TRACEPOINT &&
  3134. !perf_tp_event_match(event, data))
  3135. return 0;
  3136. return 1;
  3137. }
  3138. static void perf_swevent_ctx_event(struct perf_event_context *ctx,
  3139. enum perf_type_id type,
  3140. u32 event_id, u64 nr, int nmi,
  3141. struct perf_sample_data *data,
  3142. struct pt_regs *regs)
  3143. {
  3144. struct perf_event *event;
  3145. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3146. if (perf_swevent_match(event, type, event_id, data, regs))
  3147. perf_swevent_add(event, nr, nmi, data, regs);
  3148. }
  3149. }
  3150. /*
  3151. * Must be called with preemption disabled
  3152. */
  3153. int perf_swevent_get_recursion_context(int **recursion)
  3154. {
  3155. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  3156. if (in_nmi())
  3157. *recursion = &cpuctx->recursion[3];
  3158. else if (in_irq())
  3159. *recursion = &cpuctx->recursion[2];
  3160. else if (in_softirq())
  3161. *recursion = &cpuctx->recursion[1];
  3162. else
  3163. *recursion = &cpuctx->recursion[0];
  3164. if (**recursion)
  3165. return -1;
  3166. (**recursion)++;
  3167. return 0;
  3168. }
  3169. EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
  3170. void perf_swevent_put_recursion_context(int *recursion)
  3171. {
  3172. (*recursion)--;
  3173. }
  3174. EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
  3175. static void __do_perf_sw_event(enum perf_type_id type, u32 event_id,
  3176. u64 nr, int nmi,
  3177. struct perf_sample_data *data,
  3178. struct pt_regs *regs)
  3179. {
  3180. struct perf_event_context *ctx;
  3181. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  3182. rcu_read_lock();
  3183. perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
  3184. nr, nmi, data, regs);
  3185. /*
  3186. * doesn't really matter which of the child contexts the
  3187. * events ends up in.
  3188. */
  3189. ctx = rcu_dereference(current->perf_event_ctxp);
  3190. if (ctx)
  3191. perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
  3192. rcu_read_unlock();
  3193. }
  3194. static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
  3195. u64 nr, int nmi,
  3196. struct perf_sample_data *data,
  3197. struct pt_regs *regs)
  3198. {
  3199. int *recursion;
  3200. preempt_disable();
  3201. if (perf_swevent_get_recursion_context(&recursion))
  3202. goto out;
  3203. __do_perf_sw_event(type, event_id, nr, nmi, data, regs);
  3204. perf_swevent_put_recursion_context(recursion);
  3205. out:
  3206. preempt_enable();
  3207. }
  3208. void __perf_sw_event(u32 event_id, u64 nr, int nmi,
  3209. struct pt_regs *regs, u64 addr)
  3210. {
  3211. struct perf_sample_data data;
  3212. data.addr = addr;
  3213. data.raw = NULL;
  3214. do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
  3215. }
  3216. static void perf_swevent_read(struct perf_event *event)
  3217. {
  3218. }
  3219. static int perf_swevent_enable(struct perf_event *event)
  3220. {
  3221. struct hw_perf_event *hwc = &event->hw;
  3222. if (hwc->sample_period) {
  3223. hwc->last_period = hwc->sample_period;
  3224. perf_swevent_set_period(event);
  3225. }
  3226. return 0;
  3227. }
  3228. static void perf_swevent_disable(struct perf_event *event)
  3229. {
  3230. }
  3231. static const struct pmu perf_ops_generic = {
  3232. .enable = perf_swevent_enable,
  3233. .disable = perf_swevent_disable,
  3234. .read = perf_swevent_read,
  3235. .unthrottle = perf_swevent_unthrottle,
  3236. };
  3237. /*
  3238. * hrtimer based swevent callback
  3239. */
  3240. static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
  3241. {
  3242. enum hrtimer_restart ret = HRTIMER_RESTART;
  3243. struct perf_sample_data data;
  3244. struct pt_regs *regs;
  3245. struct perf_event *event;
  3246. u64 period;
  3247. event = container_of(hrtimer, struct perf_event, hw.hrtimer);
  3248. event->pmu->read(event);
  3249. data.addr = 0;
  3250. regs = get_irq_regs();
  3251. /*
  3252. * In case we exclude kernel IPs or are somehow not in interrupt
  3253. * context, provide the next best thing, the user IP.
  3254. */
  3255. if ((event->attr.exclude_kernel || !regs) &&
  3256. !event->attr.exclude_user)
  3257. regs = task_pt_regs(current);
  3258. if (regs) {
  3259. if (!(event->attr.exclude_idle && current->pid == 0))
  3260. if (perf_event_overflow(event, 0, &data, regs))
  3261. ret = HRTIMER_NORESTART;
  3262. }
  3263. period = max_t(u64, 10000, event->hw.sample_period);
  3264. hrtimer_forward_now(hrtimer, ns_to_ktime(period));
  3265. return ret;
  3266. }
  3267. static void perf_swevent_start_hrtimer(struct perf_event *event)
  3268. {
  3269. struct hw_perf_event *hwc = &event->hw;
  3270. hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  3271. hwc->hrtimer.function = perf_swevent_hrtimer;
  3272. if (hwc->sample_period) {
  3273. u64 period;
  3274. if (hwc->remaining) {
  3275. if (hwc->remaining < 0)
  3276. period = 10000;
  3277. else
  3278. period = hwc->remaining;
  3279. hwc->remaining = 0;
  3280. } else {
  3281. period = max_t(u64, 10000, hwc->sample_period);
  3282. }
  3283. __hrtimer_start_range_ns(&hwc->hrtimer,
  3284. ns_to_ktime(period), 0,
  3285. HRTIMER_MODE_REL, 0);
  3286. }
  3287. }
  3288. static void perf_swevent_cancel_hrtimer(struct perf_event *event)
  3289. {
  3290. struct hw_perf_event *hwc = &event->hw;
  3291. if (hwc->sample_period) {
  3292. ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
  3293. hwc->remaining = ktime_to_ns(remaining);
  3294. hrtimer_cancel(&hwc->hrtimer);
  3295. }
  3296. }
  3297. /*
  3298. * Software event: cpu wall time clock
  3299. */
  3300. static void cpu_clock_perf_event_update(struct perf_event *event)
  3301. {
  3302. int cpu = raw_smp_processor_id();
  3303. s64 prev;
  3304. u64 now;
  3305. now = cpu_clock(cpu);
  3306. prev = atomic64_read(&event->hw.prev_count);
  3307. atomic64_set(&event->hw.prev_count, now);
  3308. atomic64_add(now - prev, &event->count);
  3309. }
  3310. static int cpu_clock_perf_event_enable(struct perf_event *event)
  3311. {
  3312. struct hw_perf_event *hwc = &event->hw;
  3313. int cpu = raw_smp_processor_id();
  3314. atomic64_set(&hwc->prev_count, cpu_clock(cpu));
  3315. perf_swevent_start_hrtimer(event);
  3316. return 0;
  3317. }
  3318. static void cpu_clock_perf_event_disable(struct perf_event *event)
  3319. {
  3320. perf_swevent_cancel_hrtimer(event);
  3321. cpu_clock_perf_event_update(event);
  3322. }
  3323. static void cpu_clock_perf_event_read(struct perf_event *event)
  3324. {
  3325. cpu_clock_perf_event_update(event);
  3326. }
  3327. static const struct pmu perf_ops_cpu_clock = {
  3328. .enable = cpu_clock_perf_event_enable,
  3329. .disable = cpu_clock_perf_event_disable,
  3330. .read = cpu_clock_perf_event_read,
  3331. };
  3332. /*
  3333. * Software event: task time clock
  3334. */
  3335. static void task_clock_perf_event_update(struct perf_event *event, u64 now)
  3336. {
  3337. u64 prev;
  3338. s64 delta;
  3339. prev = atomic64_xchg(&event->hw.prev_count, now);
  3340. delta = now - prev;
  3341. atomic64_add(delta, &event->count);
  3342. }
  3343. static int task_clock_perf_event_enable(struct perf_event *event)
  3344. {
  3345. struct hw_perf_event *hwc = &event->hw;
  3346. u64 now;
  3347. now = event->ctx->time;
  3348. atomic64_set(&hwc->prev_count, now);
  3349. perf_swevent_start_hrtimer(event);
  3350. return 0;
  3351. }
  3352. static void task_clock_perf_event_disable(struct perf_event *event)
  3353. {
  3354. perf_swevent_cancel_hrtimer(event);
  3355. task_clock_perf_event_update(event, event->ctx->time);
  3356. }
  3357. static void task_clock_perf_event_read(struct perf_event *event)
  3358. {
  3359. u64 time;
  3360. if (!in_nmi()) {
  3361. update_context_time(event->ctx);
  3362. time = event->ctx->time;
  3363. } else {
  3364. u64 now = perf_clock();
  3365. u64 delta = now - event->ctx->timestamp;
  3366. time = event->ctx->time + delta;
  3367. }
  3368. task_clock_perf_event_update(event, time);
  3369. }
  3370. static const struct pmu perf_ops_task_clock = {
  3371. .enable = task_clock_perf_event_enable,
  3372. .disable = task_clock_perf_event_disable,
  3373. .read = task_clock_perf_event_read,
  3374. };
  3375. #ifdef CONFIG_EVENT_PROFILE
  3376. void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
  3377. int entry_size)
  3378. {
  3379. struct perf_raw_record raw = {
  3380. .size = entry_size,
  3381. .data = record,
  3382. };
  3383. struct perf_sample_data data = {
  3384. .addr = addr,
  3385. .raw = &raw,
  3386. };
  3387. struct pt_regs *regs = get_irq_regs();
  3388. if (!regs)
  3389. regs = task_pt_regs(current);
  3390. /* Trace events already protected against recursion */
  3391. __do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
  3392. &data, regs);
  3393. }
  3394. EXPORT_SYMBOL_GPL(perf_tp_event);
  3395. static int perf_tp_event_match(struct perf_event *event,
  3396. struct perf_sample_data *data)
  3397. {
  3398. void *record = data->raw->data;
  3399. if (likely(!event->filter) || filter_match_preds(event->filter, record))
  3400. return 1;
  3401. return 0;
  3402. }
  3403. static void tp_perf_event_destroy(struct perf_event *event)
  3404. {
  3405. ftrace_profile_disable(event->attr.config);
  3406. }
  3407. static const struct pmu *tp_perf_event_init(struct perf_event *event)
  3408. {
  3409. /*
  3410. * Raw tracepoint data is a severe data leak, only allow root to
  3411. * have these.
  3412. */
  3413. if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
  3414. perf_paranoid_tracepoint_raw() &&
  3415. !capable(CAP_SYS_ADMIN))
  3416. return ERR_PTR(-EPERM);
  3417. if (ftrace_profile_enable(event->attr.config))
  3418. return NULL;
  3419. event->destroy = tp_perf_event_destroy;
  3420. return &perf_ops_generic;
  3421. }
  3422. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  3423. {
  3424. char *filter_str;
  3425. int ret;
  3426. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  3427. return -EINVAL;
  3428. filter_str = strndup_user(arg, PAGE_SIZE);
  3429. if (IS_ERR(filter_str))
  3430. return PTR_ERR(filter_str);
  3431. ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
  3432. kfree(filter_str);
  3433. return ret;
  3434. }
  3435. static void perf_event_free_filter(struct perf_event *event)
  3436. {
  3437. ftrace_profile_free_filter(event);
  3438. }
  3439. #else
  3440. static int perf_tp_event_match(struct perf_event *event,
  3441. struct perf_sample_data *data)
  3442. {
  3443. return 1;
  3444. }
  3445. static const struct pmu *tp_perf_event_init(struct perf_event *event)
  3446. {
  3447. return NULL;
  3448. }
  3449. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  3450. {
  3451. return -ENOENT;
  3452. }
  3453. static void perf_event_free_filter(struct perf_event *event)
  3454. {
  3455. }
  3456. #endif /* CONFIG_EVENT_PROFILE */
  3457. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  3458. static void bp_perf_event_destroy(struct perf_event *event)
  3459. {
  3460. release_bp_slot(event);
  3461. }
  3462. static const struct pmu *bp_perf_event_init(struct perf_event *bp)
  3463. {
  3464. int err;
  3465. /*
  3466. * The breakpoint is already filled if we haven't created the counter
  3467. * through perf syscall
  3468. * FIXME: manage to get trigerred to NULL if it comes from syscalls
  3469. */
  3470. if (!bp->callback)
  3471. err = register_perf_hw_breakpoint(bp);
  3472. else
  3473. err = __register_perf_hw_breakpoint(bp);
  3474. if (err)
  3475. return ERR_PTR(err);
  3476. bp->destroy = bp_perf_event_destroy;
  3477. return &perf_ops_bp;
  3478. }
  3479. void perf_bp_event(struct perf_event *bp, void *regs)
  3480. {
  3481. /* TODO */
  3482. }
  3483. #else
  3484. static void bp_perf_event_destroy(struct perf_event *event)
  3485. {
  3486. }
  3487. static const struct pmu *bp_perf_event_init(struct perf_event *bp)
  3488. {
  3489. return NULL;
  3490. }
  3491. void perf_bp_event(struct perf_event *bp, void *regs)
  3492. {
  3493. }
  3494. #endif
  3495. atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
  3496. static void sw_perf_event_destroy(struct perf_event *event)
  3497. {
  3498. u64 event_id = event->attr.config;
  3499. WARN_ON(event->parent);
  3500. atomic_dec(&perf_swevent_enabled[event_id]);
  3501. }
  3502. static const struct pmu *sw_perf_event_init(struct perf_event *event)
  3503. {
  3504. const struct pmu *pmu = NULL;
  3505. u64 event_id = event->attr.config;
  3506. /*
  3507. * Software events (currently) can't in general distinguish
  3508. * between user, kernel and hypervisor events.
  3509. * However, context switches and cpu migrations are considered
  3510. * to be kernel events, and page faults are never hypervisor
  3511. * events.
  3512. */
  3513. switch (event_id) {
  3514. case PERF_COUNT_SW_CPU_CLOCK:
  3515. pmu = &perf_ops_cpu_clock;
  3516. break;
  3517. case PERF_COUNT_SW_TASK_CLOCK:
  3518. /*
  3519. * If the user instantiates this as a per-cpu event,
  3520. * use the cpu_clock event instead.
  3521. */
  3522. if (event->ctx->task)
  3523. pmu = &perf_ops_task_clock;
  3524. else
  3525. pmu = &perf_ops_cpu_clock;
  3526. break;
  3527. case PERF_COUNT_SW_PAGE_FAULTS:
  3528. case PERF_COUNT_SW_PAGE_FAULTS_MIN:
  3529. case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
  3530. case PERF_COUNT_SW_CONTEXT_SWITCHES:
  3531. case PERF_COUNT_SW_CPU_MIGRATIONS:
  3532. case PERF_COUNT_SW_ALIGNMENT_FAULTS:
  3533. case PERF_COUNT_SW_EMULATION_FAULTS:
  3534. if (!event->parent) {
  3535. atomic_inc(&perf_swevent_enabled[event_id]);
  3536. event->destroy = sw_perf_event_destroy;
  3537. }
  3538. pmu = &perf_ops_generic;
  3539. break;
  3540. }
  3541. return pmu;
  3542. }
  3543. /*
  3544. * Allocate and initialize a event structure
  3545. */
  3546. static struct perf_event *
  3547. perf_event_alloc(struct perf_event_attr *attr,
  3548. int cpu,
  3549. struct perf_event_context *ctx,
  3550. struct perf_event *group_leader,
  3551. struct perf_event *parent_event,
  3552. perf_callback_t callback,
  3553. gfp_t gfpflags)
  3554. {
  3555. const struct pmu *pmu;
  3556. struct perf_event *event;
  3557. struct hw_perf_event *hwc;
  3558. long err;
  3559. event = kzalloc(sizeof(*event), gfpflags);
  3560. if (!event)
  3561. return ERR_PTR(-ENOMEM);
  3562. /*
  3563. * Single events are their own group leaders, with an
  3564. * empty sibling list:
  3565. */
  3566. if (!group_leader)
  3567. group_leader = event;
  3568. mutex_init(&event->child_mutex);
  3569. INIT_LIST_HEAD(&event->child_list);
  3570. INIT_LIST_HEAD(&event->group_entry);
  3571. INIT_LIST_HEAD(&event->event_entry);
  3572. INIT_LIST_HEAD(&event->sibling_list);
  3573. init_waitqueue_head(&event->waitq);
  3574. mutex_init(&event->mmap_mutex);
  3575. event->cpu = cpu;
  3576. event->attr = *attr;
  3577. event->group_leader = group_leader;
  3578. event->pmu = NULL;
  3579. event->ctx = ctx;
  3580. event->oncpu = -1;
  3581. event->parent = parent_event;
  3582. event->ns = get_pid_ns(current->nsproxy->pid_ns);
  3583. event->id = atomic64_inc_return(&perf_event_id);
  3584. event->state = PERF_EVENT_STATE_INACTIVE;
  3585. if (!callback && parent_event)
  3586. callback = parent_event->callback;
  3587. event->callback = callback;
  3588. if (attr->disabled)
  3589. event->state = PERF_EVENT_STATE_OFF;
  3590. pmu = NULL;
  3591. hwc = &event->hw;
  3592. hwc->sample_period = attr->sample_period;
  3593. if (attr->freq && attr->sample_freq)
  3594. hwc->sample_period = 1;
  3595. hwc->last_period = hwc->sample_period;
  3596. atomic64_set(&hwc->period_left, hwc->sample_period);
  3597. /*
  3598. * we currently do not support PERF_FORMAT_GROUP on inherited events
  3599. */
  3600. if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
  3601. goto done;
  3602. switch (attr->type) {
  3603. case PERF_TYPE_RAW:
  3604. case PERF_TYPE_HARDWARE:
  3605. case PERF_TYPE_HW_CACHE:
  3606. pmu = hw_perf_event_init(event);
  3607. break;
  3608. case PERF_TYPE_SOFTWARE:
  3609. pmu = sw_perf_event_init(event);
  3610. break;
  3611. case PERF_TYPE_TRACEPOINT:
  3612. pmu = tp_perf_event_init(event);
  3613. break;
  3614. case PERF_TYPE_BREAKPOINT:
  3615. pmu = bp_perf_event_init(event);
  3616. break;
  3617. default:
  3618. break;
  3619. }
  3620. done:
  3621. err = 0;
  3622. if (!pmu)
  3623. err = -EINVAL;
  3624. else if (IS_ERR(pmu))
  3625. err = PTR_ERR(pmu);
  3626. if (err) {
  3627. if (event->ns)
  3628. put_pid_ns(event->ns);
  3629. kfree(event);
  3630. return ERR_PTR(err);
  3631. }
  3632. event->pmu = pmu;
  3633. if (!event->parent) {
  3634. atomic_inc(&nr_events);
  3635. if (event->attr.mmap)
  3636. atomic_inc(&nr_mmap_events);
  3637. if (event->attr.comm)
  3638. atomic_inc(&nr_comm_events);
  3639. if (event->attr.task)
  3640. atomic_inc(&nr_task_events);
  3641. }
  3642. return event;
  3643. }
  3644. static int perf_copy_attr(struct perf_event_attr __user *uattr,
  3645. struct perf_event_attr *attr)
  3646. {
  3647. u32 size;
  3648. int ret;
  3649. if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
  3650. return -EFAULT;
  3651. /*
  3652. * zero the full structure, so that a short copy will be nice.
  3653. */
  3654. memset(attr, 0, sizeof(*attr));
  3655. ret = get_user(size, &uattr->size);
  3656. if (ret)
  3657. return ret;
  3658. if (size > PAGE_SIZE) /* silly large */
  3659. goto err_size;
  3660. if (!size) /* abi compat */
  3661. size = PERF_ATTR_SIZE_VER0;
  3662. if (size < PERF_ATTR_SIZE_VER0)
  3663. goto err_size;
  3664. /*
  3665. * If we're handed a bigger struct than we know of,
  3666. * ensure all the unknown bits are 0 - i.e. new
  3667. * user-space does not rely on any kernel feature
  3668. * extensions we dont know about yet.
  3669. */
  3670. if (size > sizeof(*attr)) {
  3671. unsigned char __user *addr;
  3672. unsigned char __user *end;
  3673. unsigned char val;
  3674. addr = (void __user *)uattr + sizeof(*attr);
  3675. end = (void __user *)uattr + size;
  3676. for (; addr < end; addr++) {
  3677. ret = get_user(val, addr);
  3678. if (ret)
  3679. return ret;
  3680. if (val)
  3681. goto err_size;
  3682. }
  3683. size = sizeof(*attr);
  3684. }
  3685. ret = copy_from_user(attr, uattr, size);
  3686. if (ret)
  3687. return -EFAULT;
  3688. /*
  3689. * If the type exists, the corresponding creation will verify
  3690. * the attr->config.
  3691. */
  3692. if (attr->type >= PERF_TYPE_MAX)
  3693. return -EINVAL;
  3694. if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
  3695. return -EINVAL;
  3696. if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
  3697. return -EINVAL;
  3698. if (attr->read_format & ~(PERF_FORMAT_MAX-1))
  3699. return -EINVAL;
  3700. out:
  3701. return ret;
  3702. err_size:
  3703. put_user(sizeof(*attr), &uattr->size);
  3704. ret = -E2BIG;
  3705. goto out;
  3706. }
  3707. static int perf_event_set_output(struct perf_event *event, int output_fd)
  3708. {
  3709. struct perf_event *output_event = NULL;
  3710. struct file *output_file = NULL;
  3711. struct perf_event *old_output;
  3712. int fput_needed = 0;
  3713. int ret = -EINVAL;
  3714. if (!output_fd)
  3715. goto set;
  3716. output_file = fget_light(output_fd, &fput_needed);
  3717. if (!output_file)
  3718. return -EBADF;
  3719. if (output_file->f_op != &perf_fops)
  3720. goto out;
  3721. output_event = output_file->private_data;
  3722. /* Don't chain output fds */
  3723. if (output_event->output)
  3724. goto out;
  3725. /* Don't set an output fd when we already have an output channel */
  3726. if (event->data)
  3727. goto out;
  3728. atomic_long_inc(&output_file->f_count);
  3729. set:
  3730. mutex_lock(&event->mmap_mutex);
  3731. old_output = event->output;
  3732. rcu_assign_pointer(event->output, output_event);
  3733. mutex_unlock(&event->mmap_mutex);
  3734. if (old_output) {
  3735. /*
  3736. * we need to make sure no existing perf_output_*()
  3737. * is still referencing this event.
  3738. */
  3739. synchronize_rcu();
  3740. fput(old_output->filp);
  3741. }
  3742. ret = 0;
  3743. out:
  3744. fput_light(output_file, fput_needed);
  3745. return ret;
  3746. }
  3747. /**
  3748. * sys_perf_event_open - open a performance event, associate it to a task/cpu
  3749. *
  3750. * @attr_uptr: event_id type attributes for monitoring/sampling
  3751. * @pid: target pid
  3752. * @cpu: target cpu
  3753. * @group_fd: group leader event fd
  3754. */
  3755. SYSCALL_DEFINE5(perf_event_open,
  3756. struct perf_event_attr __user *, attr_uptr,
  3757. pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
  3758. {
  3759. struct perf_event *event, *group_leader;
  3760. struct perf_event_attr attr;
  3761. struct perf_event_context *ctx;
  3762. struct file *event_file = NULL;
  3763. struct file *group_file = NULL;
  3764. int fput_needed = 0;
  3765. int fput_needed2 = 0;
  3766. int err;
  3767. /* for future expandability... */
  3768. if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
  3769. return -EINVAL;
  3770. err = perf_copy_attr(attr_uptr, &attr);
  3771. if (err)
  3772. return err;
  3773. if (!attr.exclude_kernel) {
  3774. if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
  3775. return -EACCES;
  3776. }
  3777. if (attr.freq) {
  3778. if (attr.sample_freq > sysctl_perf_event_sample_rate)
  3779. return -EINVAL;
  3780. }
  3781. /*
  3782. * Get the target context (task or percpu):
  3783. */
  3784. ctx = find_get_context(pid, cpu);
  3785. if (IS_ERR(ctx))
  3786. return PTR_ERR(ctx);
  3787. /*
  3788. * Look up the group leader (we will attach this event to it):
  3789. */
  3790. group_leader = NULL;
  3791. if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
  3792. err = -EINVAL;
  3793. group_file = fget_light(group_fd, &fput_needed);
  3794. if (!group_file)
  3795. goto err_put_context;
  3796. if (group_file->f_op != &perf_fops)
  3797. goto err_put_context;
  3798. group_leader = group_file->private_data;
  3799. /*
  3800. * Do not allow a recursive hierarchy (this new sibling
  3801. * becoming part of another group-sibling):
  3802. */
  3803. if (group_leader->group_leader != group_leader)
  3804. goto err_put_context;
  3805. /*
  3806. * Do not allow to attach to a group in a different
  3807. * task or CPU context:
  3808. */
  3809. if (group_leader->ctx != ctx)
  3810. goto err_put_context;
  3811. /*
  3812. * Only a group leader can be exclusive or pinned
  3813. */
  3814. if (attr.exclusive || attr.pinned)
  3815. goto err_put_context;
  3816. }
  3817. event = perf_event_alloc(&attr, cpu, ctx, group_leader,
  3818. NULL, NULL, GFP_KERNEL);
  3819. err = PTR_ERR(event);
  3820. if (IS_ERR(event))
  3821. goto err_put_context;
  3822. err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
  3823. if (err < 0)
  3824. goto err_free_put_context;
  3825. event_file = fget_light(err, &fput_needed2);
  3826. if (!event_file)
  3827. goto err_free_put_context;
  3828. if (flags & PERF_FLAG_FD_OUTPUT) {
  3829. err = perf_event_set_output(event, group_fd);
  3830. if (err)
  3831. goto err_fput_free_put_context;
  3832. }
  3833. event->filp = event_file;
  3834. WARN_ON_ONCE(ctx->parent_ctx);
  3835. mutex_lock(&ctx->mutex);
  3836. perf_install_in_context(ctx, event, cpu);
  3837. ++ctx->generation;
  3838. mutex_unlock(&ctx->mutex);
  3839. event->owner = current;
  3840. get_task_struct(current);
  3841. mutex_lock(&current->perf_event_mutex);
  3842. list_add_tail(&event->owner_entry, &current->perf_event_list);
  3843. mutex_unlock(&current->perf_event_mutex);
  3844. err_fput_free_put_context:
  3845. fput_light(event_file, fput_needed2);
  3846. err_free_put_context:
  3847. if (err < 0)
  3848. kfree(event);
  3849. err_put_context:
  3850. if (err < 0)
  3851. put_ctx(ctx);
  3852. fput_light(group_file, fput_needed);
  3853. return err;
  3854. }
  3855. /**
  3856. * perf_event_create_kernel_counter
  3857. *
  3858. * @attr: attributes of the counter to create
  3859. * @cpu: cpu in which the counter is bound
  3860. * @pid: task to profile
  3861. */
  3862. struct perf_event *
  3863. perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
  3864. pid_t pid, perf_callback_t callback)
  3865. {
  3866. struct perf_event *event;
  3867. struct perf_event_context *ctx;
  3868. int err;
  3869. /*
  3870. * Get the target context (task or percpu):
  3871. */
  3872. ctx = find_get_context(pid, cpu);
  3873. if (IS_ERR(ctx))
  3874. return NULL;
  3875. event = perf_event_alloc(attr, cpu, ctx, NULL,
  3876. NULL, callback, GFP_KERNEL);
  3877. err = PTR_ERR(event);
  3878. if (IS_ERR(event))
  3879. goto err_put_context;
  3880. event->filp = NULL;
  3881. WARN_ON_ONCE(ctx->parent_ctx);
  3882. mutex_lock(&ctx->mutex);
  3883. perf_install_in_context(ctx, event, cpu);
  3884. ++ctx->generation;
  3885. mutex_unlock(&ctx->mutex);
  3886. event->owner = current;
  3887. get_task_struct(current);
  3888. mutex_lock(&current->perf_event_mutex);
  3889. list_add_tail(&event->owner_entry, &current->perf_event_list);
  3890. mutex_unlock(&current->perf_event_mutex);
  3891. return event;
  3892. err_put_context:
  3893. if (err < 0)
  3894. put_ctx(ctx);
  3895. return NULL;
  3896. }
  3897. EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
  3898. /*
  3899. * inherit a event from parent task to child task:
  3900. */
  3901. static struct perf_event *
  3902. inherit_event(struct perf_event *parent_event,
  3903. struct task_struct *parent,
  3904. struct perf_event_context *parent_ctx,
  3905. struct task_struct *child,
  3906. struct perf_event *group_leader,
  3907. struct perf_event_context *child_ctx)
  3908. {
  3909. struct perf_event *child_event;
  3910. /*
  3911. * Instead of creating recursive hierarchies of events,
  3912. * we link inherited events back to the original parent,
  3913. * which has a filp for sure, which we use as the reference
  3914. * count:
  3915. */
  3916. if (parent_event->parent)
  3917. parent_event = parent_event->parent;
  3918. child_event = perf_event_alloc(&parent_event->attr,
  3919. parent_event->cpu, child_ctx,
  3920. group_leader, parent_event,
  3921. NULL, GFP_KERNEL);
  3922. if (IS_ERR(child_event))
  3923. return child_event;
  3924. get_ctx(child_ctx);
  3925. /*
  3926. * Make the child state follow the state of the parent event,
  3927. * not its attr.disabled bit. We hold the parent's mutex,
  3928. * so we won't race with perf_event_{en, dis}able_family.
  3929. */
  3930. if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
  3931. child_event->state = PERF_EVENT_STATE_INACTIVE;
  3932. else
  3933. child_event->state = PERF_EVENT_STATE_OFF;
  3934. if (parent_event->attr.freq)
  3935. child_event->hw.sample_period = parent_event->hw.sample_period;
  3936. child_event->overflow_handler = parent_event->overflow_handler;
  3937. /*
  3938. * Link it up in the child's context:
  3939. */
  3940. add_event_to_ctx(child_event, child_ctx);
  3941. /*
  3942. * Get a reference to the parent filp - we will fput it
  3943. * when the child event exits. This is safe to do because
  3944. * we are in the parent and we know that the filp still
  3945. * exists and has a nonzero count:
  3946. */
  3947. atomic_long_inc(&parent_event->filp->f_count);
  3948. /*
  3949. * Link this into the parent event's child list
  3950. */
  3951. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  3952. mutex_lock(&parent_event->child_mutex);
  3953. list_add_tail(&child_event->child_list, &parent_event->child_list);
  3954. mutex_unlock(&parent_event->child_mutex);
  3955. return child_event;
  3956. }
  3957. static int inherit_group(struct perf_event *parent_event,
  3958. struct task_struct *parent,
  3959. struct perf_event_context *parent_ctx,
  3960. struct task_struct *child,
  3961. struct perf_event_context *child_ctx)
  3962. {
  3963. struct perf_event *leader;
  3964. struct perf_event *sub;
  3965. struct perf_event *child_ctr;
  3966. leader = inherit_event(parent_event, parent, parent_ctx,
  3967. child, NULL, child_ctx);
  3968. if (IS_ERR(leader))
  3969. return PTR_ERR(leader);
  3970. list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
  3971. child_ctr = inherit_event(sub, parent, parent_ctx,
  3972. child, leader, child_ctx);
  3973. if (IS_ERR(child_ctr))
  3974. return PTR_ERR(child_ctr);
  3975. }
  3976. return 0;
  3977. }
  3978. static void sync_child_event(struct perf_event *child_event,
  3979. struct task_struct *child)
  3980. {
  3981. struct perf_event *parent_event = child_event->parent;
  3982. u64 child_val;
  3983. if (child_event->attr.inherit_stat)
  3984. perf_event_read_event(child_event, child);
  3985. child_val = atomic64_read(&child_event->count);
  3986. /*
  3987. * Add back the child's count to the parent's count:
  3988. */
  3989. atomic64_add(child_val, &parent_event->count);
  3990. atomic64_add(child_event->total_time_enabled,
  3991. &parent_event->child_total_time_enabled);
  3992. atomic64_add(child_event->total_time_running,
  3993. &parent_event->child_total_time_running);
  3994. /*
  3995. * Remove this event from the parent's list
  3996. */
  3997. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  3998. mutex_lock(&parent_event->child_mutex);
  3999. list_del_init(&child_event->child_list);
  4000. mutex_unlock(&parent_event->child_mutex);
  4001. /*
  4002. * Release the parent event, if this was the last
  4003. * reference to it.
  4004. */
  4005. fput(parent_event->filp);
  4006. }
  4007. static void
  4008. __perf_event_exit_task(struct perf_event *child_event,
  4009. struct perf_event_context *child_ctx,
  4010. struct task_struct *child)
  4011. {
  4012. struct perf_event *parent_event;
  4013. perf_event_remove_from_context(child_event);
  4014. parent_event = child_event->parent;
  4015. /*
  4016. * It can happen that parent exits first, and has events
  4017. * that are still around due to the child reference. These
  4018. * events need to be zapped - but otherwise linger.
  4019. */
  4020. if (parent_event) {
  4021. sync_child_event(child_event, child);
  4022. free_event(child_event);
  4023. }
  4024. }
  4025. /*
  4026. * When a child task exits, feed back event values to parent events.
  4027. */
  4028. void perf_event_exit_task(struct task_struct *child)
  4029. {
  4030. struct perf_event *child_event, *tmp;
  4031. struct perf_event_context *child_ctx;
  4032. unsigned long flags;
  4033. if (likely(!child->perf_event_ctxp)) {
  4034. perf_event_task(child, NULL, 0);
  4035. return;
  4036. }
  4037. local_irq_save(flags);
  4038. /*
  4039. * We can't reschedule here because interrupts are disabled,
  4040. * and either child is current or it is a task that can't be
  4041. * scheduled, so we are now safe from rescheduling changing
  4042. * our context.
  4043. */
  4044. child_ctx = child->perf_event_ctxp;
  4045. __perf_event_task_sched_out(child_ctx);
  4046. /*
  4047. * Take the context lock here so that if find_get_context is
  4048. * reading child->perf_event_ctxp, we wait until it has
  4049. * incremented the context's refcount before we do put_ctx below.
  4050. */
  4051. spin_lock(&child_ctx->lock);
  4052. child->perf_event_ctxp = NULL;
  4053. /*
  4054. * If this context is a clone; unclone it so it can't get
  4055. * swapped to another process while we're removing all
  4056. * the events from it.
  4057. */
  4058. unclone_ctx(child_ctx);
  4059. update_context_time(child_ctx);
  4060. spin_unlock_irqrestore(&child_ctx->lock, flags);
  4061. /*
  4062. * Report the task dead after unscheduling the events so that we
  4063. * won't get any samples after PERF_RECORD_EXIT. We can however still
  4064. * get a few PERF_RECORD_READ events.
  4065. */
  4066. perf_event_task(child, child_ctx, 0);
  4067. /*
  4068. * We can recurse on the same lock type through:
  4069. *
  4070. * __perf_event_exit_task()
  4071. * sync_child_event()
  4072. * fput(parent_event->filp)
  4073. * perf_release()
  4074. * mutex_lock(&ctx->mutex)
  4075. *
  4076. * But since its the parent context it won't be the same instance.
  4077. */
  4078. mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
  4079. again:
  4080. list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
  4081. group_entry)
  4082. __perf_event_exit_task(child_event, child_ctx, child);
  4083. /*
  4084. * If the last event was a group event, it will have appended all
  4085. * its siblings to the list, but we obtained 'tmp' before that which
  4086. * will still point to the list head terminating the iteration.
  4087. */
  4088. if (!list_empty(&child_ctx->group_list))
  4089. goto again;
  4090. mutex_unlock(&child_ctx->mutex);
  4091. put_ctx(child_ctx);
  4092. }
  4093. /*
  4094. * free an unexposed, unused context as created by inheritance by
  4095. * init_task below, used by fork() in case of fail.
  4096. */
  4097. void perf_event_free_task(struct task_struct *task)
  4098. {
  4099. struct perf_event_context *ctx = task->perf_event_ctxp;
  4100. struct perf_event *event, *tmp;
  4101. if (!ctx)
  4102. return;
  4103. mutex_lock(&ctx->mutex);
  4104. again:
  4105. list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
  4106. struct perf_event *parent = event->parent;
  4107. if (WARN_ON_ONCE(!parent))
  4108. continue;
  4109. mutex_lock(&parent->child_mutex);
  4110. list_del_init(&event->child_list);
  4111. mutex_unlock(&parent->child_mutex);
  4112. fput(parent->filp);
  4113. list_del_event(event, ctx);
  4114. free_event(event);
  4115. }
  4116. if (!list_empty(&ctx->group_list))
  4117. goto again;
  4118. mutex_unlock(&ctx->mutex);
  4119. put_ctx(ctx);
  4120. }
  4121. /*
  4122. * Initialize the perf_event context in task_struct
  4123. */
  4124. int perf_event_init_task(struct task_struct *child)
  4125. {
  4126. struct perf_event_context *child_ctx, *parent_ctx;
  4127. struct perf_event_context *cloned_ctx;
  4128. struct perf_event *event;
  4129. struct task_struct *parent = current;
  4130. int inherited_all = 1;
  4131. int ret = 0;
  4132. child->perf_event_ctxp = NULL;
  4133. mutex_init(&child->perf_event_mutex);
  4134. INIT_LIST_HEAD(&child->perf_event_list);
  4135. if (likely(!parent->perf_event_ctxp))
  4136. return 0;
  4137. /*
  4138. * This is executed from the parent task context, so inherit
  4139. * events that have been marked for cloning.
  4140. * First allocate and initialize a context for the child.
  4141. */
  4142. child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
  4143. if (!child_ctx)
  4144. return -ENOMEM;
  4145. __perf_event_init_context(child_ctx, child);
  4146. child->perf_event_ctxp = child_ctx;
  4147. get_task_struct(child);
  4148. /*
  4149. * If the parent's context is a clone, pin it so it won't get
  4150. * swapped under us.
  4151. */
  4152. parent_ctx = perf_pin_task_context(parent);
  4153. /*
  4154. * No need to check if parent_ctx != NULL here; since we saw
  4155. * it non-NULL earlier, the only reason for it to become NULL
  4156. * is if we exit, and since we're currently in the middle of
  4157. * a fork we can't be exiting at the same time.
  4158. */
  4159. /*
  4160. * Lock the parent list. No need to lock the child - not PID
  4161. * hashed yet and not running, so nobody can access it.
  4162. */
  4163. mutex_lock(&parent_ctx->mutex);
  4164. /*
  4165. * We dont have to disable NMIs - we are only looking at
  4166. * the list, not manipulating it:
  4167. */
  4168. list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
  4169. if (!event->attr.inherit) {
  4170. inherited_all = 0;
  4171. continue;
  4172. }
  4173. ret = inherit_group(event, parent, parent_ctx,
  4174. child, child_ctx);
  4175. if (ret) {
  4176. inherited_all = 0;
  4177. break;
  4178. }
  4179. }
  4180. if (inherited_all) {
  4181. /*
  4182. * Mark the child context as a clone of the parent
  4183. * context, or of whatever the parent is a clone of.
  4184. * Note that if the parent is a clone, it could get
  4185. * uncloned at any point, but that doesn't matter
  4186. * because the list of events and the generation
  4187. * count can't have changed since we took the mutex.
  4188. */
  4189. cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
  4190. if (cloned_ctx) {
  4191. child_ctx->parent_ctx = cloned_ctx;
  4192. child_ctx->parent_gen = parent_ctx->parent_gen;
  4193. } else {
  4194. child_ctx->parent_ctx = parent_ctx;
  4195. child_ctx->parent_gen = parent_ctx->generation;
  4196. }
  4197. get_ctx(child_ctx->parent_ctx);
  4198. }
  4199. mutex_unlock(&parent_ctx->mutex);
  4200. perf_unpin_context(parent_ctx);
  4201. return ret;
  4202. }
  4203. static void __cpuinit perf_event_init_cpu(int cpu)
  4204. {
  4205. struct perf_cpu_context *cpuctx;
  4206. cpuctx = &per_cpu(perf_cpu_context, cpu);
  4207. __perf_event_init_context(&cpuctx->ctx, NULL);
  4208. spin_lock(&perf_resource_lock);
  4209. cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
  4210. spin_unlock(&perf_resource_lock);
  4211. hw_perf_event_setup(cpu);
  4212. }
  4213. #ifdef CONFIG_HOTPLUG_CPU
  4214. static void __perf_event_exit_cpu(void *info)
  4215. {
  4216. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  4217. struct perf_event_context *ctx = &cpuctx->ctx;
  4218. struct perf_event *event, *tmp;
  4219. list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
  4220. __perf_event_remove_from_context(event);
  4221. }
  4222. static void perf_event_exit_cpu(int cpu)
  4223. {
  4224. struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
  4225. struct perf_event_context *ctx = &cpuctx->ctx;
  4226. mutex_lock(&ctx->mutex);
  4227. smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
  4228. mutex_unlock(&ctx->mutex);
  4229. }
  4230. #else
  4231. static inline void perf_event_exit_cpu(int cpu) { }
  4232. #endif
  4233. static int __cpuinit
  4234. perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
  4235. {
  4236. unsigned int cpu = (long)hcpu;
  4237. switch (action) {
  4238. case CPU_UP_PREPARE:
  4239. case CPU_UP_PREPARE_FROZEN:
  4240. perf_event_init_cpu(cpu);
  4241. break;
  4242. case CPU_ONLINE:
  4243. case CPU_ONLINE_FROZEN:
  4244. hw_perf_event_setup_online(cpu);
  4245. break;
  4246. case CPU_DOWN_PREPARE:
  4247. case CPU_DOWN_PREPARE_FROZEN:
  4248. perf_event_exit_cpu(cpu);
  4249. break;
  4250. default:
  4251. break;
  4252. }
  4253. return NOTIFY_OK;
  4254. }
  4255. /*
  4256. * This has to have a higher priority than migration_notifier in sched.c.
  4257. */
  4258. static struct notifier_block __cpuinitdata perf_cpu_nb = {
  4259. .notifier_call = perf_cpu_notify,
  4260. .priority = 20,
  4261. };
  4262. void __init perf_event_init(void)
  4263. {
  4264. perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
  4265. (void *)(long)smp_processor_id());
  4266. perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
  4267. (void *)(long)smp_processor_id());
  4268. register_cpu_notifier(&perf_cpu_nb);
  4269. }
  4270. static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
  4271. {
  4272. return sprintf(buf, "%d\n", perf_reserved_percpu);
  4273. }
  4274. static ssize_t
  4275. perf_set_reserve_percpu(struct sysdev_class *class,
  4276. const char *buf,
  4277. size_t count)
  4278. {
  4279. struct perf_cpu_context *cpuctx;
  4280. unsigned long val;
  4281. int err, cpu, mpt;
  4282. err = strict_strtoul(buf, 10, &val);
  4283. if (err)
  4284. return err;
  4285. if (val > perf_max_events)
  4286. return -EINVAL;
  4287. spin_lock(&perf_resource_lock);
  4288. perf_reserved_percpu = val;
  4289. for_each_online_cpu(cpu) {
  4290. cpuctx = &per_cpu(perf_cpu_context, cpu);
  4291. spin_lock_irq(&cpuctx->ctx.lock);
  4292. mpt = min(perf_max_events - cpuctx->ctx.nr_events,
  4293. perf_max_events - perf_reserved_percpu);
  4294. cpuctx->max_pertask = mpt;
  4295. spin_unlock_irq(&cpuctx->ctx.lock);
  4296. }
  4297. spin_unlock(&perf_resource_lock);
  4298. return count;
  4299. }
  4300. static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
  4301. {
  4302. return sprintf(buf, "%d\n", perf_overcommit);
  4303. }
  4304. static ssize_t
  4305. perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
  4306. {
  4307. unsigned long val;
  4308. int err;
  4309. err = strict_strtoul(buf, 10, &val);
  4310. if (err)
  4311. return err;
  4312. if (val > 1)
  4313. return -EINVAL;
  4314. spin_lock(&perf_resource_lock);
  4315. perf_overcommit = val;
  4316. spin_unlock(&perf_resource_lock);
  4317. return count;
  4318. }
  4319. static SYSDEV_CLASS_ATTR(
  4320. reserve_percpu,
  4321. 0644,
  4322. perf_show_reserve_percpu,
  4323. perf_set_reserve_percpu
  4324. );
  4325. static SYSDEV_CLASS_ATTR(
  4326. overcommit,
  4327. 0644,
  4328. perf_show_overcommit,
  4329. perf_set_overcommit
  4330. );
  4331. static struct attribute *perfclass_attrs[] = {
  4332. &attr_reserve_percpu.attr,
  4333. &attr_overcommit.attr,
  4334. NULL
  4335. };
  4336. static struct attribute_group perfclass_attr_group = {
  4337. .attrs = perfclass_attrs,
  4338. .name = "perf_events",
  4339. };
  4340. static int __init perf_event_sysfs_init(void)
  4341. {
  4342. return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
  4343. &perfclass_attr_group);
  4344. }
  4345. device_initcall(perf_event_sysfs_init);