svm.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * AMD SVM support
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Yaniv Kamay <yaniv@qumranet.com>
  10. * Avi Kivity <avi@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include <linux/module.h>
  17. #include <linux/kernel.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/highmem.h>
  20. #include <linux/profile.h>
  21. #include <asm/desc.h>
  22. #include "kvm_svm.h"
  23. #include "x86_emulate.h"
  24. MODULE_AUTHOR("Qumranet");
  25. MODULE_LICENSE("GPL");
  26. #define IOPM_ALLOC_ORDER 2
  27. #define MSRPM_ALLOC_ORDER 1
  28. #define DB_VECTOR 1
  29. #define UD_VECTOR 6
  30. #define GP_VECTOR 13
  31. #define DR7_GD_MASK (1 << 13)
  32. #define DR6_BD_MASK (1 << 13)
  33. #define CR4_DE_MASK (1UL << 3)
  34. #define SEG_TYPE_LDT 2
  35. #define SEG_TYPE_BUSY_TSS16 3
  36. #define KVM_EFER_LMA (1 << 10)
  37. #define KVM_EFER_LME (1 << 8)
  38. unsigned long iopm_base;
  39. unsigned long msrpm_base;
  40. struct kvm_ldttss_desc {
  41. u16 limit0;
  42. u16 base0;
  43. unsigned base1 : 8, type : 5, dpl : 2, p : 1;
  44. unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
  45. u32 base3;
  46. u32 zero1;
  47. } __attribute__((packed));
  48. struct svm_cpu_data {
  49. int cpu;
  50. uint64_t asid_generation;
  51. uint32_t max_asid;
  52. uint32_t next_asid;
  53. struct kvm_ldttss_desc *tss_desc;
  54. struct page *save_area;
  55. };
  56. static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
  57. struct svm_init_data {
  58. int cpu;
  59. int r;
  60. };
  61. static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
  62. #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
  63. #define MSRS_RANGE_SIZE 2048
  64. #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
  65. #define MAX_INST_SIZE 15
  66. static unsigned get_addr_size(struct kvm_vcpu *vcpu)
  67. {
  68. struct vmcb_save_area *sa = &vcpu->svm->vmcb->save;
  69. u16 cs_attrib;
  70. if (!(sa->cr0 & CR0_PE_MASK) || (sa->rflags & X86_EFLAGS_VM))
  71. return 2;
  72. cs_attrib = sa->cs.attrib;
  73. return (cs_attrib & SVM_SELECTOR_L_MASK) ? 8 :
  74. (cs_attrib & SVM_SELECTOR_DB_MASK) ? 4 : 2;
  75. }
  76. static inline u8 pop_irq(struct kvm_vcpu *vcpu)
  77. {
  78. int word_index = __ffs(vcpu->irq_summary);
  79. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  80. int irq = word_index * BITS_PER_LONG + bit_index;
  81. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  82. if (!vcpu->irq_pending[word_index])
  83. clear_bit(word_index, &vcpu->irq_summary);
  84. return irq;
  85. }
  86. static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
  87. {
  88. set_bit(irq, vcpu->irq_pending);
  89. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  90. }
  91. static inline void clgi(void)
  92. {
  93. asm volatile (SVM_CLGI);
  94. }
  95. static inline void stgi(void)
  96. {
  97. asm volatile (SVM_STGI);
  98. }
  99. static inline void invlpga(unsigned long addr, u32 asid)
  100. {
  101. asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
  102. }
  103. static inline unsigned long kvm_read_cr2(void)
  104. {
  105. unsigned long cr2;
  106. asm volatile ("mov %%cr2, %0" : "=r" (cr2));
  107. return cr2;
  108. }
  109. static inline void kvm_write_cr2(unsigned long val)
  110. {
  111. asm volatile ("mov %0, %%cr2" :: "r" (val));
  112. }
  113. static inline unsigned long read_dr6(void)
  114. {
  115. unsigned long dr6;
  116. asm volatile ("mov %%dr6, %0" : "=r" (dr6));
  117. return dr6;
  118. }
  119. static inline void write_dr6(unsigned long val)
  120. {
  121. asm volatile ("mov %0, %%dr6" :: "r" (val));
  122. }
  123. static inline unsigned long read_dr7(void)
  124. {
  125. unsigned long dr7;
  126. asm volatile ("mov %%dr7, %0" : "=r" (dr7));
  127. return dr7;
  128. }
  129. static inline void write_dr7(unsigned long val)
  130. {
  131. asm volatile ("mov %0, %%dr7" :: "r" (val));
  132. }
  133. static inline void force_new_asid(struct kvm_vcpu *vcpu)
  134. {
  135. vcpu->svm->asid_generation--;
  136. }
  137. static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
  138. {
  139. force_new_asid(vcpu);
  140. }
  141. static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  142. {
  143. if (!(efer & KVM_EFER_LMA))
  144. efer &= ~KVM_EFER_LME;
  145. vcpu->svm->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
  146. vcpu->shadow_efer = efer;
  147. }
  148. static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  149. {
  150. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  151. SVM_EVTINJ_VALID_ERR |
  152. SVM_EVTINJ_TYPE_EXEPT |
  153. GP_VECTOR;
  154. vcpu->svm->vmcb->control.event_inj_err = error_code;
  155. }
  156. static void inject_ud(struct kvm_vcpu *vcpu)
  157. {
  158. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  159. SVM_EVTINJ_TYPE_EXEPT |
  160. UD_VECTOR;
  161. }
  162. static void inject_db(struct kvm_vcpu *vcpu)
  163. {
  164. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  165. SVM_EVTINJ_TYPE_EXEPT |
  166. DB_VECTOR;
  167. }
  168. static int is_page_fault(uint32_t info)
  169. {
  170. info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  171. return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
  172. }
  173. static int is_external_interrupt(u32 info)
  174. {
  175. info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  176. return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
  177. }
  178. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  179. {
  180. if (!vcpu->svm->next_rip) {
  181. printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
  182. return;
  183. }
  184. if (vcpu->svm->next_rip - vcpu->svm->vmcb->save.rip > 15) {
  185. printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
  186. __FUNCTION__,
  187. vcpu->svm->vmcb->save.rip,
  188. vcpu->svm->next_rip);
  189. }
  190. vcpu->rip = vcpu->svm->vmcb->save.rip = vcpu->svm->next_rip;
  191. vcpu->svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
  192. vcpu->interrupt_window_open = 1;
  193. }
  194. static int has_svm(void)
  195. {
  196. uint32_t eax, ebx, ecx, edx;
  197. if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
  198. printk(KERN_INFO "has_svm: not amd\n");
  199. return 0;
  200. }
  201. cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
  202. if (eax < SVM_CPUID_FUNC) {
  203. printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
  204. return 0;
  205. }
  206. cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
  207. if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
  208. printk(KERN_DEBUG "has_svm: svm not available\n");
  209. return 0;
  210. }
  211. return 1;
  212. }
  213. static void svm_hardware_disable(void *garbage)
  214. {
  215. struct svm_cpu_data *svm_data
  216. = per_cpu(svm_data, raw_smp_processor_id());
  217. if (svm_data) {
  218. uint64_t efer;
  219. wrmsrl(MSR_VM_HSAVE_PA, 0);
  220. rdmsrl(MSR_EFER, efer);
  221. wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
  222. per_cpu(svm_data, raw_smp_processor_id()) = NULL;
  223. __free_page(svm_data->save_area);
  224. kfree(svm_data);
  225. }
  226. }
  227. static void svm_hardware_enable(void *garbage)
  228. {
  229. struct svm_cpu_data *svm_data;
  230. uint64_t efer;
  231. #ifdef CONFIG_X86_64
  232. struct desc_ptr gdt_descr;
  233. #else
  234. struct Xgt_desc_struct gdt_descr;
  235. #endif
  236. struct desc_struct *gdt;
  237. int me = raw_smp_processor_id();
  238. if (!has_svm()) {
  239. printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
  240. return;
  241. }
  242. svm_data = per_cpu(svm_data, me);
  243. if (!svm_data) {
  244. printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
  245. me);
  246. return;
  247. }
  248. svm_data->asid_generation = 1;
  249. svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
  250. svm_data->next_asid = svm_data->max_asid + 1;
  251. asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
  252. gdt = (struct desc_struct *)gdt_descr.address;
  253. svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
  254. rdmsrl(MSR_EFER, efer);
  255. wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
  256. wrmsrl(MSR_VM_HSAVE_PA,
  257. page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
  258. }
  259. static int svm_cpu_init(int cpu)
  260. {
  261. struct svm_cpu_data *svm_data;
  262. int r;
  263. svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
  264. if (!svm_data)
  265. return -ENOMEM;
  266. svm_data->cpu = cpu;
  267. svm_data->save_area = alloc_page(GFP_KERNEL);
  268. r = -ENOMEM;
  269. if (!svm_data->save_area)
  270. goto err_1;
  271. per_cpu(svm_data, cpu) = svm_data;
  272. return 0;
  273. err_1:
  274. kfree(svm_data);
  275. return r;
  276. }
  277. static int set_msr_interception(u32 *msrpm, unsigned msr,
  278. int read, int write)
  279. {
  280. int i;
  281. for (i = 0; i < NUM_MSR_MAPS; i++) {
  282. if (msr >= msrpm_ranges[i] &&
  283. msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
  284. u32 msr_offset = (i * MSRS_IN_RANGE + msr -
  285. msrpm_ranges[i]) * 2;
  286. u32 *base = msrpm + (msr_offset / 32);
  287. u32 msr_shift = msr_offset % 32;
  288. u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
  289. *base = (*base & ~(0x3 << msr_shift)) |
  290. (mask << msr_shift);
  291. return 1;
  292. }
  293. }
  294. printk(KERN_DEBUG "%s: not found 0x%x\n", __FUNCTION__, msr);
  295. return 0;
  296. }
  297. static __init int svm_hardware_setup(void)
  298. {
  299. int cpu;
  300. struct page *iopm_pages;
  301. struct page *msrpm_pages;
  302. void *msrpm_va;
  303. int r;
  304. kvm_emulator_want_group7_invlpg();
  305. iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
  306. if (!iopm_pages)
  307. return -ENOMEM;
  308. memset(page_address(iopm_pages), 0xff,
  309. PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
  310. iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
  311. msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  312. r = -ENOMEM;
  313. if (!msrpm_pages)
  314. goto err_1;
  315. msrpm_va = page_address(msrpm_pages);
  316. memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
  317. msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
  318. #ifdef CONFIG_X86_64
  319. set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
  320. set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
  321. set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
  322. set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
  323. set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
  324. set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
  325. #endif
  326. set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
  327. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
  328. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
  329. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
  330. for_each_online_cpu(cpu) {
  331. r = svm_cpu_init(cpu);
  332. if (r)
  333. goto err_2;
  334. }
  335. return 0;
  336. err_2:
  337. __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
  338. msrpm_base = 0;
  339. err_1:
  340. __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
  341. iopm_base = 0;
  342. return r;
  343. }
  344. static __exit void svm_hardware_unsetup(void)
  345. {
  346. __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
  347. __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
  348. iopm_base = msrpm_base = 0;
  349. }
  350. static void init_seg(struct vmcb_seg *seg)
  351. {
  352. seg->selector = 0;
  353. seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
  354. SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
  355. seg->limit = 0xffff;
  356. seg->base = 0;
  357. }
  358. static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
  359. {
  360. seg->selector = 0;
  361. seg->attrib = SVM_SELECTOR_P_MASK | type;
  362. seg->limit = 0xffff;
  363. seg->base = 0;
  364. }
  365. static int svm_vcpu_setup(struct kvm_vcpu *vcpu)
  366. {
  367. return 0;
  368. }
  369. static void init_vmcb(struct vmcb *vmcb)
  370. {
  371. struct vmcb_control_area *control = &vmcb->control;
  372. struct vmcb_save_area *save = &vmcb->save;
  373. u64 tsc;
  374. control->intercept_cr_read = INTERCEPT_CR0_MASK |
  375. INTERCEPT_CR3_MASK |
  376. INTERCEPT_CR4_MASK;
  377. control->intercept_cr_write = INTERCEPT_CR0_MASK |
  378. INTERCEPT_CR3_MASK |
  379. INTERCEPT_CR4_MASK;
  380. control->intercept_dr_read = INTERCEPT_DR0_MASK |
  381. INTERCEPT_DR1_MASK |
  382. INTERCEPT_DR2_MASK |
  383. INTERCEPT_DR3_MASK;
  384. control->intercept_dr_write = INTERCEPT_DR0_MASK |
  385. INTERCEPT_DR1_MASK |
  386. INTERCEPT_DR2_MASK |
  387. INTERCEPT_DR3_MASK |
  388. INTERCEPT_DR5_MASK |
  389. INTERCEPT_DR7_MASK;
  390. control->intercept_exceptions = 1 << PF_VECTOR;
  391. control->intercept = (1ULL << INTERCEPT_INTR) |
  392. (1ULL << INTERCEPT_NMI) |
  393. (1ULL << INTERCEPT_SMI) |
  394. /*
  395. * selective cr0 intercept bug?
  396. * 0: 0f 22 d8 mov %eax,%cr3
  397. * 3: 0f 20 c0 mov %cr0,%eax
  398. * 6: 0d 00 00 00 80 or $0x80000000,%eax
  399. * b: 0f 22 c0 mov %eax,%cr0
  400. * set cr3 ->interception
  401. * get cr0 ->interception
  402. * set cr0 -> no interception
  403. */
  404. /* (1ULL << INTERCEPT_SELECTIVE_CR0) | */
  405. (1ULL << INTERCEPT_CPUID) |
  406. (1ULL << INTERCEPT_HLT) |
  407. (1ULL << INTERCEPT_INVLPGA) |
  408. (1ULL << INTERCEPT_IOIO_PROT) |
  409. (1ULL << INTERCEPT_MSR_PROT) |
  410. (1ULL << INTERCEPT_TASK_SWITCH) |
  411. (1ULL << INTERCEPT_SHUTDOWN) |
  412. (1ULL << INTERCEPT_VMRUN) |
  413. (1ULL << INTERCEPT_VMMCALL) |
  414. (1ULL << INTERCEPT_VMLOAD) |
  415. (1ULL << INTERCEPT_VMSAVE) |
  416. (1ULL << INTERCEPT_STGI) |
  417. (1ULL << INTERCEPT_CLGI) |
  418. (1ULL << INTERCEPT_SKINIT);
  419. control->iopm_base_pa = iopm_base;
  420. control->msrpm_base_pa = msrpm_base;
  421. rdtscll(tsc);
  422. control->tsc_offset = -tsc;
  423. control->int_ctl = V_INTR_MASKING_MASK;
  424. init_seg(&save->es);
  425. init_seg(&save->ss);
  426. init_seg(&save->ds);
  427. init_seg(&save->fs);
  428. init_seg(&save->gs);
  429. save->cs.selector = 0xf000;
  430. /* Executable/Readable Code Segment */
  431. save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
  432. SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
  433. save->cs.limit = 0xffff;
  434. /*
  435. * cs.base should really be 0xffff0000, but vmx can't handle that, so
  436. * be consistent with it.
  437. *
  438. * Replace when we have real mode working for vmx.
  439. */
  440. save->cs.base = 0xf0000;
  441. save->gdtr.limit = 0xffff;
  442. save->idtr.limit = 0xffff;
  443. init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
  444. init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
  445. save->efer = MSR_EFER_SVME_MASK;
  446. save->dr6 = 0xffff0ff0;
  447. save->dr7 = 0x400;
  448. save->rflags = 2;
  449. save->rip = 0x0000fff0;
  450. /*
  451. * cr0 val on cpu init should be 0x60000010, we enable cpu
  452. * cache by default. the orderly way is to enable cache in bios.
  453. */
  454. save->cr0 = 0x00000010 | CR0_PG_MASK | CR0_WP_MASK;
  455. save->cr4 = CR4_PAE_MASK;
  456. /* rdx = ?? */
  457. }
  458. static int svm_create_vcpu(struct kvm_vcpu *vcpu)
  459. {
  460. struct page *page;
  461. int r;
  462. r = -ENOMEM;
  463. vcpu->svm = kzalloc(sizeof *vcpu->svm, GFP_KERNEL);
  464. if (!vcpu->svm)
  465. goto out1;
  466. page = alloc_page(GFP_KERNEL);
  467. if (!page)
  468. goto out2;
  469. vcpu->svm->vmcb = page_address(page);
  470. memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
  471. vcpu->svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
  472. vcpu->svm->cr0 = 0x00000010;
  473. vcpu->svm->asid_generation = 0;
  474. memset(vcpu->svm->db_regs, 0, sizeof(vcpu->svm->db_regs));
  475. init_vmcb(vcpu->svm->vmcb);
  476. fx_init(vcpu);
  477. vcpu->apic_base = 0xfee00000 |
  478. /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
  479. MSR_IA32_APICBASE_ENABLE;
  480. return 0;
  481. out2:
  482. kfree(vcpu->svm);
  483. out1:
  484. return r;
  485. }
  486. static void svm_free_vcpu(struct kvm_vcpu *vcpu)
  487. {
  488. if (!vcpu->svm)
  489. return;
  490. if (vcpu->svm->vmcb)
  491. __free_page(pfn_to_page(vcpu->svm->vmcb_pa >> PAGE_SHIFT));
  492. kfree(vcpu->svm);
  493. }
  494. static void svm_vcpu_load(struct kvm_vcpu *vcpu)
  495. {
  496. get_cpu();
  497. }
  498. static void svm_vcpu_put(struct kvm_vcpu *vcpu)
  499. {
  500. put_cpu();
  501. }
  502. static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
  503. {
  504. }
  505. static void svm_cache_regs(struct kvm_vcpu *vcpu)
  506. {
  507. vcpu->regs[VCPU_REGS_RAX] = vcpu->svm->vmcb->save.rax;
  508. vcpu->regs[VCPU_REGS_RSP] = vcpu->svm->vmcb->save.rsp;
  509. vcpu->rip = vcpu->svm->vmcb->save.rip;
  510. }
  511. static void svm_decache_regs(struct kvm_vcpu *vcpu)
  512. {
  513. vcpu->svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
  514. vcpu->svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
  515. vcpu->svm->vmcb->save.rip = vcpu->rip;
  516. }
  517. static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
  518. {
  519. return vcpu->svm->vmcb->save.rflags;
  520. }
  521. static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  522. {
  523. vcpu->svm->vmcb->save.rflags = rflags;
  524. }
  525. static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
  526. {
  527. struct vmcb_save_area *save = &vcpu->svm->vmcb->save;
  528. switch (seg) {
  529. case VCPU_SREG_CS: return &save->cs;
  530. case VCPU_SREG_DS: return &save->ds;
  531. case VCPU_SREG_ES: return &save->es;
  532. case VCPU_SREG_FS: return &save->fs;
  533. case VCPU_SREG_GS: return &save->gs;
  534. case VCPU_SREG_SS: return &save->ss;
  535. case VCPU_SREG_TR: return &save->tr;
  536. case VCPU_SREG_LDTR: return &save->ldtr;
  537. }
  538. BUG();
  539. return NULL;
  540. }
  541. static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  542. {
  543. struct vmcb_seg *s = svm_seg(vcpu, seg);
  544. return s->base;
  545. }
  546. static void svm_get_segment(struct kvm_vcpu *vcpu,
  547. struct kvm_segment *var, int seg)
  548. {
  549. struct vmcb_seg *s = svm_seg(vcpu, seg);
  550. var->base = s->base;
  551. var->limit = s->limit;
  552. var->selector = s->selector;
  553. var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
  554. var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
  555. var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
  556. var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
  557. var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
  558. var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  559. var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  560. var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
  561. var->unusable = !var->present;
  562. }
  563. static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  564. {
  565. struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
  566. *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  567. *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  568. }
  569. static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  570. {
  571. dt->limit = vcpu->svm->vmcb->save.idtr.limit;
  572. dt->base = vcpu->svm->vmcb->save.idtr.base;
  573. }
  574. static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  575. {
  576. vcpu->svm->vmcb->save.idtr.limit = dt->limit;
  577. vcpu->svm->vmcb->save.idtr.base = dt->base ;
  578. }
  579. static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  580. {
  581. dt->limit = vcpu->svm->vmcb->save.gdtr.limit;
  582. dt->base = vcpu->svm->vmcb->save.gdtr.base;
  583. }
  584. static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  585. {
  586. vcpu->svm->vmcb->save.gdtr.limit = dt->limit;
  587. vcpu->svm->vmcb->save.gdtr.base = dt->base ;
  588. }
  589. static void svm_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
  590. {
  591. }
  592. static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  593. {
  594. #ifdef CONFIG_X86_64
  595. if (vcpu->shadow_efer & KVM_EFER_LME) {
  596. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  597. vcpu->shadow_efer |= KVM_EFER_LMA;
  598. vcpu->svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
  599. }
  600. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK) ) {
  601. vcpu->shadow_efer &= ~KVM_EFER_LMA;
  602. vcpu->svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
  603. }
  604. }
  605. #endif
  606. vcpu->svm->cr0 = cr0;
  607. vcpu->svm->vmcb->save.cr0 = cr0 | CR0_PG_MASK | CR0_WP_MASK;
  608. vcpu->cr0 = cr0;
  609. }
  610. static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  611. {
  612. vcpu->cr4 = cr4;
  613. vcpu->svm->vmcb->save.cr4 = cr4 | CR4_PAE_MASK;
  614. }
  615. static void svm_set_segment(struct kvm_vcpu *vcpu,
  616. struct kvm_segment *var, int seg)
  617. {
  618. struct vmcb_seg *s = svm_seg(vcpu, seg);
  619. s->base = var->base;
  620. s->limit = var->limit;
  621. s->selector = var->selector;
  622. if (var->unusable)
  623. s->attrib = 0;
  624. else {
  625. s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
  626. s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
  627. s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
  628. s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
  629. s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
  630. s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
  631. s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
  632. s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
  633. }
  634. if (seg == VCPU_SREG_CS)
  635. vcpu->svm->vmcb->save.cpl
  636. = (vcpu->svm->vmcb->save.cs.attrib
  637. >> SVM_SELECTOR_DPL_SHIFT) & 3;
  638. }
  639. /* FIXME:
  640. vcpu->svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
  641. vcpu->svm->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
  642. */
  643. static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  644. {
  645. return -EOPNOTSUPP;
  646. }
  647. static void load_host_msrs(struct kvm_vcpu *vcpu)
  648. {
  649. int i;
  650. for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
  651. wrmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
  652. }
  653. static void save_host_msrs(struct kvm_vcpu *vcpu)
  654. {
  655. int i;
  656. for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
  657. rdmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
  658. }
  659. static void new_asid(struct kvm_vcpu *vcpu, struct svm_cpu_data *svm_data)
  660. {
  661. if (svm_data->next_asid > svm_data->max_asid) {
  662. ++svm_data->asid_generation;
  663. svm_data->next_asid = 1;
  664. vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
  665. }
  666. vcpu->cpu = svm_data->cpu;
  667. vcpu->svm->asid_generation = svm_data->asid_generation;
  668. vcpu->svm->vmcb->control.asid = svm_data->next_asid++;
  669. }
  670. static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  671. {
  672. invlpga(address, vcpu->svm->vmcb->control.asid); // is needed?
  673. }
  674. static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
  675. {
  676. return vcpu->svm->db_regs[dr];
  677. }
  678. static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
  679. int *exception)
  680. {
  681. *exception = 0;
  682. if (vcpu->svm->vmcb->save.dr7 & DR7_GD_MASK) {
  683. vcpu->svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
  684. vcpu->svm->vmcb->save.dr6 |= DR6_BD_MASK;
  685. *exception = DB_VECTOR;
  686. return;
  687. }
  688. switch (dr) {
  689. case 0 ... 3:
  690. vcpu->svm->db_regs[dr] = value;
  691. return;
  692. case 4 ... 5:
  693. if (vcpu->cr4 & CR4_DE_MASK) {
  694. *exception = UD_VECTOR;
  695. return;
  696. }
  697. case 7: {
  698. if (value & ~((1ULL << 32) - 1)) {
  699. *exception = GP_VECTOR;
  700. return;
  701. }
  702. vcpu->svm->vmcb->save.dr7 = value;
  703. return;
  704. }
  705. default:
  706. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  707. __FUNCTION__, dr);
  708. *exception = UD_VECTOR;
  709. return;
  710. }
  711. }
  712. static int pf_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  713. {
  714. u32 exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
  715. u64 fault_address;
  716. u32 error_code;
  717. enum emulation_result er;
  718. int r;
  719. if (is_external_interrupt(exit_int_info))
  720. push_irq(vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
  721. spin_lock(&vcpu->kvm->lock);
  722. fault_address = vcpu->svm->vmcb->control.exit_info_2;
  723. error_code = vcpu->svm->vmcb->control.exit_info_1;
  724. r = kvm_mmu_page_fault(vcpu, fault_address, error_code);
  725. if (r < 0) {
  726. spin_unlock(&vcpu->kvm->lock);
  727. return r;
  728. }
  729. if (!r) {
  730. spin_unlock(&vcpu->kvm->lock);
  731. return 1;
  732. }
  733. er = emulate_instruction(vcpu, kvm_run, fault_address, error_code);
  734. spin_unlock(&vcpu->kvm->lock);
  735. switch (er) {
  736. case EMULATE_DONE:
  737. return 1;
  738. case EMULATE_DO_MMIO:
  739. ++kvm_stat.mmio_exits;
  740. kvm_run->exit_reason = KVM_EXIT_MMIO;
  741. return 0;
  742. case EMULATE_FAIL:
  743. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  744. break;
  745. default:
  746. BUG();
  747. }
  748. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  749. return 0;
  750. }
  751. static int shutdown_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  752. {
  753. /*
  754. * VMCB is undefined after a SHUTDOWN intercept
  755. * so reinitialize it.
  756. */
  757. memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
  758. init_vmcb(vcpu->svm->vmcb);
  759. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  760. return 0;
  761. }
  762. static int io_get_override(struct kvm_vcpu *vcpu,
  763. struct vmcb_seg **seg,
  764. int *addr_override)
  765. {
  766. u8 inst[MAX_INST_SIZE];
  767. unsigned ins_length;
  768. gva_t rip;
  769. int i;
  770. rip = vcpu->svm->vmcb->save.rip;
  771. ins_length = vcpu->svm->next_rip - rip;
  772. rip += vcpu->svm->vmcb->save.cs.base;
  773. if (ins_length > MAX_INST_SIZE)
  774. printk(KERN_DEBUG
  775. "%s: inst length err, cs base 0x%llx rip 0x%llx "
  776. "next rip 0x%llx ins_length %u\n",
  777. __FUNCTION__,
  778. vcpu->svm->vmcb->save.cs.base,
  779. vcpu->svm->vmcb->save.rip,
  780. vcpu->svm->vmcb->control.exit_info_2,
  781. ins_length);
  782. if (kvm_read_guest(vcpu, rip, ins_length, inst) != ins_length)
  783. /* #PF */
  784. return 0;
  785. *addr_override = 0;
  786. *seg = NULL;
  787. for (i = 0; i < ins_length; i++)
  788. switch (inst[i]) {
  789. case 0xf0:
  790. case 0xf2:
  791. case 0xf3:
  792. case 0x66:
  793. continue;
  794. case 0x67:
  795. *addr_override = 1;
  796. continue;
  797. case 0x2e:
  798. *seg = &vcpu->svm->vmcb->save.cs;
  799. continue;
  800. case 0x36:
  801. *seg = &vcpu->svm->vmcb->save.ss;
  802. continue;
  803. case 0x3e:
  804. *seg = &vcpu->svm->vmcb->save.ds;
  805. continue;
  806. case 0x26:
  807. *seg = &vcpu->svm->vmcb->save.es;
  808. continue;
  809. case 0x64:
  810. *seg = &vcpu->svm->vmcb->save.fs;
  811. continue;
  812. case 0x65:
  813. *seg = &vcpu->svm->vmcb->save.gs;
  814. continue;
  815. default:
  816. return 1;
  817. }
  818. printk(KERN_DEBUG "%s: unexpected\n", __FUNCTION__);
  819. return 0;
  820. }
  821. static unsigned long io_adress(struct kvm_vcpu *vcpu, int ins, gva_t *address)
  822. {
  823. unsigned long addr_mask;
  824. unsigned long *reg;
  825. struct vmcb_seg *seg;
  826. int addr_override;
  827. struct vmcb_save_area *save_area = &vcpu->svm->vmcb->save;
  828. u16 cs_attrib = save_area->cs.attrib;
  829. unsigned addr_size = get_addr_size(vcpu);
  830. if (!io_get_override(vcpu, &seg, &addr_override))
  831. return 0;
  832. if (addr_override)
  833. addr_size = (addr_size == 2) ? 4: (addr_size >> 1);
  834. if (ins) {
  835. reg = &vcpu->regs[VCPU_REGS_RDI];
  836. seg = &vcpu->svm->vmcb->save.es;
  837. } else {
  838. reg = &vcpu->regs[VCPU_REGS_RSI];
  839. seg = (seg) ? seg : &vcpu->svm->vmcb->save.ds;
  840. }
  841. addr_mask = ~0ULL >> (64 - (addr_size * 8));
  842. if ((cs_attrib & SVM_SELECTOR_L_MASK) &&
  843. !(vcpu->svm->vmcb->save.rflags & X86_EFLAGS_VM)) {
  844. *address = (*reg & addr_mask);
  845. return addr_mask;
  846. }
  847. if (!(seg->attrib & SVM_SELECTOR_P_SHIFT)) {
  848. svm_inject_gp(vcpu, 0);
  849. return 0;
  850. }
  851. *address = (*reg & addr_mask) + seg->base;
  852. return addr_mask;
  853. }
  854. static int io_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  855. {
  856. u32 io_info = vcpu->svm->vmcb->control.exit_info_1; //address size bug?
  857. int size, down, in, string, rep;
  858. unsigned port;
  859. unsigned long count;
  860. gva_t address = 0;
  861. ++kvm_stat.io_exits;
  862. vcpu->svm->next_rip = vcpu->svm->vmcb->control.exit_info_2;
  863. in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
  864. port = io_info >> 16;
  865. size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
  866. string = (io_info & SVM_IOIO_STR_MASK) != 0;
  867. rep = (io_info & SVM_IOIO_REP_MASK) != 0;
  868. count = 1;
  869. down = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
  870. if (string) {
  871. unsigned addr_mask;
  872. addr_mask = io_adress(vcpu, in, &address);
  873. if (!addr_mask) {
  874. printk(KERN_DEBUG "%s: get io address failed\n",
  875. __FUNCTION__);
  876. return 1;
  877. }
  878. if (rep)
  879. count = vcpu->regs[VCPU_REGS_RCX] & addr_mask;
  880. }
  881. return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
  882. address, rep, port);
  883. }
  884. static int nop_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  885. {
  886. return 1;
  887. }
  888. static int halt_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  889. {
  890. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 1;
  891. skip_emulated_instruction(vcpu);
  892. if (vcpu->irq_summary)
  893. return 1;
  894. kvm_run->exit_reason = KVM_EXIT_HLT;
  895. ++kvm_stat.halt_exits;
  896. return 0;
  897. }
  898. static int vmmcall_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  899. {
  900. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 3;
  901. skip_emulated_instruction(vcpu);
  902. return kvm_hypercall(vcpu, kvm_run);
  903. }
  904. static int invalid_op_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  905. {
  906. inject_ud(vcpu);
  907. return 1;
  908. }
  909. static int task_switch_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  910. {
  911. printk(KERN_DEBUG "%s: task swiche is unsupported\n", __FUNCTION__);
  912. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  913. return 0;
  914. }
  915. static int cpuid_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  916. {
  917. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
  918. kvm_emulate_cpuid(vcpu);
  919. return 1;
  920. }
  921. static int emulate_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  922. {
  923. if (emulate_instruction(vcpu, NULL, 0, 0) != EMULATE_DONE)
  924. printk(KERN_ERR "%s: failed\n", __FUNCTION__);
  925. return 1;
  926. }
  927. static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
  928. {
  929. switch (ecx) {
  930. case MSR_IA32_TIME_STAMP_COUNTER: {
  931. u64 tsc;
  932. rdtscll(tsc);
  933. *data = vcpu->svm->vmcb->control.tsc_offset + tsc;
  934. break;
  935. }
  936. case MSR_K6_STAR:
  937. *data = vcpu->svm->vmcb->save.star;
  938. break;
  939. #ifdef CONFIG_X86_64
  940. case MSR_LSTAR:
  941. *data = vcpu->svm->vmcb->save.lstar;
  942. break;
  943. case MSR_CSTAR:
  944. *data = vcpu->svm->vmcb->save.cstar;
  945. break;
  946. case MSR_KERNEL_GS_BASE:
  947. *data = vcpu->svm->vmcb->save.kernel_gs_base;
  948. break;
  949. case MSR_SYSCALL_MASK:
  950. *data = vcpu->svm->vmcb->save.sfmask;
  951. break;
  952. #endif
  953. case MSR_IA32_SYSENTER_CS:
  954. *data = vcpu->svm->vmcb->save.sysenter_cs;
  955. break;
  956. case MSR_IA32_SYSENTER_EIP:
  957. *data = vcpu->svm->vmcb->save.sysenter_eip;
  958. break;
  959. case MSR_IA32_SYSENTER_ESP:
  960. *data = vcpu->svm->vmcb->save.sysenter_esp;
  961. break;
  962. default:
  963. return kvm_get_msr_common(vcpu, ecx, data);
  964. }
  965. return 0;
  966. }
  967. static int rdmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  968. {
  969. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  970. u64 data;
  971. if (svm_get_msr(vcpu, ecx, &data))
  972. svm_inject_gp(vcpu, 0);
  973. else {
  974. vcpu->svm->vmcb->save.rax = data & 0xffffffff;
  975. vcpu->regs[VCPU_REGS_RDX] = data >> 32;
  976. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
  977. skip_emulated_instruction(vcpu);
  978. }
  979. return 1;
  980. }
  981. static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
  982. {
  983. switch (ecx) {
  984. case MSR_IA32_TIME_STAMP_COUNTER: {
  985. u64 tsc;
  986. rdtscll(tsc);
  987. vcpu->svm->vmcb->control.tsc_offset = data - tsc;
  988. break;
  989. }
  990. case MSR_K6_STAR:
  991. vcpu->svm->vmcb->save.star = data;
  992. break;
  993. #ifdef CONFIG_X86_64
  994. case MSR_LSTAR:
  995. vcpu->svm->vmcb->save.lstar = data;
  996. break;
  997. case MSR_CSTAR:
  998. vcpu->svm->vmcb->save.cstar = data;
  999. break;
  1000. case MSR_KERNEL_GS_BASE:
  1001. vcpu->svm->vmcb->save.kernel_gs_base = data;
  1002. break;
  1003. case MSR_SYSCALL_MASK:
  1004. vcpu->svm->vmcb->save.sfmask = data;
  1005. break;
  1006. #endif
  1007. case MSR_IA32_SYSENTER_CS:
  1008. vcpu->svm->vmcb->save.sysenter_cs = data;
  1009. break;
  1010. case MSR_IA32_SYSENTER_EIP:
  1011. vcpu->svm->vmcb->save.sysenter_eip = data;
  1012. break;
  1013. case MSR_IA32_SYSENTER_ESP:
  1014. vcpu->svm->vmcb->save.sysenter_esp = data;
  1015. break;
  1016. default:
  1017. return kvm_set_msr_common(vcpu, ecx, data);
  1018. }
  1019. return 0;
  1020. }
  1021. static int wrmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1022. {
  1023. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1024. u64 data = (vcpu->svm->vmcb->save.rax & -1u)
  1025. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1026. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
  1027. if (svm_set_msr(vcpu, ecx, data))
  1028. svm_inject_gp(vcpu, 0);
  1029. else
  1030. skip_emulated_instruction(vcpu);
  1031. return 1;
  1032. }
  1033. static int msr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1034. {
  1035. if (vcpu->svm->vmcb->control.exit_info_1)
  1036. return wrmsr_interception(vcpu, kvm_run);
  1037. else
  1038. return rdmsr_interception(vcpu, kvm_run);
  1039. }
  1040. static int interrupt_window_interception(struct kvm_vcpu *vcpu,
  1041. struct kvm_run *kvm_run)
  1042. {
  1043. /*
  1044. * If the user space waits to inject interrupts, exit as soon as
  1045. * possible
  1046. */
  1047. if (kvm_run->request_interrupt_window &&
  1048. !vcpu->irq_summary) {
  1049. ++kvm_stat.irq_window_exits;
  1050. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1051. return 0;
  1052. }
  1053. return 1;
  1054. }
  1055. static int (*svm_exit_handlers[])(struct kvm_vcpu *vcpu,
  1056. struct kvm_run *kvm_run) = {
  1057. [SVM_EXIT_READ_CR0] = emulate_on_interception,
  1058. [SVM_EXIT_READ_CR3] = emulate_on_interception,
  1059. [SVM_EXIT_READ_CR4] = emulate_on_interception,
  1060. /* for now: */
  1061. [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
  1062. [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
  1063. [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
  1064. [SVM_EXIT_READ_DR0] = emulate_on_interception,
  1065. [SVM_EXIT_READ_DR1] = emulate_on_interception,
  1066. [SVM_EXIT_READ_DR2] = emulate_on_interception,
  1067. [SVM_EXIT_READ_DR3] = emulate_on_interception,
  1068. [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
  1069. [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
  1070. [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
  1071. [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
  1072. [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
  1073. [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
  1074. [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
  1075. [SVM_EXIT_INTR] = nop_on_interception,
  1076. [SVM_EXIT_NMI] = nop_on_interception,
  1077. [SVM_EXIT_SMI] = nop_on_interception,
  1078. [SVM_EXIT_INIT] = nop_on_interception,
  1079. [SVM_EXIT_VINTR] = interrupt_window_interception,
  1080. /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
  1081. [SVM_EXIT_CPUID] = cpuid_interception,
  1082. [SVM_EXIT_HLT] = halt_interception,
  1083. [SVM_EXIT_INVLPG] = emulate_on_interception,
  1084. [SVM_EXIT_INVLPGA] = invalid_op_interception,
  1085. [SVM_EXIT_IOIO] = io_interception,
  1086. [SVM_EXIT_MSR] = msr_interception,
  1087. [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
  1088. [SVM_EXIT_SHUTDOWN] = shutdown_interception,
  1089. [SVM_EXIT_VMRUN] = invalid_op_interception,
  1090. [SVM_EXIT_VMMCALL] = vmmcall_interception,
  1091. [SVM_EXIT_VMLOAD] = invalid_op_interception,
  1092. [SVM_EXIT_VMSAVE] = invalid_op_interception,
  1093. [SVM_EXIT_STGI] = invalid_op_interception,
  1094. [SVM_EXIT_CLGI] = invalid_op_interception,
  1095. [SVM_EXIT_SKINIT] = invalid_op_interception,
  1096. };
  1097. static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1098. {
  1099. u32 exit_code = vcpu->svm->vmcb->control.exit_code;
  1100. if (is_external_interrupt(vcpu->svm->vmcb->control.exit_int_info) &&
  1101. exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
  1102. printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
  1103. "exit_code 0x%x\n",
  1104. __FUNCTION__, vcpu->svm->vmcb->control.exit_int_info,
  1105. exit_code);
  1106. if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
  1107. || svm_exit_handlers[exit_code] == 0) {
  1108. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1109. printk(KERN_ERR "%s: 0x%x @ 0x%llx cr0 0x%lx rflags 0x%llx\n",
  1110. __FUNCTION__,
  1111. exit_code,
  1112. vcpu->svm->vmcb->save.rip,
  1113. vcpu->cr0,
  1114. vcpu->svm->vmcb->save.rflags);
  1115. return 0;
  1116. }
  1117. return svm_exit_handlers[exit_code](vcpu, kvm_run);
  1118. }
  1119. static void reload_tss(struct kvm_vcpu *vcpu)
  1120. {
  1121. int cpu = raw_smp_processor_id();
  1122. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1123. svm_data->tss_desc->type = 9; //available 32/64-bit TSS
  1124. load_TR_desc();
  1125. }
  1126. static void pre_svm_run(struct kvm_vcpu *vcpu)
  1127. {
  1128. int cpu = raw_smp_processor_id();
  1129. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1130. vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
  1131. if (vcpu->cpu != cpu ||
  1132. vcpu->svm->asid_generation != svm_data->asid_generation)
  1133. new_asid(vcpu, svm_data);
  1134. }
  1135. static inline void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1136. {
  1137. struct vmcb_control_area *control;
  1138. control = &vcpu->svm->vmcb->control;
  1139. control->int_vector = pop_irq(vcpu);
  1140. control->int_ctl &= ~V_INTR_PRIO_MASK;
  1141. control->int_ctl |= V_IRQ_MASK |
  1142. ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
  1143. }
  1144. static void kvm_reput_irq(struct kvm_vcpu *vcpu)
  1145. {
  1146. struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
  1147. if (control->int_ctl & V_IRQ_MASK) {
  1148. control->int_ctl &= ~V_IRQ_MASK;
  1149. push_irq(vcpu, control->int_vector);
  1150. }
  1151. vcpu->interrupt_window_open =
  1152. !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
  1153. }
  1154. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1155. struct kvm_run *kvm_run)
  1156. {
  1157. struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
  1158. vcpu->interrupt_window_open =
  1159. (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
  1160. (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
  1161. if (vcpu->interrupt_window_open && vcpu->irq_summary)
  1162. /*
  1163. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1164. */
  1165. kvm_do_inject_irq(vcpu);
  1166. /*
  1167. * Interrupts blocked. Wait for unblock.
  1168. */
  1169. if (!vcpu->interrupt_window_open &&
  1170. (vcpu->irq_summary || kvm_run->request_interrupt_window)) {
  1171. control->intercept |= 1ULL << INTERCEPT_VINTR;
  1172. } else
  1173. control->intercept &= ~(1ULL << INTERCEPT_VINTR);
  1174. }
  1175. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1176. struct kvm_run *kvm_run)
  1177. {
  1178. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1179. vcpu->irq_summary == 0);
  1180. kvm_run->if_flag = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
  1181. kvm_run->cr8 = vcpu->cr8;
  1182. kvm_run->apic_base = vcpu->apic_base;
  1183. }
  1184. /*
  1185. * Check if userspace requested an interrupt window, and that the
  1186. * interrupt window is open.
  1187. *
  1188. * No need to exit to userspace if we already have an interrupt queued.
  1189. */
  1190. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1191. struct kvm_run *kvm_run)
  1192. {
  1193. return (!vcpu->irq_summary &&
  1194. kvm_run->request_interrupt_window &&
  1195. vcpu->interrupt_window_open &&
  1196. (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
  1197. }
  1198. static void save_db_regs(unsigned long *db_regs)
  1199. {
  1200. asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
  1201. asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
  1202. asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
  1203. asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
  1204. }
  1205. static void load_db_regs(unsigned long *db_regs)
  1206. {
  1207. asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
  1208. asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
  1209. asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
  1210. asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
  1211. }
  1212. static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1213. {
  1214. u16 fs_selector;
  1215. u16 gs_selector;
  1216. u16 ldt_selector;
  1217. int r;
  1218. again:
  1219. if (!vcpu->mmio_read_completed)
  1220. do_interrupt_requests(vcpu, kvm_run);
  1221. clgi();
  1222. pre_svm_run(vcpu);
  1223. save_host_msrs(vcpu);
  1224. fs_selector = read_fs();
  1225. gs_selector = read_gs();
  1226. ldt_selector = read_ldt();
  1227. vcpu->svm->host_cr2 = kvm_read_cr2();
  1228. vcpu->svm->host_dr6 = read_dr6();
  1229. vcpu->svm->host_dr7 = read_dr7();
  1230. vcpu->svm->vmcb->save.cr2 = vcpu->cr2;
  1231. if (vcpu->svm->vmcb->save.dr7 & 0xff) {
  1232. write_dr7(0);
  1233. save_db_regs(vcpu->svm->host_db_regs);
  1234. load_db_regs(vcpu->svm->db_regs);
  1235. }
  1236. fx_save(vcpu->host_fx_image);
  1237. fx_restore(vcpu->guest_fx_image);
  1238. asm volatile (
  1239. #ifdef CONFIG_X86_64
  1240. "push %%rbx; push %%rcx; push %%rdx;"
  1241. "push %%rsi; push %%rdi; push %%rbp;"
  1242. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1243. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1244. #else
  1245. "push %%ebx; push %%ecx; push %%edx;"
  1246. "push %%esi; push %%edi; push %%ebp;"
  1247. #endif
  1248. #ifdef CONFIG_X86_64
  1249. "mov %c[rbx](%[vcpu]), %%rbx \n\t"
  1250. "mov %c[rcx](%[vcpu]), %%rcx \n\t"
  1251. "mov %c[rdx](%[vcpu]), %%rdx \n\t"
  1252. "mov %c[rsi](%[vcpu]), %%rsi \n\t"
  1253. "mov %c[rdi](%[vcpu]), %%rdi \n\t"
  1254. "mov %c[rbp](%[vcpu]), %%rbp \n\t"
  1255. "mov %c[r8](%[vcpu]), %%r8 \n\t"
  1256. "mov %c[r9](%[vcpu]), %%r9 \n\t"
  1257. "mov %c[r10](%[vcpu]), %%r10 \n\t"
  1258. "mov %c[r11](%[vcpu]), %%r11 \n\t"
  1259. "mov %c[r12](%[vcpu]), %%r12 \n\t"
  1260. "mov %c[r13](%[vcpu]), %%r13 \n\t"
  1261. "mov %c[r14](%[vcpu]), %%r14 \n\t"
  1262. "mov %c[r15](%[vcpu]), %%r15 \n\t"
  1263. #else
  1264. "mov %c[rbx](%[vcpu]), %%ebx \n\t"
  1265. "mov %c[rcx](%[vcpu]), %%ecx \n\t"
  1266. "mov %c[rdx](%[vcpu]), %%edx \n\t"
  1267. "mov %c[rsi](%[vcpu]), %%esi \n\t"
  1268. "mov %c[rdi](%[vcpu]), %%edi \n\t"
  1269. "mov %c[rbp](%[vcpu]), %%ebp \n\t"
  1270. #endif
  1271. #ifdef CONFIG_X86_64
  1272. /* Enter guest mode */
  1273. "push %%rax \n\t"
  1274. "mov %c[svm](%[vcpu]), %%rax \n\t"
  1275. "mov %c[vmcb](%%rax), %%rax \n\t"
  1276. SVM_VMLOAD "\n\t"
  1277. SVM_VMRUN "\n\t"
  1278. SVM_VMSAVE "\n\t"
  1279. "pop %%rax \n\t"
  1280. #else
  1281. /* Enter guest mode */
  1282. "push %%eax \n\t"
  1283. "mov %c[svm](%[vcpu]), %%eax \n\t"
  1284. "mov %c[vmcb](%%eax), %%eax \n\t"
  1285. SVM_VMLOAD "\n\t"
  1286. SVM_VMRUN "\n\t"
  1287. SVM_VMSAVE "\n\t"
  1288. "pop %%eax \n\t"
  1289. #endif
  1290. /* Save guest registers, load host registers */
  1291. #ifdef CONFIG_X86_64
  1292. "mov %%rbx, %c[rbx](%[vcpu]) \n\t"
  1293. "mov %%rcx, %c[rcx](%[vcpu]) \n\t"
  1294. "mov %%rdx, %c[rdx](%[vcpu]) \n\t"
  1295. "mov %%rsi, %c[rsi](%[vcpu]) \n\t"
  1296. "mov %%rdi, %c[rdi](%[vcpu]) \n\t"
  1297. "mov %%rbp, %c[rbp](%[vcpu]) \n\t"
  1298. "mov %%r8, %c[r8](%[vcpu]) \n\t"
  1299. "mov %%r9, %c[r9](%[vcpu]) \n\t"
  1300. "mov %%r10, %c[r10](%[vcpu]) \n\t"
  1301. "mov %%r11, %c[r11](%[vcpu]) \n\t"
  1302. "mov %%r12, %c[r12](%[vcpu]) \n\t"
  1303. "mov %%r13, %c[r13](%[vcpu]) \n\t"
  1304. "mov %%r14, %c[r14](%[vcpu]) \n\t"
  1305. "mov %%r15, %c[r15](%[vcpu]) \n\t"
  1306. "pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1307. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1308. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1309. "pop %%rdx; pop %%rcx; pop %%rbx; \n\t"
  1310. #else
  1311. "mov %%ebx, %c[rbx](%[vcpu]) \n\t"
  1312. "mov %%ecx, %c[rcx](%[vcpu]) \n\t"
  1313. "mov %%edx, %c[rdx](%[vcpu]) \n\t"
  1314. "mov %%esi, %c[rsi](%[vcpu]) \n\t"
  1315. "mov %%edi, %c[rdi](%[vcpu]) \n\t"
  1316. "mov %%ebp, %c[rbp](%[vcpu]) \n\t"
  1317. "pop %%ebp; pop %%edi; pop %%esi;"
  1318. "pop %%edx; pop %%ecx; pop %%ebx; \n\t"
  1319. #endif
  1320. :
  1321. : [vcpu]"a"(vcpu),
  1322. [svm]"i"(offsetof(struct kvm_vcpu, svm)),
  1323. [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
  1324. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1325. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1326. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1327. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1328. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1329. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP]))
  1330. #ifdef CONFIG_X86_64
  1331. ,[r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1332. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1333. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1334. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1335. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1336. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1337. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1338. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15]))
  1339. #endif
  1340. : "cc", "memory" );
  1341. fx_save(vcpu->guest_fx_image);
  1342. fx_restore(vcpu->host_fx_image);
  1343. if ((vcpu->svm->vmcb->save.dr7 & 0xff))
  1344. load_db_regs(vcpu->svm->host_db_regs);
  1345. vcpu->cr2 = vcpu->svm->vmcb->save.cr2;
  1346. write_dr6(vcpu->svm->host_dr6);
  1347. write_dr7(vcpu->svm->host_dr7);
  1348. kvm_write_cr2(vcpu->svm->host_cr2);
  1349. load_fs(fs_selector);
  1350. load_gs(gs_selector);
  1351. load_ldt(ldt_selector);
  1352. load_host_msrs(vcpu);
  1353. reload_tss(vcpu);
  1354. /*
  1355. * Profile KVM exit RIPs:
  1356. */
  1357. if (unlikely(prof_on == KVM_PROFILING))
  1358. profile_hit(KVM_PROFILING,
  1359. (void *)(unsigned long)vcpu->svm->vmcb->save.rip);
  1360. stgi();
  1361. kvm_reput_irq(vcpu);
  1362. vcpu->svm->next_rip = 0;
  1363. if (vcpu->svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
  1364. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1365. kvm_run->fail_entry.hardware_entry_failure_reason
  1366. = vcpu->svm->vmcb->control.exit_code;
  1367. post_kvm_run_save(vcpu, kvm_run);
  1368. return 0;
  1369. }
  1370. r = handle_exit(vcpu, kvm_run);
  1371. if (r > 0) {
  1372. if (signal_pending(current)) {
  1373. ++kvm_stat.signal_exits;
  1374. post_kvm_run_save(vcpu, kvm_run);
  1375. kvm_run->exit_reason = KVM_EXIT_INTR;
  1376. return -EINTR;
  1377. }
  1378. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1379. ++kvm_stat.request_irq_exits;
  1380. post_kvm_run_save(vcpu, kvm_run);
  1381. kvm_run->exit_reason = KVM_EXIT_INTR;
  1382. return -EINTR;
  1383. }
  1384. kvm_resched(vcpu);
  1385. goto again;
  1386. }
  1387. post_kvm_run_save(vcpu, kvm_run);
  1388. return r;
  1389. }
  1390. static void svm_flush_tlb(struct kvm_vcpu *vcpu)
  1391. {
  1392. force_new_asid(vcpu);
  1393. }
  1394. static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
  1395. {
  1396. vcpu->svm->vmcb->save.cr3 = root;
  1397. force_new_asid(vcpu);
  1398. }
  1399. static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
  1400. unsigned long addr,
  1401. uint32_t err_code)
  1402. {
  1403. uint32_t exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
  1404. ++kvm_stat.pf_guest;
  1405. if (is_page_fault(exit_int_info)) {
  1406. vcpu->svm->vmcb->control.event_inj_err = 0;
  1407. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  1408. SVM_EVTINJ_VALID_ERR |
  1409. SVM_EVTINJ_TYPE_EXEPT |
  1410. DF_VECTOR;
  1411. return;
  1412. }
  1413. vcpu->cr2 = addr;
  1414. vcpu->svm->vmcb->save.cr2 = addr;
  1415. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  1416. SVM_EVTINJ_VALID_ERR |
  1417. SVM_EVTINJ_TYPE_EXEPT |
  1418. PF_VECTOR;
  1419. vcpu->svm->vmcb->control.event_inj_err = err_code;
  1420. }
  1421. static int is_disabled(void)
  1422. {
  1423. return 0;
  1424. }
  1425. static void
  1426. svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1427. {
  1428. /*
  1429. * Patch in the VMMCALL instruction:
  1430. */
  1431. hypercall[0] = 0x0f;
  1432. hypercall[1] = 0x01;
  1433. hypercall[2] = 0xd9;
  1434. hypercall[3] = 0xc3;
  1435. }
  1436. static struct kvm_arch_ops svm_arch_ops = {
  1437. .cpu_has_kvm_support = has_svm,
  1438. .disabled_by_bios = is_disabled,
  1439. .hardware_setup = svm_hardware_setup,
  1440. .hardware_unsetup = svm_hardware_unsetup,
  1441. .hardware_enable = svm_hardware_enable,
  1442. .hardware_disable = svm_hardware_disable,
  1443. .vcpu_create = svm_create_vcpu,
  1444. .vcpu_free = svm_free_vcpu,
  1445. .vcpu_load = svm_vcpu_load,
  1446. .vcpu_put = svm_vcpu_put,
  1447. .vcpu_decache = svm_vcpu_decache,
  1448. .set_guest_debug = svm_guest_debug,
  1449. .get_msr = svm_get_msr,
  1450. .set_msr = svm_set_msr,
  1451. .get_segment_base = svm_get_segment_base,
  1452. .get_segment = svm_get_segment,
  1453. .set_segment = svm_set_segment,
  1454. .get_cs_db_l_bits = svm_get_cs_db_l_bits,
  1455. .decache_cr0_cr4_guest_bits = svm_decache_cr0_cr4_guest_bits,
  1456. .set_cr0 = svm_set_cr0,
  1457. .set_cr3 = svm_set_cr3,
  1458. .set_cr4 = svm_set_cr4,
  1459. .set_efer = svm_set_efer,
  1460. .get_idt = svm_get_idt,
  1461. .set_idt = svm_set_idt,
  1462. .get_gdt = svm_get_gdt,
  1463. .set_gdt = svm_set_gdt,
  1464. .get_dr = svm_get_dr,
  1465. .set_dr = svm_set_dr,
  1466. .cache_regs = svm_cache_regs,
  1467. .decache_regs = svm_decache_regs,
  1468. .get_rflags = svm_get_rflags,
  1469. .set_rflags = svm_set_rflags,
  1470. .invlpg = svm_invlpg,
  1471. .tlb_flush = svm_flush_tlb,
  1472. .inject_page_fault = svm_inject_page_fault,
  1473. .inject_gp = svm_inject_gp,
  1474. .run = svm_vcpu_run,
  1475. .skip_emulated_instruction = skip_emulated_instruction,
  1476. .vcpu_setup = svm_vcpu_setup,
  1477. .patch_hypercall = svm_patch_hypercall,
  1478. };
  1479. static int __init svm_init(void)
  1480. {
  1481. return kvm_init_arch(&svm_arch_ops, THIS_MODULE);
  1482. }
  1483. static void __exit svm_exit(void)
  1484. {
  1485. kvm_exit_arch();
  1486. }
  1487. module_init(svm_init)
  1488. module_exit(svm_exit)