kvm_main.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/pgtable.h>
  46. #ifdef CONFIG_X86
  47. #include <asm/msidef.h>
  48. #endif
  49. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  50. #include "coalesced_mmio.h"
  51. #endif
  52. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  53. #include <linux/pci.h>
  54. #include <linux/interrupt.h>
  55. #include "irq.h"
  56. #endif
  57. MODULE_AUTHOR("Qumranet");
  58. MODULE_LICENSE("GPL");
  59. DEFINE_SPINLOCK(kvm_lock);
  60. LIST_HEAD(vm_list);
  61. static cpumask_t cpus_hardware_enabled;
  62. struct kmem_cache *kvm_vcpu_cache;
  63. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  64. static __read_mostly struct preempt_ops kvm_preempt_ops;
  65. struct dentry *kvm_debugfs_dir;
  66. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  67. unsigned long arg);
  68. bool kvm_rebooting;
  69. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  70. #ifdef CONFIG_X86
  71. static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev)
  72. {
  73. int vcpu_id;
  74. struct kvm_vcpu *vcpu;
  75. struct kvm_ioapic *ioapic = ioapic_irqchip(dev->kvm);
  76. int dest_id = (dev->guest_msi.address_lo & MSI_ADDR_DEST_ID_MASK)
  77. >> MSI_ADDR_DEST_ID_SHIFT;
  78. int vector = (dev->guest_msi.data & MSI_DATA_VECTOR_MASK)
  79. >> MSI_DATA_VECTOR_SHIFT;
  80. int dest_mode = test_bit(MSI_ADDR_DEST_MODE_SHIFT,
  81. (unsigned long *)&dev->guest_msi.address_lo);
  82. int trig_mode = test_bit(MSI_DATA_TRIGGER_SHIFT,
  83. (unsigned long *)&dev->guest_msi.data);
  84. int delivery_mode = test_bit(MSI_DATA_DELIVERY_MODE_SHIFT,
  85. (unsigned long *)&dev->guest_msi.data);
  86. u32 deliver_bitmask;
  87. BUG_ON(!ioapic);
  88. deliver_bitmask = kvm_ioapic_get_delivery_bitmask(ioapic,
  89. dest_id, dest_mode);
  90. /* IOAPIC delivery mode value is the same as MSI here */
  91. switch (delivery_mode) {
  92. case IOAPIC_LOWEST_PRIORITY:
  93. vcpu = kvm_get_lowest_prio_vcpu(ioapic->kvm, vector,
  94. deliver_bitmask);
  95. if (vcpu != NULL)
  96. kvm_apic_set_irq(vcpu, vector, trig_mode);
  97. else
  98. printk(KERN_INFO "kvm: null lowest priority vcpu!\n");
  99. break;
  100. case IOAPIC_FIXED:
  101. for (vcpu_id = 0; deliver_bitmask != 0; vcpu_id++) {
  102. if (!(deliver_bitmask & (1 << vcpu_id)))
  103. continue;
  104. deliver_bitmask &= ~(1 << vcpu_id);
  105. vcpu = ioapic->kvm->vcpus[vcpu_id];
  106. if (vcpu)
  107. kvm_apic_set_irq(vcpu, vector, trig_mode);
  108. }
  109. break;
  110. default:
  111. printk(KERN_INFO "kvm: unsupported MSI delivery mode\n");
  112. }
  113. }
  114. #else
  115. static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev) {}
  116. #endif
  117. static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
  118. int assigned_dev_id)
  119. {
  120. struct list_head *ptr;
  121. struct kvm_assigned_dev_kernel *match;
  122. list_for_each(ptr, head) {
  123. match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
  124. if (match->assigned_dev_id == assigned_dev_id)
  125. return match;
  126. }
  127. return NULL;
  128. }
  129. static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
  130. {
  131. struct kvm_assigned_dev_kernel *assigned_dev;
  132. assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
  133. interrupt_work);
  134. /* This is taken to safely inject irq inside the guest. When
  135. * the interrupt injection (or the ioapic code) uses a
  136. * finer-grained lock, update this
  137. */
  138. mutex_lock(&assigned_dev->kvm->lock);
  139. kvm_set_irq(assigned_dev->kvm,
  140. assigned_dev->irq_source_id,
  141. assigned_dev->guest_irq, 1);
  142. mutex_unlock(&assigned_dev->kvm->lock);
  143. kvm_put_kvm(assigned_dev->kvm);
  144. }
  145. static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
  146. {
  147. struct kvm_assigned_dev_kernel *assigned_dev =
  148. (struct kvm_assigned_dev_kernel *) dev_id;
  149. kvm_get_kvm(assigned_dev->kvm);
  150. schedule_work(&assigned_dev->interrupt_work);
  151. disable_irq_nosync(irq);
  152. return IRQ_HANDLED;
  153. }
  154. /* Ack the irq line for an assigned device */
  155. static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
  156. {
  157. struct kvm_assigned_dev_kernel *dev;
  158. if (kian->gsi == -1)
  159. return;
  160. dev = container_of(kian, struct kvm_assigned_dev_kernel,
  161. ack_notifier);
  162. kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
  163. enable_irq(dev->host_irq);
  164. }
  165. static void kvm_free_assigned_device(struct kvm *kvm,
  166. struct kvm_assigned_dev_kernel
  167. *assigned_dev)
  168. {
  169. if (irqchip_in_kernel(kvm) && assigned_dev->irq_requested_type)
  170. free_irq(assigned_dev->host_irq, (void *)assigned_dev);
  171. kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
  172. kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
  173. if (cancel_work_sync(&assigned_dev->interrupt_work))
  174. /* We had pending work. That means we will have to take
  175. * care of kvm_put_kvm.
  176. */
  177. kvm_put_kvm(kvm);
  178. pci_reset_function(assigned_dev->dev);
  179. pci_release_regions(assigned_dev->dev);
  180. pci_disable_device(assigned_dev->dev);
  181. pci_dev_put(assigned_dev->dev);
  182. list_del(&assigned_dev->list);
  183. kfree(assigned_dev);
  184. }
  185. void kvm_free_all_assigned_devices(struct kvm *kvm)
  186. {
  187. struct list_head *ptr, *ptr2;
  188. struct kvm_assigned_dev_kernel *assigned_dev;
  189. list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
  190. assigned_dev = list_entry(ptr,
  191. struct kvm_assigned_dev_kernel,
  192. list);
  193. kvm_free_assigned_device(kvm, assigned_dev);
  194. }
  195. }
  196. static int assigned_device_update_intx(struct kvm *kvm,
  197. struct kvm_assigned_dev_kernel *adev,
  198. struct kvm_assigned_irq *airq)
  199. {
  200. adev->guest_irq = airq->guest_irq;
  201. adev->ack_notifier.gsi = airq->guest_irq;
  202. if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_INTX)
  203. return 0;
  204. if (irqchip_in_kernel(kvm)) {
  205. if (!capable(CAP_SYS_RAWIO))
  206. return -EPERM;
  207. if (airq->host_irq)
  208. adev->host_irq = airq->host_irq;
  209. else
  210. adev->host_irq = adev->dev->irq;
  211. /* Even though this is PCI, we don't want to use shared
  212. * interrupts. Sharing host devices with guest-assigned devices
  213. * on the same interrupt line is not a happy situation: there
  214. * are going to be long delays in accepting, acking, etc.
  215. */
  216. if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
  217. 0, "kvm_assigned_intx_device", (void *)adev))
  218. return -EIO;
  219. }
  220. adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
  221. KVM_ASSIGNED_DEV_HOST_INTX;
  222. return 0;
  223. }
  224. static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
  225. struct kvm_assigned_irq
  226. *assigned_irq)
  227. {
  228. int r = 0;
  229. struct kvm_assigned_dev_kernel *match;
  230. mutex_lock(&kvm->lock);
  231. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  232. assigned_irq->assigned_dev_id);
  233. if (!match) {
  234. mutex_unlock(&kvm->lock);
  235. return -EINVAL;
  236. }
  237. if (!match->irq_requested_type) {
  238. INIT_WORK(&match->interrupt_work,
  239. kvm_assigned_dev_interrupt_work_handler);
  240. if (irqchip_in_kernel(kvm)) {
  241. /* Register ack nofitier */
  242. match->ack_notifier.gsi = -1;
  243. match->ack_notifier.irq_acked =
  244. kvm_assigned_dev_ack_irq;
  245. kvm_register_irq_ack_notifier(kvm,
  246. &match->ack_notifier);
  247. /* Request IRQ source ID */
  248. r = kvm_request_irq_source_id(kvm);
  249. if (r < 0)
  250. goto out_release;
  251. else
  252. match->irq_source_id = r;
  253. }
  254. }
  255. r = assigned_device_update_intx(kvm, match, assigned_irq);
  256. if (r)
  257. goto out_release;
  258. mutex_unlock(&kvm->lock);
  259. return r;
  260. out_release:
  261. mutex_unlock(&kvm->lock);
  262. kvm_free_assigned_device(kvm, match);
  263. return r;
  264. }
  265. static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
  266. struct kvm_assigned_pci_dev *assigned_dev)
  267. {
  268. int r = 0;
  269. struct kvm_assigned_dev_kernel *match;
  270. struct pci_dev *dev;
  271. mutex_lock(&kvm->lock);
  272. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  273. assigned_dev->assigned_dev_id);
  274. if (match) {
  275. /* device already assigned */
  276. r = -EINVAL;
  277. goto out;
  278. }
  279. match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
  280. if (match == NULL) {
  281. printk(KERN_INFO "%s: Couldn't allocate memory\n",
  282. __func__);
  283. r = -ENOMEM;
  284. goto out;
  285. }
  286. dev = pci_get_bus_and_slot(assigned_dev->busnr,
  287. assigned_dev->devfn);
  288. if (!dev) {
  289. printk(KERN_INFO "%s: host device not found\n", __func__);
  290. r = -EINVAL;
  291. goto out_free;
  292. }
  293. if (pci_enable_device(dev)) {
  294. printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
  295. r = -EBUSY;
  296. goto out_put;
  297. }
  298. r = pci_request_regions(dev, "kvm_assigned_device");
  299. if (r) {
  300. printk(KERN_INFO "%s: Could not get access to device regions\n",
  301. __func__);
  302. goto out_disable;
  303. }
  304. pci_reset_function(dev);
  305. match->assigned_dev_id = assigned_dev->assigned_dev_id;
  306. match->host_busnr = assigned_dev->busnr;
  307. match->host_devfn = assigned_dev->devfn;
  308. match->dev = dev;
  309. match->kvm = kvm;
  310. list_add(&match->list, &kvm->arch.assigned_dev_head);
  311. if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
  312. r = kvm_iommu_map_guest(kvm, match);
  313. if (r)
  314. goto out_list_del;
  315. }
  316. out:
  317. mutex_unlock(&kvm->lock);
  318. return r;
  319. out_list_del:
  320. list_del(&match->list);
  321. pci_release_regions(dev);
  322. out_disable:
  323. pci_disable_device(dev);
  324. out_put:
  325. pci_dev_put(dev);
  326. out_free:
  327. kfree(match);
  328. mutex_unlock(&kvm->lock);
  329. return r;
  330. }
  331. #endif
  332. static inline int valid_vcpu(int n)
  333. {
  334. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  335. }
  336. inline int kvm_is_mmio_pfn(pfn_t pfn)
  337. {
  338. if (pfn_valid(pfn))
  339. return PageReserved(pfn_to_page(pfn));
  340. return true;
  341. }
  342. /*
  343. * Switches to specified vcpu, until a matching vcpu_put()
  344. */
  345. void vcpu_load(struct kvm_vcpu *vcpu)
  346. {
  347. int cpu;
  348. mutex_lock(&vcpu->mutex);
  349. cpu = get_cpu();
  350. preempt_notifier_register(&vcpu->preempt_notifier);
  351. kvm_arch_vcpu_load(vcpu, cpu);
  352. put_cpu();
  353. }
  354. void vcpu_put(struct kvm_vcpu *vcpu)
  355. {
  356. preempt_disable();
  357. kvm_arch_vcpu_put(vcpu);
  358. preempt_notifier_unregister(&vcpu->preempt_notifier);
  359. preempt_enable();
  360. mutex_unlock(&vcpu->mutex);
  361. }
  362. static void ack_flush(void *_completed)
  363. {
  364. }
  365. void kvm_flush_remote_tlbs(struct kvm *kvm)
  366. {
  367. int i, cpu, me;
  368. cpumask_t cpus;
  369. struct kvm_vcpu *vcpu;
  370. me = get_cpu();
  371. cpus_clear(cpus);
  372. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  373. vcpu = kvm->vcpus[i];
  374. if (!vcpu)
  375. continue;
  376. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  377. continue;
  378. cpu = vcpu->cpu;
  379. if (cpu != -1 && cpu != me)
  380. cpu_set(cpu, cpus);
  381. }
  382. if (cpus_empty(cpus))
  383. goto out;
  384. ++kvm->stat.remote_tlb_flush;
  385. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  386. out:
  387. put_cpu();
  388. }
  389. void kvm_reload_remote_mmus(struct kvm *kvm)
  390. {
  391. int i, cpu, me;
  392. cpumask_t cpus;
  393. struct kvm_vcpu *vcpu;
  394. me = get_cpu();
  395. cpus_clear(cpus);
  396. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  397. vcpu = kvm->vcpus[i];
  398. if (!vcpu)
  399. continue;
  400. if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  401. continue;
  402. cpu = vcpu->cpu;
  403. if (cpu != -1 && cpu != me)
  404. cpu_set(cpu, cpus);
  405. }
  406. if (cpus_empty(cpus))
  407. goto out;
  408. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  409. out:
  410. put_cpu();
  411. }
  412. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  413. {
  414. struct page *page;
  415. int r;
  416. mutex_init(&vcpu->mutex);
  417. vcpu->cpu = -1;
  418. vcpu->kvm = kvm;
  419. vcpu->vcpu_id = id;
  420. init_waitqueue_head(&vcpu->wq);
  421. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  422. if (!page) {
  423. r = -ENOMEM;
  424. goto fail;
  425. }
  426. vcpu->run = page_address(page);
  427. r = kvm_arch_vcpu_init(vcpu);
  428. if (r < 0)
  429. goto fail_free_run;
  430. return 0;
  431. fail_free_run:
  432. free_page((unsigned long)vcpu->run);
  433. fail:
  434. return r;
  435. }
  436. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  437. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  438. {
  439. kvm_arch_vcpu_uninit(vcpu);
  440. free_page((unsigned long)vcpu->run);
  441. }
  442. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  443. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  444. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  445. {
  446. return container_of(mn, struct kvm, mmu_notifier);
  447. }
  448. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  449. struct mm_struct *mm,
  450. unsigned long address)
  451. {
  452. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  453. int need_tlb_flush;
  454. /*
  455. * When ->invalidate_page runs, the linux pte has been zapped
  456. * already but the page is still allocated until
  457. * ->invalidate_page returns. So if we increase the sequence
  458. * here the kvm page fault will notice if the spte can't be
  459. * established because the page is going to be freed. If
  460. * instead the kvm page fault establishes the spte before
  461. * ->invalidate_page runs, kvm_unmap_hva will release it
  462. * before returning.
  463. *
  464. * The sequence increase only need to be seen at spin_unlock
  465. * time, and not at spin_lock time.
  466. *
  467. * Increasing the sequence after the spin_unlock would be
  468. * unsafe because the kvm page fault could then establish the
  469. * pte after kvm_unmap_hva returned, without noticing the page
  470. * is going to be freed.
  471. */
  472. spin_lock(&kvm->mmu_lock);
  473. kvm->mmu_notifier_seq++;
  474. need_tlb_flush = kvm_unmap_hva(kvm, address);
  475. spin_unlock(&kvm->mmu_lock);
  476. /* we've to flush the tlb before the pages can be freed */
  477. if (need_tlb_flush)
  478. kvm_flush_remote_tlbs(kvm);
  479. }
  480. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  481. struct mm_struct *mm,
  482. unsigned long start,
  483. unsigned long end)
  484. {
  485. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  486. int need_tlb_flush = 0;
  487. spin_lock(&kvm->mmu_lock);
  488. /*
  489. * The count increase must become visible at unlock time as no
  490. * spte can be established without taking the mmu_lock and
  491. * count is also read inside the mmu_lock critical section.
  492. */
  493. kvm->mmu_notifier_count++;
  494. for (; start < end; start += PAGE_SIZE)
  495. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  496. spin_unlock(&kvm->mmu_lock);
  497. /* we've to flush the tlb before the pages can be freed */
  498. if (need_tlb_flush)
  499. kvm_flush_remote_tlbs(kvm);
  500. }
  501. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  502. struct mm_struct *mm,
  503. unsigned long start,
  504. unsigned long end)
  505. {
  506. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  507. spin_lock(&kvm->mmu_lock);
  508. /*
  509. * This sequence increase will notify the kvm page fault that
  510. * the page that is going to be mapped in the spte could have
  511. * been freed.
  512. */
  513. kvm->mmu_notifier_seq++;
  514. /*
  515. * The above sequence increase must be visible before the
  516. * below count decrease but both values are read by the kvm
  517. * page fault under mmu_lock spinlock so we don't need to add
  518. * a smb_wmb() here in between the two.
  519. */
  520. kvm->mmu_notifier_count--;
  521. spin_unlock(&kvm->mmu_lock);
  522. BUG_ON(kvm->mmu_notifier_count < 0);
  523. }
  524. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  525. struct mm_struct *mm,
  526. unsigned long address)
  527. {
  528. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  529. int young;
  530. spin_lock(&kvm->mmu_lock);
  531. young = kvm_age_hva(kvm, address);
  532. spin_unlock(&kvm->mmu_lock);
  533. if (young)
  534. kvm_flush_remote_tlbs(kvm);
  535. return young;
  536. }
  537. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  538. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  539. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  540. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  541. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  542. };
  543. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  544. static struct kvm *kvm_create_vm(void)
  545. {
  546. struct kvm *kvm = kvm_arch_create_vm();
  547. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  548. struct page *page;
  549. #endif
  550. if (IS_ERR(kvm))
  551. goto out;
  552. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  553. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  554. if (!page) {
  555. kfree(kvm);
  556. return ERR_PTR(-ENOMEM);
  557. }
  558. kvm->coalesced_mmio_ring =
  559. (struct kvm_coalesced_mmio_ring *)page_address(page);
  560. #endif
  561. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  562. {
  563. int err;
  564. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  565. err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  566. if (err) {
  567. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  568. put_page(page);
  569. #endif
  570. kfree(kvm);
  571. return ERR_PTR(err);
  572. }
  573. }
  574. #endif
  575. kvm->mm = current->mm;
  576. atomic_inc(&kvm->mm->mm_count);
  577. spin_lock_init(&kvm->mmu_lock);
  578. kvm_io_bus_init(&kvm->pio_bus);
  579. mutex_init(&kvm->lock);
  580. kvm_io_bus_init(&kvm->mmio_bus);
  581. init_rwsem(&kvm->slots_lock);
  582. atomic_set(&kvm->users_count, 1);
  583. spin_lock(&kvm_lock);
  584. list_add(&kvm->vm_list, &vm_list);
  585. spin_unlock(&kvm_lock);
  586. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  587. kvm_coalesced_mmio_init(kvm);
  588. #endif
  589. out:
  590. return kvm;
  591. }
  592. /*
  593. * Free any memory in @free but not in @dont.
  594. */
  595. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  596. struct kvm_memory_slot *dont)
  597. {
  598. if (!dont || free->rmap != dont->rmap)
  599. vfree(free->rmap);
  600. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  601. vfree(free->dirty_bitmap);
  602. if (!dont || free->lpage_info != dont->lpage_info)
  603. vfree(free->lpage_info);
  604. free->npages = 0;
  605. free->dirty_bitmap = NULL;
  606. free->rmap = NULL;
  607. free->lpage_info = NULL;
  608. }
  609. void kvm_free_physmem(struct kvm *kvm)
  610. {
  611. int i;
  612. for (i = 0; i < kvm->nmemslots; ++i)
  613. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  614. }
  615. static void kvm_destroy_vm(struct kvm *kvm)
  616. {
  617. struct mm_struct *mm = kvm->mm;
  618. spin_lock(&kvm_lock);
  619. list_del(&kvm->vm_list);
  620. spin_unlock(&kvm_lock);
  621. kvm_io_bus_destroy(&kvm->pio_bus);
  622. kvm_io_bus_destroy(&kvm->mmio_bus);
  623. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  624. if (kvm->coalesced_mmio_ring != NULL)
  625. free_page((unsigned long)kvm->coalesced_mmio_ring);
  626. #endif
  627. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  628. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  629. #endif
  630. kvm_arch_destroy_vm(kvm);
  631. mmdrop(mm);
  632. }
  633. void kvm_get_kvm(struct kvm *kvm)
  634. {
  635. atomic_inc(&kvm->users_count);
  636. }
  637. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  638. void kvm_put_kvm(struct kvm *kvm)
  639. {
  640. if (atomic_dec_and_test(&kvm->users_count))
  641. kvm_destroy_vm(kvm);
  642. }
  643. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  644. static int kvm_vm_release(struct inode *inode, struct file *filp)
  645. {
  646. struct kvm *kvm = filp->private_data;
  647. kvm_put_kvm(kvm);
  648. return 0;
  649. }
  650. /*
  651. * Allocate some memory and give it an address in the guest physical address
  652. * space.
  653. *
  654. * Discontiguous memory is allowed, mostly for framebuffers.
  655. *
  656. * Must be called holding mmap_sem for write.
  657. */
  658. int __kvm_set_memory_region(struct kvm *kvm,
  659. struct kvm_userspace_memory_region *mem,
  660. int user_alloc)
  661. {
  662. int r;
  663. gfn_t base_gfn;
  664. unsigned long npages;
  665. unsigned long i;
  666. struct kvm_memory_slot *memslot;
  667. struct kvm_memory_slot old, new;
  668. r = -EINVAL;
  669. /* General sanity checks */
  670. if (mem->memory_size & (PAGE_SIZE - 1))
  671. goto out;
  672. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  673. goto out;
  674. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  675. goto out;
  676. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  677. goto out;
  678. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  679. goto out;
  680. memslot = &kvm->memslots[mem->slot];
  681. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  682. npages = mem->memory_size >> PAGE_SHIFT;
  683. if (!npages)
  684. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  685. new = old = *memslot;
  686. new.base_gfn = base_gfn;
  687. new.npages = npages;
  688. new.flags = mem->flags;
  689. /* Disallow changing a memory slot's size. */
  690. r = -EINVAL;
  691. if (npages && old.npages && npages != old.npages)
  692. goto out_free;
  693. /* Check for overlaps */
  694. r = -EEXIST;
  695. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  696. struct kvm_memory_slot *s = &kvm->memslots[i];
  697. if (s == memslot)
  698. continue;
  699. if (!((base_gfn + npages <= s->base_gfn) ||
  700. (base_gfn >= s->base_gfn + s->npages)))
  701. goto out_free;
  702. }
  703. /* Free page dirty bitmap if unneeded */
  704. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  705. new.dirty_bitmap = NULL;
  706. r = -ENOMEM;
  707. /* Allocate if a slot is being created */
  708. #ifndef CONFIG_S390
  709. if (npages && !new.rmap) {
  710. new.rmap = vmalloc(npages * sizeof(struct page *));
  711. if (!new.rmap)
  712. goto out_free;
  713. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  714. new.user_alloc = user_alloc;
  715. /*
  716. * hva_to_rmmap() serialzies with the mmu_lock and to be
  717. * safe it has to ignore memslots with !user_alloc &&
  718. * !userspace_addr.
  719. */
  720. if (user_alloc)
  721. new.userspace_addr = mem->userspace_addr;
  722. else
  723. new.userspace_addr = 0;
  724. }
  725. if (npages && !new.lpage_info) {
  726. int largepages = npages / KVM_PAGES_PER_HPAGE;
  727. if (npages % KVM_PAGES_PER_HPAGE)
  728. largepages++;
  729. if (base_gfn % KVM_PAGES_PER_HPAGE)
  730. largepages++;
  731. new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
  732. if (!new.lpage_info)
  733. goto out_free;
  734. memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
  735. if (base_gfn % KVM_PAGES_PER_HPAGE)
  736. new.lpage_info[0].write_count = 1;
  737. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
  738. new.lpage_info[largepages-1].write_count = 1;
  739. }
  740. /* Allocate page dirty bitmap if needed */
  741. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  742. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  743. new.dirty_bitmap = vmalloc(dirty_bytes);
  744. if (!new.dirty_bitmap)
  745. goto out_free;
  746. memset(new.dirty_bitmap, 0, dirty_bytes);
  747. }
  748. #endif /* not defined CONFIG_S390 */
  749. if (!npages)
  750. kvm_arch_flush_shadow(kvm);
  751. spin_lock(&kvm->mmu_lock);
  752. if (mem->slot >= kvm->nmemslots)
  753. kvm->nmemslots = mem->slot + 1;
  754. *memslot = new;
  755. spin_unlock(&kvm->mmu_lock);
  756. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  757. if (r) {
  758. spin_lock(&kvm->mmu_lock);
  759. *memslot = old;
  760. spin_unlock(&kvm->mmu_lock);
  761. goto out_free;
  762. }
  763. kvm_free_physmem_slot(&old, &new);
  764. #ifdef CONFIG_DMAR
  765. /* map the pages in iommu page table */
  766. r = kvm_iommu_map_pages(kvm, base_gfn, npages);
  767. if (r)
  768. goto out;
  769. #endif
  770. return 0;
  771. out_free:
  772. kvm_free_physmem_slot(&new, &old);
  773. out:
  774. return r;
  775. }
  776. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  777. int kvm_set_memory_region(struct kvm *kvm,
  778. struct kvm_userspace_memory_region *mem,
  779. int user_alloc)
  780. {
  781. int r;
  782. down_write(&kvm->slots_lock);
  783. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  784. up_write(&kvm->slots_lock);
  785. return r;
  786. }
  787. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  788. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  789. struct
  790. kvm_userspace_memory_region *mem,
  791. int user_alloc)
  792. {
  793. if (mem->slot >= KVM_MEMORY_SLOTS)
  794. return -EINVAL;
  795. return kvm_set_memory_region(kvm, mem, user_alloc);
  796. }
  797. int kvm_get_dirty_log(struct kvm *kvm,
  798. struct kvm_dirty_log *log, int *is_dirty)
  799. {
  800. struct kvm_memory_slot *memslot;
  801. int r, i;
  802. int n;
  803. unsigned long any = 0;
  804. r = -EINVAL;
  805. if (log->slot >= KVM_MEMORY_SLOTS)
  806. goto out;
  807. memslot = &kvm->memslots[log->slot];
  808. r = -ENOENT;
  809. if (!memslot->dirty_bitmap)
  810. goto out;
  811. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  812. for (i = 0; !any && i < n/sizeof(long); ++i)
  813. any = memslot->dirty_bitmap[i];
  814. r = -EFAULT;
  815. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  816. goto out;
  817. if (any)
  818. *is_dirty = 1;
  819. r = 0;
  820. out:
  821. return r;
  822. }
  823. int is_error_page(struct page *page)
  824. {
  825. return page == bad_page;
  826. }
  827. EXPORT_SYMBOL_GPL(is_error_page);
  828. int is_error_pfn(pfn_t pfn)
  829. {
  830. return pfn == bad_pfn;
  831. }
  832. EXPORT_SYMBOL_GPL(is_error_pfn);
  833. static inline unsigned long bad_hva(void)
  834. {
  835. return PAGE_OFFSET;
  836. }
  837. int kvm_is_error_hva(unsigned long addr)
  838. {
  839. return addr == bad_hva();
  840. }
  841. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  842. struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
  843. {
  844. int i;
  845. for (i = 0; i < kvm->nmemslots; ++i) {
  846. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  847. if (gfn >= memslot->base_gfn
  848. && gfn < memslot->base_gfn + memslot->npages)
  849. return memslot;
  850. }
  851. return NULL;
  852. }
  853. EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
  854. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  855. {
  856. gfn = unalias_gfn(kvm, gfn);
  857. return gfn_to_memslot_unaliased(kvm, gfn);
  858. }
  859. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  860. {
  861. int i;
  862. gfn = unalias_gfn(kvm, gfn);
  863. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  864. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  865. if (gfn >= memslot->base_gfn
  866. && gfn < memslot->base_gfn + memslot->npages)
  867. return 1;
  868. }
  869. return 0;
  870. }
  871. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  872. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  873. {
  874. struct kvm_memory_slot *slot;
  875. gfn = unalias_gfn(kvm, gfn);
  876. slot = gfn_to_memslot_unaliased(kvm, gfn);
  877. if (!slot)
  878. return bad_hva();
  879. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  880. }
  881. EXPORT_SYMBOL_GPL(gfn_to_hva);
  882. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  883. {
  884. struct page *page[1];
  885. unsigned long addr;
  886. int npages;
  887. pfn_t pfn;
  888. might_sleep();
  889. addr = gfn_to_hva(kvm, gfn);
  890. if (kvm_is_error_hva(addr)) {
  891. get_page(bad_page);
  892. return page_to_pfn(bad_page);
  893. }
  894. npages = get_user_pages_fast(addr, 1, 1, page);
  895. if (unlikely(npages != 1)) {
  896. struct vm_area_struct *vma;
  897. down_read(&current->mm->mmap_sem);
  898. vma = find_vma(current->mm, addr);
  899. if (vma == NULL || addr < vma->vm_start ||
  900. !(vma->vm_flags & VM_PFNMAP)) {
  901. up_read(&current->mm->mmap_sem);
  902. get_page(bad_page);
  903. return page_to_pfn(bad_page);
  904. }
  905. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  906. up_read(&current->mm->mmap_sem);
  907. BUG_ON(!kvm_is_mmio_pfn(pfn));
  908. } else
  909. pfn = page_to_pfn(page[0]);
  910. return pfn;
  911. }
  912. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  913. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  914. {
  915. pfn_t pfn;
  916. pfn = gfn_to_pfn(kvm, gfn);
  917. if (!kvm_is_mmio_pfn(pfn))
  918. return pfn_to_page(pfn);
  919. WARN_ON(kvm_is_mmio_pfn(pfn));
  920. get_page(bad_page);
  921. return bad_page;
  922. }
  923. EXPORT_SYMBOL_GPL(gfn_to_page);
  924. void kvm_release_page_clean(struct page *page)
  925. {
  926. kvm_release_pfn_clean(page_to_pfn(page));
  927. }
  928. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  929. void kvm_release_pfn_clean(pfn_t pfn)
  930. {
  931. if (!kvm_is_mmio_pfn(pfn))
  932. put_page(pfn_to_page(pfn));
  933. }
  934. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  935. void kvm_release_page_dirty(struct page *page)
  936. {
  937. kvm_release_pfn_dirty(page_to_pfn(page));
  938. }
  939. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  940. void kvm_release_pfn_dirty(pfn_t pfn)
  941. {
  942. kvm_set_pfn_dirty(pfn);
  943. kvm_release_pfn_clean(pfn);
  944. }
  945. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  946. void kvm_set_page_dirty(struct page *page)
  947. {
  948. kvm_set_pfn_dirty(page_to_pfn(page));
  949. }
  950. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  951. void kvm_set_pfn_dirty(pfn_t pfn)
  952. {
  953. if (!kvm_is_mmio_pfn(pfn)) {
  954. struct page *page = pfn_to_page(pfn);
  955. if (!PageReserved(page))
  956. SetPageDirty(page);
  957. }
  958. }
  959. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  960. void kvm_set_pfn_accessed(pfn_t pfn)
  961. {
  962. if (!kvm_is_mmio_pfn(pfn))
  963. mark_page_accessed(pfn_to_page(pfn));
  964. }
  965. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  966. void kvm_get_pfn(pfn_t pfn)
  967. {
  968. if (!kvm_is_mmio_pfn(pfn))
  969. get_page(pfn_to_page(pfn));
  970. }
  971. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  972. static int next_segment(unsigned long len, int offset)
  973. {
  974. if (len > PAGE_SIZE - offset)
  975. return PAGE_SIZE - offset;
  976. else
  977. return len;
  978. }
  979. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  980. int len)
  981. {
  982. int r;
  983. unsigned long addr;
  984. addr = gfn_to_hva(kvm, gfn);
  985. if (kvm_is_error_hva(addr))
  986. return -EFAULT;
  987. r = copy_from_user(data, (void __user *)addr + offset, len);
  988. if (r)
  989. return -EFAULT;
  990. return 0;
  991. }
  992. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  993. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  994. {
  995. gfn_t gfn = gpa >> PAGE_SHIFT;
  996. int seg;
  997. int offset = offset_in_page(gpa);
  998. int ret;
  999. while ((seg = next_segment(len, offset)) != 0) {
  1000. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1001. if (ret < 0)
  1002. return ret;
  1003. offset = 0;
  1004. len -= seg;
  1005. data += seg;
  1006. ++gfn;
  1007. }
  1008. return 0;
  1009. }
  1010. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1011. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1012. unsigned long len)
  1013. {
  1014. int r;
  1015. unsigned long addr;
  1016. gfn_t gfn = gpa >> PAGE_SHIFT;
  1017. int offset = offset_in_page(gpa);
  1018. addr = gfn_to_hva(kvm, gfn);
  1019. if (kvm_is_error_hva(addr))
  1020. return -EFAULT;
  1021. pagefault_disable();
  1022. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1023. pagefault_enable();
  1024. if (r)
  1025. return -EFAULT;
  1026. return 0;
  1027. }
  1028. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1029. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1030. int offset, int len)
  1031. {
  1032. int r;
  1033. unsigned long addr;
  1034. addr = gfn_to_hva(kvm, gfn);
  1035. if (kvm_is_error_hva(addr))
  1036. return -EFAULT;
  1037. r = copy_to_user((void __user *)addr + offset, data, len);
  1038. if (r)
  1039. return -EFAULT;
  1040. mark_page_dirty(kvm, gfn);
  1041. return 0;
  1042. }
  1043. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1044. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1045. unsigned long len)
  1046. {
  1047. gfn_t gfn = gpa >> PAGE_SHIFT;
  1048. int seg;
  1049. int offset = offset_in_page(gpa);
  1050. int ret;
  1051. while ((seg = next_segment(len, offset)) != 0) {
  1052. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1053. if (ret < 0)
  1054. return ret;
  1055. offset = 0;
  1056. len -= seg;
  1057. data += seg;
  1058. ++gfn;
  1059. }
  1060. return 0;
  1061. }
  1062. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1063. {
  1064. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  1065. }
  1066. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1067. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1068. {
  1069. gfn_t gfn = gpa >> PAGE_SHIFT;
  1070. int seg;
  1071. int offset = offset_in_page(gpa);
  1072. int ret;
  1073. while ((seg = next_segment(len, offset)) != 0) {
  1074. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1075. if (ret < 0)
  1076. return ret;
  1077. offset = 0;
  1078. len -= seg;
  1079. ++gfn;
  1080. }
  1081. return 0;
  1082. }
  1083. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1084. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1085. {
  1086. struct kvm_memory_slot *memslot;
  1087. gfn = unalias_gfn(kvm, gfn);
  1088. memslot = gfn_to_memslot_unaliased(kvm, gfn);
  1089. if (memslot && memslot->dirty_bitmap) {
  1090. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1091. /* avoid RMW */
  1092. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  1093. set_bit(rel_gfn, memslot->dirty_bitmap);
  1094. }
  1095. }
  1096. /*
  1097. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1098. */
  1099. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1100. {
  1101. DEFINE_WAIT(wait);
  1102. for (;;) {
  1103. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1104. if (kvm_cpu_has_interrupt(vcpu) ||
  1105. kvm_cpu_has_pending_timer(vcpu) ||
  1106. kvm_arch_vcpu_runnable(vcpu)) {
  1107. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  1108. break;
  1109. }
  1110. if (signal_pending(current))
  1111. break;
  1112. vcpu_put(vcpu);
  1113. schedule();
  1114. vcpu_load(vcpu);
  1115. }
  1116. finish_wait(&vcpu->wq, &wait);
  1117. }
  1118. void kvm_resched(struct kvm_vcpu *vcpu)
  1119. {
  1120. if (!need_resched())
  1121. return;
  1122. cond_resched();
  1123. }
  1124. EXPORT_SYMBOL_GPL(kvm_resched);
  1125. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1126. {
  1127. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1128. struct page *page;
  1129. if (vmf->pgoff == 0)
  1130. page = virt_to_page(vcpu->run);
  1131. #ifdef CONFIG_X86
  1132. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1133. page = virt_to_page(vcpu->arch.pio_data);
  1134. #endif
  1135. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1136. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1137. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1138. #endif
  1139. else
  1140. return VM_FAULT_SIGBUS;
  1141. get_page(page);
  1142. vmf->page = page;
  1143. return 0;
  1144. }
  1145. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1146. .fault = kvm_vcpu_fault,
  1147. };
  1148. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1149. {
  1150. vma->vm_ops = &kvm_vcpu_vm_ops;
  1151. return 0;
  1152. }
  1153. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1154. {
  1155. struct kvm_vcpu *vcpu = filp->private_data;
  1156. kvm_put_kvm(vcpu->kvm);
  1157. return 0;
  1158. }
  1159. static const struct file_operations kvm_vcpu_fops = {
  1160. .release = kvm_vcpu_release,
  1161. .unlocked_ioctl = kvm_vcpu_ioctl,
  1162. .compat_ioctl = kvm_vcpu_ioctl,
  1163. .mmap = kvm_vcpu_mmap,
  1164. };
  1165. /*
  1166. * Allocates an inode for the vcpu.
  1167. */
  1168. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1169. {
  1170. int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
  1171. if (fd < 0)
  1172. kvm_put_kvm(vcpu->kvm);
  1173. return fd;
  1174. }
  1175. /*
  1176. * Creates some virtual cpus. Good luck creating more than one.
  1177. */
  1178. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1179. {
  1180. int r;
  1181. struct kvm_vcpu *vcpu;
  1182. if (!valid_vcpu(n))
  1183. return -EINVAL;
  1184. vcpu = kvm_arch_vcpu_create(kvm, n);
  1185. if (IS_ERR(vcpu))
  1186. return PTR_ERR(vcpu);
  1187. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1188. r = kvm_arch_vcpu_setup(vcpu);
  1189. if (r)
  1190. return r;
  1191. mutex_lock(&kvm->lock);
  1192. if (kvm->vcpus[n]) {
  1193. r = -EEXIST;
  1194. goto vcpu_destroy;
  1195. }
  1196. kvm->vcpus[n] = vcpu;
  1197. mutex_unlock(&kvm->lock);
  1198. /* Now it's all set up, let userspace reach it */
  1199. kvm_get_kvm(kvm);
  1200. r = create_vcpu_fd(vcpu);
  1201. if (r < 0)
  1202. goto unlink;
  1203. return r;
  1204. unlink:
  1205. mutex_lock(&kvm->lock);
  1206. kvm->vcpus[n] = NULL;
  1207. vcpu_destroy:
  1208. mutex_unlock(&kvm->lock);
  1209. kvm_arch_vcpu_destroy(vcpu);
  1210. return r;
  1211. }
  1212. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1213. {
  1214. if (sigset) {
  1215. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1216. vcpu->sigset_active = 1;
  1217. vcpu->sigset = *sigset;
  1218. } else
  1219. vcpu->sigset_active = 0;
  1220. return 0;
  1221. }
  1222. static long kvm_vcpu_ioctl(struct file *filp,
  1223. unsigned int ioctl, unsigned long arg)
  1224. {
  1225. struct kvm_vcpu *vcpu = filp->private_data;
  1226. void __user *argp = (void __user *)arg;
  1227. int r;
  1228. struct kvm_fpu *fpu = NULL;
  1229. struct kvm_sregs *kvm_sregs = NULL;
  1230. if (vcpu->kvm->mm != current->mm)
  1231. return -EIO;
  1232. switch (ioctl) {
  1233. case KVM_RUN:
  1234. r = -EINVAL;
  1235. if (arg)
  1236. goto out;
  1237. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1238. break;
  1239. case KVM_GET_REGS: {
  1240. struct kvm_regs *kvm_regs;
  1241. r = -ENOMEM;
  1242. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1243. if (!kvm_regs)
  1244. goto out;
  1245. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1246. if (r)
  1247. goto out_free1;
  1248. r = -EFAULT;
  1249. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1250. goto out_free1;
  1251. r = 0;
  1252. out_free1:
  1253. kfree(kvm_regs);
  1254. break;
  1255. }
  1256. case KVM_SET_REGS: {
  1257. struct kvm_regs *kvm_regs;
  1258. r = -ENOMEM;
  1259. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1260. if (!kvm_regs)
  1261. goto out;
  1262. r = -EFAULT;
  1263. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1264. goto out_free2;
  1265. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1266. if (r)
  1267. goto out_free2;
  1268. r = 0;
  1269. out_free2:
  1270. kfree(kvm_regs);
  1271. break;
  1272. }
  1273. case KVM_GET_SREGS: {
  1274. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1275. r = -ENOMEM;
  1276. if (!kvm_sregs)
  1277. goto out;
  1278. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1279. if (r)
  1280. goto out;
  1281. r = -EFAULT;
  1282. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1283. goto out;
  1284. r = 0;
  1285. break;
  1286. }
  1287. case KVM_SET_SREGS: {
  1288. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1289. r = -ENOMEM;
  1290. if (!kvm_sregs)
  1291. goto out;
  1292. r = -EFAULT;
  1293. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1294. goto out;
  1295. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1296. if (r)
  1297. goto out;
  1298. r = 0;
  1299. break;
  1300. }
  1301. case KVM_GET_MP_STATE: {
  1302. struct kvm_mp_state mp_state;
  1303. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1304. if (r)
  1305. goto out;
  1306. r = -EFAULT;
  1307. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1308. goto out;
  1309. r = 0;
  1310. break;
  1311. }
  1312. case KVM_SET_MP_STATE: {
  1313. struct kvm_mp_state mp_state;
  1314. r = -EFAULT;
  1315. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1316. goto out;
  1317. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1318. if (r)
  1319. goto out;
  1320. r = 0;
  1321. break;
  1322. }
  1323. case KVM_TRANSLATE: {
  1324. struct kvm_translation tr;
  1325. r = -EFAULT;
  1326. if (copy_from_user(&tr, argp, sizeof tr))
  1327. goto out;
  1328. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1329. if (r)
  1330. goto out;
  1331. r = -EFAULT;
  1332. if (copy_to_user(argp, &tr, sizeof tr))
  1333. goto out;
  1334. r = 0;
  1335. break;
  1336. }
  1337. case KVM_DEBUG_GUEST: {
  1338. struct kvm_debug_guest dbg;
  1339. r = -EFAULT;
  1340. if (copy_from_user(&dbg, argp, sizeof dbg))
  1341. goto out;
  1342. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  1343. if (r)
  1344. goto out;
  1345. r = 0;
  1346. break;
  1347. }
  1348. case KVM_SET_SIGNAL_MASK: {
  1349. struct kvm_signal_mask __user *sigmask_arg = argp;
  1350. struct kvm_signal_mask kvm_sigmask;
  1351. sigset_t sigset, *p;
  1352. p = NULL;
  1353. if (argp) {
  1354. r = -EFAULT;
  1355. if (copy_from_user(&kvm_sigmask, argp,
  1356. sizeof kvm_sigmask))
  1357. goto out;
  1358. r = -EINVAL;
  1359. if (kvm_sigmask.len != sizeof sigset)
  1360. goto out;
  1361. r = -EFAULT;
  1362. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1363. sizeof sigset))
  1364. goto out;
  1365. p = &sigset;
  1366. }
  1367. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1368. break;
  1369. }
  1370. case KVM_GET_FPU: {
  1371. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1372. r = -ENOMEM;
  1373. if (!fpu)
  1374. goto out;
  1375. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1376. if (r)
  1377. goto out;
  1378. r = -EFAULT;
  1379. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1380. goto out;
  1381. r = 0;
  1382. break;
  1383. }
  1384. case KVM_SET_FPU: {
  1385. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1386. r = -ENOMEM;
  1387. if (!fpu)
  1388. goto out;
  1389. r = -EFAULT;
  1390. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1391. goto out;
  1392. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1393. if (r)
  1394. goto out;
  1395. r = 0;
  1396. break;
  1397. }
  1398. default:
  1399. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1400. }
  1401. out:
  1402. kfree(fpu);
  1403. kfree(kvm_sregs);
  1404. return r;
  1405. }
  1406. static long kvm_vm_ioctl(struct file *filp,
  1407. unsigned int ioctl, unsigned long arg)
  1408. {
  1409. struct kvm *kvm = filp->private_data;
  1410. void __user *argp = (void __user *)arg;
  1411. int r;
  1412. if (kvm->mm != current->mm)
  1413. return -EIO;
  1414. switch (ioctl) {
  1415. case KVM_CREATE_VCPU:
  1416. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1417. if (r < 0)
  1418. goto out;
  1419. break;
  1420. case KVM_SET_USER_MEMORY_REGION: {
  1421. struct kvm_userspace_memory_region kvm_userspace_mem;
  1422. r = -EFAULT;
  1423. if (copy_from_user(&kvm_userspace_mem, argp,
  1424. sizeof kvm_userspace_mem))
  1425. goto out;
  1426. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1427. if (r)
  1428. goto out;
  1429. break;
  1430. }
  1431. case KVM_GET_DIRTY_LOG: {
  1432. struct kvm_dirty_log log;
  1433. r = -EFAULT;
  1434. if (copy_from_user(&log, argp, sizeof log))
  1435. goto out;
  1436. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1437. if (r)
  1438. goto out;
  1439. break;
  1440. }
  1441. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1442. case KVM_REGISTER_COALESCED_MMIO: {
  1443. struct kvm_coalesced_mmio_zone zone;
  1444. r = -EFAULT;
  1445. if (copy_from_user(&zone, argp, sizeof zone))
  1446. goto out;
  1447. r = -ENXIO;
  1448. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1449. if (r)
  1450. goto out;
  1451. r = 0;
  1452. break;
  1453. }
  1454. case KVM_UNREGISTER_COALESCED_MMIO: {
  1455. struct kvm_coalesced_mmio_zone zone;
  1456. r = -EFAULT;
  1457. if (copy_from_user(&zone, argp, sizeof zone))
  1458. goto out;
  1459. r = -ENXIO;
  1460. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1461. if (r)
  1462. goto out;
  1463. r = 0;
  1464. break;
  1465. }
  1466. #endif
  1467. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1468. case KVM_ASSIGN_PCI_DEVICE: {
  1469. struct kvm_assigned_pci_dev assigned_dev;
  1470. r = -EFAULT;
  1471. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1472. goto out;
  1473. r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
  1474. if (r)
  1475. goto out;
  1476. break;
  1477. }
  1478. case KVM_ASSIGN_IRQ: {
  1479. struct kvm_assigned_irq assigned_irq;
  1480. r = -EFAULT;
  1481. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1482. goto out;
  1483. r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
  1484. if (r)
  1485. goto out;
  1486. break;
  1487. }
  1488. #endif
  1489. default:
  1490. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1491. }
  1492. out:
  1493. return r;
  1494. }
  1495. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1496. {
  1497. struct page *page[1];
  1498. unsigned long addr;
  1499. int npages;
  1500. gfn_t gfn = vmf->pgoff;
  1501. struct kvm *kvm = vma->vm_file->private_data;
  1502. addr = gfn_to_hva(kvm, gfn);
  1503. if (kvm_is_error_hva(addr))
  1504. return VM_FAULT_SIGBUS;
  1505. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1506. NULL);
  1507. if (unlikely(npages != 1))
  1508. return VM_FAULT_SIGBUS;
  1509. vmf->page = page[0];
  1510. return 0;
  1511. }
  1512. static struct vm_operations_struct kvm_vm_vm_ops = {
  1513. .fault = kvm_vm_fault,
  1514. };
  1515. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1516. {
  1517. vma->vm_ops = &kvm_vm_vm_ops;
  1518. return 0;
  1519. }
  1520. static const struct file_operations kvm_vm_fops = {
  1521. .release = kvm_vm_release,
  1522. .unlocked_ioctl = kvm_vm_ioctl,
  1523. .compat_ioctl = kvm_vm_ioctl,
  1524. .mmap = kvm_vm_mmap,
  1525. };
  1526. static int kvm_dev_ioctl_create_vm(void)
  1527. {
  1528. int fd;
  1529. struct kvm *kvm;
  1530. kvm = kvm_create_vm();
  1531. if (IS_ERR(kvm))
  1532. return PTR_ERR(kvm);
  1533. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
  1534. if (fd < 0)
  1535. kvm_put_kvm(kvm);
  1536. return fd;
  1537. }
  1538. static long kvm_dev_ioctl(struct file *filp,
  1539. unsigned int ioctl, unsigned long arg)
  1540. {
  1541. long r = -EINVAL;
  1542. switch (ioctl) {
  1543. case KVM_GET_API_VERSION:
  1544. r = -EINVAL;
  1545. if (arg)
  1546. goto out;
  1547. r = KVM_API_VERSION;
  1548. break;
  1549. case KVM_CREATE_VM:
  1550. r = -EINVAL;
  1551. if (arg)
  1552. goto out;
  1553. r = kvm_dev_ioctl_create_vm();
  1554. break;
  1555. case KVM_CHECK_EXTENSION:
  1556. r = kvm_dev_ioctl_check_extension(arg);
  1557. break;
  1558. case KVM_GET_VCPU_MMAP_SIZE:
  1559. r = -EINVAL;
  1560. if (arg)
  1561. goto out;
  1562. r = PAGE_SIZE; /* struct kvm_run */
  1563. #ifdef CONFIG_X86
  1564. r += PAGE_SIZE; /* pio data page */
  1565. #endif
  1566. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1567. r += PAGE_SIZE; /* coalesced mmio ring page */
  1568. #endif
  1569. break;
  1570. case KVM_TRACE_ENABLE:
  1571. case KVM_TRACE_PAUSE:
  1572. case KVM_TRACE_DISABLE:
  1573. r = kvm_trace_ioctl(ioctl, arg);
  1574. break;
  1575. default:
  1576. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1577. }
  1578. out:
  1579. return r;
  1580. }
  1581. static struct file_operations kvm_chardev_ops = {
  1582. .unlocked_ioctl = kvm_dev_ioctl,
  1583. .compat_ioctl = kvm_dev_ioctl,
  1584. };
  1585. static struct miscdevice kvm_dev = {
  1586. KVM_MINOR,
  1587. "kvm",
  1588. &kvm_chardev_ops,
  1589. };
  1590. static void hardware_enable(void *junk)
  1591. {
  1592. int cpu = raw_smp_processor_id();
  1593. if (cpu_isset(cpu, cpus_hardware_enabled))
  1594. return;
  1595. cpu_set(cpu, cpus_hardware_enabled);
  1596. kvm_arch_hardware_enable(NULL);
  1597. }
  1598. static void hardware_disable(void *junk)
  1599. {
  1600. int cpu = raw_smp_processor_id();
  1601. if (!cpu_isset(cpu, cpus_hardware_enabled))
  1602. return;
  1603. cpu_clear(cpu, cpus_hardware_enabled);
  1604. kvm_arch_hardware_disable(NULL);
  1605. }
  1606. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1607. void *v)
  1608. {
  1609. int cpu = (long)v;
  1610. val &= ~CPU_TASKS_FROZEN;
  1611. switch (val) {
  1612. case CPU_DYING:
  1613. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1614. cpu);
  1615. hardware_disable(NULL);
  1616. break;
  1617. case CPU_UP_CANCELED:
  1618. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1619. cpu);
  1620. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  1621. break;
  1622. case CPU_ONLINE:
  1623. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1624. cpu);
  1625. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  1626. break;
  1627. }
  1628. return NOTIFY_OK;
  1629. }
  1630. asmlinkage void kvm_handle_fault_on_reboot(void)
  1631. {
  1632. if (kvm_rebooting)
  1633. /* spin while reset goes on */
  1634. while (true)
  1635. ;
  1636. /* Fault while not rebooting. We want the trace. */
  1637. BUG();
  1638. }
  1639. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  1640. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1641. void *v)
  1642. {
  1643. if (val == SYS_RESTART) {
  1644. /*
  1645. * Some (well, at least mine) BIOSes hang on reboot if
  1646. * in vmx root mode.
  1647. */
  1648. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1649. kvm_rebooting = true;
  1650. on_each_cpu(hardware_disable, NULL, 1);
  1651. }
  1652. return NOTIFY_OK;
  1653. }
  1654. static struct notifier_block kvm_reboot_notifier = {
  1655. .notifier_call = kvm_reboot,
  1656. .priority = 0,
  1657. };
  1658. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1659. {
  1660. memset(bus, 0, sizeof(*bus));
  1661. }
  1662. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1663. {
  1664. int i;
  1665. for (i = 0; i < bus->dev_count; i++) {
  1666. struct kvm_io_device *pos = bus->devs[i];
  1667. kvm_iodevice_destructor(pos);
  1668. }
  1669. }
  1670. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
  1671. gpa_t addr, int len, int is_write)
  1672. {
  1673. int i;
  1674. for (i = 0; i < bus->dev_count; i++) {
  1675. struct kvm_io_device *pos = bus->devs[i];
  1676. if (pos->in_range(pos, addr, len, is_write))
  1677. return pos;
  1678. }
  1679. return NULL;
  1680. }
  1681. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1682. {
  1683. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1684. bus->devs[bus->dev_count++] = dev;
  1685. }
  1686. static struct notifier_block kvm_cpu_notifier = {
  1687. .notifier_call = kvm_cpu_hotplug,
  1688. .priority = 20, /* must be > scheduler priority */
  1689. };
  1690. static int vm_stat_get(void *_offset, u64 *val)
  1691. {
  1692. unsigned offset = (long)_offset;
  1693. struct kvm *kvm;
  1694. *val = 0;
  1695. spin_lock(&kvm_lock);
  1696. list_for_each_entry(kvm, &vm_list, vm_list)
  1697. *val += *(u32 *)((void *)kvm + offset);
  1698. spin_unlock(&kvm_lock);
  1699. return 0;
  1700. }
  1701. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1702. static int vcpu_stat_get(void *_offset, u64 *val)
  1703. {
  1704. unsigned offset = (long)_offset;
  1705. struct kvm *kvm;
  1706. struct kvm_vcpu *vcpu;
  1707. int i;
  1708. *val = 0;
  1709. spin_lock(&kvm_lock);
  1710. list_for_each_entry(kvm, &vm_list, vm_list)
  1711. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1712. vcpu = kvm->vcpus[i];
  1713. if (vcpu)
  1714. *val += *(u32 *)((void *)vcpu + offset);
  1715. }
  1716. spin_unlock(&kvm_lock);
  1717. return 0;
  1718. }
  1719. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1720. static struct file_operations *stat_fops[] = {
  1721. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1722. [KVM_STAT_VM] = &vm_stat_fops,
  1723. };
  1724. static void kvm_init_debug(void)
  1725. {
  1726. struct kvm_stats_debugfs_item *p;
  1727. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1728. for (p = debugfs_entries; p->name; ++p)
  1729. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1730. (void *)(long)p->offset,
  1731. stat_fops[p->kind]);
  1732. }
  1733. static void kvm_exit_debug(void)
  1734. {
  1735. struct kvm_stats_debugfs_item *p;
  1736. for (p = debugfs_entries; p->name; ++p)
  1737. debugfs_remove(p->dentry);
  1738. debugfs_remove(kvm_debugfs_dir);
  1739. }
  1740. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1741. {
  1742. hardware_disable(NULL);
  1743. return 0;
  1744. }
  1745. static int kvm_resume(struct sys_device *dev)
  1746. {
  1747. hardware_enable(NULL);
  1748. return 0;
  1749. }
  1750. static struct sysdev_class kvm_sysdev_class = {
  1751. .name = "kvm",
  1752. .suspend = kvm_suspend,
  1753. .resume = kvm_resume,
  1754. };
  1755. static struct sys_device kvm_sysdev = {
  1756. .id = 0,
  1757. .cls = &kvm_sysdev_class,
  1758. };
  1759. struct page *bad_page;
  1760. pfn_t bad_pfn;
  1761. static inline
  1762. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1763. {
  1764. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1765. }
  1766. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1767. {
  1768. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1769. kvm_arch_vcpu_load(vcpu, cpu);
  1770. }
  1771. static void kvm_sched_out(struct preempt_notifier *pn,
  1772. struct task_struct *next)
  1773. {
  1774. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1775. kvm_arch_vcpu_put(vcpu);
  1776. }
  1777. int kvm_init(void *opaque, unsigned int vcpu_size,
  1778. struct module *module)
  1779. {
  1780. int r;
  1781. int cpu;
  1782. kvm_init_debug();
  1783. r = kvm_arch_init(opaque);
  1784. if (r)
  1785. goto out_fail;
  1786. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1787. if (bad_page == NULL) {
  1788. r = -ENOMEM;
  1789. goto out;
  1790. }
  1791. bad_pfn = page_to_pfn(bad_page);
  1792. r = kvm_arch_hardware_setup();
  1793. if (r < 0)
  1794. goto out_free_0;
  1795. for_each_online_cpu(cpu) {
  1796. smp_call_function_single(cpu,
  1797. kvm_arch_check_processor_compat,
  1798. &r, 1);
  1799. if (r < 0)
  1800. goto out_free_1;
  1801. }
  1802. on_each_cpu(hardware_enable, NULL, 1);
  1803. r = register_cpu_notifier(&kvm_cpu_notifier);
  1804. if (r)
  1805. goto out_free_2;
  1806. register_reboot_notifier(&kvm_reboot_notifier);
  1807. r = sysdev_class_register(&kvm_sysdev_class);
  1808. if (r)
  1809. goto out_free_3;
  1810. r = sysdev_register(&kvm_sysdev);
  1811. if (r)
  1812. goto out_free_4;
  1813. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1814. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1815. __alignof__(struct kvm_vcpu),
  1816. 0, NULL);
  1817. if (!kvm_vcpu_cache) {
  1818. r = -ENOMEM;
  1819. goto out_free_5;
  1820. }
  1821. kvm_chardev_ops.owner = module;
  1822. r = misc_register(&kvm_dev);
  1823. if (r) {
  1824. printk(KERN_ERR "kvm: misc device register failed\n");
  1825. goto out_free;
  1826. }
  1827. kvm_preempt_ops.sched_in = kvm_sched_in;
  1828. kvm_preempt_ops.sched_out = kvm_sched_out;
  1829. return 0;
  1830. out_free:
  1831. kmem_cache_destroy(kvm_vcpu_cache);
  1832. out_free_5:
  1833. sysdev_unregister(&kvm_sysdev);
  1834. out_free_4:
  1835. sysdev_class_unregister(&kvm_sysdev_class);
  1836. out_free_3:
  1837. unregister_reboot_notifier(&kvm_reboot_notifier);
  1838. unregister_cpu_notifier(&kvm_cpu_notifier);
  1839. out_free_2:
  1840. on_each_cpu(hardware_disable, NULL, 1);
  1841. out_free_1:
  1842. kvm_arch_hardware_unsetup();
  1843. out_free_0:
  1844. __free_page(bad_page);
  1845. out:
  1846. kvm_arch_exit();
  1847. kvm_exit_debug();
  1848. out_fail:
  1849. return r;
  1850. }
  1851. EXPORT_SYMBOL_GPL(kvm_init);
  1852. void kvm_exit(void)
  1853. {
  1854. kvm_trace_cleanup();
  1855. misc_deregister(&kvm_dev);
  1856. kmem_cache_destroy(kvm_vcpu_cache);
  1857. sysdev_unregister(&kvm_sysdev);
  1858. sysdev_class_unregister(&kvm_sysdev_class);
  1859. unregister_reboot_notifier(&kvm_reboot_notifier);
  1860. unregister_cpu_notifier(&kvm_cpu_notifier);
  1861. on_each_cpu(hardware_disable, NULL, 1);
  1862. kvm_arch_hardware_unsetup();
  1863. kvm_arch_exit();
  1864. kvm_exit_debug();
  1865. __free_page(bad_page);
  1866. }
  1867. EXPORT_SYMBOL_GPL(kvm_exit);