bio.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264
  1. /*
  2. * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public Licens
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
  16. *
  17. */
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/bio.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/slab.h>
  23. #include <linux/init.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/mempool.h>
  27. #include <linux/workqueue.h>
  28. #include <scsi/sg.h> /* for struct sg_iovec */
  29. #define BIO_POOL_SIZE 256
  30. static kmem_cache_t *bio_slab;
  31. #define BIOVEC_NR_POOLS 6
  32. /*
  33. * a small number of entries is fine, not going to be performance critical.
  34. * basically we just need to survive
  35. */
  36. #define BIO_SPLIT_ENTRIES 8
  37. mempool_t *bio_split_pool;
  38. struct biovec_slab {
  39. int nr_vecs;
  40. char *name;
  41. kmem_cache_t *slab;
  42. };
  43. /*
  44. * if you change this list, also change bvec_alloc or things will
  45. * break badly! cannot be bigger than what you can fit into an
  46. * unsigned short
  47. */
  48. #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
  49. static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
  50. BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
  51. };
  52. #undef BV
  53. /*
  54. * bio_set is used to allow other portions of the IO system to
  55. * allocate their own private memory pools for bio and iovec structures.
  56. * These memory pools in turn all allocate from the bio_slab
  57. * and the bvec_slabs[].
  58. */
  59. struct bio_set {
  60. mempool_t *bio_pool;
  61. mempool_t *bvec_pools[BIOVEC_NR_POOLS];
  62. };
  63. /*
  64. * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  65. * IO code that does not need private memory pools.
  66. */
  67. static struct bio_set *fs_bio_set;
  68. static inline struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, struct bio_set *bs)
  69. {
  70. struct bio_vec *bvl;
  71. struct biovec_slab *bp;
  72. /*
  73. * see comment near bvec_array define!
  74. */
  75. switch (nr) {
  76. case 1 : *idx = 0; break;
  77. case 2 ... 4: *idx = 1; break;
  78. case 5 ... 16: *idx = 2; break;
  79. case 17 ... 64: *idx = 3; break;
  80. case 65 ... 128: *idx = 4; break;
  81. case 129 ... BIO_MAX_PAGES: *idx = 5; break;
  82. default:
  83. return NULL;
  84. }
  85. /*
  86. * idx now points to the pool we want to allocate from
  87. */
  88. bp = bvec_slabs + *idx;
  89. bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask);
  90. if (bvl)
  91. memset(bvl, 0, bp->nr_vecs * sizeof(struct bio_vec));
  92. return bvl;
  93. }
  94. void bio_free(struct bio *bio, struct bio_set *bio_set)
  95. {
  96. const int pool_idx = BIO_POOL_IDX(bio);
  97. BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
  98. mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]);
  99. mempool_free(bio, bio_set->bio_pool);
  100. }
  101. /*
  102. * default destructor for a bio allocated with bio_alloc_bioset()
  103. */
  104. static void bio_fs_destructor(struct bio *bio)
  105. {
  106. bio_free(bio, fs_bio_set);
  107. }
  108. inline void bio_init(struct bio *bio)
  109. {
  110. bio->bi_next = NULL;
  111. bio->bi_flags = 1 << BIO_UPTODATE;
  112. bio->bi_rw = 0;
  113. bio->bi_vcnt = 0;
  114. bio->bi_idx = 0;
  115. bio->bi_phys_segments = 0;
  116. bio->bi_hw_segments = 0;
  117. bio->bi_hw_front_size = 0;
  118. bio->bi_hw_back_size = 0;
  119. bio->bi_size = 0;
  120. bio->bi_max_vecs = 0;
  121. bio->bi_end_io = NULL;
  122. atomic_set(&bio->bi_cnt, 1);
  123. bio->bi_private = NULL;
  124. }
  125. /**
  126. * bio_alloc_bioset - allocate a bio for I/O
  127. * @gfp_mask: the GFP_ mask given to the slab allocator
  128. * @nr_iovecs: number of iovecs to pre-allocate
  129. * @bs: the bio_set to allocate from
  130. *
  131. * Description:
  132. * bio_alloc_bioset will first try it's on mempool to satisfy the allocation.
  133. * If %__GFP_WAIT is set then we will block on the internal pool waiting
  134. * for a &struct bio to become free.
  135. *
  136. * allocate bio and iovecs from the memory pools specified by the
  137. * bio_set structure.
  138. **/
  139. struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
  140. {
  141. struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask);
  142. if (likely(bio)) {
  143. struct bio_vec *bvl = NULL;
  144. bio_init(bio);
  145. if (likely(nr_iovecs)) {
  146. unsigned long idx;
  147. bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
  148. if (unlikely(!bvl)) {
  149. mempool_free(bio, bs->bio_pool);
  150. bio = NULL;
  151. goto out;
  152. }
  153. bio->bi_flags |= idx << BIO_POOL_OFFSET;
  154. bio->bi_max_vecs = bvec_slabs[idx].nr_vecs;
  155. }
  156. bio->bi_io_vec = bvl;
  157. }
  158. out:
  159. return bio;
  160. }
  161. struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
  162. {
  163. struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
  164. if (bio)
  165. bio->bi_destructor = bio_fs_destructor;
  166. return bio;
  167. }
  168. void zero_fill_bio(struct bio *bio)
  169. {
  170. unsigned long flags;
  171. struct bio_vec *bv;
  172. int i;
  173. bio_for_each_segment(bv, bio, i) {
  174. char *data = bvec_kmap_irq(bv, &flags);
  175. memset(data, 0, bv->bv_len);
  176. flush_dcache_page(bv->bv_page);
  177. bvec_kunmap_irq(data, &flags);
  178. }
  179. }
  180. EXPORT_SYMBOL(zero_fill_bio);
  181. /**
  182. * bio_put - release a reference to a bio
  183. * @bio: bio to release reference to
  184. *
  185. * Description:
  186. * Put a reference to a &struct bio, either one you have gotten with
  187. * bio_alloc or bio_get. The last put of a bio will free it.
  188. **/
  189. void bio_put(struct bio *bio)
  190. {
  191. BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
  192. /*
  193. * last put frees it
  194. */
  195. if (atomic_dec_and_test(&bio->bi_cnt)) {
  196. bio->bi_next = NULL;
  197. bio->bi_destructor(bio);
  198. }
  199. }
  200. inline int bio_phys_segments(request_queue_t *q, struct bio *bio)
  201. {
  202. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  203. blk_recount_segments(q, bio);
  204. return bio->bi_phys_segments;
  205. }
  206. inline int bio_hw_segments(request_queue_t *q, struct bio *bio)
  207. {
  208. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  209. blk_recount_segments(q, bio);
  210. return bio->bi_hw_segments;
  211. }
  212. /**
  213. * __bio_clone - clone a bio
  214. * @bio: destination bio
  215. * @bio_src: bio to clone
  216. *
  217. * Clone a &bio. Caller will own the returned bio, but not
  218. * the actual data it points to. Reference count of returned
  219. * bio will be one.
  220. */
  221. inline void __bio_clone(struct bio *bio, struct bio *bio_src)
  222. {
  223. request_queue_t *q = bdev_get_queue(bio_src->bi_bdev);
  224. memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
  225. bio_src->bi_max_vecs * sizeof(struct bio_vec));
  226. bio->bi_sector = bio_src->bi_sector;
  227. bio->bi_bdev = bio_src->bi_bdev;
  228. bio->bi_flags |= 1 << BIO_CLONED;
  229. bio->bi_rw = bio_src->bi_rw;
  230. bio->bi_vcnt = bio_src->bi_vcnt;
  231. bio->bi_size = bio_src->bi_size;
  232. bio->bi_idx = bio_src->bi_idx;
  233. bio_phys_segments(q, bio);
  234. bio_hw_segments(q, bio);
  235. }
  236. /**
  237. * bio_clone - clone a bio
  238. * @bio: bio to clone
  239. * @gfp_mask: allocation priority
  240. *
  241. * Like __bio_clone, only also allocates the returned bio
  242. */
  243. struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
  244. {
  245. struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
  246. if (b) {
  247. b->bi_destructor = bio_fs_destructor;
  248. __bio_clone(b, bio);
  249. }
  250. return b;
  251. }
  252. /**
  253. * bio_get_nr_vecs - return approx number of vecs
  254. * @bdev: I/O target
  255. *
  256. * Return the approximate number of pages we can send to this target.
  257. * There's no guarantee that you will be able to fit this number of pages
  258. * into a bio, it does not account for dynamic restrictions that vary
  259. * on offset.
  260. */
  261. int bio_get_nr_vecs(struct block_device *bdev)
  262. {
  263. request_queue_t *q = bdev_get_queue(bdev);
  264. int nr_pages;
  265. nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  266. if (nr_pages > q->max_phys_segments)
  267. nr_pages = q->max_phys_segments;
  268. if (nr_pages > q->max_hw_segments)
  269. nr_pages = q->max_hw_segments;
  270. return nr_pages;
  271. }
  272. static int __bio_add_page(request_queue_t *q, struct bio *bio, struct page
  273. *page, unsigned int len, unsigned int offset,
  274. unsigned short max_sectors)
  275. {
  276. int retried_segments = 0;
  277. struct bio_vec *bvec;
  278. /*
  279. * cloned bio must not modify vec list
  280. */
  281. if (unlikely(bio_flagged(bio, BIO_CLONED)))
  282. return 0;
  283. if (bio->bi_vcnt >= bio->bi_max_vecs)
  284. return 0;
  285. if (((bio->bi_size + len) >> 9) > max_sectors)
  286. return 0;
  287. /*
  288. * we might lose a segment or two here, but rather that than
  289. * make this too complex.
  290. */
  291. while (bio->bi_phys_segments >= q->max_phys_segments
  292. || bio->bi_hw_segments >= q->max_hw_segments
  293. || BIOVEC_VIRT_OVERSIZE(bio->bi_size)) {
  294. if (retried_segments)
  295. return 0;
  296. retried_segments = 1;
  297. blk_recount_segments(q, bio);
  298. }
  299. /*
  300. * setup the new entry, we might clear it again later if we
  301. * cannot add the page
  302. */
  303. bvec = &bio->bi_io_vec[bio->bi_vcnt];
  304. bvec->bv_page = page;
  305. bvec->bv_len = len;
  306. bvec->bv_offset = offset;
  307. /*
  308. * if queue has other restrictions (eg varying max sector size
  309. * depending on offset), it can specify a merge_bvec_fn in the
  310. * queue to get further control
  311. */
  312. if (q->merge_bvec_fn) {
  313. /*
  314. * merge_bvec_fn() returns number of bytes it can accept
  315. * at this offset
  316. */
  317. if (q->merge_bvec_fn(q, bio, bvec) < len) {
  318. bvec->bv_page = NULL;
  319. bvec->bv_len = 0;
  320. bvec->bv_offset = 0;
  321. return 0;
  322. }
  323. }
  324. /* If we may be able to merge these biovecs, force a recount */
  325. if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec) ||
  326. BIOVEC_VIRT_MERGEABLE(bvec-1, bvec)))
  327. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  328. bio->bi_vcnt++;
  329. bio->bi_phys_segments++;
  330. bio->bi_hw_segments++;
  331. bio->bi_size += len;
  332. return len;
  333. }
  334. /**
  335. * bio_add_pc_page - attempt to add page to bio
  336. * @bio: destination bio
  337. * @page: page to add
  338. * @len: vec entry length
  339. * @offset: vec entry offset
  340. *
  341. * Attempt to add a page to the bio_vec maplist. This can fail for a
  342. * number of reasons, such as the bio being full or target block
  343. * device limitations. The target block device must allow bio's
  344. * smaller than PAGE_SIZE, so it is always possible to add a single
  345. * page to an empty bio. This should only be used by REQ_PC bios.
  346. */
  347. int bio_add_pc_page(request_queue_t *q, struct bio *bio, struct page *page,
  348. unsigned int len, unsigned int offset)
  349. {
  350. return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors);
  351. }
  352. /**
  353. * bio_add_page - attempt to add page to bio
  354. * @bio: destination bio
  355. * @page: page to add
  356. * @len: vec entry length
  357. * @offset: vec entry offset
  358. *
  359. * Attempt to add a page to the bio_vec maplist. This can fail for a
  360. * number of reasons, such as the bio being full or target block
  361. * device limitations. The target block device must allow bio's
  362. * smaller than PAGE_SIZE, so it is always possible to add a single
  363. * page to an empty bio.
  364. */
  365. int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
  366. unsigned int offset)
  367. {
  368. struct request_queue *q = bdev_get_queue(bio->bi_bdev);
  369. return __bio_add_page(q, bio, page, len, offset, q->max_sectors);
  370. }
  371. struct bio_map_data {
  372. struct bio_vec *iovecs;
  373. void __user *userptr;
  374. };
  375. static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio)
  376. {
  377. memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
  378. bio->bi_private = bmd;
  379. }
  380. static void bio_free_map_data(struct bio_map_data *bmd)
  381. {
  382. kfree(bmd->iovecs);
  383. kfree(bmd);
  384. }
  385. static struct bio_map_data *bio_alloc_map_data(int nr_segs)
  386. {
  387. struct bio_map_data *bmd = kmalloc(sizeof(*bmd), GFP_KERNEL);
  388. if (!bmd)
  389. return NULL;
  390. bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, GFP_KERNEL);
  391. if (bmd->iovecs)
  392. return bmd;
  393. kfree(bmd);
  394. return NULL;
  395. }
  396. /**
  397. * bio_uncopy_user - finish previously mapped bio
  398. * @bio: bio being terminated
  399. *
  400. * Free pages allocated from bio_copy_user() and write back data
  401. * to user space in case of a read.
  402. */
  403. int bio_uncopy_user(struct bio *bio)
  404. {
  405. struct bio_map_data *bmd = bio->bi_private;
  406. const int read = bio_data_dir(bio) == READ;
  407. struct bio_vec *bvec;
  408. int i, ret = 0;
  409. __bio_for_each_segment(bvec, bio, i, 0) {
  410. char *addr = page_address(bvec->bv_page);
  411. unsigned int len = bmd->iovecs[i].bv_len;
  412. if (read && !ret && copy_to_user(bmd->userptr, addr, len))
  413. ret = -EFAULT;
  414. __free_page(bvec->bv_page);
  415. bmd->userptr += len;
  416. }
  417. bio_free_map_data(bmd);
  418. bio_put(bio);
  419. return ret;
  420. }
  421. /**
  422. * bio_copy_user - copy user data to bio
  423. * @q: destination block queue
  424. * @uaddr: start of user address
  425. * @len: length in bytes
  426. * @write_to_vm: bool indicating writing to pages or not
  427. *
  428. * Prepares and returns a bio for indirect user io, bouncing data
  429. * to/from kernel pages as necessary. Must be paired with
  430. * call bio_uncopy_user() on io completion.
  431. */
  432. struct bio *bio_copy_user(request_queue_t *q, unsigned long uaddr,
  433. unsigned int len, int write_to_vm)
  434. {
  435. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  436. unsigned long start = uaddr >> PAGE_SHIFT;
  437. struct bio_map_data *bmd;
  438. struct bio_vec *bvec;
  439. struct page *page;
  440. struct bio *bio;
  441. int i, ret;
  442. bmd = bio_alloc_map_data(end - start);
  443. if (!bmd)
  444. return ERR_PTR(-ENOMEM);
  445. bmd->userptr = (void __user *) uaddr;
  446. ret = -ENOMEM;
  447. bio = bio_alloc(GFP_KERNEL, end - start);
  448. if (!bio)
  449. goto out_bmd;
  450. bio->bi_rw |= (!write_to_vm << BIO_RW);
  451. ret = 0;
  452. while (len) {
  453. unsigned int bytes = PAGE_SIZE;
  454. if (bytes > len)
  455. bytes = len;
  456. page = alloc_page(q->bounce_gfp | GFP_KERNEL);
  457. if (!page) {
  458. ret = -ENOMEM;
  459. break;
  460. }
  461. if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) {
  462. ret = -EINVAL;
  463. break;
  464. }
  465. len -= bytes;
  466. }
  467. if (ret)
  468. goto cleanup;
  469. /*
  470. * success
  471. */
  472. if (!write_to_vm) {
  473. char __user *p = (char __user *) uaddr;
  474. /*
  475. * for a write, copy in data to kernel pages
  476. */
  477. ret = -EFAULT;
  478. bio_for_each_segment(bvec, bio, i) {
  479. char *addr = page_address(bvec->bv_page);
  480. if (copy_from_user(addr, p, bvec->bv_len))
  481. goto cleanup;
  482. p += bvec->bv_len;
  483. }
  484. }
  485. bio_set_map_data(bmd, bio);
  486. return bio;
  487. cleanup:
  488. bio_for_each_segment(bvec, bio, i)
  489. __free_page(bvec->bv_page);
  490. bio_put(bio);
  491. out_bmd:
  492. bio_free_map_data(bmd);
  493. return ERR_PTR(ret);
  494. }
  495. static struct bio *__bio_map_user_iov(request_queue_t *q,
  496. struct block_device *bdev,
  497. struct sg_iovec *iov, int iov_count,
  498. int write_to_vm)
  499. {
  500. int i, j;
  501. int nr_pages = 0;
  502. struct page **pages;
  503. struct bio *bio;
  504. int cur_page = 0;
  505. int ret, offset;
  506. for (i = 0; i < iov_count; i++) {
  507. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  508. unsigned long len = iov[i].iov_len;
  509. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  510. unsigned long start = uaddr >> PAGE_SHIFT;
  511. nr_pages += end - start;
  512. /*
  513. * transfer and buffer must be aligned to at least hardsector
  514. * size for now, in the future we can relax this restriction
  515. */
  516. if ((uaddr & queue_dma_alignment(q)) || (len & queue_dma_alignment(q)))
  517. return ERR_PTR(-EINVAL);
  518. }
  519. if (!nr_pages)
  520. return ERR_PTR(-EINVAL);
  521. bio = bio_alloc(GFP_KERNEL, nr_pages);
  522. if (!bio)
  523. return ERR_PTR(-ENOMEM);
  524. ret = -ENOMEM;
  525. pages = kmalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
  526. if (!pages)
  527. goto out;
  528. memset(pages, 0, nr_pages * sizeof(struct page *));
  529. for (i = 0; i < iov_count; i++) {
  530. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  531. unsigned long len = iov[i].iov_len;
  532. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  533. unsigned long start = uaddr >> PAGE_SHIFT;
  534. const int local_nr_pages = end - start;
  535. const int page_limit = cur_page + local_nr_pages;
  536. down_read(&current->mm->mmap_sem);
  537. ret = get_user_pages(current, current->mm, uaddr,
  538. local_nr_pages,
  539. write_to_vm, 0, &pages[cur_page], NULL);
  540. up_read(&current->mm->mmap_sem);
  541. if (ret < local_nr_pages)
  542. goto out_unmap;
  543. offset = uaddr & ~PAGE_MASK;
  544. for (j = cur_page; j < page_limit; j++) {
  545. unsigned int bytes = PAGE_SIZE - offset;
  546. if (len <= 0)
  547. break;
  548. if (bytes > len)
  549. bytes = len;
  550. /*
  551. * sorry...
  552. */
  553. if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
  554. bytes)
  555. break;
  556. len -= bytes;
  557. offset = 0;
  558. }
  559. cur_page = j;
  560. /*
  561. * release the pages we didn't map into the bio, if any
  562. */
  563. while (j < page_limit)
  564. page_cache_release(pages[j++]);
  565. }
  566. kfree(pages);
  567. /*
  568. * set data direction, and check if mapped pages need bouncing
  569. */
  570. if (!write_to_vm)
  571. bio->bi_rw |= (1 << BIO_RW);
  572. bio->bi_bdev = bdev;
  573. bio->bi_flags |= (1 << BIO_USER_MAPPED);
  574. return bio;
  575. out_unmap:
  576. for (i = 0; i < nr_pages; i++) {
  577. if(!pages[i])
  578. break;
  579. page_cache_release(pages[i]);
  580. }
  581. out:
  582. kfree(pages);
  583. bio_put(bio);
  584. return ERR_PTR(ret);
  585. }
  586. /**
  587. * bio_map_user - map user address into bio
  588. * @q: the request_queue_t for the bio
  589. * @bdev: destination block device
  590. * @uaddr: start of user address
  591. * @len: length in bytes
  592. * @write_to_vm: bool indicating writing to pages or not
  593. *
  594. * Map the user space address into a bio suitable for io to a block
  595. * device. Returns an error pointer in case of error.
  596. */
  597. struct bio *bio_map_user(request_queue_t *q, struct block_device *bdev,
  598. unsigned long uaddr, unsigned int len, int write_to_vm)
  599. {
  600. struct sg_iovec iov;
  601. iov.iov_base = (void __user *)uaddr;
  602. iov.iov_len = len;
  603. return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm);
  604. }
  605. /**
  606. * bio_map_user_iov - map user sg_iovec table into bio
  607. * @q: the request_queue_t for the bio
  608. * @bdev: destination block device
  609. * @iov: the iovec.
  610. * @iov_count: number of elements in the iovec
  611. * @write_to_vm: bool indicating writing to pages or not
  612. *
  613. * Map the user space address into a bio suitable for io to a block
  614. * device. Returns an error pointer in case of error.
  615. */
  616. struct bio *bio_map_user_iov(request_queue_t *q, struct block_device *bdev,
  617. struct sg_iovec *iov, int iov_count,
  618. int write_to_vm)
  619. {
  620. struct bio *bio;
  621. int len = 0, i;
  622. bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm);
  623. if (IS_ERR(bio))
  624. return bio;
  625. /*
  626. * subtle -- if __bio_map_user() ended up bouncing a bio,
  627. * it would normally disappear when its bi_end_io is run.
  628. * however, we need it for the unmap, so grab an extra
  629. * reference to it
  630. */
  631. bio_get(bio);
  632. for (i = 0; i < iov_count; i++)
  633. len += iov[i].iov_len;
  634. if (bio->bi_size == len)
  635. return bio;
  636. /*
  637. * don't support partial mappings
  638. */
  639. bio_endio(bio, bio->bi_size, 0);
  640. bio_unmap_user(bio);
  641. return ERR_PTR(-EINVAL);
  642. }
  643. static void __bio_unmap_user(struct bio *bio)
  644. {
  645. struct bio_vec *bvec;
  646. int i;
  647. /*
  648. * make sure we dirty pages we wrote to
  649. */
  650. __bio_for_each_segment(bvec, bio, i, 0) {
  651. if (bio_data_dir(bio) == READ)
  652. set_page_dirty_lock(bvec->bv_page);
  653. page_cache_release(bvec->bv_page);
  654. }
  655. bio_put(bio);
  656. }
  657. /**
  658. * bio_unmap_user - unmap a bio
  659. * @bio: the bio being unmapped
  660. *
  661. * Unmap a bio previously mapped by bio_map_user(). Must be called with
  662. * a process context.
  663. *
  664. * bio_unmap_user() may sleep.
  665. */
  666. void bio_unmap_user(struct bio *bio)
  667. {
  668. __bio_unmap_user(bio);
  669. bio_put(bio);
  670. }
  671. static int bio_map_kern_endio(struct bio *bio, unsigned int bytes_done, int err)
  672. {
  673. if (bio->bi_size)
  674. return 1;
  675. bio_put(bio);
  676. return 0;
  677. }
  678. static struct bio *__bio_map_kern(request_queue_t *q, void *data,
  679. unsigned int len, gfp_t gfp_mask)
  680. {
  681. unsigned long kaddr = (unsigned long)data;
  682. unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  683. unsigned long start = kaddr >> PAGE_SHIFT;
  684. const int nr_pages = end - start;
  685. int offset, i;
  686. struct bio *bio;
  687. bio = bio_alloc(gfp_mask, nr_pages);
  688. if (!bio)
  689. return ERR_PTR(-ENOMEM);
  690. offset = offset_in_page(kaddr);
  691. for (i = 0; i < nr_pages; i++) {
  692. unsigned int bytes = PAGE_SIZE - offset;
  693. if (len <= 0)
  694. break;
  695. if (bytes > len)
  696. bytes = len;
  697. if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
  698. offset) < bytes)
  699. break;
  700. data += bytes;
  701. len -= bytes;
  702. offset = 0;
  703. }
  704. bio->bi_end_io = bio_map_kern_endio;
  705. return bio;
  706. }
  707. /**
  708. * bio_map_kern - map kernel address into bio
  709. * @q: the request_queue_t for the bio
  710. * @data: pointer to buffer to map
  711. * @len: length in bytes
  712. * @gfp_mask: allocation flags for bio allocation
  713. *
  714. * Map the kernel address into a bio suitable for io to a block
  715. * device. Returns an error pointer in case of error.
  716. */
  717. struct bio *bio_map_kern(request_queue_t *q, void *data, unsigned int len,
  718. gfp_t gfp_mask)
  719. {
  720. struct bio *bio;
  721. bio = __bio_map_kern(q, data, len, gfp_mask);
  722. if (IS_ERR(bio))
  723. return bio;
  724. if (bio->bi_size == len)
  725. return bio;
  726. /*
  727. * Don't support partial mappings.
  728. */
  729. bio_put(bio);
  730. return ERR_PTR(-EINVAL);
  731. }
  732. /*
  733. * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
  734. * for performing direct-IO in BIOs.
  735. *
  736. * The problem is that we cannot run set_page_dirty() from interrupt context
  737. * because the required locks are not interrupt-safe. So what we can do is to
  738. * mark the pages dirty _before_ performing IO. And in interrupt context,
  739. * check that the pages are still dirty. If so, fine. If not, redirty them
  740. * in process context.
  741. *
  742. * We special-case compound pages here: normally this means reads into hugetlb
  743. * pages. The logic in here doesn't really work right for compound pages
  744. * because the VM does not uniformly chase down the head page in all cases.
  745. * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
  746. * handle them at all. So we skip compound pages here at an early stage.
  747. *
  748. * Note that this code is very hard to test under normal circumstances because
  749. * direct-io pins the pages with get_user_pages(). This makes
  750. * is_page_cache_freeable return false, and the VM will not clean the pages.
  751. * But other code (eg, pdflush) could clean the pages if they are mapped
  752. * pagecache.
  753. *
  754. * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
  755. * deferred bio dirtying paths.
  756. */
  757. /*
  758. * bio_set_pages_dirty() will mark all the bio's pages as dirty.
  759. */
  760. void bio_set_pages_dirty(struct bio *bio)
  761. {
  762. struct bio_vec *bvec = bio->bi_io_vec;
  763. int i;
  764. for (i = 0; i < bio->bi_vcnt; i++) {
  765. struct page *page = bvec[i].bv_page;
  766. if (page && !PageCompound(page))
  767. set_page_dirty_lock(page);
  768. }
  769. }
  770. static void bio_release_pages(struct bio *bio)
  771. {
  772. struct bio_vec *bvec = bio->bi_io_vec;
  773. int i;
  774. for (i = 0; i < bio->bi_vcnt; i++) {
  775. struct page *page = bvec[i].bv_page;
  776. if (page)
  777. put_page(page);
  778. }
  779. }
  780. /*
  781. * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
  782. * If they are, then fine. If, however, some pages are clean then they must
  783. * have been written out during the direct-IO read. So we take another ref on
  784. * the BIO and the offending pages and re-dirty the pages in process context.
  785. *
  786. * It is expected that bio_check_pages_dirty() will wholly own the BIO from
  787. * here on. It will run one page_cache_release() against each page and will
  788. * run one bio_put() against the BIO.
  789. */
  790. static void bio_dirty_fn(void *data);
  791. static DECLARE_WORK(bio_dirty_work, bio_dirty_fn, NULL);
  792. static DEFINE_SPINLOCK(bio_dirty_lock);
  793. static struct bio *bio_dirty_list;
  794. /*
  795. * This runs in process context
  796. */
  797. static void bio_dirty_fn(void *data)
  798. {
  799. unsigned long flags;
  800. struct bio *bio;
  801. spin_lock_irqsave(&bio_dirty_lock, flags);
  802. bio = bio_dirty_list;
  803. bio_dirty_list = NULL;
  804. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  805. while (bio) {
  806. struct bio *next = bio->bi_private;
  807. bio_set_pages_dirty(bio);
  808. bio_release_pages(bio);
  809. bio_put(bio);
  810. bio = next;
  811. }
  812. }
  813. void bio_check_pages_dirty(struct bio *bio)
  814. {
  815. struct bio_vec *bvec = bio->bi_io_vec;
  816. int nr_clean_pages = 0;
  817. int i;
  818. for (i = 0; i < bio->bi_vcnt; i++) {
  819. struct page *page = bvec[i].bv_page;
  820. if (PageDirty(page) || PageCompound(page)) {
  821. page_cache_release(page);
  822. bvec[i].bv_page = NULL;
  823. } else {
  824. nr_clean_pages++;
  825. }
  826. }
  827. if (nr_clean_pages) {
  828. unsigned long flags;
  829. spin_lock_irqsave(&bio_dirty_lock, flags);
  830. bio->bi_private = bio_dirty_list;
  831. bio_dirty_list = bio;
  832. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  833. schedule_work(&bio_dirty_work);
  834. } else {
  835. bio_put(bio);
  836. }
  837. }
  838. /**
  839. * bio_endio - end I/O on a bio
  840. * @bio: bio
  841. * @bytes_done: number of bytes completed
  842. * @error: error, if any
  843. *
  844. * Description:
  845. * bio_endio() will end I/O on @bytes_done number of bytes. This may be
  846. * just a partial part of the bio, or it may be the whole bio. bio_endio()
  847. * is the preferred way to end I/O on a bio, it takes care of decrementing
  848. * bi_size and clearing BIO_UPTODATE on error. @error is 0 on success, and
  849. * and one of the established -Exxxx (-EIO, for instance) error values in
  850. * case something went wrong. Noone should call bi_end_io() directly on
  851. * a bio unless they own it and thus know that it has an end_io function.
  852. **/
  853. void bio_endio(struct bio *bio, unsigned int bytes_done, int error)
  854. {
  855. if (error)
  856. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  857. if (unlikely(bytes_done > bio->bi_size)) {
  858. printk("%s: want %u bytes done, only %u left\n", __FUNCTION__,
  859. bytes_done, bio->bi_size);
  860. bytes_done = bio->bi_size;
  861. }
  862. bio->bi_size -= bytes_done;
  863. bio->bi_sector += (bytes_done >> 9);
  864. if (bio->bi_end_io)
  865. bio->bi_end_io(bio, bytes_done, error);
  866. }
  867. void bio_pair_release(struct bio_pair *bp)
  868. {
  869. if (atomic_dec_and_test(&bp->cnt)) {
  870. struct bio *master = bp->bio1.bi_private;
  871. bio_endio(master, master->bi_size, bp->error);
  872. mempool_free(bp, bp->bio2.bi_private);
  873. }
  874. }
  875. static int bio_pair_end_1(struct bio * bi, unsigned int done, int err)
  876. {
  877. struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
  878. if (err)
  879. bp->error = err;
  880. if (bi->bi_size)
  881. return 1;
  882. bio_pair_release(bp);
  883. return 0;
  884. }
  885. static int bio_pair_end_2(struct bio * bi, unsigned int done, int err)
  886. {
  887. struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
  888. if (err)
  889. bp->error = err;
  890. if (bi->bi_size)
  891. return 1;
  892. bio_pair_release(bp);
  893. return 0;
  894. }
  895. /*
  896. * split a bio - only worry about a bio with a single page
  897. * in it's iovec
  898. */
  899. struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors)
  900. {
  901. struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO);
  902. if (!bp)
  903. return bp;
  904. BUG_ON(bi->bi_vcnt != 1);
  905. BUG_ON(bi->bi_idx != 0);
  906. atomic_set(&bp->cnt, 3);
  907. bp->error = 0;
  908. bp->bio1 = *bi;
  909. bp->bio2 = *bi;
  910. bp->bio2.bi_sector += first_sectors;
  911. bp->bio2.bi_size -= first_sectors << 9;
  912. bp->bio1.bi_size = first_sectors << 9;
  913. bp->bv1 = bi->bi_io_vec[0];
  914. bp->bv2 = bi->bi_io_vec[0];
  915. bp->bv2.bv_offset += first_sectors << 9;
  916. bp->bv2.bv_len -= first_sectors << 9;
  917. bp->bv1.bv_len = first_sectors << 9;
  918. bp->bio1.bi_io_vec = &bp->bv1;
  919. bp->bio2.bi_io_vec = &bp->bv2;
  920. bp->bio1.bi_end_io = bio_pair_end_1;
  921. bp->bio2.bi_end_io = bio_pair_end_2;
  922. bp->bio1.bi_private = bi;
  923. bp->bio2.bi_private = pool;
  924. return bp;
  925. }
  926. static void *bio_pair_alloc(gfp_t gfp_flags, void *data)
  927. {
  928. return kmalloc(sizeof(struct bio_pair), gfp_flags);
  929. }
  930. static void bio_pair_free(void *bp, void *data)
  931. {
  932. kfree(bp);
  933. }
  934. /*
  935. * create memory pools for biovec's in a bio_set.
  936. * use the global biovec slabs created for general use.
  937. */
  938. static int biovec_create_pools(struct bio_set *bs, int pool_entries, int scale)
  939. {
  940. int i;
  941. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  942. struct biovec_slab *bp = bvec_slabs + i;
  943. mempool_t **bvp = bs->bvec_pools + i;
  944. if (i >= scale)
  945. pool_entries >>= 1;
  946. *bvp = mempool_create(pool_entries, mempool_alloc_slab,
  947. mempool_free_slab, bp->slab);
  948. if (!*bvp)
  949. return -ENOMEM;
  950. }
  951. return 0;
  952. }
  953. static void biovec_free_pools(struct bio_set *bs)
  954. {
  955. int i;
  956. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  957. mempool_t *bvp = bs->bvec_pools[i];
  958. if (bvp)
  959. mempool_destroy(bvp);
  960. }
  961. }
  962. void bioset_free(struct bio_set *bs)
  963. {
  964. if (bs->bio_pool)
  965. mempool_destroy(bs->bio_pool);
  966. biovec_free_pools(bs);
  967. kfree(bs);
  968. }
  969. struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size, int scale)
  970. {
  971. struct bio_set *bs = kmalloc(sizeof(*bs), GFP_KERNEL);
  972. if (!bs)
  973. return NULL;
  974. memset(bs, 0, sizeof(*bs));
  975. bs->bio_pool = mempool_create(bio_pool_size, mempool_alloc_slab,
  976. mempool_free_slab, bio_slab);
  977. if (!bs->bio_pool)
  978. goto bad;
  979. if (!biovec_create_pools(bs, bvec_pool_size, scale))
  980. return bs;
  981. bad:
  982. bioset_free(bs);
  983. return NULL;
  984. }
  985. static void __init biovec_init_slabs(void)
  986. {
  987. int i;
  988. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  989. int size;
  990. struct biovec_slab *bvs = bvec_slabs + i;
  991. size = bvs->nr_vecs * sizeof(struct bio_vec);
  992. bvs->slab = kmem_cache_create(bvs->name, size, 0,
  993. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  994. }
  995. }
  996. static int __init init_bio(void)
  997. {
  998. int megabytes, bvec_pool_entries;
  999. int scale = BIOVEC_NR_POOLS;
  1000. bio_slab = kmem_cache_create("bio", sizeof(struct bio), 0,
  1001. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1002. biovec_init_slabs();
  1003. megabytes = nr_free_pages() >> (20 - PAGE_SHIFT);
  1004. /*
  1005. * find out where to start scaling
  1006. */
  1007. if (megabytes <= 16)
  1008. scale = 0;
  1009. else if (megabytes <= 32)
  1010. scale = 1;
  1011. else if (megabytes <= 64)
  1012. scale = 2;
  1013. else if (megabytes <= 96)
  1014. scale = 3;
  1015. else if (megabytes <= 128)
  1016. scale = 4;
  1017. /*
  1018. * scale number of entries
  1019. */
  1020. bvec_pool_entries = megabytes * 2;
  1021. if (bvec_pool_entries > 256)
  1022. bvec_pool_entries = 256;
  1023. fs_bio_set = bioset_create(BIO_POOL_SIZE, bvec_pool_entries, scale);
  1024. if (!fs_bio_set)
  1025. panic("bio: can't allocate bios\n");
  1026. bio_split_pool = mempool_create(BIO_SPLIT_ENTRIES,
  1027. bio_pair_alloc, bio_pair_free, NULL);
  1028. if (!bio_split_pool)
  1029. panic("bio: can't create split pool\n");
  1030. return 0;
  1031. }
  1032. subsys_initcall(init_bio);
  1033. EXPORT_SYMBOL(bio_alloc);
  1034. EXPORT_SYMBOL(bio_put);
  1035. EXPORT_SYMBOL(bio_free);
  1036. EXPORT_SYMBOL(bio_endio);
  1037. EXPORT_SYMBOL(bio_init);
  1038. EXPORT_SYMBOL(__bio_clone);
  1039. EXPORT_SYMBOL(bio_clone);
  1040. EXPORT_SYMBOL(bio_phys_segments);
  1041. EXPORT_SYMBOL(bio_hw_segments);
  1042. EXPORT_SYMBOL(bio_add_page);
  1043. EXPORT_SYMBOL(bio_add_pc_page);
  1044. EXPORT_SYMBOL(bio_get_nr_vecs);
  1045. EXPORT_SYMBOL(bio_map_user);
  1046. EXPORT_SYMBOL(bio_unmap_user);
  1047. EXPORT_SYMBOL(bio_map_kern);
  1048. EXPORT_SYMBOL(bio_pair_release);
  1049. EXPORT_SYMBOL(bio_split);
  1050. EXPORT_SYMBOL(bio_split_pool);
  1051. EXPORT_SYMBOL(bio_copy_user);
  1052. EXPORT_SYMBOL(bio_uncopy_user);
  1053. EXPORT_SYMBOL(bioset_create);
  1054. EXPORT_SYMBOL(bioset_free);
  1055. EXPORT_SYMBOL(bio_alloc_bioset);