intel_cacheinfo.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062
  1. /*
  2. * Routines to indentify caches on Intel CPU.
  3. *
  4. * Changes:
  5. * Venkatesh Pallipadi : Adding cache identification through cpuid(4)
  6. * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
  7. * Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD.
  8. */
  9. #include <linux/init.h>
  10. #include <linux/slab.h>
  11. #include <linux/device.h>
  12. #include <linux/compiler.h>
  13. #include <linux/cpu.h>
  14. #include <linux/sched.h>
  15. #include <linux/pci.h>
  16. #include <asm/processor.h>
  17. #include <linux/smp.h>
  18. #include <asm/k8.h>
  19. #include <asm/smp.h>
  20. #define LVL_1_INST 1
  21. #define LVL_1_DATA 2
  22. #define LVL_2 3
  23. #define LVL_3 4
  24. #define LVL_TRACE 5
  25. struct _cache_table {
  26. unsigned char descriptor;
  27. char cache_type;
  28. short size;
  29. };
  30. /* All the cache descriptor types we care about (no TLB or
  31. trace cache entries) */
  32. static const struct _cache_table __cpuinitconst cache_table[] =
  33. {
  34. { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
  35. { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
  36. { 0x09, LVL_1_INST, 32 }, /* 4-way set assoc, 64 byte line size */
  37. { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
  38. { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
  39. { 0x0d, LVL_1_DATA, 16 }, /* 4-way set assoc, 64 byte line size */
  40. { 0x21, LVL_2, 256 }, /* 8-way set assoc, 64 byte line size */
  41. { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  42. { 0x23, LVL_3, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  43. { 0x25, LVL_3, 2048 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  44. { 0x29, LVL_3, 4096 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  45. { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
  46. { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
  47. { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  48. { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */
  49. { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
  50. { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  51. { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */
  52. { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  53. { 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */
  54. { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
  55. { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
  56. { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
  57. { 0x44, LVL_2, 1024 }, /* 4-way set assoc, 32 byte line size */
  58. { 0x45, LVL_2, 2048 }, /* 4-way set assoc, 32 byte line size */
  59. { 0x46, LVL_3, 4096 }, /* 4-way set assoc, 64 byte line size */
  60. { 0x47, LVL_3, 8192 }, /* 8-way set assoc, 64 byte line size */
  61. { 0x49, LVL_3, 4096 }, /* 16-way set assoc, 64 byte line size */
  62. { 0x4a, LVL_3, 6144 }, /* 12-way set assoc, 64 byte line size */
  63. { 0x4b, LVL_3, 8192 }, /* 16-way set assoc, 64 byte line size */
  64. { 0x4c, LVL_3, 12288 }, /* 12-way set assoc, 64 byte line size */
  65. { 0x4d, LVL_3, 16384 }, /* 16-way set assoc, 64 byte line size */
  66. { 0x4e, LVL_2, 6144 }, /* 24-way set assoc, 64 byte line size */
  67. { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  68. { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  69. { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  70. { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  71. { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
  72. { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
  73. { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
  74. { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */
  75. { 0x78, LVL_2, 1024 }, /* 4-way set assoc, 64 byte line size */
  76. { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  77. { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  78. { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  79. { 0x7c, LVL_2, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  80. { 0x7d, LVL_2, 2048 }, /* 8-way set assoc, 64 byte line size */
  81. { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
  82. { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
  83. { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
  84. { 0x84, LVL_2, 1024 }, /* 8-way set assoc, 32 byte line size */
  85. { 0x85, LVL_2, 2048 }, /* 8-way set assoc, 32 byte line size */
  86. { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
  87. { 0x87, LVL_2, 1024 }, /* 8-way set assoc, 64 byte line size */
  88. { 0xd0, LVL_3, 512 }, /* 4-way set assoc, 64 byte line size */
  89. { 0xd1, LVL_3, 1024 }, /* 4-way set assoc, 64 byte line size */
  90. { 0xd2, LVL_3, 2048 }, /* 4-way set assoc, 64 byte line size */
  91. { 0xd6, LVL_3, 1024 }, /* 8-way set assoc, 64 byte line size */
  92. { 0xd7, LVL_3, 2048 }, /* 8-way set assoc, 64 byte line size */
  93. { 0xd8, LVL_3, 4096 }, /* 12-way set assoc, 64 byte line size */
  94. { 0xdc, LVL_3, 2048 }, /* 12-way set assoc, 64 byte line size */
  95. { 0xdd, LVL_3, 4096 }, /* 12-way set assoc, 64 byte line size */
  96. { 0xde, LVL_3, 8192 }, /* 12-way set assoc, 64 byte line size */
  97. { 0xe2, LVL_3, 2048 }, /* 16-way set assoc, 64 byte line size */
  98. { 0xe3, LVL_3, 4096 }, /* 16-way set assoc, 64 byte line size */
  99. { 0xe4, LVL_3, 8192 }, /* 16-way set assoc, 64 byte line size */
  100. { 0xea, LVL_3, 12288 }, /* 24-way set assoc, 64 byte line size */
  101. { 0xeb, LVL_3, 18432 }, /* 24-way set assoc, 64 byte line size */
  102. { 0xec, LVL_3, 24576 }, /* 24-way set assoc, 64 byte line size */
  103. { 0x00, 0, 0}
  104. };
  105. enum _cache_type {
  106. CACHE_TYPE_NULL = 0,
  107. CACHE_TYPE_DATA = 1,
  108. CACHE_TYPE_INST = 2,
  109. CACHE_TYPE_UNIFIED = 3
  110. };
  111. union _cpuid4_leaf_eax {
  112. struct {
  113. enum _cache_type type:5;
  114. unsigned int level:3;
  115. unsigned int is_self_initializing:1;
  116. unsigned int is_fully_associative:1;
  117. unsigned int reserved:4;
  118. unsigned int num_threads_sharing:12;
  119. unsigned int num_cores_on_die:6;
  120. } split;
  121. u32 full;
  122. };
  123. union _cpuid4_leaf_ebx {
  124. struct {
  125. unsigned int coherency_line_size:12;
  126. unsigned int physical_line_partition:10;
  127. unsigned int ways_of_associativity:10;
  128. } split;
  129. u32 full;
  130. };
  131. union _cpuid4_leaf_ecx {
  132. struct {
  133. unsigned int number_of_sets:32;
  134. } split;
  135. u32 full;
  136. };
  137. struct _cpuid4_info {
  138. union _cpuid4_leaf_eax eax;
  139. union _cpuid4_leaf_ebx ebx;
  140. union _cpuid4_leaf_ecx ecx;
  141. unsigned long size;
  142. bool can_disable;
  143. unsigned int l3_indices;
  144. DECLARE_BITMAP(shared_cpu_map, NR_CPUS);
  145. };
  146. /* subset of above _cpuid4_info w/o shared_cpu_map */
  147. struct _cpuid4_info_regs {
  148. union _cpuid4_leaf_eax eax;
  149. union _cpuid4_leaf_ebx ebx;
  150. union _cpuid4_leaf_ecx ecx;
  151. unsigned long size;
  152. bool can_disable;
  153. unsigned int l3_indices;
  154. };
  155. unsigned short num_cache_leaves;
  156. /* AMD doesn't have CPUID4. Emulate it here to report the same
  157. information to the user. This makes some assumptions about the machine:
  158. L2 not shared, no SMT etc. that is currently true on AMD CPUs.
  159. In theory the TLBs could be reported as fake type (they are in "dummy").
  160. Maybe later */
  161. union l1_cache {
  162. struct {
  163. unsigned line_size:8;
  164. unsigned lines_per_tag:8;
  165. unsigned assoc:8;
  166. unsigned size_in_kb:8;
  167. };
  168. unsigned val;
  169. };
  170. union l2_cache {
  171. struct {
  172. unsigned line_size:8;
  173. unsigned lines_per_tag:4;
  174. unsigned assoc:4;
  175. unsigned size_in_kb:16;
  176. };
  177. unsigned val;
  178. };
  179. union l3_cache {
  180. struct {
  181. unsigned line_size:8;
  182. unsigned lines_per_tag:4;
  183. unsigned assoc:4;
  184. unsigned res:2;
  185. unsigned size_encoded:14;
  186. };
  187. unsigned val;
  188. };
  189. static const unsigned short __cpuinitconst assocs[] = {
  190. [1] = 1,
  191. [2] = 2,
  192. [4] = 4,
  193. [6] = 8,
  194. [8] = 16,
  195. [0xa] = 32,
  196. [0xb] = 48,
  197. [0xc] = 64,
  198. [0xd] = 96,
  199. [0xe] = 128,
  200. [0xf] = 0xffff /* fully associative - no way to show this currently */
  201. };
  202. static const unsigned char __cpuinitconst levels[] = { 1, 1, 2, 3 };
  203. static const unsigned char __cpuinitconst types[] = { 1, 2, 3, 3 };
  204. static void __cpuinit
  205. amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
  206. union _cpuid4_leaf_ebx *ebx,
  207. union _cpuid4_leaf_ecx *ecx)
  208. {
  209. unsigned dummy;
  210. unsigned line_size, lines_per_tag, assoc, size_in_kb;
  211. union l1_cache l1i, l1d;
  212. union l2_cache l2;
  213. union l3_cache l3;
  214. union l1_cache *l1 = &l1d;
  215. eax->full = 0;
  216. ebx->full = 0;
  217. ecx->full = 0;
  218. cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
  219. cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);
  220. switch (leaf) {
  221. case 1:
  222. l1 = &l1i;
  223. case 0:
  224. if (!l1->val)
  225. return;
  226. assoc = assocs[l1->assoc];
  227. line_size = l1->line_size;
  228. lines_per_tag = l1->lines_per_tag;
  229. size_in_kb = l1->size_in_kb;
  230. break;
  231. case 2:
  232. if (!l2.val)
  233. return;
  234. assoc = assocs[l2.assoc];
  235. line_size = l2.line_size;
  236. lines_per_tag = l2.lines_per_tag;
  237. /* cpu_data has errata corrections for K7 applied */
  238. size_in_kb = current_cpu_data.x86_cache_size;
  239. break;
  240. case 3:
  241. if (!l3.val)
  242. return;
  243. assoc = assocs[l3.assoc];
  244. line_size = l3.line_size;
  245. lines_per_tag = l3.lines_per_tag;
  246. size_in_kb = l3.size_encoded * 512;
  247. if (boot_cpu_has(X86_FEATURE_AMD_DCM)) {
  248. size_in_kb = size_in_kb >> 1;
  249. assoc = assoc >> 1;
  250. }
  251. break;
  252. default:
  253. return;
  254. }
  255. eax->split.is_self_initializing = 1;
  256. eax->split.type = types[leaf];
  257. eax->split.level = levels[leaf];
  258. eax->split.num_threads_sharing = 0;
  259. eax->split.num_cores_on_die = current_cpu_data.x86_max_cores - 1;
  260. if (assoc == 0xffff)
  261. eax->split.is_fully_associative = 1;
  262. ebx->split.coherency_line_size = line_size - 1;
  263. ebx->split.ways_of_associativity = assoc - 1;
  264. ebx->split.physical_line_partition = lines_per_tag - 1;
  265. ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
  266. (ebx->split.ways_of_associativity + 1) - 1;
  267. }
  268. static unsigned int __cpuinit amd_calc_l3_indices(void)
  269. {
  270. /*
  271. * We're called over smp_call_function_single() and therefore
  272. * are on the correct cpu.
  273. */
  274. int cpu = smp_processor_id();
  275. int node = cpu_to_node(cpu);
  276. struct pci_dev *dev = node_to_k8_nb_misc(node);
  277. unsigned int sc0, sc1, sc2, sc3;
  278. u32 val;
  279. pci_read_config_dword(dev, 0x1C4, &val);
  280. /* calculate subcache sizes */
  281. sc0 = !(val & BIT(0));
  282. sc1 = !(val & BIT(4));
  283. sc2 = !(val & BIT(8)) + !(val & BIT(9));
  284. sc3 = !(val & BIT(12)) + !(val & BIT(13));
  285. return (max(max(max(sc0, sc1), sc2), sc3) << 10) - 1;
  286. }
  287. static void __cpuinit
  288. amd_check_l3_disable(int index, struct _cpuid4_info_regs *this_leaf)
  289. {
  290. if (index < 3)
  291. return;
  292. if (boot_cpu_data.x86 == 0x11)
  293. return;
  294. /* see errata #382 and #388 */
  295. if ((boot_cpu_data.x86 == 0x10) &&
  296. ((boot_cpu_data.x86_model < 0x8) ||
  297. (boot_cpu_data.x86_mask < 0x1)))
  298. return;
  299. this_leaf->can_disable = true;
  300. this_leaf->l3_indices = amd_calc_l3_indices();
  301. }
  302. static int
  303. __cpuinit cpuid4_cache_lookup_regs(int index,
  304. struct _cpuid4_info_regs *this_leaf)
  305. {
  306. union _cpuid4_leaf_eax eax;
  307. union _cpuid4_leaf_ebx ebx;
  308. union _cpuid4_leaf_ecx ecx;
  309. unsigned edx;
  310. if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
  311. amd_cpuid4(index, &eax, &ebx, &ecx);
  312. if (boot_cpu_data.x86 >= 0x10)
  313. amd_check_l3_disable(index, this_leaf);
  314. } else {
  315. cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
  316. }
  317. if (eax.split.type == CACHE_TYPE_NULL)
  318. return -EIO; /* better error ? */
  319. this_leaf->eax = eax;
  320. this_leaf->ebx = ebx;
  321. this_leaf->ecx = ecx;
  322. this_leaf->size = (ecx.split.number_of_sets + 1) *
  323. (ebx.split.coherency_line_size + 1) *
  324. (ebx.split.physical_line_partition + 1) *
  325. (ebx.split.ways_of_associativity + 1);
  326. return 0;
  327. }
  328. static int __cpuinit find_num_cache_leaves(void)
  329. {
  330. unsigned int eax, ebx, ecx, edx;
  331. union _cpuid4_leaf_eax cache_eax;
  332. int i = -1;
  333. do {
  334. ++i;
  335. /* Do cpuid(4) loop to find out num_cache_leaves */
  336. cpuid_count(4, i, &eax, &ebx, &ecx, &edx);
  337. cache_eax.full = eax;
  338. } while (cache_eax.split.type != CACHE_TYPE_NULL);
  339. return i;
  340. }
  341. unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c)
  342. {
  343. /* Cache sizes */
  344. unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0;
  345. unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
  346. unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
  347. unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
  348. #ifdef CONFIG_X86_HT
  349. unsigned int cpu = c->cpu_index;
  350. #endif
  351. if (c->cpuid_level > 3) {
  352. static int is_initialized;
  353. if (is_initialized == 0) {
  354. /* Init num_cache_leaves from boot CPU */
  355. num_cache_leaves = find_num_cache_leaves();
  356. is_initialized++;
  357. }
  358. /*
  359. * Whenever possible use cpuid(4), deterministic cache
  360. * parameters cpuid leaf to find the cache details
  361. */
  362. for (i = 0; i < num_cache_leaves; i++) {
  363. struct _cpuid4_info_regs this_leaf;
  364. int retval;
  365. retval = cpuid4_cache_lookup_regs(i, &this_leaf);
  366. if (retval >= 0) {
  367. switch (this_leaf.eax.split.level) {
  368. case 1:
  369. if (this_leaf.eax.split.type ==
  370. CACHE_TYPE_DATA)
  371. new_l1d = this_leaf.size/1024;
  372. else if (this_leaf.eax.split.type ==
  373. CACHE_TYPE_INST)
  374. new_l1i = this_leaf.size/1024;
  375. break;
  376. case 2:
  377. new_l2 = this_leaf.size/1024;
  378. num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
  379. index_msb = get_count_order(num_threads_sharing);
  380. l2_id = c->apicid >> index_msb;
  381. break;
  382. case 3:
  383. new_l3 = this_leaf.size/1024;
  384. num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
  385. index_msb = get_count_order(
  386. num_threads_sharing);
  387. l3_id = c->apicid >> index_msb;
  388. break;
  389. default:
  390. break;
  391. }
  392. }
  393. }
  394. }
  395. /*
  396. * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
  397. * trace cache
  398. */
  399. if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) {
  400. /* supports eax=2 call */
  401. int j, n;
  402. unsigned int regs[4];
  403. unsigned char *dp = (unsigned char *)regs;
  404. int only_trace = 0;
  405. if (num_cache_leaves != 0 && c->x86 == 15)
  406. only_trace = 1;
  407. /* Number of times to iterate */
  408. n = cpuid_eax(2) & 0xFF;
  409. for (i = 0 ; i < n ; i++) {
  410. cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
  411. /* If bit 31 is set, this is an unknown format */
  412. for (j = 0 ; j < 3 ; j++)
  413. if (regs[j] & (1 << 31))
  414. regs[j] = 0;
  415. /* Byte 0 is level count, not a descriptor */
  416. for (j = 1 ; j < 16 ; j++) {
  417. unsigned char des = dp[j];
  418. unsigned char k = 0;
  419. /* look up this descriptor in the table */
  420. while (cache_table[k].descriptor != 0) {
  421. if (cache_table[k].descriptor == des) {
  422. if (only_trace && cache_table[k].cache_type != LVL_TRACE)
  423. break;
  424. switch (cache_table[k].cache_type) {
  425. case LVL_1_INST:
  426. l1i += cache_table[k].size;
  427. break;
  428. case LVL_1_DATA:
  429. l1d += cache_table[k].size;
  430. break;
  431. case LVL_2:
  432. l2 += cache_table[k].size;
  433. break;
  434. case LVL_3:
  435. l3 += cache_table[k].size;
  436. break;
  437. case LVL_TRACE:
  438. trace += cache_table[k].size;
  439. break;
  440. }
  441. break;
  442. }
  443. k++;
  444. }
  445. }
  446. }
  447. }
  448. if (new_l1d)
  449. l1d = new_l1d;
  450. if (new_l1i)
  451. l1i = new_l1i;
  452. if (new_l2) {
  453. l2 = new_l2;
  454. #ifdef CONFIG_X86_HT
  455. per_cpu(cpu_llc_id, cpu) = l2_id;
  456. #endif
  457. }
  458. if (new_l3) {
  459. l3 = new_l3;
  460. #ifdef CONFIG_X86_HT
  461. per_cpu(cpu_llc_id, cpu) = l3_id;
  462. #endif
  463. }
  464. c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
  465. return l2;
  466. }
  467. #ifdef CONFIG_SYSFS
  468. /* pointer to _cpuid4_info array (for each cache leaf) */
  469. static DEFINE_PER_CPU(struct _cpuid4_info *, ici_cpuid4_info);
  470. #define CPUID4_INFO_IDX(x, y) (&((per_cpu(ici_cpuid4_info, x))[y]))
  471. #ifdef CONFIG_SMP
  472. static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
  473. {
  474. struct _cpuid4_info *this_leaf, *sibling_leaf;
  475. unsigned long num_threads_sharing;
  476. int index_msb, i, sibling;
  477. struct cpuinfo_x86 *c = &cpu_data(cpu);
  478. if ((index == 3) && (c->x86_vendor == X86_VENDOR_AMD)) {
  479. for_each_cpu(i, c->llc_shared_map) {
  480. if (!per_cpu(ici_cpuid4_info, i))
  481. continue;
  482. this_leaf = CPUID4_INFO_IDX(i, index);
  483. for_each_cpu(sibling, c->llc_shared_map) {
  484. if (!cpu_online(sibling))
  485. continue;
  486. set_bit(sibling, this_leaf->shared_cpu_map);
  487. }
  488. }
  489. return;
  490. }
  491. this_leaf = CPUID4_INFO_IDX(cpu, index);
  492. num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing;
  493. if (num_threads_sharing == 1)
  494. cpumask_set_cpu(cpu, to_cpumask(this_leaf->shared_cpu_map));
  495. else {
  496. index_msb = get_count_order(num_threads_sharing);
  497. for_each_online_cpu(i) {
  498. if (cpu_data(i).apicid >> index_msb ==
  499. c->apicid >> index_msb) {
  500. cpumask_set_cpu(i,
  501. to_cpumask(this_leaf->shared_cpu_map));
  502. if (i != cpu && per_cpu(ici_cpuid4_info, i)) {
  503. sibling_leaf =
  504. CPUID4_INFO_IDX(i, index);
  505. cpumask_set_cpu(cpu, to_cpumask(
  506. sibling_leaf->shared_cpu_map));
  507. }
  508. }
  509. }
  510. }
  511. }
  512. static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index)
  513. {
  514. struct _cpuid4_info *this_leaf, *sibling_leaf;
  515. int sibling;
  516. this_leaf = CPUID4_INFO_IDX(cpu, index);
  517. for_each_cpu(sibling, to_cpumask(this_leaf->shared_cpu_map)) {
  518. sibling_leaf = CPUID4_INFO_IDX(sibling, index);
  519. cpumask_clear_cpu(cpu,
  520. to_cpumask(sibling_leaf->shared_cpu_map));
  521. }
  522. }
  523. #else
  524. static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
  525. {
  526. }
  527. static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index)
  528. {
  529. }
  530. #endif
  531. static void __cpuinit free_cache_attributes(unsigned int cpu)
  532. {
  533. int i;
  534. for (i = 0; i < num_cache_leaves; i++)
  535. cache_remove_shared_cpu_map(cpu, i);
  536. kfree(per_cpu(ici_cpuid4_info, cpu));
  537. per_cpu(ici_cpuid4_info, cpu) = NULL;
  538. }
  539. static int
  540. __cpuinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf)
  541. {
  542. struct _cpuid4_info_regs *leaf_regs =
  543. (struct _cpuid4_info_regs *)this_leaf;
  544. return cpuid4_cache_lookup_regs(index, leaf_regs);
  545. }
  546. static void __cpuinit get_cpu_leaves(void *_retval)
  547. {
  548. int j, *retval = _retval, cpu = smp_processor_id();
  549. /* Do cpuid and store the results */
  550. for (j = 0; j < num_cache_leaves; j++) {
  551. struct _cpuid4_info *this_leaf;
  552. this_leaf = CPUID4_INFO_IDX(cpu, j);
  553. *retval = cpuid4_cache_lookup(j, this_leaf);
  554. if (unlikely(*retval < 0)) {
  555. int i;
  556. for (i = 0; i < j; i++)
  557. cache_remove_shared_cpu_map(cpu, i);
  558. break;
  559. }
  560. cache_shared_cpu_map_setup(cpu, j);
  561. }
  562. }
  563. static int __cpuinit detect_cache_attributes(unsigned int cpu)
  564. {
  565. int retval;
  566. if (num_cache_leaves == 0)
  567. return -ENOENT;
  568. per_cpu(ici_cpuid4_info, cpu) = kzalloc(
  569. sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL);
  570. if (per_cpu(ici_cpuid4_info, cpu) == NULL)
  571. return -ENOMEM;
  572. smp_call_function_single(cpu, get_cpu_leaves, &retval, true);
  573. if (retval) {
  574. kfree(per_cpu(ici_cpuid4_info, cpu));
  575. per_cpu(ici_cpuid4_info, cpu) = NULL;
  576. }
  577. return retval;
  578. }
  579. #include <linux/kobject.h>
  580. #include <linux/sysfs.h>
  581. extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */
  582. /* pointer to kobject for cpuX/cache */
  583. static DEFINE_PER_CPU(struct kobject *, ici_cache_kobject);
  584. struct _index_kobject {
  585. struct kobject kobj;
  586. unsigned int cpu;
  587. unsigned short index;
  588. };
  589. /* pointer to array of kobjects for cpuX/cache/indexY */
  590. static DEFINE_PER_CPU(struct _index_kobject *, ici_index_kobject);
  591. #define INDEX_KOBJECT_PTR(x, y) (&((per_cpu(ici_index_kobject, x))[y]))
  592. #define show_one_plus(file_name, object, val) \
  593. static ssize_t show_##file_name \
  594. (struct _cpuid4_info *this_leaf, char *buf) \
  595. { \
  596. return sprintf(buf, "%lu\n", (unsigned long)this_leaf->object + val); \
  597. }
  598. show_one_plus(level, eax.split.level, 0);
  599. show_one_plus(coherency_line_size, ebx.split.coherency_line_size, 1);
  600. show_one_plus(physical_line_partition, ebx.split.physical_line_partition, 1);
  601. show_one_plus(ways_of_associativity, ebx.split.ways_of_associativity, 1);
  602. show_one_plus(number_of_sets, ecx.split.number_of_sets, 1);
  603. static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf)
  604. {
  605. return sprintf(buf, "%luK\n", this_leaf->size / 1024);
  606. }
  607. static ssize_t show_shared_cpu_map_func(struct _cpuid4_info *this_leaf,
  608. int type, char *buf)
  609. {
  610. ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
  611. int n = 0;
  612. if (len > 1) {
  613. const struct cpumask *mask;
  614. mask = to_cpumask(this_leaf->shared_cpu_map);
  615. n = type ?
  616. cpulist_scnprintf(buf, len-2, mask) :
  617. cpumask_scnprintf(buf, len-2, mask);
  618. buf[n++] = '\n';
  619. buf[n] = '\0';
  620. }
  621. return n;
  622. }
  623. static inline ssize_t show_shared_cpu_map(struct _cpuid4_info *leaf, char *buf)
  624. {
  625. return show_shared_cpu_map_func(leaf, 0, buf);
  626. }
  627. static inline ssize_t show_shared_cpu_list(struct _cpuid4_info *leaf, char *buf)
  628. {
  629. return show_shared_cpu_map_func(leaf, 1, buf);
  630. }
  631. static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf)
  632. {
  633. switch (this_leaf->eax.split.type) {
  634. case CACHE_TYPE_DATA:
  635. return sprintf(buf, "Data\n");
  636. case CACHE_TYPE_INST:
  637. return sprintf(buf, "Instruction\n");
  638. case CACHE_TYPE_UNIFIED:
  639. return sprintf(buf, "Unified\n");
  640. default:
  641. return sprintf(buf, "Unknown\n");
  642. }
  643. }
  644. #define to_object(k) container_of(k, struct _index_kobject, kobj)
  645. #define to_attr(a) container_of(a, struct _cache_attr, attr)
  646. static ssize_t show_cache_disable(struct _cpuid4_info *this_leaf, char *buf,
  647. unsigned int index)
  648. {
  649. int cpu = cpumask_first(to_cpumask(this_leaf->shared_cpu_map));
  650. int node = amd_get_nb_id(cpu);
  651. struct pci_dev *dev = node_to_k8_nb_misc(node);
  652. unsigned int reg = 0;
  653. if (!this_leaf->can_disable)
  654. return -EINVAL;
  655. if (!dev)
  656. return -EINVAL;
  657. pci_read_config_dword(dev, 0x1BC + index * 4, &reg);
  658. return sprintf(buf, "0x%08x\n", reg);
  659. }
  660. #define SHOW_CACHE_DISABLE(index) \
  661. static ssize_t \
  662. show_cache_disable_##index(struct _cpuid4_info *this_leaf, char *buf) \
  663. { \
  664. return show_cache_disable(this_leaf, buf, index); \
  665. }
  666. SHOW_CACHE_DISABLE(0)
  667. SHOW_CACHE_DISABLE(1)
  668. static ssize_t store_cache_disable(struct _cpuid4_info *this_leaf,
  669. const char *buf, size_t count, unsigned int index)
  670. {
  671. int cpu = cpumask_first(to_cpumask(this_leaf->shared_cpu_map));
  672. int node = amd_get_nb_id(cpu);
  673. struct pci_dev *dev = node_to_k8_nb_misc(node);
  674. unsigned long val = 0;
  675. #define SUBCACHE_MASK (3UL << 20)
  676. #define SUBCACHE_INDEX 0xfff
  677. if (!this_leaf->can_disable)
  678. return -EINVAL;
  679. if (!capable(CAP_SYS_ADMIN))
  680. return -EPERM;
  681. if (!dev)
  682. return -EINVAL;
  683. if (strict_strtoul(buf, 10, &val) < 0)
  684. return -EINVAL;
  685. /* do not allow writes outside of allowed bits */
  686. if ((val & ~(SUBCACHE_MASK | SUBCACHE_INDEX)) ||
  687. ((val & SUBCACHE_INDEX) > this_leaf->l3_indices))
  688. return -EINVAL;
  689. val |= BIT(30);
  690. pci_write_config_dword(dev, 0x1BC + index * 4, val);
  691. /*
  692. * We need to WBINVD on a core on the node containing the L3 cache which
  693. * indices we disable therefore a simple wbinvd() is not sufficient.
  694. */
  695. wbinvd_on_cpu(cpu);
  696. pci_write_config_dword(dev, 0x1BC + index * 4, val | BIT(31));
  697. return count;
  698. }
  699. #define STORE_CACHE_DISABLE(index) \
  700. static ssize_t \
  701. store_cache_disable_##index(struct _cpuid4_info *this_leaf, \
  702. const char *buf, size_t count) \
  703. { \
  704. return store_cache_disable(this_leaf, buf, count, index); \
  705. }
  706. STORE_CACHE_DISABLE(0)
  707. STORE_CACHE_DISABLE(1)
  708. struct _cache_attr {
  709. struct attribute attr;
  710. ssize_t (*show)(struct _cpuid4_info *, char *);
  711. ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count);
  712. };
  713. #define define_one_ro(_name) \
  714. static struct _cache_attr _name = \
  715. __ATTR(_name, 0444, show_##_name, NULL)
  716. define_one_ro(level);
  717. define_one_ro(type);
  718. define_one_ro(coherency_line_size);
  719. define_one_ro(physical_line_partition);
  720. define_one_ro(ways_of_associativity);
  721. define_one_ro(number_of_sets);
  722. define_one_ro(size);
  723. define_one_ro(shared_cpu_map);
  724. define_one_ro(shared_cpu_list);
  725. static struct _cache_attr cache_disable_0 = __ATTR(cache_disable_0, 0644,
  726. show_cache_disable_0, store_cache_disable_0);
  727. static struct _cache_attr cache_disable_1 = __ATTR(cache_disable_1, 0644,
  728. show_cache_disable_1, store_cache_disable_1);
  729. #define DEFAULT_SYSFS_CACHE_ATTRS \
  730. &type.attr, \
  731. &level.attr, \
  732. &coherency_line_size.attr, \
  733. &physical_line_partition.attr, \
  734. &ways_of_associativity.attr, \
  735. &number_of_sets.attr, \
  736. &size.attr, \
  737. &shared_cpu_map.attr, \
  738. &shared_cpu_list.attr
  739. static struct attribute *default_attrs[] = {
  740. DEFAULT_SYSFS_CACHE_ATTRS,
  741. NULL
  742. };
  743. static struct attribute *default_l3_attrs[] = {
  744. DEFAULT_SYSFS_CACHE_ATTRS,
  745. &cache_disable_0.attr,
  746. &cache_disable_1.attr,
  747. NULL
  748. };
  749. static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
  750. {
  751. struct _cache_attr *fattr = to_attr(attr);
  752. struct _index_kobject *this_leaf = to_object(kobj);
  753. ssize_t ret;
  754. ret = fattr->show ?
  755. fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
  756. buf) :
  757. 0;
  758. return ret;
  759. }
  760. static ssize_t store(struct kobject *kobj, struct attribute *attr,
  761. const char *buf, size_t count)
  762. {
  763. struct _cache_attr *fattr = to_attr(attr);
  764. struct _index_kobject *this_leaf = to_object(kobj);
  765. ssize_t ret;
  766. ret = fattr->store ?
  767. fattr->store(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
  768. buf, count) :
  769. 0;
  770. return ret;
  771. }
  772. static struct sysfs_ops sysfs_ops = {
  773. .show = show,
  774. .store = store,
  775. };
  776. static struct kobj_type ktype_cache = {
  777. .sysfs_ops = &sysfs_ops,
  778. .default_attrs = default_attrs,
  779. };
  780. static struct kobj_type ktype_percpu_entry = {
  781. .sysfs_ops = &sysfs_ops,
  782. };
  783. static void __cpuinit cpuid4_cache_sysfs_exit(unsigned int cpu)
  784. {
  785. kfree(per_cpu(ici_cache_kobject, cpu));
  786. kfree(per_cpu(ici_index_kobject, cpu));
  787. per_cpu(ici_cache_kobject, cpu) = NULL;
  788. per_cpu(ici_index_kobject, cpu) = NULL;
  789. free_cache_attributes(cpu);
  790. }
  791. static int __cpuinit cpuid4_cache_sysfs_init(unsigned int cpu)
  792. {
  793. int err;
  794. if (num_cache_leaves == 0)
  795. return -ENOENT;
  796. err = detect_cache_attributes(cpu);
  797. if (err)
  798. return err;
  799. /* Allocate all required memory */
  800. per_cpu(ici_cache_kobject, cpu) =
  801. kzalloc(sizeof(struct kobject), GFP_KERNEL);
  802. if (unlikely(per_cpu(ici_cache_kobject, cpu) == NULL))
  803. goto err_out;
  804. per_cpu(ici_index_kobject, cpu) = kzalloc(
  805. sizeof(struct _index_kobject) * num_cache_leaves, GFP_KERNEL);
  806. if (unlikely(per_cpu(ici_index_kobject, cpu) == NULL))
  807. goto err_out;
  808. return 0;
  809. err_out:
  810. cpuid4_cache_sysfs_exit(cpu);
  811. return -ENOMEM;
  812. }
  813. static DECLARE_BITMAP(cache_dev_map, NR_CPUS);
  814. /* Add/Remove cache interface for CPU device */
  815. static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
  816. {
  817. unsigned int cpu = sys_dev->id;
  818. unsigned long i, j;
  819. struct _index_kobject *this_object;
  820. struct _cpuid4_info *this_leaf;
  821. int retval;
  822. retval = cpuid4_cache_sysfs_init(cpu);
  823. if (unlikely(retval < 0))
  824. return retval;
  825. retval = kobject_init_and_add(per_cpu(ici_cache_kobject, cpu),
  826. &ktype_percpu_entry,
  827. &sys_dev->kobj, "%s", "cache");
  828. if (retval < 0) {
  829. cpuid4_cache_sysfs_exit(cpu);
  830. return retval;
  831. }
  832. for (i = 0; i < num_cache_leaves; i++) {
  833. this_object = INDEX_KOBJECT_PTR(cpu, i);
  834. this_object->cpu = cpu;
  835. this_object->index = i;
  836. this_leaf = CPUID4_INFO_IDX(cpu, i);
  837. if (this_leaf->can_disable)
  838. ktype_cache.default_attrs = default_l3_attrs;
  839. else
  840. ktype_cache.default_attrs = default_attrs;
  841. retval = kobject_init_and_add(&(this_object->kobj),
  842. &ktype_cache,
  843. per_cpu(ici_cache_kobject, cpu),
  844. "index%1lu", i);
  845. if (unlikely(retval)) {
  846. for (j = 0; j < i; j++)
  847. kobject_put(&(INDEX_KOBJECT_PTR(cpu, j)->kobj));
  848. kobject_put(per_cpu(ici_cache_kobject, cpu));
  849. cpuid4_cache_sysfs_exit(cpu);
  850. return retval;
  851. }
  852. kobject_uevent(&(this_object->kobj), KOBJ_ADD);
  853. }
  854. cpumask_set_cpu(cpu, to_cpumask(cache_dev_map));
  855. kobject_uevent(per_cpu(ici_cache_kobject, cpu), KOBJ_ADD);
  856. return 0;
  857. }
  858. static void __cpuinit cache_remove_dev(struct sys_device * sys_dev)
  859. {
  860. unsigned int cpu = sys_dev->id;
  861. unsigned long i;
  862. if (per_cpu(ici_cpuid4_info, cpu) == NULL)
  863. return;
  864. if (!cpumask_test_cpu(cpu, to_cpumask(cache_dev_map)))
  865. return;
  866. cpumask_clear_cpu(cpu, to_cpumask(cache_dev_map));
  867. for (i = 0; i < num_cache_leaves; i++)
  868. kobject_put(&(INDEX_KOBJECT_PTR(cpu, i)->kobj));
  869. kobject_put(per_cpu(ici_cache_kobject, cpu));
  870. cpuid4_cache_sysfs_exit(cpu);
  871. }
  872. static int __cpuinit cacheinfo_cpu_callback(struct notifier_block *nfb,
  873. unsigned long action, void *hcpu)
  874. {
  875. unsigned int cpu = (unsigned long)hcpu;
  876. struct sys_device *sys_dev;
  877. sys_dev = get_cpu_sysdev(cpu);
  878. switch (action) {
  879. case CPU_ONLINE:
  880. case CPU_ONLINE_FROZEN:
  881. cache_add_dev(sys_dev);
  882. break;
  883. case CPU_DEAD:
  884. case CPU_DEAD_FROZEN:
  885. cache_remove_dev(sys_dev);
  886. break;
  887. }
  888. return NOTIFY_OK;
  889. }
  890. static struct notifier_block __cpuinitdata cacheinfo_cpu_notifier = {
  891. .notifier_call = cacheinfo_cpu_callback,
  892. };
  893. static int __cpuinit cache_sysfs_init(void)
  894. {
  895. int i;
  896. if (num_cache_leaves == 0)
  897. return 0;
  898. for_each_online_cpu(i) {
  899. int err;
  900. struct sys_device *sys_dev = get_cpu_sysdev(i);
  901. err = cache_add_dev(sys_dev);
  902. if (err)
  903. return err;
  904. }
  905. register_hotcpu_notifier(&cacheinfo_cpu_notifier);
  906. return 0;
  907. }
  908. device_initcall(cache_sysfs_init);
  909. #endif