af_key.c 81 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/config.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/xfrm.h>
  29. #include <net/sock.h>
  30. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  31. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  32. /* List of all pfkey sockets. */
  33. static HLIST_HEAD(pfkey_table);
  34. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  35. static DEFINE_RWLOCK(pfkey_table_lock);
  36. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  37. static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
  38. struct pfkey_sock {
  39. /* struct sock must be the first member of struct pfkey_sock */
  40. struct sock sk;
  41. int registered;
  42. int promisc;
  43. };
  44. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  45. {
  46. return (struct pfkey_sock *)sk;
  47. }
  48. static void pfkey_sock_destruct(struct sock *sk)
  49. {
  50. skb_queue_purge(&sk->sk_receive_queue);
  51. if (!sock_flag(sk, SOCK_DEAD)) {
  52. printk("Attempt to release alive pfkey socket: %p\n", sk);
  53. return;
  54. }
  55. BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
  56. BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
  57. atomic_dec(&pfkey_socks_nr);
  58. }
  59. static void pfkey_table_grab(void)
  60. {
  61. write_lock_bh(&pfkey_table_lock);
  62. if (atomic_read(&pfkey_table_users)) {
  63. DECLARE_WAITQUEUE(wait, current);
  64. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  65. for(;;) {
  66. set_current_state(TASK_UNINTERRUPTIBLE);
  67. if (atomic_read(&pfkey_table_users) == 0)
  68. break;
  69. write_unlock_bh(&pfkey_table_lock);
  70. schedule();
  71. write_lock_bh(&pfkey_table_lock);
  72. }
  73. __set_current_state(TASK_RUNNING);
  74. remove_wait_queue(&pfkey_table_wait, &wait);
  75. }
  76. }
  77. static __inline__ void pfkey_table_ungrab(void)
  78. {
  79. write_unlock_bh(&pfkey_table_lock);
  80. wake_up(&pfkey_table_wait);
  81. }
  82. static __inline__ void pfkey_lock_table(void)
  83. {
  84. /* read_lock() synchronizes us to pfkey_table_grab */
  85. read_lock(&pfkey_table_lock);
  86. atomic_inc(&pfkey_table_users);
  87. read_unlock(&pfkey_table_lock);
  88. }
  89. static __inline__ void pfkey_unlock_table(void)
  90. {
  91. if (atomic_dec_and_test(&pfkey_table_users))
  92. wake_up(&pfkey_table_wait);
  93. }
  94. static struct proto_ops pfkey_ops;
  95. static void pfkey_insert(struct sock *sk)
  96. {
  97. pfkey_table_grab();
  98. sk_add_node(sk, &pfkey_table);
  99. pfkey_table_ungrab();
  100. }
  101. static void pfkey_remove(struct sock *sk)
  102. {
  103. pfkey_table_grab();
  104. sk_del_node_init(sk);
  105. pfkey_table_ungrab();
  106. }
  107. static struct proto key_proto = {
  108. .name = "KEY",
  109. .owner = THIS_MODULE,
  110. .obj_size = sizeof(struct pfkey_sock),
  111. };
  112. static int pfkey_create(struct socket *sock, int protocol)
  113. {
  114. struct sock *sk;
  115. int err;
  116. if (!capable(CAP_NET_ADMIN))
  117. return -EPERM;
  118. if (sock->type != SOCK_RAW)
  119. return -ESOCKTNOSUPPORT;
  120. if (protocol != PF_KEY_V2)
  121. return -EPROTONOSUPPORT;
  122. err = -ENOMEM;
  123. sk = sk_alloc(PF_KEY, GFP_KERNEL, &key_proto, 1);
  124. if (sk == NULL)
  125. goto out;
  126. sock->ops = &pfkey_ops;
  127. sock_init_data(sock, sk);
  128. sk->sk_family = PF_KEY;
  129. sk->sk_destruct = pfkey_sock_destruct;
  130. atomic_inc(&pfkey_socks_nr);
  131. pfkey_insert(sk);
  132. return 0;
  133. out:
  134. return err;
  135. }
  136. static int pfkey_release(struct socket *sock)
  137. {
  138. struct sock *sk = sock->sk;
  139. if (!sk)
  140. return 0;
  141. pfkey_remove(sk);
  142. sock_orphan(sk);
  143. sock->sk = NULL;
  144. skb_queue_purge(&sk->sk_write_queue);
  145. sock_put(sk);
  146. return 0;
  147. }
  148. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  149. int allocation, struct sock *sk)
  150. {
  151. int err = -ENOBUFS;
  152. sock_hold(sk);
  153. if (*skb2 == NULL) {
  154. if (atomic_read(&skb->users) != 1) {
  155. *skb2 = skb_clone(skb, allocation);
  156. } else {
  157. *skb2 = skb;
  158. atomic_inc(&skb->users);
  159. }
  160. }
  161. if (*skb2 != NULL) {
  162. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  163. skb_orphan(*skb2);
  164. skb_set_owner_r(*skb2, sk);
  165. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  166. sk->sk_data_ready(sk, (*skb2)->len);
  167. *skb2 = NULL;
  168. err = 0;
  169. }
  170. }
  171. sock_put(sk);
  172. return err;
  173. }
  174. /* Send SKB to all pfkey sockets matching selected criteria. */
  175. #define BROADCAST_ALL 0
  176. #define BROADCAST_ONE 1
  177. #define BROADCAST_REGISTERED 2
  178. #define BROADCAST_PROMISC_ONLY 4
  179. static int pfkey_broadcast(struct sk_buff *skb, int allocation,
  180. int broadcast_flags, struct sock *one_sk)
  181. {
  182. struct sock *sk;
  183. struct hlist_node *node;
  184. struct sk_buff *skb2 = NULL;
  185. int err = -ESRCH;
  186. /* XXX Do we need something like netlink_overrun? I think
  187. * XXX PF_KEY socket apps will not mind current behavior.
  188. */
  189. if (!skb)
  190. return -ENOMEM;
  191. pfkey_lock_table();
  192. sk_for_each(sk, node, &pfkey_table) {
  193. struct pfkey_sock *pfk = pfkey_sk(sk);
  194. int err2;
  195. /* Yes, it means that if you are meant to receive this
  196. * pfkey message you receive it twice as promiscuous
  197. * socket.
  198. */
  199. if (pfk->promisc)
  200. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  201. /* the exact target will be processed later */
  202. if (sk == one_sk)
  203. continue;
  204. if (broadcast_flags != BROADCAST_ALL) {
  205. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  206. continue;
  207. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  208. !pfk->registered)
  209. continue;
  210. if (broadcast_flags & BROADCAST_ONE)
  211. continue;
  212. }
  213. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  214. /* Error is cleare after succecful sending to at least one
  215. * registered KM */
  216. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  217. err = err2;
  218. }
  219. pfkey_unlock_table();
  220. if (one_sk != NULL)
  221. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  222. if (skb2)
  223. kfree_skb(skb2);
  224. kfree_skb(skb);
  225. return err;
  226. }
  227. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  228. {
  229. *new = *orig;
  230. }
  231. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  232. {
  233. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  234. struct sadb_msg *hdr;
  235. if (!skb)
  236. return -ENOBUFS;
  237. /* Woe be to the platform trying to support PFKEY yet
  238. * having normal errnos outside the 1-255 range, inclusive.
  239. */
  240. err = -err;
  241. if (err == ERESTARTSYS ||
  242. err == ERESTARTNOHAND ||
  243. err == ERESTARTNOINTR)
  244. err = EINTR;
  245. if (err >= 512)
  246. err = EINVAL;
  247. if (err <= 0 || err >= 256)
  248. BUG();
  249. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  250. pfkey_hdr_dup(hdr, orig);
  251. hdr->sadb_msg_errno = (uint8_t) err;
  252. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  253. sizeof(uint64_t));
  254. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
  255. return 0;
  256. }
  257. static u8 sadb_ext_min_len[] = {
  258. [SADB_EXT_RESERVED] = (u8) 0,
  259. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  260. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  261. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  262. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  263. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  264. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  265. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  266. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  267. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  268. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  269. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  270. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  271. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  272. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  273. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  274. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  275. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  276. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  277. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  278. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  279. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  280. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  281. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  282. };
  283. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  284. static int verify_address_len(void *p)
  285. {
  286. struct sadb_address *sp = p;
  287. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  288. struct sockaddr_in *sin;
  289. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  290. struct sockaddr_in6 *sin6;
  291. #endif
  292. int len;
  293. switch (addr->sa_family) {
  294. case AF_INET:
  295. len = sizeof(*sp) + sizeof(*sin) + (sizeof(uint64_t) - 1);
  296. len /= sizeof(uint64_t);
  297. if (sp->sadb_address_len != len ||
  298. sp->sadb_address_prefixlen > 32)
  299. return -EINVAL;
  300. break;
  301. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  302. case AF_INET6:
  303. len = sizeof(*sp) + sizeof(*sin6) + (sizeof(uint64_t) - 1);
  304. len /= sizeof(uint64_t);
  305. if (sp->sadb_address_len != len ||
  306. sp->sadb_address_prefixlen > 128)
  307. return -EINVAL;
  308. break;
  309. #endif
  310. default:
  311. /* It is user using kernel to keep track of security
  312. * associations for another protocol, such as
  313. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  314. * lengths.
  315. *
  316. * XXX Actually, association/policy database is not yet
  317. * XXX able to cope with arbitrary sockaddr families.
  318. * XXX When it can, remove this -EINVAL. -DaveM
  319. */
  320. return -EINVAL;
  321. break;
  322. };
  323. return 0;
  324. }
  325. static int present_and_same_family(struct sadb_address *src,
  326. struct sadb_address *dst)
  327. {
  328. struct sockaddr *s_addr, *d_addr;
  329. if (!src || !dst)
  330. return 0;
  331. s_addr = (struct sockaddr *)(src + 1);
  332. d_addr = (struct sockaddr *)(dst + 1);
  333. if (s_addr->sa_family != d_addr->sa_family)
  334. return 0;
  335. if (s_addr->sa_family != AF_INET
  336. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  337. && s_addr->sa_family != AF_INET6
  338. #endif
  339. )
  340. return 0;
  341. return 1;
  342. }
  343. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  344. {
  345. char *p = (char *) hdr;
  346. int len = skb->len;
  347. len -= sizeof(*hdr);
  348. p += sizeof(*hdr);
  349. while (len > 0) {
  350. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  351. uint16_t ext_type;
  352. int ext_len;
  353. ext_len = ehdr->sadb_ext_len;
  354. ext_len *= sizeof(uint64_t);
  355. ext_type = ehdr->sadb_ext_type;
  356. if (ext_len < sizeof(uint64_t) ||
  357. ext_len > len ||
  358. ext_type == SADB_EXT_RESERVED)
  359. return -EINVAL;
  360. if (ext_type <= SADB_EXT_MAX) {
  361. int min = (int) sadb_ext_min_len[ext_type];
  362. if (ext_len < min)
  363. return -EINVAL;
  364. if (ext_hdrs[ext_type-1] != NULL)
  365. return -EINVAL;
  366. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  367. ext_type == SADB_EXT_ADDRESS_DST ||
  368. ext_type == SADB_EXT_ADDRESS_PROXY ||
  369. ext_type == SADB_X_EXT_NAT_T_OA) {
  370. if (verify_address_len(p))
  371. return -EINVAL;
  372. }
  373. ext_hdrs[ext_type-1] = p;
  374. }
  375. p += ext_len;
  376. len -= ext_len;
  377. }
  378. return 0;
  379. }
  380. static uint16_t
  381. pfkey_satype2proto(uint8_t satype)
  382. {
  383. switch (satype) {
  384. case SADB_SATYPE_UNSPEC:
  385. return IPSEC_PROTO_ANY;
  386. case SADB_SATYPE_AH:
  387. return IPPROTO_AH;
  388. case SADB_SATYPE_ESP:
  389. return IPPROTO_ESP;
  390. case SADB_X_SATYPE_IPCOMP:
  391. return IPPROTO_COMP;
  392. break;
  393. default:
  394. return 0;
  395. }
  396. /* NOTREACHED */
  397. }
  398. static uint8_t
  399. pfkey_proto2satype(uint16_t proto)
  400. {
  401. switch (proto) {
  402. case IPPROTO_AH:
  403. return SADB_SATYPE_AH;
  404. case IPPROTO_ESP:
  405. return SADB_SATYPE_ESP;
  406. case IPPROTO_COMP:
  407. return SADB_X_SATYPE_IPCOMP;
  408. break;
  409. default:
  410. return 0;
  411. }
  412. /* NOTREACHED */
  413. }
  414. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  415. * say specifically 'just raw sockets' as we encode them as 255.
  416. */
  417. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  418. {
  419. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  420. }
  421. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  422. {
  423. return (proto ? proto : IPSEC_PROTO_ANY);
  424. }
  425. static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr,
  426. xfrm_address_t *xaddr)
  427. {
  428. switch (((struct sockaddr*)(addr + 1))->sa_family) {
  429. case AF_INET:
  430. xaddr->a4 =
  431. ((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr;
  432. return AF_INET;
  433. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  434. case AF_INET6:
  435. memcpy(xaddr->a6,
  436. &((struct sockaddr_in6 *)(addr + 1))->sin6_addr,
  437. sizeof(struct in6_addr));
  438. return AF_INET6;
  439. #endif
  440. default:
  441. return 0;
  442. }
  443. /* NOTREACHED */
  444. }
  445. static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
  446. {
  447. struct sadb_sa *sa;
  448. struct sadb_address *addr;
  449. uint16_t proto;
  450. unsigned short family;
  451. xfrm_address_t *xaddr;
  452. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  453. if (sa == NULL)
  454. return NULL;
  455. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  456. if (proto == 0)
  457. return NULL;
  458. /* sadb_address_len should be checked by caller */
  459. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  460. if (addr == NULL)
  461. return NULL;
  462. family = ((struct sockaddr *)(addr + 1))->sa_family;
  463. switch (family) {
  464. case AF_INET:
  465. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  466. break;
  467. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  468. case AF_INET6:
  469. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  470. break;
  471. #endif
  472. default:
  473. xaddr = NULL;
  474. }
  475. if (!xaddr)
  476. return NULL;
  477. return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
  478. }
  479. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  480. static int
  481. pfkey_sockaddr_size(sa_family_t family)
  482. {
  483. switch (family) {
  484. case AF_INET:
  485. return PFKEY_ALIGN8(sizeof(struct sockaddr_in));
  486. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  487. case AF_INET6:
  488. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6));
  489. #endif
  490. default:
  491. return 0;
  492. }
  493. /* NOTREACHED */
  494. }
  495. static struct sk_buff * pfkey_xfrm_state2msg(struct xfrm_state *x, int add_keys, int hsc)
  496. {
  497. struct sk_buff *skb;
  498. struct sadb_msg *hdr;
  499. struct sadb_sa *sa;
  500. struct sadb_lifetime *lifetime;
  501. struct sadb_address *addr;
  502. struct sadb_key *key;
  503. struct sadb_x_sa2 *sa2;
  504. struct sockaddr_in *sin;
  505. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  506. struct sockaddr_in6 *sin6;
  507. #endif
  508. int size;
  509. int auth_key_size = 0;
  510. int encrypt_key_size = 0;
  511. int sockaddr_size;
  512. struct xfrm_encap_tmpl *natt = NULL;
  513. /* address family check */
  514. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  515. if (!sockaddr_size)
  516. return ERR_PTR(-EINVAL);
  517. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  518. key(AE), (identity(SD),) (sensitivity)> */
  519. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  520. sizeof(struct sadb_lifetime) +
  521. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  522. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  523. sizeof(struct sadb_address)*2 +
  524. sockaddr_size*2 +
  525. sizeof(struct sadb_x_sa2);
  526. /* identity & sensitivity */
  527. if ((x->props.family == AF_INET &&
  528. x->sel.saddr.a4 != x->props.saddr.a4)
  529. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  530. || (x->props.family == AF_INET6 &&
  531. memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr)))
  532. #endif
  533. )
  534. size += sizeof(struct sadb_address) + sockaddr_size;
  535. if (add_keys) {
  536. if (x->aalg && x->aalg->alg_key_len) {
  537. auth_key_size =
  538. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  539. size += sizeof(struct sadb_key) + auth_key_size;
  540. }
  541. if (x->ealg && x->ealg->alg_key_len) {
  542. encrypt_key_size =
  543. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  544. size += sizeof(struct sadb_key) + encrypt_key_size;
  545. }
  546. }
  547. if (x->encap)
  548. natt = x->encap;
  549. if (natt && natt->encap_type) {
  550. size += sizeof(struct sadb_x_nat_t_type);
  551. size += sizeof(struct sadb_x_nat_t_port);
  552. size += sizeof(struct sadb_x_nat_t_port);
  553. }
  554. skb = alloc_skb(size + 16, GFP_ATOMIC);
  555. if (skb == NULL)
  556. return ERR_PTR(-ENOBUFS);
  557. /* call should fill header later */
  558. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  559. memset(hdr, 0, size); /* XXX do we need this ? */
  560. hdr->sadb_msg_len = size / sizeof(uint64_t);
  561. /* sa */
  562. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  563. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  564. sa->sadb_sa_exttype = SADB_EXT_SA;
  565. sa->sadb_sa_spi = x->id.spi;
  566. sa->sadb_sa_replay = x->props.replay_window;
  567. switch (x->km.state) {
  568. case XFRM_STATE_VALID:
  569. sa->sadb_sa_state = x->km.dying ?
  570. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  571. break;
  572. case XFRM_STATE_ACQ:
  573. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  574. break;
  575. default:
  576. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  577. break;
  578. }
  579. sa->sadb_sa_auth = 0;
  580. if (x->aalg) {
  581. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  582. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  583. }
  584. sa->sadb_sa_encrypt = 0;
  585. BUG_ON(x->ealg && x->calg);
  586. if (x->ealg) {
  587. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  588. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  589. }
  590. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  591. if (x->calg) {
  592. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  593. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  594. }
  595. sa->sadb_sa_flags = 0;
  596. if (x->props.flags & XFRM_STATE_NOECN)
  597. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  598. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  599. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  600. /* hard time */
  601. if (hsc & 2) {
  602. lifetime = (struct sadb_lifetime *) skb_put(skb,
  603. sizeof(struct sadb_lifetime));
  604. lifetime->sadb_lifetime_len =
  605. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  606. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  607. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  608. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  609. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  610. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  611. }
  612. /* soft time */
  613. if (hsc & 1) {
  614. lifetime = (struct sadb_lifetime *) skb_put(skb,
  615. sizeof(struct sadb_lifetime));
  616. lifetime->sadb_lifetime_len =
  617. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  618. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  619. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  620. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  621. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  622. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  623. }
  624. /* current time */
  625. lifetime = (struct sadb_lifetime *) skb_put(skb,
  626. sizeof(struct sadb_lifetime));
  627. lifetime->sadb_lifetime_len =
  628. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  629. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  630. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  631. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  632. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  633. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  634. /* src address */
  635. addr = (struct sadb_address*) skb_put(skb,
  636. sizeof(struct sadb_address)+sockaddr_size);
  637. addr->sadb_address_len =
  638. (sizeof(struct sadb_address)+sockaddr_size)/
  639. sizeof(uint64_t);
  640. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  641. /* "if the ports are non-zero, then the sadb_address_proto field,
  642. normally zero, MUST be filled in with the transport
  643. protocol's number." - RFC2367 */
  644. addr->sadb_address_proto = 0;
  645. addr->sadb_address_reserved = 0;
  646. if (x->props.family == AF_INET) {
  647. addr->sadb_address_prefixlen = 32;
  648. sin = (struct sockaddr_in *) (addr + 1);
  649. sin->sin_family = AF_INET;
  650. sin->sin_addr.s_addr = x->props.saddr.a4;
  651. sin->sin_port = 0;
  652. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  653. }
  654. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  655. else if (x->props.family == AF_INET6) {
  656. addr->sadb_address_prefixlen = 128;
  657. sin6 = (struct sockaddr_in6 *) (addr + 1);
  658. sin6->sin6_family = AF_INET6;
  659. sin6->sin6_port = 0;
  660. sin6->sin6_flowinfo = 0;
  661. memcpy(&sin6->sin6_addr, x->props.saddr.a6,
  662. sizeof(struct in6_addr));
  663. sin6->sin6_scope_id = 0;
  664. }
  665. #endif
  666. else
  667. BUG();
  668. /* dst address */
  669. addr = (struct sadb_address*) skb_put(skb,
  670. sizeof(struct sadb_address)+sockaddr_size);
  671. addr->sadb_address_len =
  672. (sizeof(struct sadb_address)+sockaddr_size)/
  673. sizeof(uint64_t);
  674. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  675. addr->sadb_address_proto = 0;
  676. addr->sadb_address_prefixlen = 32; /* XXX */
  677. addr->sadb_address_reserved = 0;
  678. if (x->props.family == AF_INET) {
  679. sin = (struct sockaddr_in *) (addr + 1);
  680. sin->sin_family = AF_INET;
  681. sin->sin_addr.s_addr = x->id.daddr.a4;
  682. sin->sin_port = 0;
  683. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  684. if (x->sel.saddr.a4 != x->props.saddr.a4) {
  685. addr = (struct sadb_address*) skb_put(skb,
  686. sizeof(struct sadb_address)+sockaddr_size);
  687. addr->sadb_address_len =
  688. (sizeof(struct sadb_address)+sockaddr_size)/
  689. sizeof(uint64_t);
  690. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  691. addr->sadb_address_proto =
  692. pfkey_proto_from_xfrm(x->sel.proto);
  693. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  694. addr->sadb_address_reserved = 0;
  695. sin = (struct sockaddr_in *) (addr + 1);
  696. sin->sin_family = AF_INET;
  697. sin->sin_addr.s_addr = x->sel.saddr.a4;
  698. sin->sin_port = x->sel.sport;
  699. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  700. }
  701. }
  702. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  703. else if (x->props.family == AF_INET6) {
  704. addr->sadb_address_prefixlen = 128;
  705. sin6 = (struct sockaddr_in6 *) (addr + 1);
  706. sin6->sin6_family = AF_INET6;
  707. sin6->sin6_port = 0;
  708. sin6->sin6_flowinfo = 0;
  709. memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr));
  710. sin6->sin6_scope_id = 0;
  711. if (memcmp (x->sel.saddr.a6, x->props.saddr.a6,
  712. sizeof(struct in6_addr))) {
  713. addr = (struct sadb_address *) skb_put(skb,
  714. sizeof(struct sadb_address)+sockaddr_size);
  715. addr->sadb_address_len =
  716. (sizeof(struct sadb_address)+sockaddr_size)/
  717. sizeof(uint64_t);
  718. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  719. addr->sadb_address_proto =
  720. pfkey_proto_from_xfrm(x->sel.proto);
  721. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  722. addr->sadb_address_reserved = 0;
  723. sin6 = (struct sockaddr_in6 *) (addr + 1);
  724. sin6->sin6_family = AF_INET6;
  725. sin6->sin6_port = x->sel.sport;
  726. sin6->sin6_flowinfo = 0;
  727. memcpy(&sin6->sin6_addr, x->sel.saddr.a6,
  728. sizeof(struct in6_addr));
  729. sin6->sin6_scope_id = 0;
  730. }
  731. }
  732. #endif
  733. else
  734. BUG();
  735. /* auth key */
  736. if (add_keys && auth_key_size) {
  737. key = (struct sadb_key *) skb_put(skb,
  738. sizeof(struct sadb_key)+auth_key_size);
  739. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  740. sizeof(uint64_t);
  741. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  742. key->sadb_key_bits = x->aalg->alg_key_len;
  743. key->sadb_key_reserved = 0;
  744. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  745. }
  746. /* encrypt key */
  747. if (add_keys && encrypt_key_size) {
  748. key = (struct sadb_key *) skb_put(skb,
  749. sizeof(struct sadb_key)+encrypt_key_size);
  750. key->sadb_key_len = (sizeof(struct sadb_key) +
  751. encrypt_key_size) / sizeof(uint64_t);
  752. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  753. key->sadb_key_bits = x->ealg->alg_key_len;
  754. key->sadb_key_reserved = 0;
  755. memcpy(key + 1, x->ealg->alg_key,
  756. (x->ealg->alg_key_len+7)/8);
  757. }
  758. /* sa */
  759. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  760. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  761. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  762. sa2->sadb_x_sa2_mode = x->props.mode + 1;
  763. sa2->sadb_x_sa2_reserved1 = 0;
  764. sa2->sadb_x_sa2_reserved2 = 0;
  765. sa2->sadb_x_sa2_sequence = 0;
  766. sa2->sadb_x_sa2_reqid = x->props.reqid;
  767. if (natt && natt->encap_type) {
  768. struct sadb_x_nat_t_type *n_type;
  769. struct sadb_x_nat_t_port *n_port;
  770. /* type */
  771. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  772. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  773. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  774. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  775. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  776. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  777. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  778. /* source port */
  779. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  780. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  781. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  782. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  783. n_port->sadb_x_nat_t_port_reserved = 0;
  784. /* dest port */
  785. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  786. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  787. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  788. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  789. n_port->sadb_x_nat_t_port_reserved = 0;
  790. }
  791. return skb;
  792. }
  793. static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
  794. void **ext_hdrs)
  795. {
  796. struct xfrm_state *x;
  797. struct sadb_lifetime *lifetime;
  798. struct sadb_sa *sa;
  799. struct sadb_key *key;
  800. uint16_t proto;
  801. int err;
  802. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  803. if (!sa ||
  804. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  805. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  806. return ERR_PTR(-EINVAL);
  807. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  808. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  809. return ERR_PTR(-EINVAL);
  810. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  811. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  812. return ERR_PTR(-EINVAL);
  813. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  814. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  815. return ERR_PTR(-EINVAL);
  816. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  817. if (proto == 0)
  818. return ERR_PTR(-EINVAL);
  819. /* default error is no buffer space */
  820. err = -ENOBUFS;
  821. /* RFC2367:
  822. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  823. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  824. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  825. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  826. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  827. not true.
  828. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  829. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  830. */
  831. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  832. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  833. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  834. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  835. return ERR_PTR(-EINVAL);
  836. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  837. if (key != NULL &&
  838. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  839. ((key->sadb_key_bits+7) / 8 == 0 ||
  840. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  841. return ERR_PTR(-EINVAL);
  842. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  843. if (key != NULL &&
  844. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  845. ((key->sadb_key_bits+7) / 8 == 0 ||
  846. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  847. return ERR_PTR(-EINVAL);
  848. x = xfrm_state_alloc();
  849. if (x == NULL)
  850. return ERR_PTR(-ENOBUFS);
  851. x->id.proto = proto;
  852. x->id.spi = sa->sadb_sa_spi;
  853. x->props.replay_window = sa->sadb_sa_replay;
  854. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  855. x->props.flags |= XFRM_STATE_NOECN;
  856. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  857. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  858. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  859. if (lifetime != NULL) {
  860. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  861. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  862. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  863. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  864. }
  865. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  866. if (lifetime != NULL) {
  867. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  868. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  869. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  870. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  871. }
  872. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  873. if (sa->sadb_sa_auth) {
  874. int keysize = 0;
  875. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  876. if (!a) {
  877. err = -ENOSYS;
  878. goto out;
  879. }
  880. if (key)
  881. keysize = (key->sadb_key_bits + 7) / 8;
  882. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  883. if (!x->aalg)
  884. goto out;
  885. strcpy(x->aalg->alg_name, a->name);
  886. x->aalg->alg_key_len = 0;
  887. if (key) {
  888. x->aalg->alg_key_len = key->sadb_key_bits;
  889. memcpy(x->aalg->alg_key, key+1, keysize);
  890. }
  891. x->props.aalgo = sa->sadb_sa_auth;
  892. /* x->algo.flags = sa->sadb_sa_flags; */
  893. }
  894. if (sa->sadb_sa_encrypt) {
  895. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  896. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  897. if (!a) {
  898. err = -ENOSYS;
  899. goto out;
  900. }
  901. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  902. if (!x->calg)
  903. goto out;
  904. strcpy(x->calg->alg_name, a->name);
  905. x->props.calgo = sa->sadb_sa_encrypt;
  906. } else {
  907. int keysize = 0;
  908. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  909. if (!a) {
  910. err = -ENOSYS;
  911. goto out;
  912. }
  913. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  914. if (key)
  915. keysize = (key->sadb_key_bits + 7) / 8;
  916. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  917. if (!x->ealg)
  918. goto out;
  919. strcpy(x->ealg->alg_name, a->name);
  920. x->ealg->alg_key_len = 0;
  921. if (key) {
  922. x->ealg->alg_key_len = key->sadb_key_bits;
  923. memcpy(x->ealg->alg_key, key+1, keysize);
  924. }
  925. x->props.ealgo = sa->sadb_sa_encrypt;
  926. }
  927. }
  928. /* x->algo.flags = sa->sadb_sa_flags; */
  929. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  930. &x->props.saddr);
  931. if (!x->props.family) {
  932. err = -EAFNOSUPPORT;
  933. goto out;
  934. }
  935. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  936. &x->id.daddr);
  937. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  938. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  939. x->props.mode = sa2->sadb_x_sa2_mode;
  940. if (x->props.mode)
  941. x->props.mode--;
  942. x->props.reqid = sa2->sadb_x_sa2_reqid;
  943. }
  944. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  945. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  946. /* Nobody uses this, but we try. */
  947. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  948. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  949. }
  950. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  951. struct sadb_x_nat_t_type* n_type;
  952. struct xfrm_encap_tmpl *natt;
  953. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  954. if (!x->encap)
  955. goto out;
  956. natt = x->encap;
  957. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  958. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  959. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  960. struct sadb_x_nat_t_port* n_port =
  961. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  962. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  963. }
  964. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  965. struct sadb_x_nat_t_port* n_port =
  966. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  967. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  968. }
  969. }
  970. x->type = xfrm_get_type(proto, x->props.family);
  971. if (x->type == NULL) {
  972. err = -ENOPROTOOPT;
  973. goto out;
  974. }
  975. if (x->type->init_state(x, NULL)) {
  976. err = -EINVAL;
  977. goto out;
  978. }
  979. x->km.seq = hdr->sadb_msg_seq;
  980. x->km.state = XFRM_STATE_VALID;
  981. return x;
  982. out:
  983. x->km.state = XFRM_STATE_DEAD;
  984. xfrm_state_put(x);
  985. return ERR_PTR(err);
  986. }
  987. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  988. {
  989. return -EOPNOTSUPP;
  990. }
  991. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  992. {
  993. struct sk_buff *resp_skb;
  994. struct sadb_x_sa2 *sa2;
  995. struct sadb_address *saddr, *daddr;
  996. struct sadb_msg *out_hdr;
  997. struct xfrm_state *x = NULL;
  998. u8 mode;
  999. u32 reqid;
  1000. u8 proto;
  1001. unsigned short family;
  1002. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1003. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1004. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1005. return -EINVAL;
  1006. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1007. if (proto == 0)
  1008. return -EINVAL;
  1009. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1010. mode = sa2->sadb_x_sa2_mode - 1;
  1011. reqid = sa2->sadb_x_sa2_reqid;
  1012. } else {
  1013. mode = 0;
  1014. reqid = 0;
  1015. }
  1016. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1017. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1018. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1019. switch (family) {
  1020. case AF_INET:
  1021. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1022. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1023. break;
  1024. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1025. case AF_INET6:
  1026. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1027. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1028. break;
  1029. #endif
  1030. }
  1031. if (hdr->sadb_msg_seq) {
  1032. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1033. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1034. xfrm_state_put(x);
  1035. x = NULL;
  1036. }
  1037. }
  1038. if (!x)
  1039. x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1040. if (x == NULL)
  1041. return -ENOENT;
  1042. resp_skb = ERR_PTR(-ENOENT);
  1043. spin_lock_bh(&x->lock);
  1044. if (x->km.state != XFRM_STATE_DEAD) {
  1045. struct sadb_spirange *range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1046. u32 min_spi, max_spi;
  1047. if (range != NULL) {
  1048. min_spi = range->sadb_spirange_min;
  1049. max_spi = range->sadb_spirange_max;
  1050. } else {
  1051. min_spi = 0x100;
  1052. max_spi = 0x0fffffff;
  1053. }
  1054. xfrm_alloc_spi(x, htonl(min_spi), htonl(max_spi));
  1055. if (x->id.spi)
  1056. resp_skb = pfkey_xfrm_state2msg(x, 0, 3);
  1057. }
  1058. spin_unlock_bh(&x->lock);
  1059. if (IS_ERR(resp_skb)) {
  1060. xfrm_state_put(x);
  1061. return PTR_ERR(resp_skb);
  1062. }
  1063. out_hdr = (struct sadb_msg *) resp_skb->data;
  1064. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1065. out_hdr->sadb_msg_type = SADB_GETSPI;
  1066. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1067. out_hdr->sadb_msg_errno = 0;
  1068. out_hdr->sadb_msg_reserved = 0;
  1069. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1070. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1071. xfrm_state_put(x);
  1072. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
  1073. return 0;
  1074. }
  1075. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1076. {
  1077. struct xfrm_state *x;
  1078. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1079. return -EOPNOTSUPP;
  1080. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1081. return 0;
  1082. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1083. if (x == NULL)
  1084. return 0;
  1085. spin_lock_bh(&x->lock);
  1086. if (x->km.state == XFRM_STATE_ACQ) {
  1087. x->km.state = XFRM_STATE_ERROR;
  1088. wake_up(&km_waitq);
  1089. }
  1090. spin_unlock_bh(&x->lock);
  1091. xfrm_state_put(x);
  1092. return 0;
  1093. }
  1094. static inline int event2poltype(int event)
  1095. {
  1096. switch (event) {
  1097. case XFRM_MSG_DELPOLICY:
  1098. return SADB_X_SPDDELETE;
  1099. case XFRM_MSG_NEWPOLICY:
  1100. return SADB_X_SPDADD;
  1101. case XFRM_MSG_UPDPOLICY:
  1102. return SADB_X_SPDUPDATE;
  1103. case XFRM_MSG_POLEXPIRE:
  1104. // return SADB_X_SPDEXPIRE;
  1105. default:
  1106. printk("pfkey: Unknown policy event %d\n", event);
  1107. break;
  1108. }
  1109. return 0;
  1110. }
  1111. static inline int event2keytype(int event)
  1112. {
  1113. switch (event) {
  1114. case XFRM_MSG_DELSA:
  1115. return SADB_DELETE;
  1116. case XFRM_MSG_NEWSA:
  1117. return SADB_ADD;
  1118. case XFRM_MSG_UPDSA:
  1119. return SADB_UPDATE;
  1120. case XFRM_MSG_EXPIRE:
  1121. return SADB_EXPIRE;
  1122. default:
  1123. printk("pfkey: Unknown SA event %d\n", event);
  1124. break;
  1125. }
  1126. return 0;
  1127. }
  1128. /* ADD/UPD/DEL */
  1129. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1130. {
  1131. struct sk_buff *skb;
  1132. struct sadb_msg *hdr;
  1133. int hsc = 3;
  1134. if (c->event == XFRM_MSG_DELSA)
  1135. hsc = 0;
  1136. skb = pfkey_xfrm_state2msg(x, 0, hsc);
  1137. if (IS_ERR(skb))
  1138. return PTR_ERR(skb);
  1139. hdr = (struct sadb_msg *) skb->data;
  1140. hdr->sadb_msg_version = PF_KEY_V2;
  1141. hdr->sadb_msg_type = event2keytype(c->event);
  1142. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1143. hdr->sadb_msg_errno = 0;
  1144. hdr->sadb_msg_reserved = 0;
  1145. hdr->sadb_msg_seq = c->seq;
  1146. hdr->sadb_msg_pid = c->pid;
  1147. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1148. return 0;
  1149. }
  1150. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1151. {
  1152. struct xfrm_state *x;
  1153. int err;
  1154. struct km_event c;
  1155. xfrm_probe_algs();
  1156. x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
  1157. if (IS_ERR(x))
  1158. return PTR_ERR(x);
  1159. xfrm_state_hold(x);
  1160. if (hdr->sadb_msg_type == SADB_ADD)
  1161. err = xfrm_state_add(x);
  1162. else
  1163. err = xfrm_state_update(x);
  1164. if (err < 0) {
  1165. x->km.state = XFRM_STATE_DEAD;
  1166. xfrm_state_put(x);
  1167. return err;
  1168. }
  1169. if (hdr->sadb_msg_type == SADB_ADD)
  1170. c.event = XFRM_MSG_NEWSA;
  1171. else
  1172. c.event = XFRM_MSG_UPDSA;
  1173. c.seq = hdr->sadb_msg_seq;
  1174. c.pid = hdr->sadb_msg_pid;
  1175. km_state_notify(x, &c);
  1176. xfrm_state_put(x);
  1177. return err;
  1178. }
  1179. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1180. {
  1181. struct xfrm_state *x;
  1182. struct km_event c;
  1183. int err;
  1184. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1185. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1186. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1187. return -EINVAL;
  1188. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1189. if (x == NULL)
  1190. return -ESRCH;
  1191. if (xfrm_state_kern(x)) {
  1192. xfrm_state_put(x);
  1193. return -EPERM;
  1194. }
  1195. err = xfrm_state_delete(x);
  1196. if (err < 0) {
  1197. xfrm_state_put(x);
  1198. return err;
  1199. }
  1200. c.seq = hdr->sadb_msg_seq;
  1201. c.pid = hdr->sadb_msg_pid;
  1202. c.event = XFRM_MSG_DELSA;
  1203. km_state_notify(x, &c);
  1204. xfrm_state_put(x);
  1205. return err;
  1206. }
  1207. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1208. {
  1209. __u8 proto;
  1210. struct sk_buff *out_skb;
  1211. struct sadb_msg *out_hdr;
  1212. struct xfrm_state *x;
  1213. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1214. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1215. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1216. return -EINVAL;
  1217. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1218. if (x == NULL)
  1219. return -ESRCH;
  1220. out_skb = pfkey_xfrm_state2msg(x, 1, 3);
  1221. proto = x->id.proto;
  1222. xfrm_state_put(x);
  1223. if (IS_ERR(out_skb))
  1224. return PTR_ERR(out_skb);
  1225. out_hdr = (struct sadb_msg *) out_skb->data;
  1226. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1227. out_hdr->sadb_msg_type = SADB_DUMP;
  1228. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1229. out_hdr->sadb_msg_errno = 0;
  1230. out_hdr->sadb_msg_reserved = 0;
  1231. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1232. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1233. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1234. return 0;
  1235. }
  1236. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig, int allocation)
  1237. {
  1238. struct sk_buff *skb;
  1239. struct sadb_msg *hdr;
  1240. int len, auth_len, enc_len, i;
  1241. auth_len = xfrm_count_auth_supported();
  1242. if (auth_len) {
  1243. auth_len *= sizeof(struct sadb_alg);
  1244. auth_len += sizeof(struct sadb_supported);
  1245. }
  1246. enc_len = xfrm_count_enc_supported();
  1247. if (enc_len) {
  1248. enc_len *= sizeof(struct sadb_alg);
  1249. enc_len += sizeof(struct sadb_supported);
  1250. }
  1251. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1252. skb = alloc_skb(len + 16, allocation);
  1253. if (!skb)
  1254. goto out_put_algs;
  1255. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1256. pfkey_hdr_dup(hdr, orig);
  1257. hdr->sadb_msg_errno = 0;
  1258. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1259. if (auth_len) {
  1260. struct sadb_supported *sp;
  1261. struct sadb_alg *ap;
  1262. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1263. ap = (struct sadb_alg *) (sp + 1);
  1264. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1265. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1266. for (i = 0; ; i++) {
  1267. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1268. if (!aalg)
  1269. break;
  1270. if (aalg->available)
  1271. *ap++ = aalg->desc;
  1272. }
  1273. }
  1274. if (enc_len) {
  1275. struct sadb_supported *sp;
  1276. struct sadb_alg *ap;
  1277. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1278. ap = (struct sadb_alg *) (sp + 1);
  1279. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1280. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1281. for (i = 0; ; i++) {
  1282. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1283. if (!ealg)
  1284. break;
  1285. if (ealg->available)
  1286. *ap++ = ealg->desc;
  1287. }
  1288. }
  1289. out_put_algs:
  1290. return skb;
  1291. }
  1292. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1293. {
  1294. struct pfkey_sock *pfk = pfkey_sk(sk);
  1295. struct sk_buff *supp_skb;
  1296. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1297. return -EINVAL;
  1298. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1299. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1300. return -EEXIST;
  1301. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1302. }
  1303. xfrm_probe_algs();
  1304. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1305. if (!supp_skb) {
  1306. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1307. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1308. return -ENOBUFS;
  1309. }
  1310. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
  1311. return 0;
  1312. }
  1313. static int key_notify_sa_flush(struct km_event *c)
  1314. {
  1315. struct sk_buff *skb;
  1316. struct sadb_msg *hdr;
  1317. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1318. if (!skb)
  1319. return -ENOBUFS;
  1320. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1321. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1322. hdr->sadb_msg_seq = c->seq;
  1323. hdr->sadb_msg_pid = c->pid;
  1324. hdr->sadb_msg_version = PF_KEY_V2;
  1325. hdr->sadb_msg_errno = (uint8_t) 0;
  1326. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1327. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1328. return 0;
  1329. }
  1330. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1331. {
  1332. unsigned proto;
  1333. struct km_event c;
  1334. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1335. if (proto == 0)
  1336. return -EINVAL;
  1337. xfrm_state_flush(proto);
  1338. c.data.proto = proto;
  1339. c.seq = hdr->sadb_msg_seq;
  1340. c.pid = hdr->sadb_msg_pid;
  1341. c.event = XFRM_MSG_FLUSHSA;
  1342. km_state_notify(NULL, &c);
  1343. return 0;
  1344. }
  1345. struct pfkey_dump_data
  1346. {
  1347. struct sk_buff *skb;
  1348. struct sadb_msg *hdr;
  1349. struct sock *sk;
  1350. };
  1351. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1352. {
  1353. struct pfkey_dump_data *data = ptr;
  1354. struct sk_buff *out_skb;
  1355. struct sadb_msg *out_hdr;
  1356. out_skb = pfkey_xfrm_state2msg(x, 1, 3);
  1357. if (IS_ERR(out_skb))
  1358. return PTR_ERR(out_skb);
  1359. out_hdr = (struct sadb_msg *) out_skb->data;
  1360. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  1361. out_hdr->sadb_msg_type = SADB_DUMP;
  1362. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1363. out_hdr->sadb_msg_errno = 0;
  1364. out_hdr->sadb_msg_reserved = 0;
  1365. out_hdr->sadb_msg_seq = count;
  1366. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  1367. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  1368. return 0;
  1369. }
  1370. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1371. {
  1372. u8 proto;
  1373. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  1374. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1375. if (proto == 0)
  1376. return -EINVAL;
  1377. return xfrm_state_walk(proto, dump_sa, &data);
  1378. }
  1379. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1380. {
  1381. struct pfkey_sock *pfk = pfkey_sk(sk);
  1382. int satype = hdr->sadb_msg_satype;
  1383. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1384. /* XXX we mangle packet... */
  1385. hdr->sadb_msg_errno = 0;
  1386. if (satype != 0 && satype != 1)
  1387. return -EINVAL;
  1388. pfk->promisc = satype;
  1389. }
  1390. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
  1391. return 0;
  1392. }
  1393. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1394. {
  1395. int i;
  1396. u32 reqid = *(u32*)ptr;
  1397. for (i=0; i<xp->xfrm_nr; i++) {
  1398. if (xp->xfrm_vec[i].reqid == reqid)
  1399. return -EEXIST;
  1400. }
  1401. return 0;
  1402. }
  1403. static u32 gen_reqid(void)
  1404. {
  1405. u32 start;
  1406. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1407. start = reqid;
  1408. do {
  1409. ++reqid;
  1410. if (reqid == 0)
  1411. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1412. if (xfrm_policy_walk(check_reqid, (void*)&reqid) != -EEXIST)
  1413. return reqid;
  1414. } while (reqid != start);
  1415. return 0;
  1416. }
  1417. static int
  1418. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1419. {
  1420. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1421. struct sockaddr_in *sin;
  1422. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1423. struct sockaddr_in6 *sin6;
  1424. #endif
  1425. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1426. return -ELOOP;
  1427. if (rq->sadb_x_ipsecrequest_mode == 0)
  1428. return -EINVAL;
  1429. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1430. t->mode = rq->sadb_x_ipsecrequest_mode-1;
  1431. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1432. t->optional = 1;
  1433. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1434. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1435. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1436. t->reqid = 0;
  1437. if (!t->reqid && !(t->reqid = gen_reqid()))
  1438. return -ENOBUFS;
  1439. }
  1440. /* addresses present only in tunnel mode */
  1441. if (t->mode) {
  1442. switch (xp->family) {
  1443. case AF_INET:
  1444. sin = (void*)(rq+1);
  1445. if (sin->sin_family != AF_INET)
  1446. return -EINVAL;
  1447. t->saddr.a4 = sin->sin_addr.s_addr;
  1448. sin++;
  1449. if (sin->sin_family != AF_INET)
  1450. return -EINVAL;
  1451. t->id.daddr.a4 = sin->sin_addr.s_addr;
  1452. break;
  1453. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1454. case AF_INET6:
  1455. sin6 = (void *)(rq+1);
  1456. if (sin6->sin6_family != AF_INET6)
  1457. return -EINVAL;
  1458. memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1459. sin6++;
  1460. if (sin6->sin6_family != AF_INET6)
  1461. return -EINVAL;
  1462. memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1463. break;
  1464. #endif
  1465. default:
  1466. return -EINVAL;
  1467. }
  1468. }
  1469. /* No way to set this via kame pfkey */
  1470. t->aalgos = t->ealgos = t->calgos = ~0;
  1471. xp->xfrm_nr++;
  1472. return 0;
  1473. }
  1474. static int
  1475. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1476. {
  1477. int err;
  1478. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1479. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1480. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1481. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1482. return err;
  1483. len -= rq->sadb_x_ipsecrequest_len;
  1484. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1485. }
  1486. return 0;
  1487. }
  1488. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1489. {
  1490. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1491. int socklen = (xp->family == AF_INET ?
  1492. sizeof(struct sockaddr_in) :
  1493. sizeof(struct sockaddr_in6));
  1494. return sizeof(struct sadb_msg) +
  1495. (sizeof(struct sadb_lifetime) * 3) +
  1496. (sizeof(struct sadb_address) * 2) +
  1497. (sockaddr_size * 2) +
  1498. sizeof(struct sadb_x_policy) +
  1499. (xp->xfrm_nr * (sizeof(struct sadb_x_ipsecrequest) +
  1500. (socklen * 2)));
  1501. }
  1502. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1503. {
  1504. struct sk_buff *skb;
  1505. int size;
  1506. size = pfkey_xfrm_policy2msg_size(xp);
  1507. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1508. if (skb == NULL)
  1509. return ERR_PTR(-ENOBUFS);
  1510. return skb;
  1511. }
  1512. static void pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1513. {
  1514. struct sadb_msg *hdr;
  1515. struct sadb_address *addr;
  1516. struct sadb_lifetime *lifetime;
  1517. struct sadb_x_policy *pol;
  1518. struct sockaddr_in *sin;
  1519. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1520. struct sockaddr_in6 *sin6;
  1521. #endif
  1522. int i;
  1523. int size;
  1524. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1525. int socklen = (xp->family == AF_INET ?
  1526. sizeof(struct sockaddr_in) :
  1527. sizeof(struct sockaddr_in6));
  1528. size = pfkey_xfrm_policy2msg_size(xp);
  1529. /* call should fill header later */
  1530. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1531. memset(hdr, 0, size); /* XXX do we need this ? */
  1532. /* src address */
  1533. addr = (struct sadb_address*) skb_put(skb,
  1534. sizeof(struct sadb_address)+sockaddr_size);
  1535. addr->sadb_address_len =
  1536. (sizeof(struct sadb_address)+sockaddr_size)/
  1537. sizeof(uint64_t);
  1538. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1539. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1540. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1541. addr->sadb_address_reserved = 0;
  1542. /* src address */
  1543. if (xp->family == AF_INET) {
  1544. sin = (struct sockaddr_in *) (addr + 1);
  1545. sin->sin_family = AF_INET;
  1546. sin->sin_addr.s_addr = xp->selector.saddr.a4;
  1547. sin->sin_port = xp->selector.sport;
  1548. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1549. }
  1550. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1551. else if (xp->family == AF_INET6) {
  1552. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1553. sin6->sin6_family = AF_INET6;
  1554. sin6->sin6_port = xp->selector.sport;
  1555. sin6->sin6_flowinfo = 0;
  1556. memcpy(&sin6->sin6_addr, xp->selector.saddr.a6,
  1557. sizeof(struct in6_addr));
  1558. sin6->sin6_scope_id = 0;
  1559. }
  1560. #endif
  1561. else
  1562. BUG();
  1563. /* dst address */
  1564. addr = (struct sadb_address*) skb_put(skb,
  1565. sizeof(struct sadb_address)+sockaddr_size);
  1566. addr->sadb_address_len =
  1567. (sizeof(struct sadb_address)+sockaddr_size)/
  1568. sizeof(uint64_t);
  1569. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1570. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1571. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1572. addr->sadb_address_reserved = 0;
  1573. if (xp->family == AF_INET) {
  1574. sin = (struct sockaddr_in *) (addr + 1);
  1575. sin->sin_family = AF_INET;
  1576. sin->sin_addr.s_addr = xp->selector.daddr.a4;
  1577. sin->sin_port = xp->selector.dport;
  1578. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1579. }
  1580. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1581. else if (xp->family == AF_INET6) {
  1582. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1583. sin6->sin6_family = AF_INET6;
  1584. sin6->sin6_port = xp->selector.dport;
  1585. sin6->sin6_flowinfo = 0;
  1586. memcpy(&sin6->sin6_addr, xp->selector.daddr.a6,
  1587. sizeof(struct in6_addr));
  1588. sin6->sin6_scope_id = 0;
  1589. }
  1590. #endif
  1591. else
  1592. BUG();
  1593. /* hard time */
  1594. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1595. sizeof(struct sadb_lifetime));
  1596. lifetime->sadb_lifetime_len =
  1597. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1598. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1599. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1600. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1601. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1602. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1603. /* soft time */
  1604. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1605. sizeof(struct sadb_lifetime));
  1606. lifetime->sadb_lifetime_len =
  1607. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1608. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1609. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1610. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1611. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1612. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1613. /* current time */
  1614. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1615. sizeof(struct sadb_lifetime));
  1616. lifetime->sadb_lifetime_len =
  1617. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1618. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1619. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1620. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1621. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1622. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1623. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1624. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1625. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1626. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1627. if (xp->action == XFRM_POLICY_ALLOW) {
  1628. if (xp->xfrm_nr)
  1629. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1630. else
  1631. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1632. }
  1633. pol->sadb_x_policy_dir = dir+1;
  1634. pol->sadb_x_policy_id = xp->index;
  1635. pol->sadb_x_policy_priority = xp->priority;
  1636. for (i=0; i<xp->xfrm_nr; i++) {
  1637. struct sadb_x_ipsecrequest *rq;
  1638. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1639. int req_size;
  1640. req_size = sizeof(struct sadb_x_ipsecrequest);
  1641. if (t->mode)
  1642. req_size += 2*socklen;
  1643. else
  1644. size -= 2*socklen;
  1645. rq = (void*)skb_put(skb, req_size);
  1646. pol->sadb_x_policy_len += req_size/8;
  1647. memset(rq, 0, sizeof(*rq));
  1648. rq->sadb_x_ipsecrequest_len = req_size;
  1649. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1650. rq->sadb_x_ipsecrequest_mode = t->mode+1;
  1651. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1652. if (t->reqid)
  1653. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1654. if (t->optional)
  1655. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1656. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1657. if (t->mode) {
  1658. switch (xp->family) {
  1659. case AF_INET:
  1660. sin = (void*)(rq+1);
  1661. sin->sin_family = AF_INET;
  1662. sin->sin_addr.s_addr = t->saddr.a4;
  1663. sin->sin_port = 0;
  1664. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1665. sin++;
  1666. sin->sin_family = AF_INET;
  1667. sin->sin_addr.s_addr = t->id.daddr.a4;
  1668. sin->sin_port = 0;
  1669. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1670. break;
  1671. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1672. case AF_INET6:
  1673. sin6 = (void*)(rq+1);
  1674. sin6->sin6_family = AF_INET6;
  1675. sin6->sin6_port = 0;
  1676. sin6->sin6_flowinfo = 0;
  1677. memcpy(&sin6->sin6_addr, t->saddr.a6,
  1678. sizeof(struct in6_addr));
  1679. sin6->sin6_scope_id = 0;
  1680. sin6++;
  1681. sin6->sin6_family = AF_INET6;
  1682. sin6->sin6_port = 0;
  1683. sin6->sin6_flowinfo = 0;
  1684. memcpy(&sin6->sin6_addr, t->id.daddr.a6,
  1685. sizeof(struct in6_addr));
  1686. sin6->sin6_scope_id = 0;
  1687. break;
  1688. #endif
  1689. default:
  1690. break;
  1691. }
  1692. }
  1693. }
  1694. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1695. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1696. }
  1697. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1698. {
  1699. struct sk_buff *out_skb;
  1700. struct sadb_msg *out_hdr;
  1701. int err;
  1702. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1703. if (IS_ERR(out_skb)) {
  1704. err = PTR_ERR(out_skb);
  1705. goto out;
  1706. }
  1707. pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1708. out_hdr = (struct sadb_msg *) out_skb->data;
  1709. out_hdr->sadb_msg_version = PF_KEY_V2;
  1710. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1711. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1712. else
  1713. out_hdr->sadb_msg_type = event2poltype(c->event);
  1714. out_hdr->sadb_msg_errno = 0;
  1715. out_hdr->sadb_msg_seq = c->seq;
  1716. out_hdr->sadb_msg_pid = c->pid;
  1717. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1718. out:
  1719. return 0;
  1720. }
  1721. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1722. {
  1723. int err;
  1724. struct sadb_lifetime *lifetime;
  1725. struct sadb_address *sa;
  1726. struct sadb_x_policy *pol;
  1727. struct xfrm_policy *xp;
  1728. struct km_event c;
  1729. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1730. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1731. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1732. return -EINVAL;
  1733. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1734. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1735. return -EINVAL;
  1736. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1737. return -EINVAL;
  1738. xp = xfrm_policy_alloc(GFP_KERNEL);
  1739. if (xp == NULL)
  1740. return -ENOBUFS;
  1741. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1742. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1743. xp->priority = pol->sadb_x_policy_priority;
  1744. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1745. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1746. if (!xp->family) {
  1747. err = -EINVAL;
  1748. goto out;
  1749. }
  1750. xp->selector.family = xp->family;
  1751. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1752. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1753. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1754. if (xp->selector.sport)
  1755. xp->selector.sport_mask = ~0;
  1756. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1757. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1758. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1759. /* Amusing, we set this twice. KAME apps appear to set same value
  1760. * in both addresses.
  1761. */
  1762. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1763. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1764. if (xp->selector.dport)
  1765. xp->selector.dport_mask = ~0;
  1766. xp->lft.soft_byte_limit = XFRM_INF;
  1767. xp->lft.hard_byte_limit = XFRM_INF;
  1768. xp->lft.soft_packet_limit = XFRM_INF;
  1769. xp->lft.hard_packet_limit = XFRM_INF;
  1770. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1771. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1772. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1773. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1774. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1775. }
  1776. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1777. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1778. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1779. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1780. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1781. }
  1782. xp->xfrm_nr = 0;
  1783. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1784. (err = parse_ipsecrequests(xp, pol)) < 0)
  1785. goto out;
  1786. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1787. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1788. if (err) {
  1789. kfree(xp);
  1790. return err;
  1791. }
  1792. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1793. c.event = XFRM_MSG_UPDPOLICY;
  1794. else
  1795. c.event = XFRM_MSG_NEWPOLICY;
  1796. c.seq = hdr->sadb_msg_seq;
  1797. c.pid = hdr->sadb_msg_pid;
  1798. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1799. xfrm_pol_put(xp);
  1800. return 0;
  1801. out:
  1802. kfree(xp);
  1803. return err;
  1804. }
  1805. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1806. {
  1807. int err;
  1808. struct sadb_address *sa;
  1809. struct sadb_x_policy *pol;
  1810. struct xfrm_policy *xp;
  1811. struct xfrm_selector sel;
  1812. struct km_event c;
  1813. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1814. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1815. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1816. return -EINVAL;
  1817. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1818. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1819. return -EINVAL;
  1820. memset(&sel, 0, sizeof(sel));
  1821. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1822. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1823. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1824. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1825. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1826. if (sel.sport)
  1827. sel.sport_mask = ~0;
  1828. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1829. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  1830. sel.prefixlen_d = sa->sadb_address_prefixlen;
  1831. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1832. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1833. if (sel.dport)
  1834. sel.dport_mask = ~0;
  1835. xp = xfrm_policy_bysel(pol->sadb_x_policy_dir-1, &sel, 1);
  1836. if (xp == NULL)
  1837. return -ENOENT;
  1838. err = 0;
  1839. c.seq = hdr->sadb_msg_seq;
  1840. c.pid = hdr->sadb_msg_pid;
  1841. c.event = XFRM_MSG_DELPOLICY;
  1842. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1843. xfrm_pol_put(xp);
  1844. return err;
  1845. }
  1846. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  1847. {
  1848. int err;
  1849. struct sk_buff *out_skb;
  1850. struct sadb_msg *out_hdr;
  1851. err = 0;
  1852. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1853. if (IS_ERR(out_skb)) {
  1854. err = PTR_ERR(out_skb);
  1855. goto out;
  1856. }
  1857. pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1858. out_hdr = (struct sadb_msg *) out_skb->data;
  1859. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1860. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  1861. out_hdr->sadb_msg_satype = 0;
  1862. out_hdr->sadb_msg_errno = 0;
  1863. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1864. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1865. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1866. err = 0;
  1867. out:
  1868. return err;
  1869. }
  1870. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1871. {
  1872. int err;
  1873. struct sadb_x_policy *pol;
  1874. struct xfrm_policy *xp;
  1875. struct km_event c;
  1876. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  1877. return -EINVAL;
  1878. xp = xfrm_policy_byid(0, pol->sadb_x_policy_id,
  1879. hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  1880. if (xp == NULL)
  1881. return -ENOENT;
  1882. err = 0;
  1883. c.seq = hdr->sadb_msg_seq;
  1884. c.pid = hdr->sadb_msg_pid;
  1885. if (hdr->sadb_msg_type == SADB_X_SPDDELETE2) {
  1886. c.data.byid = 1;
  1887. c.event = XFRM_MSG_DELPOLICY;
  1888. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1889. } else {
  1890. err = key_pol_get_resp(sk, xp, hdr, pol->sadb_x_policy_dir-1);
  1891. }
  1892. xfrm_pol_put(xp);
  1893. return err;
  1894. }
  1895. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1896. {
  1897. struct pfkey_dump_data *data = ptr;
  1898. struct sk_buff *out_skb;
  1899. struct sadb_msg *out_hdr;
  1900. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1901. if (IS_ERR(out_skb))
  1902. return PTR_ERR(out_skb);
  1903. pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1904. out_hdr = (struct sadb_msg *) out_skb->data;
  1905. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  1906. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  1907. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  1908. out_hdr->sadb_msg_errno = 0;
  1909. out_hdr->sadb_msg_seq = count;
  1910. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  1911. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  1912. return 0;
  1913. }
  1914. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1915. {
  1916. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  1917. return xfrm_policy_walk(dump_sp, &data);
  1918. }
  1919. static int key_notify_policy_flush(struct km_event *c)
  1920. {
  1921. struct sk_buff *skb_out;
  1922. struct sadb_msg *hdr;
  1923. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1924. if (!skb_out)
  1925. return -ENOBUFS;
  1926. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  1927. hdr->sadb_msg_seq = c->seq;
  1928. hdr->sadb_msg_pid = c->pid;
  1929. hdr->sadb_msg_version = PF_KEY_V2;
  1930. hdr->sadb_msg_errno = (uint8_t) 0;
  1931. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1932. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1933. return 0;
  1934. }
  1935. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1936. {
  1937. struct km_event c;
  1938. xfrm_policy_flush();
  1939. c.event = XFRM_MSG_FLUSHPOLICY;
  1940. c.pid = hdr->sadb_msg_pid;
  1941. c.seq = hdr->sadb_msg_seq;
  1942. km_policy_notify(NULL, 0, &c);
  1943. return 0;
  1944. }
  1945. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  1946. struct sadb_msg *hdr, void **ext_hdrs);
  1947. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  1948. [SADB_RESERVED] = pfkey_reserved,
  1949. [SADB_GETSPI] = pfkey_getspi,
  1950. [SADB_UPDATE] = pfkey_add,
  1951. [SADB_ADD] = pfkey_add,
  1952. [SADB_DELETE] = pfkey_delete,
  1953. [SADB_GET] = pfkey_get,
  1954. [SADB_ACQUIRE] = pfkey_acquire,
  1955. [SADB_REGISTER] = pfkey_register,
  1956. [SADB_EXPIRE] = NULL,
  1957. [SADB_FLUSH] = pfkey_flush,
  1958. [SADB_DUMP] = pfkey_dump,
  1959. [SADB_X_PROMISC] = pfkey_promisc,
  1960. [SADB_X_PCHANGE] = NULL,
  1961. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  1962. [SADB_X_SPDADD] = pfkey_spdadd,
  1963. [SADB_X_SPDDELETE] = pfkey_spddelete,
  1964. [SADB_X_SPDGET] = pfkey_spdget,
  1965. [SADB_X_SPDACQUIRE] = NULL,
  1966. [SADB_X_SPDDUMP] = pfkey_spddump,
  1967. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  1968. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  1969. [SADB_X_SPDDELETE2] = pfkey_spdget,
  1970. };
  1971. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  1972. {
  1973. void *ext_hdrs[SADB_EXT_MAX];
  1974. int err;
  1975. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  1976. BROADCAST_PROMISC_ONLY, NULL);
  1977. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  1978. err = parse_exthdrs(skb, hdr, ext_hdrs);
  1979. if (!err) {
  1980. err = -EOPNOTSUPP;
  1981. if (pfkey_funcs[hdr->sadb_msg_type])
  1982. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  1983. }
  1984. return err;
  1985. }
  1986. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  1987. {
  1988. struct sadb_msg *hdr = NULL;
  1989. if (skb->len < sizeof(*hdr)) {
  1990. *errp = -EMSGSIZE;
  1991. } else {
  1992. hdr = (struct sadb_msg *) skb->data;
  1993. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  1994. hdr->sadb_msg_reserved != 0 ||
  1995. (hdr->sadb_msg_type <= SADB_RESERVED ||
  1996. hdr->sadb_msg_type > SADB_MAX)) {
  1997. hdr = NULL;
  1998. *errp = -EINVAL;
  1999. } else if (hdr->sadb_msg_len != (skb->len /
  2000. sizeof(uint64_t)) ||
  2001. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2002. sizeof(uint64_t))) {
  2003. hdr = NULL;
  2004. *errp = -EMSGSIZE;
  2005. } else {
  2006. *errp = 0;
  2007. }
  2008. }
  2009. return hdr;
  2010. }
  2011. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2012. {
  2013. return t->aalgos & (1 << d->desc.sadb_alg_id);
  2014. }
  2015. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2016. {
  2017. return t->ealgos & (1 << d->desc.sadb_alg_id);
  2018. }
  2019. static int count_ah_combs(struct xfrm_tmpl *t)
  2020. {
  2021. int i, sz = 0;
  2022. for (i = 0; ; i++) {
  2023. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2024. if (!aalg)
  2025. break;
  2026. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2027. sz += sizeof(struct sadb_comb);
  2028. }
  2029. return sz + sizeof(struct sadb_prop);
  2030. }
  2031. static int count_esp_combs(struct xfrm_tmpl *t)
  2032. {
  2033. int i, k, sz = 0;
  2034. for (i = 0; ; i++) {
  2035. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2036. if (!ealg)
  2037. break;
  2038. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2039. continue;
  2040. for (k = 1; ; k++) {
  2041. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2042. if (!aalg)
  2043. break;
  2044. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2045. sz += sizeof(struct sadb_comb);
  2046. }
  2047. }
  2048. return sz + sizeof(struct sadb_prop);
  2049. }
  2050. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2051. {
  2052. struct sadb_prop *p;
  2053. int i;
  2054. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2055. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2056. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2057. p->sadb_prop_replay = 32;
  2058. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2059. for (i = 0; ; i++) {
  2060. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2061. if (!aalg)
  2062. break;
  2063. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2064. struct sadb_comb *c;
  2065. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2066. memset(c, 0, sizeof(*c));
  2067. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2068. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2069. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2070. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2071. c->sadb_comb_hard_addtime = 24*60*60;
  2072. c->sadb_comb_soft_addtime = 20*60*60;
  2073. c->sadb_comb_hard_usetime = 8*60*60;
  2074. c->sadb_comb_soft_usetime = 7*60*60;
  2075. }
  2076. }
  2077. }
  2078. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2079. {
  2080. struct sadb_prop *p;
  2081. int i, k;
  2082. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2083. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2084. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2085. p->sadb_prop_replay = 32;
  2086. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2087. for (i=0; ; i++) {
  2088. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2089. if (!ealg)
  2090. break;
  2091. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2092. continue;
  2093. for (k = 1; ; k++) {
  2094. struct sadb_comb *c;
  2095. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2096. if (!aalg)
  2097. break;
  2098. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2099. continue;
  2100. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2101. memset(c, 0, sizeof(*c));
  2102. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2103. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2104. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2105. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2106. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2107. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2108. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2109. c->sadb_comb_hard_addtime = 24*60*60;
  2110. c->sadb_comb_soft_addtime = 20*60*60;
  2111. c->sadb_comb_hard_usetime = 8*60*60;
  2112. c->sadb_comb_soft_usetime = 7*60*60;
  2113. }
  2114. }
  2115. }
  2116. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2117. {
  2118. return 0;
  2119. }
  2120. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2121. {
  2122. struct sk_buff *out_skb;
  2123. struct sadb_msg *out_hdr;
  2124. int hard;
  2125. int hsc;
  2126. hard = c->data.hard;
  2127. if (hard)
  2128. hsc = 2;
  2129. else
  2130. hsc = 1;
  2131. out_skb = pfkey_xfrm_state2msg(x, 0, hsc);
  2132. if (IS_ERR(out_skb))
  2133. return PTR_ERR(out_skb);
  2134. out_hdr = (struct sadb_msg *) out_skb->data;
  2135. out_hdr->sadb_msg_version = PF_KEY_V2;
  2136. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2137. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2138. out_hdr->sadb_msg_errno = 0;
  2139. out_hdr->sadb_msg_reserved = 0;
  2140. out_hdr->sadb_msg_seq = 0;
  2141. out_hdr->sadb_msg_pid = 0;
  2142. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2143. return 0;
  2144. }
  2145. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2146. {
  2147. switch (c->event) {
  2148. case XFRM_MSG_EXPIRE:
  2149. return key_notify_sa_expire(x, c);
  2150. case XFRM_MSG_DELSA:
  2151. case XFRM_MSG_NEWSA:
  2152. case XFRM_MSG_UPDSA:
  2153. return key_notify_sa(x, c);
  2154. case XFRM_MSG_FLUSHSA:
  2155. return key_notify_sa_flush(c);
  2156. default:
  2157. printk("pfkey: Unknown SA event %d\n", c->event);
  2158. break;
  2159. }
  2160. return 0;
  2161. }
  2162. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2163. {
  2164. switch (c->event) {
  2165. case XFRM_MSG_POLEXPIRE:
  2166. return key_notify_policy_expire(xp, c);
  2167. case XFRM_MSG_DELPOLICY:
  2168. case XFRM_MSG_NEWPOLICY:
  2169. case XFRM_MSG_UPDPOLICY:
  2170. return key_notify_policy(xp, dir, c);
  2171. case XFRM_MSG_FLUSHPOLICY:
  2172. return key_notify_policy_flush(c);
  2173. default:
  2174. printk("pfkey: Unknown policy event %d\n", c->event);
  2175. break;
  2176. }
  2177. return 0;
  2178. }
  2179. static u32 get_acqseq(void)
  2180. {
  2181. u32 res;
  2182. static u32 acqseq;
  2183. static DEFINE_SPINLOCK(acqseq_lock);
  2184. spin_lock_bh(&acqseq_lock);
  2185. res = (++acqseq ? : ++acqseq);
  2186. spin_unlock_bh(&acqseq_lock);
  2187. return res;
  2188. }
  2189. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2190. {
  2191. struct sk_buff *skb;
  2192. struct sadb_msg *hdr;
  2193. struct sadb_address *addr;
  2194. struct sadb_x_policy *pol;
  2195. struct sockaddr_in *sin;
  2196. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2197. struct sockaddr_in6 *sin6;
  2198. #endif
  2199. int sockaddr_size;
  2200. int size;
  2201. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2202. if (!sockaddr_size)
  2203. return -EINVAL;
  2204. size = sizeof(struct sadb_msg) +
  2205. (sizeof(struct sadb_address) * 2) +
  2206. (sockaddr_size * 2) +
  2207. sizeof(struct sadb_x_policy);
  2208. if (x->id.proto == IPPROTO_AH)
  2209. size += count_ah_combs(t);
  2210. else if (x->id.proto == IPPROTO_ESP)
  2211. size += count_esp_combs(t);
  2212. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2213. if (skb == NULL)
  2214. return -ENOMEM;
  2215. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2216. hdr->sadb_msg_version = PF_KEY_V2;
  2217. hdr->sadb_msg_type = SADB_ACQUIRE;
  2218. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2219. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2220. hdr->sadb_msg_errno = 0;
  2221. hdr->sadb_msg_reserved = 0;
  2222. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2223. hdr->sadb_msg_pid = 0;
  2224. /* src address */
  2225. addr = (struct sadb_address*) skb_put(skb,
  2226. sizeof(struct sadb_address)+sockaddr_size);
  2227. addr->sadb_address_len =
  2228. (sizeof(struct sadb_address)+sockaddr_size)/
  2229. sizeof(uint64_t);
  2230. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2231. addr->sadb_address_proto = 0;
  2232. addr->sadb_address_reserved = 0;
  2233. if (x->props.family == AF_INET) {
  2234. addr->sadb_address_prefixlen = 32;
  2235. sin = (struct sockaddr_in *) (addr + 1);
  2236. sin->sin_family = AF_INET;
  2237. sin->sin_addr.s_addr = x->props.saddr.a4;
  2238. sin->sin_port = 0;
  2239. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2240. }
  2241. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2242. else if (x->props.family == AF_INET6) {
  2243. addr->sadb_address_prefixlen = 128;
  2244. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2245. sin6->sin6_family = AF_INET6;
  2246. sin6->sin6_port = 0;
  2247. sin6->sin6_flowinfo = 0;
  2248. memcpy(&sin6->sin6_addr,
  2249. x->props.saddr.a6, sizeof(struct in6_addr));
  2250. sin6->sin6_scope_id = 0;
  2251. }
  2252. #endif
  2253. else
  2254. BUG();
  2255. /* dst address */
  2256. addr = (struct sadb_address*) skb_put(skb,
  2257. sizeof(struct sadb_address)+sockaddr_size);
  2258. addr->sadb_address_len =
  2259. (sizeof(struct sadb_address)+sockaddr_size)/
  2260. sizeof(uint64_t);
  2261. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2262. addr->sadb_address_proto = 0;
  2263. addr->sadb_address_reserved = 0;
  2264. if (x->props.family == AF_INET) {
  2265. addr->sadb_address_prefixlen = 32;
  2266. sin = (struct sockaddr_in *) (addr + 1);
  2267. sin->sin_family = AF_INET;
  2268. sin->sin_addr.s_addr = x->id.daddr.a4;
  2269. sin->sin_port = 0;
  2270. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2271. }
  2272. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2273. else if (x->props.family == AF_INET6) {
  2274. addr->sadb_address_prefixlen = 128;
  2275. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2276. sin6->sin6_family = AF_INET6;
  2277. sin6->sin6_port = 0;
  2278. sin6->sin6_flowinfo = 0;
  2279. memcpy(&sin6->sin6_addr,
  2280. x->id.daddr.a6, sizeof(struct in6_addr));
  2281. sin6->sin6_scope_id = 0;
  2282. }
  2283. #endif
  2284. else
  2285. BUG();
  2286. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2287. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2288. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2289. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2290. pol->sadb_x_policy_dir = dir+1;
  2291. pol->sadb_x_policy_id = xp->index;
  2292. /* Set sadb_comb's. */
  2293. if (x->id.proto == IPPROTO_AH)
  2294. dump_ah_combs(skb, t);
  2295. else if (x->id.proto == IPPROTO_ESP)
  2296. dump_esp_combs(skb, t);
  2297. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2298. }
  2299. static struct xfrm_policy *pfkey_compile_policy(u16 family, int opt,
  2300. u8 *data, int len, int *dir)
  2301. {
  2302. struct xfrm_policy *xp;
  2303. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2304. switch (family) {
  2305. case AF_INET:
  2306. if (opt != IP_IPSEC_POLICY) {
  2307. *dir = -EOPNOTSUPP;
  2308. return NULL;
  2309. }
  2310. break;
  2311. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2312. case AF_INET6:
  2313. if (opt != IPV6_IPSEC_POLICY) {
  2314. *dir = -EOPNOTSUPP;
  2315. return NULL;
  2316. }
  2317. break;
  2318. #endif
  2319. default:
  2320. *dir = -EINVAL;
  2321. return NULL;
  2322. }
  2323. *dir = -EINVAL;
  2324. if (len < sizeof(struct sadb_x_policy) ||
  2325. pol->sadb_x_policy_len*8 > len ||
  2326. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2327. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2328. return NULL;
  2329. xp = xfrm_policy_alloc(GFP_ATOMIC);
  2330. if (xp == NULL) {
  2331. *dir = -ENOBUFS;
  2332. return NULL;
  2333. }
  2334. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2335. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2336. xp->lft.soft_byte_limit = XFRM_INF;
  2337. xp->lft.hard_byte_limit = XFRM_INF;
  2338. xp->lft.soft_packet_limit = XFRM_INF;
  2339. xp->lft.hard_packet_limit = XFRM_INF;
  2340. xp->family = family;
  2341. xp->xfrm_nr = 0;
  2342. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2343. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2344. goto out;
  2345. *dir = pol->sadb_x_policy_dir-1;
  2346. return xp;
  2347. out:
  2348. kfree(xp);
  2349. return NULL;
  2350. }
  2351. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, u16 sport)
  2352. {
  2353. struct sk_buff *skb;
  2354. struct sadb_msg *hdr;
  2355. struct sadb_sa *sa;
  2356. struct sadb_address *addr;
  2357. struct sadb_x_nat_t_port *n_port;
  2358. struct sockaddr_in *sin;
  2359. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2360. struct sockaddr_in6 *sin6;
  2361. #endif
  2362. int sockaddr_size;
  2363. int size;
  2364. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2365. struct xfrm_encap_tmpl *natt = NULL;
  2366. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2367. if (!sockaddr_size)
  2368. return -EINVAL;
  2369. if (!satype)
  2370. return -EINVAL;
  2371. if (!x->encap)
  2372. return -EINVAL;
  2373. natt = x->encap;
  2374. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2375. *
  2376. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2377. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2378. */
  2379. size = sizeof(struct sadb_msg) +
  2380. sizeof(struct sadb_sa) +
  2381. (sizeof(struct sadb_address) * 2) +
  2382. (sockaddr_size * 2) +
  2383. (sizeof(struct sadb_x_nat_t_port) * 2);
  2384. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2385. if (skb == NULL)
  2386. return -ENOMEM;
  2387. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2388. hdr->sadb_msg_version = PF_KEY_V2;
  2389. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2390. hdr->sadb_msg_satype = satype;
  2391. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2392. hdr->sadb_msg_errno = 0;
  2393. hdr->sadb_msg_reserved = 0;
  2394. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2395. hdr->sadb_msg_pid = 0;
  2396. /* SA */
  2397. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2398. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2399. sa->sadb_sa_exttype = SADB_EXT_SA;
  2400. sa->sadb_sa_spi = x->id.spi;
  2401. sa->sadb_sa_replay = 0;
  2402. sa->sadb_sa_state = 0;
  2403. sa->sadb_sa_auth = 0;
  2404. sa->sadb_sa_encrypt = 0;
  2405. sa->sadb_sa_flags = 0;
  2406. /* ADDRESS_SRC (old addr) */
  2407. addr = (struct sadb_address*)
  2408. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2409. addr->sadb_address_len =
  2410. (sizeof(struct sadb_address)+sockaddr_size)/
  2411. sizeof(uint64_t);
  2412. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2413. addr->sadb_address_proto = 0;
  2414. addr->sadb_address_reserved = 0;
  2415. if (x->props.family == AF_INET) {
  2416. addr->sadb_address_prefixlen = 32;
  2417. sin = (struct sockaddr_in *) (addr + 1);
  2418. sin->sin_family = AF_INET;
  2419. sin->sin_addr.s_addr = x->props.saddr.a4;
  2420. sin->sin_port = 0;
  2421. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2422. }
  2423. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2424. else if (x->props.family == AF_INET6) {
  2425. addr->sadb_address_prefixlen = 128;
  2426. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2427. sin6->sin6_family = AF_INET6;
  2428. sin6->sin6_port = 0;
  2429. sin6->sin6_flowinfo = 0;
  2430. memcpy(&sin6->sin6_addr,
  2431. x->props.saddr.a6, sizeof(struct in6_addr));
  2432. sin6->sin6_scope_id = 0;
  2433. }
  2434. #endif
  2435. else
  2436. BUG();
  2437. /* NAT_T_SPORT (old port) */
  2438. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2439. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2440. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2441. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2442. n_port->sadb_x_nat_t_port_reserved = 0;
  2443. /* ADDRESS_DST (new addr) */
  2444. addr = (struct sadb_address*)
  2445. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2446. addr->sadb_address_len =
  2447. (sizeof(struct sadb_address)+sockaddr_size)/
  2448. sizeof(uint64_t);
  2449. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2450. addr->sadb_address_proto = 0;
  2451. addr->sadb_address_reserved = 0;
  2452. if (x->props.family == AF_INET) {
  2453. addr->sadb_address_prefixlen = 32;
  2454. sin = (struct sockaddr_in *) (addr + 1);
  2455. sin->sin_family = AF_INET;
  2456. sin->sin_addr.s_addr = ipaddr->a4;
  2457. sin->sin_port = 0;
  2458. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2459. }
  2460. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2461. else if (x->props.family == AF_INET6) {
  2462. addr->sadb_address_prefixlen = 128;
  2463. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2464. sin6->sin6_family = AF_INET6;
  2465. sin6->sin6_port = 0;
  2466. sin6->sin6_flowinfo = 0;
  2467. memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr));
  2468. sin6->sin6_scope_id = 0;
  2469. }
  2470. #endif
  2471. else
  2472. BUG();
  2473. /* NAT_T_DPORT (new port) */
  2474. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2475. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2476. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2477. n_port->sadb_x_nat_t_port_port = sport;
  2478. n_port->sadb_x_nat_t_port_reserved = 0;
  2479. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2480. }
  2481. static int pfkey_sendmsg(struct kiocb *kiocb,
  2482. struct socket *sock, struct msghdr *msg, size_t len)
  2483. {
  2484. struct sock *sk = sock->sk;
  2485. struct sk_buff *skb = NULL;
  2486. struct sadb_msg *hdr = NULL;
  2487. int err;
  2488. err = -EOPNOTSUPP;
  2489. if (msg->msg_flags & MSG_OOB)
  2490. goto out;
  2491. err = -EMSGSIZE;
  2492. if ((unsigned)len > sk->sk_sndbuf - 32)
  2493. goto out;
  2494. err = -ENOBUFS;
  2495. skb = alloc_skb(len, GFP_KERNEL);
  2496. if (skb == NULL)
  2497. goto out;
  2498. err = -EFAULT;
  2499. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  2500. goto out;
  2501. hdr = pfkey_get_base_msg(skb, &err);
  2502. if (!hdr)
  2503. goto out;
  2504. down(&xfrm_cfg_sem);
  2505. err = pfkey_process(sk, skb, hdr);
  2506. up(&xfrm_cfg_sem);
  2507. out:
  2508. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  2509. err = 0;
  2510. if (skb)
  2511. kfree_skb(skb);
  2512. return err ? : len;
  2513. }
  2514. static int pfkey_recvmsg(struct kiocb *kiocb,
  2515. struct socket *sock, struct msghdr *msg, size_t len,
  2516. int flags)
  2517. {
  2518. struct sock *sk = sock->sk;
  2519. struct sk_buff *skb;
  2520. int copied, err;
  2521. err = -EINVAL;
  2522. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  2523. goto out;
  2524. msg->msg_namelen = 0;
  2525. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  2526. if (skb == NULL)
  2527. goto out;
  2528. copied = skb->len;
  2529. if (copied > len) {
  2530. msg->msg_flags |= MSG_TRUNC;
  2531. copied = len;
  2532. }
  2533. skb->h.raw = skb->data;
  2534. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  2535. if (err)
  2536. goto out_free;
  2537. sock_recv_timestamp(msg, sk, skb);
  2538. err = (flags & MSG_TRUNC) ? skb->len : copied;
  2539. out_free:
  2540. skb_free_datagram(sk, skb);
  2541. out:
  2542. return err;
  2543. }
  2544. static struct proto_ops pfkey_ops = {
  2545. .family = PF_KEY,
  2546. .owner = THIS_MODULE,
  2547. /* Operations that make no sense on pfkey sockets. */
  2548. .bind = sock_no_bind,
  2549. .connect = sock_no_connect,
  2550. .socketpair = sock_no_socketpair,
  2551. .accept = sock_no_accept,
  2552. .getname = sock_no_getname,
  2553. .ioctl = sock_no_ioctl,
  2554. .listen = sock_no_listen,
  2555. .shutdown = sock_no_shutdown,
  2556. .setsockopt = sock_no_setsockopt,
  2557. .getsockopt = sock_no_getsockopt,
  2558. .mmap = sock_no_mmap,
  2559. .sendpage = sock_no_sendpage,
  2560. /* Now the operations that really occur. */
  2561. .release = pfkey_release,
  2562. .poll = datagram_poll,
  2563. .sendmsg = pfkey_sendmsg,
  2564. .recvmsg = pfkey_recvmsg,
  2565. };
  2566. static struct net_proto_family pfkey_family_ops = {
  2567. .family = PF_KEY,
  2568. .create = pfkey_create,
  2569. .owner = THIS_MODULE,
  2570. };
  2571. #ifdef CONFIG_PROC_FS
  2572. static int pfkey_read_proc(char *buffer, char **start, off_t offset,
  2573. int length, int *eof, void *data)
  2574. {
  2575. off_t pos = 0;
  2576. off_t begin = 0;
  2577. int len = 0;
  2578. struct sock *s;
  2579. struct hlist_node *node;
  2580. len += sprintf(buffer,"sk RefCnt Rmem Wmem User Inode\n");
  2581. read_lock(&pfkey_table_lock);
  2582. sk_for_each(s, node, &pfkey_table) {
  2583. len += sprintf(buffer+len,"%p %-6d %-6u %-6u %-6u %-6lu",
  2584. s,
  2585. atomic_read(&s->sk_refcnt),
  2586. atomic_read(&s->sk_rmem_alloc),
  2587. atomic_read(&s->sk_wmem_alloc),
  2588. sock_i_uid(s),
  2589. sock_i_ino(s)
  2590. );
  2591. buffer[len++] = '\n';
  2592. pos = begin + len;
  2593. if (pos < offset) {
  2594. len = 0;
  2595. begin = pos;
  2596. }
  2597. if(pos > offset + length)
  2598. goto done;
  2599. }
  2600. *eof = 1;
  2601. done:
  2602. read_unlock(&pfkey_table_lock);
  2603. *start = buffer + (offset - begin);
  2604. len -= (offset - begin);
  2605. if (len > length)
  2606. len = length;
  2607. if (len < 0)
  2608. len = 0;
  2609. return len;
  2610. }
  2611. #endif
  2612. static struct xfrm_mgr pfkeyv2_mgr =
  2613. {
  2614. .id = "pfkeyv2",
  2615. .notify = pfkey_send_notify,
  2616. .acquire = pfkey_send_acquire,
  2617. .compile_policy = pfkey_compile_policy,
  2618. .new_mapping = pfkey_send_new_mapping,
  2619. .notify_policy = pfkey_send_policy_notify,
  2620. };
  2621. static void __exit ipsec_pfkey_exit(void)
  2622. {
  2623. xfrm_unregister_km(&pfkeyv2_mgr);
  2624. remove_proc_entry("net/pfkey", NULL);
  2625. sock_unregister(PF_KEY);
  2626. proto_unregister(&key_proto);
  2627. }
  2628. static int __init ipsec_pfkey_init(void)
  2629. {
  2630. int err = proto_register(&key_proto, 0);
  2631. if (err != 0)
  2632. goto out;
  2633. err = sock_register(&pfkey_family_ops);
  2634. if (err != 0)
  2635. goto out_unregister_key_proto;
  2636. #ifdef CONFIG_PROC_FS
  2637. err = -ENOMEM;
  2638. if (create_proc_read_entry("net/pfkey", 0, NULL, pfkey_read_proc, NULL) == NULL)
  2639. goto out_sock_unregister;
  2640. #endif
  2641. err = xfrm_register_km(&pfkeyv2_mgr);
  2642. if (err != 0)
  2643. goto out_remove_proc_entry;
  2644. out:
  2645. return err;
  2646. out_remove_proc_entry:
  2647. #ifdef CONFIG_PROC_FS
  2648. remove_proc_entry("net/pfkey", NULL);
  2649. out_sock_unregister:
  2650. #endif
  2651. sock_unregister(PF_KEY);
  2652. out_unregister_key_proto:
  2653. proto_unregister(&key_proto);
  2654. goto out;
  2655. }
  2656. module_init(ipsec_pfkey_init);
  2657. module_exit(ipsec_pfkey_exit);
  2658. MODULE_LICENSE("GPL");
  2659. MODULE_ALIAS_NETPROTO(PF_KEY);