ipmi_si_intf.c 89 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567
  1. /*
  2. * ipmi_si.c
  3. *
  4. * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
  5. * BT).
  6. *
  7. * Author: MontaVista Software, Inc.
  8. * Corey Minyard <minyard@mvista.com>
  9. * source@mvista.com
  10. *
  11. * Copyright 2002 MontaVista Software Inc.
  12. * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
  13. *
  14. * This program is free software; you can redistribute it and/or modify it
  15. * under the terms of the GNU General Public License as published by the
  16. * Free Software Foundation; either version 2 of the License, or (at your
  17. * option) any later version.
  18. *
  19. *
  20. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  21. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  22. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  23. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  24. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  25. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
  26. * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  27. * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
  28. * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  29. * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  30. *
  31. * You should have received a copy of the GNU General Public License along
  32. * with this program; if not, write to the Free Software Foundation, Inc.,
  33. * 675 Mass Ave, Cambridge, MA 02139, USA.
  34. */
  35. /*
  36. * This file holds the "policy" for the interface to the SMI state
  37. * machine. It does the configuration, handles timers and interrupts,
  38. * and drives the real SMI state machine.
  39. */
  40. #include <linux/module.h>
  41. #include <linux/moduleparam.h>
  42. #include <asm/system.h>
  43. #include <linux/sched.h>
  44. #include <linux/seq_file.h>
  45. #include <linux/timer.h>
  46. #include <linux/errno.h>
  47. #include <linux/spinlock.h>
  48. #include <linux/slab.h>
  49. #include <linux/delay.h>
  50. #include <linux/list.h>
  51. #include <linux/pci.h>
  52. #include <linux/ioport.h>
  53. #include <linux/notifier.h>
  54. #include <linux/mutex.h>
  55. #include <linux/kthread.h>
  56. #include <asm/irq.h>
  57. #include <linux/interrupt.h>
  58. #include <linux/rcupdate.h>
  59. #include <linux/ipmi.h>
  60. #include <linux/ipmi_smi.h>
  61. #include <asm/io.h>
  62. #include "ipmi_si_sm.h"
  63. #include <linux/init.h>
  64. #include <linux/dmi.h>
  65. #include <linux/string.h>
  66. #include <linux/ctype.h>
  67. #include <linux/pnp.h>
  68. #include <linux/of_device.h>
  69. #include <linux/of_platform.h>
  70. #include <linux/of_address.h>
  71. #include <linux/of_irq.h>
  72. #define PFX "ipmi_si: "
  73. /* Measure times between events in the driver. */
  74. #undef DEBUG_TIMING
  75. /* Call every 10 ms. */
  76. #define SI_TIMEOUT_TIME_USEC 10000
  77. #define SI_USEC_PER_JIFFY (1000000/HZ)
  78. #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
  79. #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
  80. short timeout */
  81. enum si_intf_state {
  82. SI_NORMAL,
  83. SI_GETTING_FLAGS,
  84. SI_GETTING_EVENTS,
  85. SI_CLEARING_FLAGS,
  86. SI_CLEARING_FLAGS_THEN_SET_IRQ,
  87. SI_GETTING_MESSAGES,
  88. SI_ENABLE_INTERRUPTS1,
  89. SI_ENABLE_INTERRUPTS2,
  90. SI_DISABLE_INTERRUPTS1,
  91. SI_DISABLE_INTERRUPTS2
  92. /* FIXME - add watchdog stuff. */
  93. };
  94. /* Some BT-specific defines we need here. */
  95. #define IPMI_BT_INTMASK_REG 2
  96. #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
  97. #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
  98. enum si_type {
  99. SI_KCS, SI_SMIC, SI_BT
  100. };
  101. static char *si_to_str[] = { "kcs", "smic", "bt" };
  102. static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
  103. "ACPI", "SMBIOS", "PCI",
  104. "device-tree", "default" };
  105. #define DEVICE_NAME "ipmi_si"
  106. static struct platform_driver ipmi_driver;
  107. /*
  108. * Indexes into stats[] in smi_info below.
  109. */
  110. enum si_stat_indexes {
  111. /*
  112. * Number of times the driver requested a timer while an operation
  113. * was in progress.
  114. */
  115. SI_STAT_short_timeouts = 0,
  116. /*
  117. * Number of times the driver requested a timer while nothing was in
  118. * progress.
  119. */
  120. SI_STAT_long_timeouts,
  121. /* Number of times the interface was idle while being polled. */
  122. SI_STAT_idles,
  123. /* Number of interrupts the driver handled. */
  124. SI_STAT_interrupts,
  125. /* Number of time the driver got an ATTN from the hardware. */
  126. SI_STAT_attentions,
  127. /* Number of times the driver requested flags from the hardware. */
  128. SI_STAT_flag_fetches,
  129. /* Number of times the hardware didn't follow the state machine. */
  130. SI_STAT_hosed_count,
  131. /* Number of completed messages. */
  132. SI_STAT_complete_transactions,
  133. /* Number of IPMI events received from the hardware. */
  134. SI_STAT_events,
  135. /* Number of watchdog pretimeouts. */
  136. SI_STAT_watchdog_pretimeouts,
  137. /* Number of asyncronous messages received. */
  138. SI_STAT_incoming_messages,
  139. /* This *must* remain last, add new values above this. */
  140. SI_NUM_STATS
  141. };
  142. struct smi_info {
  143. int intf_num;
  144. ipmi_smi_t intf;
  145. struct si_sm_data *si_sm;
  146. struct si_sm_handlers *handlers;
  147. enum si_type si_type;
  148. spinlock_t si_lock;
  149. struct list_head xmit_msgs;
  150. struct list_head hp_xmit_msgs;
  151. struct ipmi_smi_msg *curr_msg;
  152. enum si_intf_state si_state;
  153. /*
  154. * Used to handle the various types of I/O that can occur with
  155. * IPMI
  156. */
  157. struct si_sm_io io;
  158. int (*io_setup)(struct smi_info *info);
  159. void (*io_cleanup)(struct smi_info *info);
  160. int (*irq_setup)(struct smi_info *info);
  161. void (*irq_cleanup)(struct smi_info *info);
  162. unsigned int io_size;
  163. enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
  164. void (*addr_source_cleanup)(struct smi_info *info);
  165. void *addr_source_data;
  166. /*
  167. * Per-OEM handler, called from handle_flags(). Returns 1
  168. * when handle_flags() needs to be re-run or 0 indicating it
  169. * set si_state itself.
  170. */
  171. int (*oem_data_avail_handler)(struct smi_info *smi_info);
  172. /*
  173. * Flags from the last GET_MSG_FLAGS command, used when an ATTN
  174. * is set to hold the flags until we are done handling everything
  175. * from the flags.
  176. */
  177. #define RECEIVE_MSG_AVAIL 0x01
  178. #define EVENT_MSG_BUFFER_FULL 0x02
  179. #define WDT_PRE_TIMEOUT_INT 0x08
  180. #define OEM0_DATA_AVAIL 0x20
  181. #define OEM1_DATA_AVAIL 0x40
  182. #define OEM2_DATA_AVAIL 0x80
  183. #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
  184. OEM1_DATA_AVAIL | \
  185. OEM2_DATA_AVAIL)
  186. unsigned char msg_flags;
  187. /* Does the BMC have an event buffer? */
  188. char has_event_buffer;
  189. /*
  190. * If set to true, this will request events the next time the
  191. * state machine is idle.
  192. */
  193. atomic_t req_events;
  194. /*
  195. * If true, run the state machine to completion on every send
  196. * call. Generally used after a panic to make sure stuff goes
  197. * out.
  198. */
  199. int run_to_completion;
  200. /* The I/O port of an SI interface. */
  201. int port;
  202. /*
  203. * The space between start addresses of the two ports. For
  204. * instance, if the first port is 0xca2 and the spacing is 4, then
  205. * the second port is 0xca6.
  206. */
  207. unsigned int spacing;
  208. /* zero if no irq; */
  209. int irq;
  210. /* The timer for this si. */
  211. struct timer_list si_timer;
  212. /* The time (in jiffies) the last timeout occurred at. */
  213. unsigned long last_timeout_jiffies;
  214. /* Used to gracefully stop the timer without race conditions. */
  215. atomic_t stop_operation;
  216. /*
  217. * The driver will disable interrupts when it gets into a
  218. * situation where it cannot handle messages due to lack of
  219. * memory. Once that situation clears up, it will re-enable
  220. * interrupts.
  221. */
  222. int interrupt_disabled;
  223. /* From the get device id response... */
  224. struct ipmi_device_id device_id;
  225. /* Driver model stuff. */
  226. struct device *dev;
  227. struct platform_device *pdev;
  228. /*
  229. * True if we allocated the device, false if it came from
  230. * someplace else (like PCI).
  231. */
  232. int dev_registered;
  233. /* Slave address, could be reported from DMI. */
  234. unsigned char slave_addr;
  235. /* Counters and things for the proc filesystem. */
  236. atomic_t stats[SI_NUM_STATS];
  237. struct task_struct *thread;
  238. struct list_head link;
  239. union ipmi_smi_info_union addr_info;
  240. };
  241. #define smi_inc_stat(smi, stat) \
  242. atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
  243. #define smi_get_stat(smi, stat) \
  244. ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
  245. #define SI_MAX_PARMS 4
  246. static int force_kipmid[SI_MAX_PARMS];
  247. static int num_force_kipmid;
  248. #ifdef CONFIG_PCI
  249. static int pci_registered;
  250. #endif
  251. #ifdef CONFIG_ACPI
  252. static int pnp_registered;
  253. #endif
  254. static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
  255. static int num_max_busy_us;
  256. static int unload_when_empty = 1;
  257. static int add_smi(struct smi_info *smi);
  258. static int try_smi_init(struct smi_info *smi);
  259. static void cleanup_one_si(struct smi_info *to_clean);
  260. static void cleanup_ipmi_si(void);
  261. static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
  262. static int register_xaction_notifier(struct notifier_block *nb)
  263. {
  264. return atomic_notifier_chain_register(&xaction_notifier_list, nb);
  265. }
  266. static void deliver_recv_msg(struct smi_info *smi_info,
  267. struct ipmi_smi_msg *msg)
  268. {
  269. /* Deliver the message to the upper layer. */
  270. ipmi_smi_msg_received(smi_info->intf, msg);
  271. }
  272. static void return_hosed_msg(struct smi_info *smi_info, int cCode)
  273. {
  274. struct ipmi_smi_msg *msg = smi_info->curr_msg;
  275. if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
  276. cCode = IPMI_ERR_UNSPECIFIED;
  277. /* else use it as is */
  278. /* Make it a response */
  279. msg->rsp[0] = msg->data[0] | 4;
  280. msg->rsp[1] = msg->data[1];
  281. msg->rsp[2] = cCode;
  282. msg->rsp_size = 3;
  283. smi_info->curr_msg = NULL;
  284. deliver_recv_msg(smi_info, msg);
  285. }
  286. static enum si_sm_result start_next_msg(struct smi_info *smi_info)
  287. {
  288. int rv;
  289. struct list_head *entry = NULL;
  290. #ifdef DEBUG_TIMING
  291. struct timeval t;
  292. #endif
  293. /* Pick the high priority queue first. */
  294. if (!list_empty(&(smi_info->hp_xmit_msgs))) {
  295. entry = smi_info->hp_xmit_msgs.next;
  296. } else if (!list_empty(&(smi_info->xmit_msgs))) {
  297. entry = smi_info->xmit_msgs.next;
  298. }
  299. if (!entry) {
  300. smi_info->curr_msg = NULL;
  301. rv = SI_SM_IDLE;
  302. } else {
  303. int err;
  304. list_del(entry);
  305. smi_info->curr_msg = list_entry(entry,
  306. struct ipmi_smi_msg,
  307. link);
  308. #ifdef DEBUG_TIMING
  309. do_gettimeofday(&t);
  310. printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  311. #endif
  312. err = atomic_notifier_call_chain(&xaction_notifier_list,
  313. 0, smi_info);
  314. if (err & NOTIFY_STOP_MASK) {
  315. rv = SI_SM_CALL_WITHOUT_DELAY;
  316. goto out;
  317. }
  318. err = smi_info->handlers->start_transaction(
  319. smi_info->si_sm,
  320. smi_info->curr_msg->data,
  321. smi_info->curr_msg->data_size);
  322. if (err)
  323. return_hosed_msg(smi_info, err);
  324. rv = SI_SM_CALL_WITHOUT_DELAY;
  325. }
  326. out:
  327. return rv;
  328. }
  329. static void start_enable_irq(struct smi_info *smi_info)
  330. {
  331. unsigned char msg[2];
  332. /*
  333. * If we are enabling interrupts, we have to tell the
  334. * BMC to use them.
  335. */
  336. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  337. msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
  338. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
  339. smi_info->si_state = SI_ENABLE_INTERRUPTS1;
  340. }
  341. static void start_disable_irq(struct smi_info *smi_info)
  342. {
  343. unsigned char msg[2];
  344. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  345. msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
  346. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
  347. smi_info->si_state = SI_DISABLE_INTERRUPTS1;
  348. }
  349. static void start_clear_flags(struct smi_info *smi_info)
  350. {
  351. unsigned char msg[3];
  352. /* Make sure the watchdog pre-timeout flag is not set at startup. */
  353. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  354. msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
  355. msg[2] = WDT_PRE_TIMEOUT_INT;
  356. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
  357. smi_info->si_state = SI_CLEARING_FLAGS;
  358. }
  359. /*
  360. * When we have a situtaion where we run out of memory and cannot
  361. * allocate messages, we just leave them in the BMC and run the system
  362. * polled until we can allocate some memory. Once we have some
  363. * memory, we will re-enable the interrupt.
  364. */
  365. static inline void disable_si_irq(struct smi_info *smi_info)
  366. {
  367. if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
  368. start_disable_irq(smi_info);
  369. smi_info->interrupt_disabled = 1;
  370. if (!atomic_read(&smi_info->stop_operation))
  371. mod_timer(&smi_info->si_timer,
  372. jiffies + SI_TIMEOUT_JIFFIES);
  373. }
  374. }
  375. static inline void enable_si_irq(struct smi_info *smi_info)
  376. {
  377. if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
  378. start_enable_irq(smi_info);
  379. smi_info->interrupt_disabled = 0;
  380. }
  381. }
  382. static void handle_flags(struct smi_info *smi_info)
  383. {
  384. retry:
  385. if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
  386. /* Watchdog pre-timeout */
  387. smi_inc_stat(smi_info, watchdog_pretimeouts);
  388. start_clear_flags(smi_info);
  389. smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
  390. ipmi_smi_watchdog_pretimeout(smi_info->intf);
  391. } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
  392. /* Messages available. */
  393. smi_info->curr_msg = ipmi_alloc_smi_msg();
  394. if (!smi_info->curr_msg) {
  395. disable_si_irq(smi_info);
  396. smi_info->si_state = SI_NORMAL;
  397. return;
  398. }
  399. enable_si_irq(smi_info);
  400. smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
  401. smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
  402. smi_info->curr_msg->data_size = 2;
  403. smi_info->handlers->start_transaction(
  404. smi_info->si_sm,
  405. smi_info->curr_msg->data,
  406. smi_info->curr_msg->data_size);
  407. smi_info->si_state = SI_GETTING_MESSAGES;
  408. } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
  409. /* Events available. */
  410. smi_info->curr_msg = ipmi_alloc_smi_msg();
  411. if (!smi_info->curr_msg) {
  412. disable_si_irq(smi_info);
  413. smi_info->si_state = SI_NORMAL;
  414. return;
  415. }
  416. enable_si_irq(smi_info);
  417. smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
  418. smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
  419. smi_info->curr_msg->data_size = 2;
  420. smi_info->handlers->start_transaction(
  421. smi_info->si_sm,
  422. smi_info->curr_msg->data,
  423. smi_info->curr_msg->data_size);
  424. smi_info->si_state = SI_GETTING_EVENTS;
  425. } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
  426. smi_info->oem_data_avail_handler) {
  427. if (smi_info->oem_data_avail_handler(smi_info))
  428. goto retry;
  429. } else
  430. smi_info->si_state = SI_NORMAL;
  431. }
  432. static void handle_transaction_done(struct smi_info *smi_info)
  433. {
  434. struct ipmi_smi_msg *msg;
  435. #ifdef DEBUG_TIMING
  436. struct timeval t;
  437. do_gettimeofday(&t);
  438. printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  439. #endif
  440. switch (smi_info->si_state) {
  441. case SI_NORMAL:
  442. if (!smi_info->curr_msg)
  443. break;
  444. smi_info->curr_msg->rsp_size
  445. = smi_info->handlers->get_result(
  446. smi_info->si_sm,
  447. smi_info->curr_msg->rsp,
  448. IPMI_MAX_MSG_LENGTH);
  449. /*
  450. * Do this here becase deliver_recv_msg() releases the
  451. * lock, and a new message can be put in during the
  452. * time the lock is released.
  453. */
  454. msg = smi_info->curr_msg;
  455. smi_info->curr_msg = NULL;
  456. deliver_recv_msg(smi_info, msg);
  457. break;
  458. case SI_GETTING_FLAGS:
  459. {
  460. unsigned char msg[4];
  461. unsigned int len;
  462. /* We got the flags from the SMI, now handle them. */
  463. len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  464. if (msg[2] != 0) {
  465. /* Error fetching flags, just give up for now. */
  466. smi_info->si_state = SI_NORMAL;
  467. } else if (len < 4) {
  468. /*
  469. * Hmm, no flags. That's technically illegal, but
  470. * don't use uninitialized data.
  471. */
  472. smi_info->si_state = SI_NORMAL;
  473. } else {
  474. smi_info->msg_flags = msg[3];
  475. handle_flags(smi_info);
  476. }
  477. break;
  478. }
  479. case SI_CLEARING_FLAGS:
  480. case SI_CLEARING_FLAGS_THEN_SET_IRQ:
  481. {
  482. unsigned char msg[3];
  483. /* We cleared the flags. */
  484. smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
  485. if (msg[2] != 0) {
  486. /* Error clearing flags */
  487. dev_warn(smi_info->dev,
  488. "Error clearing flags: %2.2x\n", msg[2]);
  489. }
  490. if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
  491. start_enable_irq(smi_info);
  492. else
  493. smi_info->si_state = SI_NORMAL;
  494. break;
  495. }
  496. case SI_GETTING_EVENTS:
  497. {
  498. smi_info->curr_msg->rsp_size
  499. = smi_info->handlers->get_result(
  500. smi_info->si_sm,
  501. smi_info->curr_msg->rsp,
  502. IPMI_MAX_MSG_LENGTH);
  503. /*
  504. * Do this here becase deliver_recv_msg() releases the
  505. * lock, and a new message can be put in during the
  506. * time the lock is released.
  507. */
  508. msg = smi_info->curr_msg;
  509. smi_info->curr_msg = NULL;
  510. if (msg->rsp[2] != 0) {
  511. /* Error getting event, probably done. */
  512. msg->done(msg);
  513. /* Take off the event flag. */
  514. smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
  515. handle_flags(smi_info);
  516. } else {
  517. smi_inc_stat(smi_info, events);
  518. /*
  519. * Do this before we deliver the message
  520. * because delivering the message releases the
  521. * lock and something else can mess with the
  522. * state.
  523. */
  524. handle_flags(smi_info);
  525. deliver_recv_msg(smi_info, msg);
  526. }
  527. break;
  528. }
  529. case SI_GETTING_MESSAGES:
  530. {
  531. smi_info->curr_msg->rsp_size
  532. = smi_info->handlers->get_result(
  533. smi_info->si_sm,
  534. smi_info->curr_msg->rsp,
  535. IPMI_MAX_MSG_LENGTH);
  536. /*
  537. * Do this here becase deliver_recv_msg() releases the
  538. * lock, and a new message can be put in during the
  539. * time the lock is released.
  540. */
  541. msg = smi_info->curr_msg;
  542. smi_info->curr_msg = NULL;
  543. if (msg->rsp[2] != 0) {
  544. /* Error getting event, probably done. */
  545. msg->done(msg);
  546. /* Take off the msg flag. */
  547. smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
  548. handle_flags(smi_info);
  549. } else {
  550. smi_inc_stat(smi_info, incoming_messages);
  551. /*
  552. * Do this before we deliver the message
  553. * because delivering the message releases the
  554. * lock and something else can mess with the
  555. * state.
  556. */
  557. handle_flags(smi_info);
  558. deliver_recv_msg(smi_info, msg);
  559. }
  560. break;
  561. }
  562. case SI_ENABLE_INTERRUPTS1:
  563. {
  564. unsigned char msg[4];
  565. /* We got the flags from the SMI, now handle them. */
  566. smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  567. if (msg[2] != 0) {
  568. dev_warn(smi_info->dev, "Could not enable interrupts"
  569. ", failed get, using polled mode.\n");
  570. smi_info->si_state = SI_NORMAL;
  571. } else {
  572. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  573. msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
  574. msg[2] = (msg[3] |
  575. IPMI_BMC_RCV_MSG_INTR |
  576. IPMI_BMC_EVT_MSG_INTR);
  577. smi_info->handlers->start_transaction(
  578. smi_info->si_sm, msg, 3);
  579. smi_info->si_state = SI_ENABLE_INTERRUPTS2;
  580. }
  581. break;
  582. }
  583. case SI_ENABLE_INTERRUPTS2:
  584. {
  585. unsigned char msg[4];
  586. /* We got the flags from the SMI, now handle them. */
  587. smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  588. if (msg[2] != 0)
  589. dev_warn(smi_info->dev, "Could not enable interrupts"
  590. ", failed set, using polled mode.\n");
  591. else
  592. smi_info->interrupt_disabled = 0;
  593. smi_info->si_state = SI_NORMAL;
  594. break;
  595. }
  596. case SI_DISABLE_INTERRUPTS1:
  597. {
  598. unsigned char msg[4];
  599. /* We got the flags from the SMI, now handle them. */
  600. smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  601. if (msg[2] != 0) {
  602. dev_warn(smi_info->dev, "Could not disable interrupts"
  603. ", failed get.\n");
  604. smi_info->si_state = SI_NORMAL;
  605. } else {
  606. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  607. msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
  608. msg[2] = (msg[3] &
  609. ~(IPMI_BMC_RCV_MSG_INTR |
  610. IPMI_BMC_EVT_MSG_INTR));
  611. smi_info->handlers->start_transaction(
  612. smi_info->si_sm, msg, 3);
  613. smi_info->si_state = SI_DISABLE_INTERRUPTS2;
  614. }
  615. break;
  616. }
  617. case SI_DISABLE_INTERRUPTS2:
  618. {
  619. unsigned char msg[4];
  620. /* We got the flags from the SMI, now handle them. */
  621. smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  622. if (msg[2] != 0) {
  623. dev_warn(smi_info->dev, "Could not disable interrupts"
  624. ", failed set.\n");
  625. }
  626. smi_info->si_state = SI_NORMAL;
  627. break;
  628. }
  629. }
  630. }
  631. /*
  632. * Called on timeouts and events. Timeouts should pass the elapsed
  633. * time, interrupts should pass in zero. Must be called with
  634. * si_lock held and interrupts disabled.
  635. */
  636. static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
  637. int time)
  638. {
  639. enum si_sm_result si_sm_result;
  640. restart:
  641. /*
  642. * There used to be a loop here that waited a little while
  643. * (around 25us) before giving up. That turned out to be
  644. * pointless, the minimum delays I was seeing were in the 300us
  645. * range, which is far too long to wait in an interrupt. So
  646. * we just run until the state machine tells us something
  647. * happened or it needs a delay.
  648. */
  649. si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
  650. time = 0;
  651. while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
  652. si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
  653. if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
  654. smi_inc_stat(smi_info, complete_transactions);
  655. handle_transaction_done(smi_info);
  656. si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
  657. } else if (si_sm_result == SI_SM_HOSED) {
  658. smi_inc_stat(smi_info, hosed_count);
  659. /*
  660. * Do the before return_hosed_msg, because that
  661. * releases the lock.
  662. */
  663. smi_info->si_state = SI_NORMAL;
  664. if (smi_info->curr_msg != NULL) {
  665. /*
  666. * If we were handling a user message, format
  667. * a response to send to the upper layer to
  668. * tell it about the error.
  669. */
  670. return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
  671. }
  672. si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
  673. }
  674. /*
  675. * We prefer handling attn over new messages. But don't do
  676. * this if there is not yet an upper layer to handle anything.
  677. */
  678. if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
  679. unsigned char msg[2];
  680. smi_inc_stat(smi_info, attentions);
  681. /*
  682. * Got a attn, send down a get message flags to see
  683. * what's causing it. It would be better to handle
  684. * this in the upper layer, but due to the way
  685. * interrupts work with the SMI, that's not really
  686. * possible.
  687. */
  688. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  689. msg[1] = IPMI_GET_MSG_FLAGS_CMD;
  690. smi_info->handlers->start_transaction(
  691. smi_info->si_sm, msg, 2);
  692. smi_info->si_state = SI_GETTING_FLAGS;
  693. goto restart;
  694. }
  695. /* If we are currently idle, try to start the next message. */
  696. if (si_sm_result == SI_SM_IDLE) {
  697. smi_inc_stat(smi_info, idles);
  698. si_sm_result = start_next_msg(smi_info);
  699. if (si_sm_result != SI_SM_IDLE)
  700. goto restart;
  701. }
  702. if ((si_sm_result == SI_SM_IDLE)
  703. && (atomic_read(&smi_info->req_events))) {
  704. /*
  705. * We are idle and the upper layer requested that I fetch
  706. * events, so do so.
  707. */
  708. atomic_set(&smi_info->req_events, 0);
  709. smi_info->curr_msg = ipmi_alloc_smi_msg();
  710. if (!smi_info->curr_msg)
  711. goto out;
  712. smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
  713. smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
  714. smi_info->curr_msg->data_size = 2;
  715. smi_info->handlers->start_transaction(
  716. smi_info->si_sm,
  717. smi_info->curr_msg->data,
  718. smi_info->curr_msg->data_size);
  719. smi_info->si_state = SI_GETTING_EVENTS;
  720. goto restart;
  721. }
  722. out:
  723. return si_sm_result;
  724. }
  725. static void sender(void *send_info,
  726. struct ipmi_smi_msg *msg,
  727. int priority)
  728. {
  729. struct smi_info *smi_info = send_info;
  730. enum si_sm_result result;
  731. unsigned long flags;
  732. #ifdef DEBUG_TIMING
  733. struct timeval t;
  734. #endif
  735. if (atomic_read(&smi_info->stop_operation)) {
  736. msg->rsp[0] = msg->data[0] | 4;
  737. msg->rsp[1] = msg->data[1];
  738. msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
  739. msg->rsp_size = 3;
  740. deliver_recv_msg(smi_info, msg);
  741. return;
  742. }
  743. #ifdef DEBUG_TIMING
  744. do_gettimeofday(&t);
  745. printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  746. #endif
  747. if (smi_info->run_to_completion) {
  748. /*
  749. * If we are running to completion, then throw it in
  750. * the list and run transactions until everything is
  751. * clear. Priority doesn't matter here.
  752. */
  753. /*
  754. * Run to completion means we are single-threaded, no
  755. * need for locks.
  756. */
  757. list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
  758. result = smi_event_handler(smi_info, 0);
  759. while (result != SI_SM_IDLE) {
  760. udelay(SI_SHORT_TIMEOUT_USEC);
  761. result = smi_event_handler(smi_info,
  762. SI_SHORT_TIMEOUT_USEC);
  763. }
  764. return;
  765. }
  766. spin_lock_irqsave(&smi_info->si_lock, flags);
  767. if (priority > 0)
  768. list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
  769. else
  770. list_add_tail(&msg->link, &smi_info->xmit_msgs);
  771. if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
  772. /*
  773. * last_timeout_jiffies is updated here to avoid
  774. * smi_timeout() handler passing very large time_diff
  775. * value to smi_event_handler() that causes
  776. * the send command to abort.
  777. */
  778. smi_info->last_timeout_jiffies = jiffies;
  779. mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
  780. if (smi_info->thread)
  781. wake_up_process(smi_info->thread);
  782. start_next_msg(smi_info);
  783. smi_event_handler(smi_info, 0);
  784. }
  785. spin_unlock_irqrestore(&smi_info->si_lock, flags);
  786. }
  787. static void set_run_to_completion(void *send_info, int i_run_to_completion)
  788. {
  789. struct smi_info *smi_info = send_info;
  790. enum si_sm_result result;
  791. smi_info->run_to_completion = i_run_to_completion;
  792. if (i_run_to_completion) {
  793. result = smi_event_handler(smi_info, 0);
  794. while (result != SI_SM_IDLE) {
  795. udelay(SI_SHORT_TIMEOUT_USEC);
  796. result = smi_event_handler(smi_info,
  797. SI_SHORT_TIMEOUT_USEC);
  798. }
  799. }
  800. }
  801. /*
  802. * Use -1 in the nsec value of the busy waiting timespec to tell that
  803. * we are spinning in kipmid looking for something and not delaying
  804. * between checks
  805. */
  806. static inline void ipmi_si_set_not_busy(struct timespec *ts)
  807. {
  808. ts->tv_nsec = -1;
  809. }
  810. static inline int ipmi_si_is_busy(struct timespec *ts)
  811. {
  812. return ts->tv_nsec != -1;
  813. }
  814. static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
  815. const struct smi_info *smi_info,
  816. struct timespec *busy_until)
  817. {
  818. unsigned int max_busy_us = 0;
  819. if (smi_info->intf_num < num_max_busy_us)
  820. max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
  821. if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
  822. ipmi_si_set_not_busy(busy_until);
  823. else if (!ipmi_si_is_busy(busy_until)) {
  824. getnstimeofday(busy_until);
  825. timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
  826. } else {
  827. struct timespec now;
  828. getnstimeofday(&now);
  829. if (unlikely(timespec_compare(&now, busy_until) > 0)) {
  830. ipmi_si_set_not_busy(busy_until);
  831. return 0;
  832. }
  833. }
  834. return 1;
  835. }
  836. /*
  837. * A busy-waiting loop for speeding up IPMI operation.
  838. *
  839. * Lousy hardware makes this hard. This is only enabled for systems
  840. * that are not BT and do not have interrupts. It starts spinning
  841. * when an operation is complete or until max_busy tells it to stop
  842. * (if that is enabled). See the paragraph on kimid_max_busy_us in
  843. * Documentation/IPMI.txt for details.
  844. */
  845. static int ipmi_thread(void *data)
  846. {
  847. struct smi_info *smi_info = data;
  848. unsigned long flags;
  849. enum si_sm_result smi_result;
  850. struct timespec busy_until;
  851. ipmi_si_set_not_busy(&busy_until);
  852. set_user_nice(current, 19);
  853. while (!kthread_should_stop()) {
  854. int busy_wait;
  855. spin_lock_irqsave(&(smi_info->si_lock), flags);
  856. smi_result = smi_event_handler(smi_info, 0);
  857. spin_unlock_irqrestore(&(smi_info->si_lock), flags);
  858. busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
  859. &busy_until);
  860. if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
  861. ; /* do nothing */
  862. else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
  863. schedule();
  864. else if (smi_result == SI_SM_IDLE)
  865. schedule_timeout_interruptible(100);
  866. else
  867. schedule_timeout_interruptible(1);
  868. }
  869. return 0;
  870. }
  871. static void poll(void *send_info)
  872. {
  873. struct smi_info *smi_info = send_info;
  874. unsigned long flags = 0;
  875. int run_to_completion = smi_info->run_to_completion;
  876. /*
  877. * Make sure there is some delay in the poll loop so we can
  878. * drive time forward and timeout things.
  879. */
  880. udelay(10);
  881. if (!run_to_completion)
  882. spin_lock_irqsave(&smi_info->si_lock, flags);
  883. smi_event_handler(smi_info, 10);
  884. if (!run_to_completion)
  885. spin_unlock_irqrestore(&smi_info->si_lock, flags);
  886. }
  887. static void request_events(void *send_info)
  888. {
  889. struct smi_info *smi_info = send_info;
  890. if (atomic_read(&smi_info->stop_operation) ||
  891. !smi_info->has_event_buffer)
  892. return;
  893. atomic_set(&smi_info->req_events, 1);
  894. }
  895. static int initialized;
  896. static void smi_timeout(unsigned long data)
  897. {
  898. struct smi_info *smi_info = (struct smi_info *) data;
  899. enum si_sm_result smi_result;
  900. unsigned long flags;
  901. unsigned long jiffies_now;
  902. long time_diff;
  903. long timeout;
  904. #ifdef DEBUG_TIMING
  905. struct timeval t;
  906. #endif
  907. spin_lock_irqsave(&(smi_info->si_lock), flags);
  908. #ifdef DEBUG_TIMING
  909. do_gettimeofday(&t);
  910. printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  911. #endif
  912. jiffies_now = jiffies;
  913. time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
  914. * SI_USEC_PER_JIFFY);
  915. smi_result = smi_event_handler(smi_info, time_diff);
  916. spin_unlock_irqrestore(&(smi_info->si_lock), flags);
  917. smi_info->last_timeout_jiffies = jiffies_now;
  918. if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
  919. /* Running with interrupts, only do long timeouts. */
  920. timeout = jiffies + SI_TIMEOUT_JIFFIES;
  921. smi_inc_stat(smi_info, long_timeouts);
  922. goto do_mod_timer;
  923. }
  924. /*
  925. * If the state machine asks for a short delay, then shorten
  926. * the timer timeout.
  927. */
  928. if (smi_result == SI_SM_CALL_WITH_DELAY) {
  929. smi_inc_stat(smi_info, short_timeouts);
  930. timeout = jiffies + 1;
  931. } else {
  932. smi_inc_stat(smi_info, long_timeouts);
  933. timeout = jiffies + SI_TIMEOUT_JIFFIES;
  934. }
  935. do_mod_timer:
  936. if (smi_result != SI_SM_IDLE)
  937. mod_timer(&(smi_info->si_timer), timeout);
  938. }
  939. static irqreturn_t si_irq_handler(int irq, void *data)
  940. {
  941. struct smi_info *smi_info = data;
  942. unsigned long flags;
  943. #ifdef DEBUG_TIMING
  944. struct timeval t;
  945. #endif
  946. spin_lock_irqsave(&(smi_info->si_lock), flags);
  947. smi_inc_stat(smi_info, interrupts);
  948. #ifdef DEBUG_TIMING
  949. do_gettimeofday(&t);
  950. printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  951. #endif
  952. smi_event_handler(smi_info, 0);
  953. spin_unlock_irqrestore(&(smi_info->si_lock), flags);
  954. return IRQ_HANDLED;
  955. }
  956. static irqreturn_t si_bt_irq_handler(int irq, void *data)
  957. {
  958. struct smi_info *smi_info = data;
  959. /* We need to clear the IRQ flag for the BT interface. */
  960. smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
  961. IPMI_BT_INTMASK_CLEAR_IRQ_BIT
  962. | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
  963. return si_irq_handler(irq, data);
  964. }
  965. static int smi_start_processing(void *send_info,
  966. ipmi_smi_t intf)
  967. {
  968. struct smi_info *new_smi = send_info;
  969. int enable = 0;
  970. new_smi->intf = intf;
  971. /* Try to claim any interrupts. */
  972. if (new_smi->irq_setup)
  973. new_smi->irq_setup(new_smi);
  974. /* Set up the timer that drives the interface. */
  975. setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
  976. new_smi->last_timeout_jiffies = jiffies;
  977. mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
  978. /*
  979. * Check if the user forcefully enabled the daemon.
  980. */
  981. if (new_smi->intf_num < num_force_kipmid)
  982. enable = force_kipmid[new_smi->intf_num];
  983. /*
  984. * The BT interface is efficient enough to not need a thread,
  985. * and there is no need for a thread if we have interrupts.
  986. */
  987. else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
  988. enable = 1;
  989. if (enable) {
  990. new_smi->thread = kthread_run(ipmi_thread, new_smi,
  991. "kipmi%d", new_smi->intf_num);
  992. if (IS_ERR(new_smi->thread)) {
  993. dev_notice(new_smi->dev, "Could not start"
  994. " kernel thread due to error %ld, only using"
  995. " timers to drive the interface\n",
  996. PTR_ERR(new_smi->thread));
  997. new_smi->thread = NULL;
  998. }
  999. }
  1000. return 0;
  1001. }
  1002. static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
  1003. {
  1004. struct smi_info *smi = send_info;
  1005. data->addr_src = smi->addr_source;
  1006. data->dev = smi->dev;
  1007. data->addr_info = smi->addr_info;
  1008. get_device(smi->dev);
  1009. return 0;
  1010. }
  1011. static void set_maintenance_mode(void *send_info, int enable)
  1012. {
  1013. struct smi_info *smi_info = send_info;
  1014. if (!enable)
  1015. atomic_set(&smi_info->req_events, 0);
  1016. }
  1017. static struct ipmi_smi_handlers handlers = {
  1018. .owner = THIS_MODULE,
  1019. .start_processing = smi_start_processing,
  1020. .get_smi_info = get_smi_info,
  1021. .sender = sender,
  1022. .request_events = request_events,
  1023. .set_maintenance_mode = set_maintenance_mode,
  1024. .set_run_to_completion = set_run_to_completion,
  1025. .poll = poll,
  1026. };
  1027. /*
  1028. * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
  1029. * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
  1030. */
  1031. static LIST_HEAD(smi_infos);
  1032. static DEFINE_MUTEX(smi_infos_lock);
  1033. static int smi_num; /* Used to sequence the SMIs */
  1034. #define DEFAULT_REGSPACING 1
  1035. #define DEFAULT_REGSIZE 1
  1036. static bool si_trydefaults = 1;
  1037. static char *si_type[SI_MAX_PARMS];
  1038. #define MAX_SI_TYPE_STR 30
  1039. static char si_type_str[MAX_SI_TYPE_STR];
  1040. static unsigned long addrs[SI_MAX_PARMS];
  1041. static unsigned int num_addrs;
  1042. static unsigned int ports[SI_MAX_PARMS];
  1043. static unsigned int num_ports;
  1044. static int irqs[SI_MAX_PARMS];
  1045. static unsigned int num_irqs;
  1046. static int regspacings[SI_MAX_PARMS];
  1047. static unsigned int num_regspacings;
  1048. static int regsizes[SI_MAX_PARMS];
  1049. static unsigned int num_regsizes;
  1050. static int regshifts[SI_MAX_PARMS];
  1051. static unsigned int num_regshifts;
  1052. static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
  1053. static unsigned int num_slave_addrs;
  1054. #define IPMI_IO_ADDR_SPACE 0
  1055. #define IPMI_MEM_ADDR_SPACE 1
  1056. static char *addr_space_to_str[] = { "i/o", "mem" };
  1057. static int hotmod_handler(const char *val, struct kernel_param *kp);
  1058. module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
  1059. MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
  1060. " Documentation/IPMI.txt in the kernel sources for the"
  1061. " gory details.");
  1062. module_param_named(trydefaults, si_trydefaults, bool, 0);
  1063. MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
  1064. " default scan of the KCS and SMIC interface at the standard"
  1065. " address");
  1066. module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
  1067. MODULE_PARM_DESC(type, "Defines the type of each interface, each"
  1068. " interface separated by commas. The types are 'kcs',"
  1069. " 'smic', and 'bt'. For example si_type=kcs,bt will set"
  1070. " the first interface to kcs and the second to bt");
  1071. module_param_array(addrs, ulong, &num_addrs, 0);
  1072. MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
  1073. " addresses separated by commas. Only use if an interface"
  1074. " is in memory. Otherwise, set it to zero or leave"
  1075. " it blank.");
  1076. module_param_array(ports, uint, &num_ports, 0);
  1077. MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
  1078. " addresses separated by commas. Only use if an interface"
  1079. " is a port. Otherwise, set it to zero or leave"
  1080. " it blank.");
  1081. module_param_array(irqs, int, &num_irqs, 0);
  1082. MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
  1083. " addresses separated by commas. Only use if an interface"
  1084. " has an interrupt. Otherwise, set it to zero or leave"
  1085. " it blank.");
  1086. module_param_array(regspacings, int, &num_regspacings, 0);
  1087. MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
  1088. " and each successive register used by the interface. For"
  1089. " instance, if the start address is 0xca2 and the spacing"
  1090. " is 2, then the second address is at 0xca4. Defaults"
  1091. " to 1.");
  1092. module_param_array(regsizes, int, &num_regsizes, 0);
  1093. MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
  1094. " This should generally be 1, 2, 4, or 8 for an 8-bit,"
  1095. " 16-bit, 32-bit, or 64-bit register. Use this if you"
  1096. " the 8-bit IPMI register has to be read from a larger"
  1097. " register.");
  1098. module_param_array(regshifts, int, &num_regshifts, 0);
  1099. MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
  1100. " IPMI register, in bits. For instance, if the data"
  1101. " is read from a 32-bit word and the IPMI data is in"
  1102. " bit 8-15, then the shift would be 8");
  1103. module_param_array(slave_addrs, int, &num_slave_addrs, 0);
  1104. MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
  1105. " the controller. Normally this is 0x20, but can be"
  1106. " overridden by this parm. This is an array indexed"
  1107. " by interface number.");
  1108. module_param_array(force_kipmid, int, &num_force_kipmid, 0);
  1109. MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
  1110. " disabled(0). Normally the IPMI driver auto-detects"
  1111. " this, but the value may be overridden by this parm.");
  1112. module_param(unload_when_empty, int, 0);
  1113. MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
  1114. " specified or found, default is 1. Setting to 0"
  1115. " is useful for hot add of devices using hotmod.");
  1116. module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
  1117. MODULE_PARM_DESC(kipmid_max_busy_us,
  1118. "Max time (in microseconds) to busy-wait for IPMI data before"
  1119. " sleeping. 0 (default) means to wait forever. Set to 100-500"
  1120. " if kipmid is using up a lot of CPU time.");
  1121. static void std_irq_cleanup(struct smi_info *info)
  1122. {
  1123. if (info->si_type == SI_BT)
  1124. /* Disable the interrupt in the BT interface. */
  1125. info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
  1126. free_irq(info->irq, info);
  1127. }
  1128. static int std_irq_setup(struct smi_info *info)
  1129. {
  1130. int rv;
  1131. if (!info->irq)
  1132. return 0;
  1133. if (info->si_type == SI_BT) {
  1134. rv = request_irq(info->irq,
  1135. si_bt_irq_handler,
  1136. IRQF_SHARED | IRQF_DISABLED,
  1137. DEVICE_NAME,
  1138. info);
  1139. if (!rv)
  1140. /* Enable the interrupt in the BT interface. */
  1141. info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
  1142. IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
  1143. } else
  1144. rv = request_irq(info->irq,
  1145. si_irq_handler,
  1146. IRQF_SHARED | IRQF_DISABLED,
  1147. DEVICE_NAME,
  1148. info);
  1149. if (rv) {
  1150. dev_warn(info->dev, "%s unable to claim interrupt %d,"
  1151. " running polled\n",
  1152. DEVICE_NAME, info->irq);
  1153. info->irq = 0;
  1154. } else {
  1155. info->irq_cleanup = std_irq_cleanup;
  1156. dev_info(info->dev, "Using irq %d\n", info->irq);
  1157. }
  1158. return rv;
  1159. }
  1160. static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
  1161. {
  1162. unsigned int addr = io->addr_data;
  1163. return inb(addr + (offset * io->regspacing));
  1164. }
  1165. static void port_outb(struct si_sm_io *io, unsigned int offset,
  1166. unsigned char b)
  1167. {
  1168. unsigned int addr = io->addr_data;
  1169. outb(b, addr + (offset * io->regspacing));
  1170. }
  1171. static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
  1172. {
  1173. unsigned int addr = io->addr_data;
  1174. return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
  1175. }
  1176. static void port_outw(struct si_sm_io *io, unsigned int offset,
  1177. unsigned char b)
  1178. {
  1179. unsigned int addr = io->addr_data;
  1180. outw(b << io->regshift, addr + (offset * io->regspacing));
  1181. }
  1182. static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
  1183. {
  1184. unsigned int addr = io->addr_data;
  1185. return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
  1186. }
  1187. static void port_outl(struct si_sm_io *io, unsigned int offset,
  1188. unsigned char b)
  1189. {
  1190. unsigned int addr = io->addr_data;
  1191. outl(b << io->regshift, addr+(offset * io->regspacing));
  1192. }
  1193. static void port_cleanup(struct smi_info *info)
  1194. {
  1195. unsigned int addr = info->io.addr_data;
  1196. int idx;
  1197. if (addr) {
  1198. for (idx = 0; idx < info->io_size; idx++)
  1199. release_region(addr + idx * info->io.regspacing,
  1200. info->io.regsize);
  1201. }
  1202. }
  1203. static int port_setup(struct smi_info *info)
  1204. {
  1205. unsigned int addr = info->io.addr_data;
  1206. int idx;
  1207. if (!addr)
  1208. return -ENODEV;
  1209. info->io_cleanup = port_cleanup;
  1210. /*
  1211. * Figure out the actual inb/inw/inl/etc routine to use based
  1212. * upon the register size.
  1213. */
  1214. switch (info->io.regsize) {
  1215. case 1:
  1216. info->io.inputb = port_inb;
  1217. info->io.outputb = port_outb;
  1218. break;
  1219. case 2:
  1220. info->io.inputb = port_inw;
  1221. info->io.outputb = port_outw;
  1222. break;
  1223. case 4:
  1224. info->io.inputb = port_inl;
  1225. info->io.outputb = port_outl;
  1226. break;
  1227. default:
  1228. dev_warn(info->dev, "Invalid register size: %d\n",
  1229. info->io.regsize);
  1230. return -EINVAL;
  1231. }
  1232. /*
  1233. * Some BIOSes reserve disjoint I/O regions in their ACPI
  1234. * tables. This causes problems when trying to register the
  1235. * entire I/O region. Therefore we must register each I/O
  1236. * port separately.
  1237. */
  1238. for (idx = 0; idx < info->io_size; idx++) {
  1239. if (request_region(addr + idx * info->io.regspacing,
  1240. info->io.regsize, DEVICE_NAME) == NULL) {
  1241. /* Undo allocations */
  1242. while (idx--) {
  1243. release_region(addr + idx * info->io.regspacing,
  1244. info->io.regsize);
  1245. }
  1246. return -EIO;
  1247. }
  1248. }
  1249. return 0;
  1250. }
  1251. static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
  1252. {
  1253. return readb((io->addr)+(offset * io->regspacing));
  1254. }
  1255. static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
  1256. unsigned char b)
  1257. {
  1258. writeb(b, (io->addr)+(offset * io->regspacing));
  1259. }
  1260. static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
  1261. {
  1262. return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
  1263. & 0xff;
  1264. }
  1265. static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
  1266. unsigned char b)
  1267. {
  1268. writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
  1269. }
  1270. static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
  1271. {
  1272. return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
  1273. & 0xff;
  1274. }
  1275. static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
  1276. unsigned char b)
  1277. {
  1278. writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
  1279. }
  1280. #ifdef readq
  1281. static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
  1282. {
  1283. return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
  1284. & 0xff;
  1285. }
  1286. static void mem_outq(struct si_sm_io *io, unsigned int offset,
  1287. unsigned char b)
  1288. {
  1289. writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
  1290. }
  1291. #endif
  1292. static void mem_cleanup(struct smi_info *info)
  1293. {
  1294. unsigned long addr = info->io.addr_data;
  1295. int mapsize;
  1296. if (info->io.addr) {
  1297. iounmap(info->io.addr);
  1298. mapsize = ((info->io_size * info->io.regspacing)
  1299. - (info->io.regspacing - info->io.regsize));
  1300. release_mem_region(addr, mapsize);
  1301. }
  1302. }
  1303. static int mem_setup(struct smi_info *info)
  1304. {
  1305. unsigned long addr = info->io.addr_data;
  1306. int mapsize;
  1307. if (!addr)
  1308. return -ENODEV;
  1309. info->io_cleanup = mem_cleanup;
  1310. /*
  1311. * Figure out the actual readb/readw/readl/etc routine to use based
  1312. * upon the register size.
  1313. */
  1314. switch (info->io.regsize) {
  1315. case 1:
  1316. info->io.inputb = intf_mem_inb;
  1317. info->io.outputb = intf_mem_outb;
  1318. break;
  1319. case 2:
  1320. info->io.inputb = intf_mem_inw;
  1321. info->io.outputb = intf_mem_outw;
  1322. break;
  1323. case 4:
  1324. info->io.inputb = intf_mem_inl;
  1325. info->io.outputb = intf_mem_outl;
  1326. break;
  1327. #ifdef readq
  1328. case 8:
  1329. info->io.inputb = mem_inq;
  1330. info->io.outputb = mem_outq;
  1331. break;
  1332. #endif
  1333. default:
  1334. dev_warn(info->dev, "Invalid register size: %d\n",
  1335. info->io.regsize);
  1336. return -EINVAL;
  1337. }
  1338. /*
  1339. * Calculate the total amount of memory to claim. This is an
  1340. * unusual looking calculation, but it avoids claiming any
  1341. * more memory than it has to. It will claim everything
  1342. * between the first address to the end of the last full
  1343. * register.
  1344. */
  1345. mapsize = ((info->io_size * info->io.regspacing)
  1346. - (info->io.regspacing - info->io.regsize));
  1347. if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
  1348. return -EIO;
  1349. info->io.addr = ioremap(addr, mapsize);
  1350. if (info->io.addr == NULL) {
  1351. release_mem_region(addr, mapsize);
  1352. return -EIO;
  1353. }
  1354. return 0;
  1355. }
  1356. /*
  1357. * Parms come in as <op1>[:op2[:op3...]]. ops are:
  1358. * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
  1359. * Options are:
  1360. * rsp=<regspacing>
  1361. * rsi=<regsize>
  1362. * rsh=<regshift>
  1363. * irq=<irq>
  1364. * ipmb=<ipmb addr>
  1365. */
  1366. enum hotmod_op { HM_ADD, HM_REMOVE };
  1367. struct hotmod_vals {
  1368. char *name;
  1369. int val;
  1370. };
  1371. static struct hotmod_vals hotmod_ops[] = {
  1372. { "add", HM_ADD },
  1373. { "remove", HM_REMOVE },
  1374. { NULL }
  1375. };
  1376. static struct hotmod_vals hotmod_si[] = {
  1377. { "kcs", SI_KCS },
  1378. { "smic", SI_SMIC },
  1379. { "bt", SI_BT },
  1380. { NULL }
  1381. };
  1382. static struct hotmod_vals hotmod_as[] = {
  1383. { "mem", IPMI_MEM_ADDR_SPACE },
  1384. { "i/o", IPMI_IO_ADDR_SPACE },
  1385. { NULL }
  1386. };
  1387. static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
  1388. {
  1389. char *s;
  1390. int i;
  1391. s = strchr(*curr, ',');
  1392. if (!s) {
  1393. printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
  1394. return -EINVAL;
  1395. }
  1396. *s = '\0';
  1397. s++;
  1398. for (i = 0; hotmod_ops[i].name; i++) {
  1399. if (strcmp(*curr, v[i].name) == 0) {
  1400. *val = v[i].val;
  1401. *curr = s;
  1402. return 0;
  1403. }
  1404. }
  1405. printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
  1406. return -EINVAL;
  1407. }
  1408. static int check_hotmod_int_op(const char *curr, const char *option,
  1409. const char *name, int *val)
  1410. {
  1411. char *n;
  1412. if (strcmp(curr, name) == 0) {
  1413. if (!option) {
  1414. printk(KERN_WARNING PFX
  1415. "No option given for '%s'\n",
  1416. curr);
  1417. return -EINVAL;
  1418. }
  1419. *val = simple_strtoul(option, &n, 0);
  1420. if ((*n != '\0') || (*option == '\0')) {
  1421. printk(KERN_WARNING PFX
  1422. "Bad option given for '%s'\n",
  1423. curr);
  1424. return -EINVAL;
  1425. }
  1426. return 1;
  1427. }
  1428. return 0;
  1429. }
  1430. static struct smi_info *smi_info_alloc(void)
  1431. {
  1432. struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
  1433. if (info)
  1434. spin_lock_init(&info->si_lock);
  1435. return info;
  1436. }
  1437. static int hotmod_handler(const char *val, struct kernel_param *kp)
  1438. {
  1439. char *str = kstrdup(val, GFP_KERNEL);
  1440. int rv;
  1441. char *next, *curr, *s, *n, *o;
  1442. enum hotmod_op op;
  1443. enum si_type si_type;
  1444. int addr_space;
  1445. unsigned long addr;
  1446. int regspacing;
  1447. int regsize;
  1448. int regshift;
  1449. int irq;
  1450. int ipmb;
  1451. int ival;
  1452. int len;
  1453. struct smi_info *info;
  1454. if (!str)
  1455. return -ENOMEM;
  1456. /* Kill any trailing spaces, as we can get a "\n" from echo. */
  1457. len = strlen(str);
  1458. ival = len - 1;
  1459. while ((ival >= 0) && isspace(str[ival])) {
  1460. str[ival] = '\0';
  1461. ival--;
  1462. }
  1463. for (curr = str; curr; curr = next) {
  1464. regspacing = 1;
  1465. regsize = 1;
  1466. regshift = 0;
  1467. irq = 0;
  1468. ipmb = 0; /* Choose the default if not specified */
  1469. next = strchr(curr, ':');
  1470. if (next) {
  1471. *next = '\0';
  1472. next++;
  1473. }
  1474. rv = parse_str(hotmod_ops, &ival, "operation", &curr);
  1475. if (rv)
  1476. break;
  1477. op = ival;
  1478. rv = parse_str(hotmod_si, &ival, "interface type", &curr);
  1479. if (rv)
  1480. break;
  1481. si_type = ival;
  1482. rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
  1483. if (rv)
  1484. break;
  1485. s = strchr(curr, ',');
  1486. if (s) {
  1487. *s = '\0';
  1488. s++;
  1489. }
  1490. addr = simple_strtoul(curr, &n, 0);
  1491. if ((*n != '\0') || (*curr == '\0')) {
  1492. printk(KERN_WARNING PFX "Invalid hotmod address"
  1493. " '%s'\n", curr);
  1494. break;
  1495. }
  1496. while (s) {
  1497. curr = s;
  1498. s = strchr(curr, ',');
  1499. if (s) {
  1500. *s = '\0';
  1501. s++;
  1502. }
  1503. o = strchr(curr, '=');
  1504. if (o) {
  1505. *o = '\0';
  1506. o++;
  1507. }
  1508. rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
  1509. if (rv < 0)
  1510. goto out;
  1511. else if (rv)
  1512. continue;
  1513. rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
  1514. if (rv < 0)
  1515. goto out;
  1516. else if (rv)
  1517. continue;
  1518. rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
  1519. if (rv < 0)
  1520. goto out;
  1521. else if (rv)
  1522. continue;
  1523. rv = check_hotmod_int_op(curr, o, "irq", &irq);
  1524. if (rv < 0)
  1525. goto out;
  1526. else if (rv)
  1527. continue;
  1528. rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
  1529. if (rv < 0)
  1530. goto out;
  1531. else if (rv)
  1532. continue;
  1533. rv = -EINVAL;
  1534. printk(KERN_WARNING PFX
  1535. "Invalid hotmod option '%s'\n",
  1536. curr);
  1537. goto out;
  1538. }
  1539. if (op == HM_ADD) {
  1540. info = smi_info_alloc();
  1541. if (!info) {
  1542. rv = -ENOMEM;
  1543. goto out;
  1544. }
  1545. info->addr_source = SI_HOTMOD;
  1546. info->si_type = si_type;
  1547. info->io.addr_data = addr;
  1548. info->io.addr_type = addr_space;
  1549. if (addr_space == IPMI_MEM_ADDR_SPACE)
  1550. info->io_setup = mem_setup;
  1551. else
  1552. info->io_setup = port_setup;
  1553. info->io.addr = NULL;
  1554. info->io.regspacing = regspacing;
  1555. if (!info->io.regspacing)
  1556. info->io.regspacing = DEFAULT_REGSPACING;
  1557. info->io.regsize = regsize;
  1558. if (!info->io.regsize)
  1559. info->io.regsize = DEFAULT_REGSPACING;
  1560. info->io.regshift = regshift;
  1561. info->irq = irq;
  1562. if (info->irq)
  1563. info->irq_setup = std_irq_setup;
  1564. info->slave_addr = ipmb;
  1565. if (!add_smi(info)) {
  1566. if (try_smi_init(info))
  1567. cleanup_one_si(info);
  1568. } else {
  1569. kfree(info);
  1570. }
  1571. } else {
  1572. /* remove */
  1573. struct smi_info *e, *tmp_e;
  1574. mutex_lock(&smi_infos_lock);
  1575. list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
  1576. if (e->io.addr_type != addr_space)
  1577. continue;
  1578. if (e->si_type != si_type)
  1579. continue;
  1580. if (e->io.addr_data == addr)
  1581. cleanup_one_si(e);
  1582. }
  1583. mutex_unlock(&smi_infos_lock);
  1584. }
  1585. }
  1586. rv = len;
  1587. out:
  1588. kfree(str);
  1589. return rv;
  1590. }
  1591. static int __devinit hardcode_find_bmc(void)
  1592. {
  1593. int ret = -ENODEV;
  1594. int i;
  1595. struct smi_info *info;
  1596. for (i = 0; i < SI_MAX_PARMS; i++) {
  1597. if (!ports[i] && !addrs[i])
  1598. continue;
  1599. info = smi_info_alloc();
  1600. if (!info)
  1601. return -ENOMEM;
  1602. info->addr_source = SI_HARDCODED;
  1603. printk(KERN_INFO PFX "probing via hardcoded address\n");
  1604. if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
  1605. info->si_type = SI_KCS;
  1606. } else if (strcmp(si_type[i], "smic") == 0) {
  1607. info->si_type = SI_SMIC;
  1608. } else if (strcmp(si_type[i], "bt") == 0) {
  1609. info->si_type = SI_BT;
  1610. } else {
  1611. printk(KERN_WARNING PFX "Interface type specified "
  1612. "for interface %d, was invalid: %s\n",
  1613. i, si_type[i]);
  1614. kfree(info);
  1615. continue;
  1616. }
  1617. if (ports[i]) {
  1618. /* An I/O port */
  1619. info->io_setup = port_setup;
  1620. info->io.addr_data = ports[i];
  1621. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  1622. } else if (addrs[i]) {
  1623. /* A memory port */
  1624. info->io_setup = mem_setup;
  1625. info->io.addr_data = addrs[i];
  1626. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  1627. } else {
  1628. printk(KERN_WARNING PFX "Interface type specified "
  1629. "for interface %d, but port and address were "
  1630. "not set or set to zero.\n", i);
  1631. kfree(info);
  1632. continue;
  1633. }
  1634. info->io.addr = NULL;
  1635. info->io.regspacing = regspacings[i];
  1636. if (!info->io.regspacing)
  1637. info->io.regspacing = DEFAULT_REGSPACING;
  1638. info->io.regsize = regsizes[i];
  1639. if (!info->io.regsize)
  1640. info->io.regsize = DEFAULT_REGSPACING;
  1641. info->io.regshift = regshifts[i];
  1642. info->irq = irqs[i];
  1643. if (info->irq)
  1644. info->irq_setup = std_irq_setup;
  1645. info->slave_addr = slave_addrs[i];
  1646. if (!add_smi(info)) {
  1647. if (try_smi_init(info))
  1648. cleanup_one_si(info);
  1649. ret = 0;
  1650. } else {
  1651. kfree(info);
  1652. }
  1653. }
  1654. return ret;
  1655. }
  1656. #ifdef CONFIG_ACPI
  1657. #include <linux/acpi.h>
  1658. /*
  1659. * Once we get an ACPI failure, we don't try any more, because we go
  1660. * through the tables sequentially. Once we don't find a table, there
  1661. * are no more.
  1662. */
  1663. static int acpi_failure;
  1664. /* For GPE-type interrupts. */
  1665. static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
  1666. u32 gpe_number, void *context)
  1667. {
  1668. struct smi_info *smi_info = context;
  1669. unsigned long flags;
  1670. #ifdef DEBUG_TIMING
  1671. struct timeval t;
  1672. #endif
  1673. spin_lock_irqsave(&(smi_info->si_lock), flags);
  1674. smi_inc_stat(smi_info, interrupts);
  1675. #ifdef DEBUG_TIMING
  1676. do_gettimeofday(&t);
  1677. printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  1678. #endif
  1679. smi_event_handler(smi_info, 0);
  1680. spin_unlock_irqrestore(&(smi_info->si_lock), flags);
  1681. return ACPI_INTERRUPT_HANDLED;
  1682. }
  1683. static void acpi_gpe_irq_cleanup(struct smi_info *info)
  1684. {
  1685. if (!info->irq)
  1686. return;
  1687. acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
  1688. }
  1689. static int acpi_gpe_irq_setup(struct smi_info *info)
  1690. {
  1691. acpi_status status;
  1692. if (!info->irq)
  1693. return 0;
  1694. /* FIXME - is level triggered right? */
  1695. status = acpi_install_gpe_handler(NULL,
  1696. info->irq,
  1697. ACPI_GPE_LEVEL_TRIGGERED,
  1698. &ipmi_acpi_gpe,
  1699. info);
  1700. if (status != AE_OK) {
  1701. dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
  1702. " running polled\n", DEVICE_NAME, info->irq);
  1703. info->irq = 0;
  1704. return -EINVAL;
  1705. } else {
  1706. info->irq_cleanup = acpi_gpe_irq_cleanup;
  1707. dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
  1708. return 0;
  1709. }
  1710. }
  1711. /*
  1712. * Defined at
  1713. * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
  1714. */
  1715. struct SPMITable {
  1716. s8 Signature[4];
  1717. u32 Length;
  1718. u8 Revision;
  1719. u8 Checksum;
  1720. s8 OEMID[6];
  1721. s8 OEMTableID[8];
  1722. s8 OEMRevision[4];
  1723. s8 CreatorID[4];
  1724. s8 CreatorRevision[4];
  1725. u8 InterfaceType;
  1726. u8 IPMIlegacy;
  1727. s16 SpecificationRevision;
  1728. /*
  1729. * Bit 0 - SCI interrupt supported
  1730. * Bit 1 - I/O APIC/SAPIC
  1731. */
  1732. u8 InterruptType;
  1733. /*
  1734. * If bit 0 of InterruptType is set, then this is the SCI
  1735. * interrupt in the GPEx_STS register.
  1736. */
  1737. u8 GPE;
  1738. s16 Reserved;
  1739. /*
  1740. * If bit 1 of InterruptType is set, then this is the I/O
  1741. * APIC/SAPIC interrupt.
  1742. */
  1743. u32 GlobalSystemInterrupt;
  1744. /* The actual register address. */
  1745. struct acpi_generic_address addr;
  1746. u8 UID[4];
  1747. s8 spmi_id[1]; /* A '\0' terminated array starts here. */
  1748. };
  1749. static int __devinit try_init_spmi(struct SPMITable *spmi)
  1750. {
  1751. struct smi_info *info;
  1752. if (spmi->IPMIlegacy != 1) {
  1753. printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
  1754. return -ENODEV;
  1755. }
  1756. info = smi_info_alloc();
  1757. if (!info) {
  1758. printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
  1759. return -ENOMEM;
  1760. }
  1761. info->addr_source = SI_SPMI;
  1762. printk(KERN_INFO PFX "probing via SPMI\n");
  1763. /* Figure out the interface type. */
  1764. switch (spmi->InterfaceType) {
  1765. case 1: /* KCS */
  1766. info->si_type = SI_KCS;
  1767. break;
  1768. case 2: /* SMIC */
  1769. info->si_type = SI_SMIC;
  1770. break;
  1771. case 3: /* BT */
  1772. info->si_type = SI_BT;
  1773. break;
  1774. default:
  1775. printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
  1776. spmi->InterfaceType);
  1777. kfree(info);
  1778. return -EIO;
  1779. }
  1780. if (spmi->InterruptType & 1) {
  1781. /* We've got a GPE interrupt. */
  1782. info->irq = spmi->GPE;
  1783. info->irq_setup = acpi_gpe_irq_setup;
  1784. } else if (spmi->InterruptType & 2) {
  1785. /* We've got an APIC/SAPIC interrupt. */
  1786. info->irq = spmi->GlobalSystemInterrupt;
  1787. info->irq_setup = std_irq_setup;
  1788. } else {
  1789. /* Use the default interrupt setting. */
  1790. info->irq = 0;
  1791. info->irq_setup = NULL;
  1792. }
  1793. if (spmi->addr.bit_width) {
  1794. /* A (hopefully) properly formed register bit width. */
  1795. info->io.regspacing = spmi->addr.bit_width / 8;
  1796. } else {
  1797. info->io.regspacing = DEFAULT_REGSPACING;
  1798. }
  1799. info->io.regsize = info->io.regspacing;
  1800. info->io.regshift = spmi->addr.bit_offset;
  1801. if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
  1802. info->io_setup = mem_setup;
  1803. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  1804. } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
  1805. info->io_setup = port_setup;
  1806. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  1807. } else {
  1808. kfree(info);
  1809. printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
  1810. return -EIO;
  1811. }
  1812. info->io.addr_data = spmi->addr.address;
  1813. pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
  1814. (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
  1815. info->io.addr_data, info->io.regsize, info->io.regspacing,
  1816. info->irq);
  1817. if (add_smi(info))
  1818. kfree(info);
  1819. return 0;
  1820. }
  1821. static void __devinit spmi_find_bmc(void)
  1822. {
  1823. acpi_status status;
  1824. struct SPMITable *spmi;
  1825. int i;
  1826. if (acpi_disabled)
  1827. return;
  1828. if (acpi_failure)
  1829. return;
  1830. for (i = 0; ; i++) {
  1831. status = acpi_get_table(ACPI_SIG_SPMI, i+1,
  1832. (struct acpi_table_header **)&spmi);
  1833. if (status != AE_OK)
  1834. return;
  1835. try_init_spmi(spmi);
  1836. }
  1837. }
  1838. static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
  1839. const struct pnp_device_id *dev_id)
  1840. {
  1841. struct acpi_device *acpi_dev;
  1842. struct smi_info *info;
  1843. struct resource *res, *res_second;
  1844. acpi_handle handle;
  1845. acpi_status status;
  1846. unsigned long long tmp;
  1847. acpi_dev = pnp_acpi_device(dev);
  1848. if (!acpi_dev)
  1849. return -ENODEV;
  1850. info = smi_info_alloc();
  1851. if (!info)
  1852. return -ENOMEM;
  1853. info->addr_source = SI_ACPI;
  1854. printk(KERN_INFO PFX "probing via ACPI\n");
  1855. handle = acpi_dev->handle;
  1856. info->addr_info.acpi_info.acpi_handle = handle;
  1857. /* _IFT tells us the interface type: KCS, BT, etc */
  1858. status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
  1859. if (ACPI_FAILURE(status))
  1860. goto err_free;
  1861. switch (tmp) {
  1862. case 1:
  1863. info->si_type = SI_KCS;
  1864. break;
  1865. case 2:
  1866. info->si_type = SI_SMIC;
  1867. break;
  1868. case 3:
  1869. info->si_type = SI_BT;
  1870. break;
  1871. default:
  1872. dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
  1873. goto err_free;
  1874. }
  1875. res = pnp_get_resource(dev, IORESOURCE_IO, 0);
  1876. if (res) {
  1877. info->io_setup = port_setup;
  1878. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  1879. } else {
  1880. res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
  1881. if (res) {
  1882. info->io_setup = mem_setup;
  1883. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  1884. }
  1885. }
  1886. if (!res) {
  1887. dev_err(&dev->dev, "no I/O or memory address\n");
  1888. goto err_free;
  1889. }
  1890. info->io.addr_data = res->start;
  1891. info->io.regspacing = DEFAULT_REGSPACING;
  1892. res_second = pnp_get_resource(dev,
  1893. (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
  1894. IORESOURCE_IO : IORESOURCE_MEM,
  1895. 1);
  1896. if (res_second) {
  1897. if (res_second->start > info->io.addr_data)
  1898. info->io.regspacing = res_second->start - info->io.addr_data;
  1899. }
  1900. info->io.regsize = DEFAULT_REGSPACING;
  1901. info->io.regshift = 0;
  1902. /* If _GPE exists, use it; otherwise use standard interrupts */
  1903. status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
  1904. if (ACPI_SUCCESS(status)) {
  1905. info->irq = tmp;
  1906. info->irq_setup = acpi_gpe_irq_setup;
  1907. } else if (pnp_irq_valid(dev, 0)) {
  1908. info->irq = pnp_irq(dev, 0);
  1909. info->irq_setup = std_irq_setup;
  1910. }
  1911. info->dev = &dev->dev;
  1912. pnp_set_drvdata(dev, info);
  1913. dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
  1914. res, info->io.regsize, info->io.regspacing,
  1915. info->irq);
  1916. if (add_smi(info))
  1917. goto err_free;
  1918. return 0;
  1919. err_free:
  1920. kfree(info);
  1921. return -EINVAL;
  1922. }
  1923. static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
  1924. {
  1925. struct smi_info *info = pnp_get_drvdata(dev);
  1926. cleanup_one_si(info);
  1927. }
  1928. static const struct pnp_device_id pnp_dev_table[] = {
  1929. {"IPI0001", 0},
  1930. {"", 0},
  1931. };
  1932. static struct pnp_driver ipmi_pnp_driver = {
  1933. .name = DEVICE_NAME,
  1934. .probe = ipmi_pnp_probe,
  1935. .remove = __devexit_p(ipmi_pnp_remove),
  1936. .id_table = pnp_dev_table,
  1937. };
  1938. #endif
  1939. #ifdef CONFIG_DMI
  1940. struct dmi_ipmi_data {
  1941. u8 type;
  1942. u8 addr_space;
  1943. unsigned long base_addr;
  1944. u8 irq;
  1945. u8 offset;
  1946. u8 slave_addr;
  1947. };
  1948. static int __devinit decode_dmi(const struct dmi_header *dm,
  1949. struct dmi_ipmi_data *dmi)
  1950. {
  1951. const u8 *data = (const u8 *)dm;
  1952. unsigned long base_addr;
  1953. u8 reg_spacing;
  1954. u8 len = dm->length;
  1955. dmi->type = data[4];
  1956. memcpy(&base_addr, data+8, sizeof(unsigned long));
  1957. if (len >= 0x11) {
  1958. if (base_addr & 1) {
  1959. /* I/O */
  1960. base_addr &= 0xFFFE;
  1961. dmi->addr_space = IPMI_IO_ADDR_SPACE;
  1962. } else
  1963. /* Memory */
  1964. dmi->addr_space = IPMI_MEM_ADDR_SPACE;
  1965. /* If bit 4 of byte 0x10 is set, then the lsb for the address
  1966. is odd. */
  1967. dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
  1968. dmi->irq = data[0x11];
  1969. /* The top two bits of byte 0x10 hold the register spacing. */
  1970. reg_spacing = (data[0x10] & 0xC0) >> 6;
  1971. switch (reg_spacing) {
  1972. case 0x00: /* Byte boundaries */
  1973. dmi->offset = 1;
  1974. break;
  1975. case 0x01: /* 32-bit boundaries */
  1976. dmi->offset = 4;
  1977. break;
  1978. case 0x02: /* 16-byte boundaries */
  1979. dmi->offset = 16;
  1980. break;
  1981. default:
  1982. /* Some other interface, just ignore it. */
  1983. return -EIO;
  1984. }
  1985. } else {
  1986. /* Old DMI spec. */
  1987. /*
  1988. * Note that technically, the lower bit of the base
  1989. * address should be 1 if the address is I/O and 0 if
  1990. * the address is in memory. So many systems get that
  1991. * wrong (and all that I have seen are I/O) so we just
  1992. * ignore that bit and assume I/O. Systems that use
  1993. * memory should use the newer spec, anyway.
  1994. */
  1995. dmi->base_addr = base_addr & 0xfffe;
  1996. dmi->addr_space = IPMI_IO_ADDR_SPACE;
  1997. dmi->offset = 1;
  1998. }
  1999. dmi->slave_addr = data[6];
  2000. return 0;
  2001. }
  2002. static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
  2003. {
  2004. struct smi_info *info;
  2005. info = smi_info_alloc();
  2006. if (!info) {
  2007. printk(KERN_ERR PFX "Could not allocate SI data\n");
  2008. return;
  2009. }
  2010. info->addr_source = SI_SMBIOS;
  2011. printk(KERN_INFO PFX "probing via SMBIOS\n");
  2012. switch (ipmi_data->type) {
  2013. case 0x01: /* KCS */
  2014. info->si_type = SI_KCS;
  2015. break;
  2016. case 0x02: /* SMIC */
  2017. info->si_type = SI_SMIC;
  2018. break;
  2019. case 0x03: /* BT */
  2020. info->si_type = SI_BT;
  2021. break;
  2022. default:
  2023. kfree(info);
  2024. return;
  2025. }
  2026. switch (ipmi_data->addr_space) {
  2027. case IPMI_MEM_ADDR_SPACE:
  2028. info->io_setup = mem_setup;
  2029. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  2030. break;
  2031. case IPMI_IO_ADDR_SPACE:
  2032. info->io_setup = port_setup;
  2033. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  2034. break;
  2035. default:
  2036. kfree(info);
  2037. printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
  2038. ipmi_data->addr_space);
  2039. return;
  2040. }
  2041. info->io.addr_data = ipmi_data->base_addr;
  2042. info->io.regspacing = ipmi_data->offset;
  2043. if (!info->io.regspacing)
  2044. info->io.regspacing = DEFAULT_REGSPACING;
  2045. info->io.regsize = DEFAULT_REGSPACING;
  2046. info->io.regshift = 0;
  2047. info->slave_addr = ipmi_data->slave_addr;
  2048. info->irq = ipmi_data->irq;
  2049. if (info->irq)
  2050. info->irq_setup = std_irq_setup;
  2051. pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
  2052. (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
  2053. info->io.addr_data, info->io.regsize, info->io.regspacing,
  2054. info->irq);
  2055. if (add_smi(info))
  2056. kfree(info);
  2057. }
  2058. static void __devinit dmi_find_bmc(void)
  2059. {
  2060. const struct dmi_device *dev = NULL;
  2061. struct dmi_ipmi_data data;
  2062. int rv;
  2063. while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
  2064. memset(&data, 0, sizeof(data));
  2065. rv = decode_dmi((const struct dmi_header *) dev->device_data,
  2066. &data);
  2067. if (!rv)
  2068. try_init_dmi(&data);
  2069. }
  2070. }
  2071. #endif /* CONFIG_DMI */
  2072. #ifdef CONFIG_PCI
  2073. #define PCI_ERMC_CLASSCODE 0x0C0700
  2074. #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
  2075. #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
  2076. #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
  2077. #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
  2078. #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
  2079. #define PCI_HP_VENDOR_ID 0x103C
  2080. #define PCI_MMC_DEVICE_ID 0x121A
  2081. #define PCI_MMC_ADDR_CW 0x10
  2082. static void ipmi_pci_cleanup(struct smi_info *info)
  2083. {
  2084. struct pci_dev *pdev = info->addr_source_data;
  2085. pci_disable_device(pdev);
  2086. }
  2087. static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
  2088. const struct pci_device_id *ent)
  2089. {
  2090. int rv;
  2091. int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
  2092. struct smi_info *info;
  2093. info = smi_info_alloc();
  2094. if (!info)
  2095. return -ENOMEM;
  2096. info->addr_source = SI_PCI;
  2097. dev_info(&pdev->dev, "probing via PCI");
  2098. switch (class_type) {
  2099. case PCI_ERMC_CLASSCODE_TYPE_SMIC:
  2100. info->si_type = SI_SMIC;
  2101. break;
  2102. case PCI_ERMC_CLASSCODE_TYPE_KCS:
  2103. info->si_type = SI_KCS;
  2104. break;
  2105. case PCI_ERMC_CLASSCODE_TYPE_BT:
  2106. info->si_type = SI_BT;
  2107. break;
  2108. default:
  2109. kfree(info);
  2110. dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
  2111. return -ENOMEM;
  2112. }
  2113. rv = pci_enable_device(pdev);
  2114. if (rv) {
  2115. dev_err(&pdev->dev, "couldn't enable PCI device\n");
  2116. kfree(info);
  2117. return rv;
  2118. }
  2119. info->addr_source_cleanup = ipmi_pci_cleanup;
  2120. info->addr_source_data = pdev;
  2121. if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
  2122. info->io_setup = port_setup;
  2123. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  2124. } else {
  2125. info->io_setup = mem_setup;
  2126. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  2127. }
  2128. info->io.addr_data = pci_resource_start(pdev, 0);
  2129. info->io.regspacing = DEFAULT_REGSPACING;
  2130. info->io.regsize = DEFAULT_REGSPACING;
  2131. info->io.regshift = 0;
  2132. info->irq = pdev->irq;
  2133. if (info->irq)
  2134. info->irq_setup = std_irq_setup;
  2135. info->dev = &pdev->dev;
  2136. pci_set_drvdata(pdev, info);
  2137. dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
  2138. &pdev->resource[0], info->io.regsize, info->io.regspacing,
  2139. info->irq);
  2140. if (add_smi(info))
  2141. kfree(info);
  2142. return 0;
  2143. }
  2144. static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
  2145. {
  2146. struct smi_info *info = pci_get_drvdata(pdev);
  2147. cleanup_one_si(info);
  2148. }
  2149. #ifdef CONFIG_PM
  2150. static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
  2151. {
  2152. return 0;
  2153. }
  2154. static int ipmi_pci_resume(struct pci_dev *pdev)
  2155. {
  2156. return 0;
  2157. }
  2158. #endif
  2159. static struct pci_device_id ipmi_pci_devices[] = {
  2160. { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
  2161. { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
  2162. { 0, }
  2163. };
  2164. MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
  2165. static struct pci_driver ipmi_pci_driver = {
  2166. .name = DEVICE_NAME,
  2167. .id_table = ipmi_pci_devices,
  2168. .probe = ipmi_pci_probe,
  2169. .remove = __devexit_p(ipmi_pci_remove),
  2170. #ifdef CONFIG_PM
  2171. .suspend = ipmi_pci_suspend,
  2172. .resume = ipmi_pci_resume,
  2173. #endif
  2174. };
  2175. #endif /* CONFIG_PCI */
  2176. static struct of_device_id ipmi_match[];
  2177. static int __devinit ipmi_probe(struct platform_device *dev)
  2178. {
  2179. #ifdef CONFIG_OF
  2180. const struct of_device_id *match;
  2181. struct smi_info *info;
  2182. struct resource resource;
  2183. const __be32 *regsize, *regspacing, *regshift;
  2184. struct device_node *np = dev->dev.of_node;
  2185. int ret;
  2186. int proplen;
  2187. dev_info(&dev->dev, "probing via device tree\n");
  2188. match = of_match_device(ipmi_match, &dev->dev);
  2189. if (!match)
  2190. return -EINVAL;
  2191. ret = of_address_to_resource(np, 0, &resource);
  2192. if (ret) {
  2193. dev_warn(&dev->dev, PFX "invalid address from OF\n");
  2194. return ret;
  2195. }
  2196. regsize = of_get_property(np, "reg-size", &proplen);
  2197. if (regsize && proplen != 4) {
  2198. dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
  2199. return -EINVAL;
  2200. }
  2201. regspacing = of_get_property(np, "reg-spacing", &proplen);
  2202. if (regspacing && proplen != 4) {
  2203. dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
  2204. return -EINVAL;
  2205. }
  2206. regshift = of_get_property(np, "reg-shift", &proplen);
  2207. if (regshift && proplen != 4) {
  2208. dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
  2209. return -EINVAL;
  2210. }
  2211. info = smi_info_alloc();
  2212. if (!info) {
  2213. dev_err(&dev->dev,
  2214. "could not allocate memory for OF probe\n");
  2215. return -ENOMEM;
  2216. }
  2217. info->si_type = (enum si_type) match->data;
  2218. info->addr_source = SI_DEVICETREE;
  2219. info->irq_setup = std_irq_setup;
  2220. if (resource.flags & IORESOURCE_IO) {
  2221. info->io_setup = port_setup;
  2222. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  2223. } else {
  2224. info->io_setup = mem_setup;
  2225. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  2226. }
  2227. info->io.addr_data = resource.start;
  2228. info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
  2229. info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
  2230. info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
  2231. info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
  2232. info->dev = &dev->dev;
  2233. dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
  2234. info->io.addr_data, info->io.regsize, info->io.regspacing,
  2235. info->irq);
  2236. dev_set_drvdata(&dev->dev, info);
  2237. if (add_smi(info)) {
  2238. kfree(info);
  2239. return -EBUSY;
  2240. }
  2241. #endif
  2242. return 0;
  2243. }
  2244. static int __devexit ipmi_remove(struct platform_device *dev)
  2245. {
  2246. #ifdef CONFIG_OF
  2247. cleanup_one_si(dev_get_drvdata(&dev->dev));
  2248. #endif
  2249. return 0;
  2250. }
  2251. static struct of_device_id ipmi_match[] =
  2252. {
  2253. { .type = "ipmi", .compatible = "ipmi-kcs",
  2254. .data = (void *)(unsigned long) SI_KCS },
  2255. { .type = "ipmi", .compatible = "ipmi-smic",
  2256. .data = (void *)(unsigned long) SI_SMIC },
  2257. { .type = "ipmi", .compatible = "ipmi-bt",
  2258. .data = (void *)(unsigned long) SI_BT },
  2259. {},
  2260. };
  2261. static struct platform_driver ipmi_driver = {
  2262. .driver = {
  2263. .name = DEVICE_NAME,
  2264. .owner = THIS_MODULE,
  2265. .of_match_table = ipmi_match,
  2266. },
  2267. .probe = ipmi_probe,
  2268. .remove = __devexit_p(ipmi_remove),
  2269. };
  2270. static int wait_for_msg_done(struct smi_info *smi_info)
  2271. {
  2272. enum si_sm_result smi_result;
  2273. smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
  2274. for (;;) {
  2275. if (smi_result == SI_SM_CALL_WITH_DELAY ||
  2276. smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
  2277. schedule_timeout_uninterruptible(1);
  2278. smi_result = smi_info->handlers->event(
  2279. smi_info->si_sm, 100);
  2280. } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
  2281. smi_result = smi_info->handlers->event(
  2282. smi_info->si_sm, 0);
  2283. } else
  2284. break;
  2285. }
  2286. if (smi_result == SI_SM_HOSED)
  2287. /*
  2288. * We couldn't get the state machine to run, so whatever's at
  2289. * the port is probably not an IPMI SMI interface.
  2290. */
  2291. return -ENODEV;
  2292. return 0;
  2293. }
  2294. static int try_get_dev_id(struct smi_info *smi_info)
  2295. {
  2296. unsigned char msg[2];
  2297. unsigned char *resp;
  2298. unsigned long resp_len;
  2299. int rv = 0;
  2300. resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
  2301. if (!resp)
  2302. return -ENOMEM;
  2303. /*
  2304. * Do a Get Device ID command, since it comes back with some
  2305. * useful info.
  2306. */
  2307. msg[0] = IPMI_NETFN_APP_REQUEST << 2;
  2308. msg[1] = IPMI_GET_DEVICE_ID_CMD;
  2309. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
  2310. rv = wait_for_msg_done(smi_info);
  2311. if (rv)
  2312. goto out;
  2313. resp_len = smi_info->handlers->get_result(smi_info->si_sm,
  2314. resp, IPMI_MAX_MSG_LENGTH);
  2315. /* Check and record info from the get device id, in case we need it. */
  2316. rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
  2317. out:
  2318. kfree(resp);
  2319. return rv;
  2320. }
  2321. static int try_enable_event_buffer(struct smi_info *smi_info)
  2322. {
  2323. unsigned char msg[3];
  2324. unsigned char *resp;
  2325. unsigned long resp_len;
  2326. int rv = 0;
  2327. resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
  2328. if (!resp)
  2329. return -ENOMEM;
  2330. msg[0] = IPMI_NETFN_APP_REQUEST << 2;
  2331. msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
  2332. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
  2333. rv = wait_for_msg_done(smi_info);
  2334. if (rv) {
  2335. printk(KERN_WARNING PFX "Error getting response from get"
  2336. " global enables command, the event buffer is not"
  2337. " enabled.\n");
  2338. goto out;
  2339. }
  2340. resp_len = smi_info->handlers->get_result(smi_info->si_sm,
  2341. resp, IPMI_MAX_MSG_LENGTH);
  2342. if (resp_len < 4 ||
  2343. resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
  2344. resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
  2345. resp[2] != 0) {
  2346. printk(KERN_WARNING PFX "Invalid return from get global"
  2347. " enables command, cannot enable the event buffer.\n");
  2348. rv = -EINVAL;
  2349. goto out;
  2350. }
  2351. if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
  2352. /* buffer is already enabled, nothing to do. */
  2353. goto out;
  2354. msg[0] = IPMI_NETFN_APP_REQUEST << 2;
  2355. msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
  2356. msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
  2357. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
  2358. rv = wait_for_msg_done(smi_info);
  2359. if (rv) {
  2360. printk(KERN_WARNING PFX "Error getting response from set"
  2361. " global, enables command, the event buffer is not"
  2362. " enabled.\n");
  2363. goto out;
  2364. }
  2365. resp_len = smi_info->handlers->get_result(smi_info->si_sm,
  2366. resp, IPMI_MAX_MSG_LENGTH);
  2367. if (resp_len < 3 ||
  2368. resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
  2369. resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
  2370. printk(KERN_WARNING PFX "Invalid return from get global,"
  2371. "enables command, not enable the event buffer.\n");
  2372. rv = -EINVAL;
  2373. goto out;
  2374. }
  2375. if (resp[2] != 0)
  2376. /*
  2377. * An error when setting the event buffer bit means
  2378. * that the event buffer is not supported.
  2379. */
  2380. rv = -ENOENT;
  2381. out:
  2382. kfree(resp);
  2383. return rv;
  2384. }
  2385. static int smi_type_proc_show(struct seq_file *m, void *v)
  2386. {
  2387. struct smi_info *smi = m->private;
  2388. return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
  2389. }
  2390. static int smi_type_proc_open(struct inode *inode, struct file *file)
  2391. {
  2392. return single_open(file, smi_type_proc_show, PDE(inode)->data);
  2393. }
  2394. static const struct file_operations smi_type_proc_ops = {
  2395. .open = smi_type_proc_open,
  2396. .read = seq_read,
  2397. .llseek = seq_lseek,
  2398. .release = single_release,
  2399. };
  2400. static int smi_si_stats_proc_show(struct seq_file *m, void *v)
  2401. {
  2402. struct smi_info *smi = m->private;
  2403. seq_printf(m, "interrupts_enabled: %d\n",
  2404. smi->irq && !smi->interrupt_disabled);
  2405. seq_printf(m, "short_timeouts: %u\n",
  2406. smi_get_stat(smi, short_timeouts));
  2407. seq_printf(m, "long_timeouts: %u\n",
  2408. smi_get_stat(smi, long_timeouts));
  2409. seq_printf(m, "idles: %u\n",
  2410. smi_get_stat(smi, idles));
  2411. seq_printf(m, "interrupts: %u\n",
  2412. smi_get_stat(smi, interrupts));
  2413. seq_printf(m, "attentions: %u\n",
  2414. smi_get_stat(smi, attentions));
  2415. seq_printf(m, "flag_fetches: %u\n",
  2416. smi_get_stat(smi, flag_fetches));
  2417. seq_printf(m, "hosed_count: %u\n",
  2418. smi_get_stat(smi, hosed_count));
  2419. seq_printf(m, "complete_transactions: %u\n",
  2420. smi_get_stat(smi, complete_transactions));
  2421. seq_printf(m, "events: %u\n",
  2422. smi_get_stat(smi, events));
  2423. seq_printf(m, "watchdog_pretimeouts: %u\n",
  2424. smi_get_stat(smi, watchdog_pretimeouts));
  2425. seq_printf(m, "incoming_messages: %u\n",
  2426. smi_get_stat(smi, incoming_messages));
  2427. return 0;
  2428. }
  2429. static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
  2430. {
  2431. return single_open(file, smi_si_stats_proc_show, PDE(inode)->data);
  2432. }
  2433. static const struct file_operations smi_si_stats_proc_ops = {
  2434. .open = smi_si_stats_proc_open,
  2435. .read = seq_read,
  2436. .llseek = seq_lseek,
  2437. .release = single_release,
  2438. };
  2439. static int smi_params_proc_show(struct seq_file *m, void *v)
  2440. {
  2441. struct smi_info *smi = m->private;
  2442. return seq_printf(m,
  2443. "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
  2444. si_to_str[smi->si_type],
  2445. addr_space_to_str[smi->io.addr_type],
  2446. smi->io.addr_data,
  2447. smi->io.regspacing,
  2448. smi->io.regsize,
  2449. smi->io.regshift,
  2450. smi->irq,
  2451. smi->slave_addr);
  2452. }
  2453. static int smi_params_proc_open(struct inode *inode, struct file *file)
  2454. {
  2455. return single_open(file, smi_params_proc_show, PDE(inode)->data);
  2456. }
  2457. static const struct file_operations smi_params_proc_ops = {
  2458. .open = smi_params_proc_open,
  2459. .read = seq_read,
  2460. .llseek = seq_lseek,
  2461. .release = single_release,
  2462. };
  2463. /*
  2464. * oem_data_avail_to_receive_msg_avail
  2465. * @info - smi_info structure with msg_flags set
  2466. *
  2467. * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
  2468. * Returns 1 indicating need to re-run handle_flags().
  2469. */
  2470. static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
  2471. {
  2472. smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
  2473. RECEIVE_MSG_AVAIL);
  2474. return 1;
  2475. }
  2476. /*
  2477. * setup_dell_poweredge_oem_data_handler
  2478. * @info - smi_info.device_id must be populated
  2479. *
  2480. * Systems that match, but have firmware version < 1.40 may assert
  2481. * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
  2482. * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
  2483. * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
  2484. * as RECEIVE_MSG_AVAIL instead.
  2485. *
  2486. * As Dell has no plans to release IPMI 1.5 firmware that *ever*
  2487. * assert the OEM[012] bits, and if it did, the driver would have to
  2488. * change to handle that properly, we don't actually check for the
  2489. * firmware version.
  2490. * Device ID = 0x20 BMC on PowerEdge 8G servers
  2491. * Device Revision = 0x80
  2492. * Firmware Revision1 = 0x01 BMC version 1.40
  2493. * Firmware Revision2 = 0x40 BCD encoded
  2494. * IPMI Version = 0x51 IPMI 1.5
  2495. * Manufacturer ID = A2 02 00 Dell IANA
  2496. *
  2497. * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
  2498. * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
  2499. *
  2500. */
  2501. #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
  2502. #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
  2503. #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
  2504. #define DELL_IANA_MFR_ID 0x0002a2
  2505. static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
  2506. {
  2507. struct ipmi_device_id *id = &smi_info->device_id;
  2508. if (id->manufacturer_id == DELL_IANA_MFR_ID) {
  2509. if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
  2510. id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
  2511. id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
  2512. smi_info->oem_data_avail_handler =
  2513. oem_data_avail_to_receive_msg_avail;
  2514. } else if (ipmi_version_major(id) < 1 ||
  2515. (ipmi_version_major(id) == 1 &&
  2516. ipmi_version_minor(id) < 5)) {
  2517. smi_info->oem_data_avail_handler =
  2518. oem_data_avail_to_receive_msg_avail;
  2519. }
  2520. }
  2521. }
  2522. #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
  2523. static void return_hosed_msg_badsize(struct smi_info *smi_info)
  2524. {
  2525. struct ipmi_smi_msg *msg = smi_info->curr_msg;
  2526. /* Make it a response */
  2527. msg->rsp[0] = msg->data[0] | 4;
  2528. msg->rsp[1] = msg->data[1];
  2529. msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
  2530. msg->rsp_size = 3;
  2531. smi_info->curr_msg = NULL;
  2532. deliver_recv_msg(smi_info, msg);
  2533. }
  2534. /*
  2535. * dell_poweredge_bt_xaction_handler
  2536. * @info - smi_info.device_id must be populated
  2537. *
  2538. * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
  2539. * not respond to a Get SDR command if the length of the data
  2540. * requested is exactly 0x3A, which leads to command timeouts and no
  2541. * data returned. This intercepts such commands, and causes userspace
  2542. * callers to try again with a different-sized buffer, which succeeds.
  2543. */
  2544. #define STORAGE_NETFN 0x0A
  2545. #define STORAGE_CMD_GET_SDR 0x23
  2546. static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
  2547. unsigned long unused,
  2548. void *in)
  2549. {
  2550. struct smi_info *smi_info = in;
  2551. unsigned char *data = smi_info->curr_msg->data;
  2552. unsigned int size = smi_info->curr_msg->data_size;
  2553. if (size >= 8 &&
  2554. (data[0]>>2) == STORAGE_NETFN &&
  2555. data[1] == STORAGE_CMD_GET_SDR &&
  2556. data[7] == 0x3A) {
  2557. return_hosed_msg_badsize(smi_info);
  2558. return NOTIFY_STOP;
  2559. }
  2560. return NOTIFY_DONE;
  2561. }
  2562. static struct notifier_block dell_poweredge_bt_xaction_notifier = {
  2563. .notifier_call = dell_poweredge_bt_xaction_handler,
  2564. };
  2565. /*
  2566. * setup_dell_poweredge_bt_xaction_handler
  2567. * @info - smi_info.device_id must be filled in already
  2568. *
  2569. * Fills in smi_info.device_id.start_transaction_pre_hook
  2570. * when we know what function to use there.
  2571. */
  2572. static void
  2573. setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
  2574. {
  2575. struct ipmi_device_id *id = &smi_info->device_id;
  2576. if (id->manufacturer_id == DELL_IANA_MFR_ID &&
  2577. smi_info->si_type == SI_BT)
  2578. register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
  2579. }
  2580. /*
  2581. * setup_oem_data_handler
  2582. * @info - smi_info.device_id must be filled in already
  2583. *
  2584. * Fills in smi_info.device_id.oem_data_available_handler
  2585. * when we know what function to use there.
  2586. */
  2587. static void setup_oem_data_handler(struct smi_info *smi_info)
  2588. {
  2589. setup_dell_poweredge_oem_data_handler(smi_info);
  2590. }
  2591. static void setup_xaction_handlers(struct smi_info *smi_info)
  2592. {
  2593. setup_dell_poweredge_bt_xaction_handler(smi_info);
  2594. }
  2595. static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
  2596. {
  2597. if (smi_info->intf) {
  2598. /*
  2599. * The timer and thread are only running if the
  2600. * interface has been started up and registered.
  2601. */
  2602. if (smi_info->thread != NULL)
  2603. kthread_stop(smi_info->thread);
  2604. del_timer_sync(&smi_info->si_timer);
  2605. }
  2606. }
  2607. static __devinitdata struct ipmi_default_vals
  2608. {
  2609. int type;
  2610. int port;
  2611. } ipmi_defaults[] =
  2612. {
  2613. { .type = SI_KCS, .port = 0xca2 },
  2614. { .type = SI_SMIC, .port = 0xca9 },
  2615. { .type = SI_BT, .port = 0xe4 },
  2616. { .port = 0 }
  2617. };
  2618. static void __devinit default_find_bmc(void)
  2619. {
  2620. struct smi_info *info;
  2621. int i;
  2622. for (i = 0; ; i++) {
  2623. if (!ipmi_defaults[i].port)
  2624. break;
  2625. #ifdef CONFIG_PPC
  2626. if (check_legacy_ioport(ipmi_defaults[i].port))
  2627. continue;
  2628. #endif
  2629. info = smi_info_alloc();
  2630. if (!info)
  2631. return;
  2632. info->addr_source = SI_DEFAULT;
  2633. info->si_type = ipmi_defaults[i].type;
  2634. info->io_setup = port_setup;
  2635. info->io.addr_data = ipmi_defaults[i].port;
  2636. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  2637. info->io.addr = NULL;
  2638. info->io.regspacing = DEFAULT_REGSPACING;
  2639. info->io.regsize = DEFAULT_REGSPACING;
  2640. info->io.regshift = 0;
  2641. if (add_smi(info) == 0) {
  2642. if ((try_smi_init(info)) == 0) {
  2643. /* Found one... */
  2644. printk(KERN_INFO PFX "Found default %s"
  2645. " state machine at %s address 0x%lx\n",
  2646. si_to_str[info->si_type],
  2647. addr_space_to_str[info->io.addr_type],
  2648. info->io.addr_data);
  2649. } else
  2650. cleanup_one_si(info);
  2651. } else {
  2652. kfree(info);
  2653. }
  2654. }
  2655. }
  2656. static int is_new_interface(struct smi_info *info)
  2657. {
  2658. struct smi_info *e;
  2659. list_for_each_entry(e, &smi_infos, link) {
  2660. if (e->io.addr_type != info->io.addr_type)
  2661. continue;
  2662. if (e->io.addr_data == info->io.addr_data)
  2663. return 0;
  2664. }
  2665. return 1;
  2666. }
  2667. static int add_smi(struct smi_info *new_smi)
  2668. {
  2669. int rv = 0;
  2670. printk(KERN_INFO PFX "Adding %s-specified %s state machine",
  2671. ipmi_addr_src_to_str[new_smi->addr_source],
  2672. si_to_str[new_smi->si_type]);
  2673. mutex_lock(&smi_infos_lock);
  2674. if (!is_new_interface(new_smi)) {
  2675. printk(KERN_CONT " duplicate interface\n");
  2676. rv = -EBUSY;
  2677. goto out_err;
  2678. }
  2679. printk(KERN_CONT "\n");
  2680. /* So we know not to free it unless we have allocated one. */
  2681. new_smi->intf = NULL;
  2682. new_smi->si_sm = NULL;
  2683. new_smi->handlers = NULL;
  2684. list_add_tail(&new_smi->link, &smi_infos);
  2685. out_err:
  2686. mutex_unlock(&smi_infos_lock);
  2687. return rv;
  2688. }
  2689. static int try_smi_init(struct smi_info *new_smi)
  2690. {
  2691. int rv = 0;
  2692. int i;
  2693. printk(KERN_INFO PFX "Trying %s-specified %s state"
  2694. " machine at %s address 0x%lx, slave address 0x%x,"
  2695. " irq %d\n",
  2696. ipmi_addr_src_to_str[new_smi->addr_source],
  2697. si_to_str[new_smi->si_type],
  2698. addr_space_to_str[new_smi->io.addr_type],
  2699. new_smi->io.addr_data,
  2700. new_smi->slave_addr, new_smi->irq);
  2701. switch (new_smi->si_type) {
  2702. case SI_KCS:
  2703. new_smi->handlers = &kcs_smi_handlers;
  2704. break;
  2705. case SI_SMIC:
  2706. new_smi->handlers = &smic_smi_handlers;
  2707. break;
  2708. case SI_BT:
  2709. new_smi->handlers = &bt_smi_handlers;
  2710. break;
  2711. default:
  2712. /* No support for anything else yet. */
  2713. rv = -EIO;
  2714. goto out_err;
  2715. }
  2716. /* Allocate the state machine's data and initialize it. */
  2717. new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
  2718. if (!new_smi->si_sm) {
  2719. printk(KERN_ERR PFX
  2720. "Could not allocate state machine memory\n");
  2721. rv = -ENOMEM;
  2722. goto out_err;
  2723. }
  2724. new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
  2725. &new_smi->io);
  2726. /* Now that we know the I/O size, we can set up the I/O. */
  2727. rv = new_smi->io_setup(new_smi);
  2728. if (rv) {
  2729. printk(KERN_ERR PFX "Could not set up I/O space\n");
  2730. goto out_err;
  2731. }
  2732. /* Do low-level detection first. */
  2733. if (new_smi->handlers->detect(new_smi->si_sm)) {
  2734. if (new_smi->addr_source)
  2735. printk(KERN_INFO PFX "Interface detection failed\n");
  2736. rv = -ENODEV;
  2737. goto out_err;
  2738. }
  2739. /*
  2740. * Attempt a get device id command. If it fails, we probably
  2741. * don't have a BMC here.
  2742. */
  2743. rv = try_get_dev_id(new_smi);
  2744. if (rv) {
  2745. if (new_smi->addr_source)
  2746. printk(KERN_INFO PFX "There appears to be no BMC"
  2747. " at this location\n");
  2748. goto out_err;
  2749. }
  2750. setup_oem_data_handler(new_smi);
  2751. setup_xaction_handlers(new_smi);
  2752. INIT_LIST_HEAD(&(new_smi->xmit_msgs));
  2753. INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
  2754. new_smi->curr_msg = NULL;
  2755. atomic_set(&new_smi->req_events, 0);
  2756. new_smi->run_to_completion = 0;
  2757. for (i = 0; i < SI_NUM_STATS; i++)
  2758. atomic_set(&new_smi->stats[i], 0);
  2759. new_smi->interrupt_disabled = 1;
  2760. atomic_set(&new_smi->stop_operation, 0);
  2761. new_smi->intf_num = smi_num;
  2762. smi_num++;
  2763. rv = try_enable_event_buffer(new_smi);
  2764. if (rv == 0)
  2765. new_smi->has_event_buffer = 1;
  2766. /*
  2767. * Start clearing the flags before we enable interrupts or the
  2768. * timer to avoid racing with the timer.
  2769. */
  2770. start_clear_flags(new_smi);
  2771. /* IRQ is defined to be set when non-zero. */
  2772. if (new_smi->irq)
  2773. new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
  2774. if (!new_smi->dev) {
  2775. /*
  2776. * If we don't already have a device from something
  2777. * else (like PCI), then register a new one.
  2778. */
  2779. new_smi->pdev = platform_device_alloc("ipmi_si",
  2780. new_smi->intf_num);
  2781. if (!new_smi->pdev) {
  2782. printk(KERN_ERR PFX
  2783. "Unable to allocate platform device\n");
  2784. goto out_err;
  2785. }
  2786. new_smi->dev = &new_smi->pdev->dev;
  2787. new_smi->dev->driver = &ipmi_driver.driver;
  2788. rv = platform_device_add(new_smi->pdev);
  2789. if (rv) {
  2790. printk(KERN_ERR PFX
  2791. "Unable to register system interface device:"
  2792. " %d\n",
  2793. rv);
  2794. goto out_err;
  2795. }
  2796. new_smi->dev_registered = 1;
  2797. }
  2798. rv = ipmi_register_smi(&handlers,
  2799. new_smi,
  2800. &new_smi->device_id,
  2801. new_smi->dev,
  2802. "bmc",
  2803. new_smi->slave_addr);
  2804. if (rv) {
  2805. dev_err(new_smi->dev, "Unable to register device: error %d\n",
  2806. rv);
  2807. goto out_err_stop_timer;
  2808. }
  2809. rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
  2810. &smi_type_proc_ops,
  2811. new_smi);
  2812. if (rv) {
  2813. dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
  2814. goto out_err_stop_timer;
  2815. }
  2816. rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
  2817. &smi_si_stats_proc_ops,
  2818. new_smi);
  2819. if (rv) {
  2820. dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
  2821. goto out_err_stop_timer;
  2822. }
  2823. rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
  2824. &smi_params_proc_ops,
  2825. new_smi);
  2826. if (rv) {
  2827. dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
  2828. goto out_err_stop_timer;
  2829. }
  2830. dev_info(new_smi->dev, "IPMI %s interface initialized\n",
  2831. si_to_str[new_smi->si_type]);
  2832. return 0;
  2833. out_err_stop_timer:
  2834. atomic_inc(&new_smi->stop_operation);
  2835. wait_for_timer_and_thread(new_smi);
  2836. out_err:
  2837. new_smi->interrupt_disabled = 1;
  2838. if (new_smi->intf) {
  2839. ipmi_unregister_smi(new_smi->intf);
  2840. new_smi->intf = NULL;
  2841. }
  2842. if (new_smi->irq_cleanup) {
  2843. new_smi->irq_cleanup(new_smi);
  2844. new_smi->irq_cleanup = NULL;
  2845. }
  2846. /*
  2847. * Wait until we know that we are out of any interrupt
  2848. * handlers might have been running before we freed the
  2849. * interrupt.
  2850. */
  2851. synchronize_sched();
  2852. if (new_smi->si_sm) {
  2853. if (new_smi->handlers)
  2854. new_smi->handlers->cleanup(new_smi->si_sm);
  2855. kfree(new_smi->si_sm);
  2856. new_smi->si_sm = NULL;
  2857. }
  2858. if (new_smi->addr_source_cleanup) {
  2859. new_smi->addr_source_cleanup(new_smi);
  2860. new_smi->addr_source_cleanup = NULL;
  2861. }
  2862. if (new_smi->io_cleanup) {
  2863. new_smi->io_cleanup(new_smi);
  2864. new_smi->io_cleanup = NULL;
  2865. }
  2866. if (new_smi->dev_registered) {
  2867. platform_device_unregister(new_smi->pdev);
  2868. new_smi->dev_registered = 0;
  2869. }
  2870. return rv;
  2871. }
  2872. static int __devinit init_ipmi_si(void)
  2873. {
  2874. int i;
  2875. char *str;
  2876. int rv;
  2877. struct smi_info *e;
  2878. enum ipmi_addr_src type = SI_INVALID;
  2879. if (initialized)
  2880. return 0;
  2881. initialized = 1;
  2882. rv = platform_driver_register(&ipmi_driver);
  2883. if (rv) {
  2884. printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
  2885. return rv;
  2886. }
  2887. /* Parse out the si_type string into its components. */
  2888. str = si_type_str;
  2889. if (*str != '\0') {
  2890. for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
  2891. si_type[i] = str;
  2892. str = strchr(str, ',');
  2893. if (str) {
  2894. *str = '\0';
  2895. str++;
  2896. } else {
  2897. break;
  2898. }
  2899. }
  2900. }
  2901. printk(KERN_INFO "IPMI System Interface driver.\n");
  2902. /* If the user gave us a device, they presumably want us to use it */
  2903. if (!hardcode_find_bmc())
  2904. return 0;
  2905. #ifdef CONFIG_PCI
  2906. rv = pci_register_driver(&ipmi_pci_driver);
  2907. if (rv)
  2908. printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
  2909. else
  2910. pci_registered = 1;
  2911. #endif
  2912. #ifdef CONFIG_ACPI
  2913. pnp_register_driver(&ipmi_pnp_driver);
  2914. pnp_registered = 1;
  2915. #endif
  2916. #ifdef CONFIG_DMI
  2917. dmi_find_bmc();
  2918. #endif
  2919. #ifdef CONFIG_ACPI
  2920. spmi_find_bmc();
  2921. #endif
  2922. /* We prefer devices with interrupts, but in the case of a machine
  2923. with multiple BMCs we assume that there will be several instances
  2924. of a given type so if we succeed in registering a type then also
  2925. try to register everything else of the same type */
  2926. mutex_lock(&smi_infos_lock);
  2927. list_for_each_entry(e, &smi_infos, link) {
  2928. /* Try to register a device if it has an IRQ and we either
  2929. haven't successfully registered a device yet or this
  2930. device has the same type as one we successfully registered */
  2931. if (e->irq && (!type || e->addr_source == type)) {
  2932. if (!try_smi_init(e)) {
  2933. type = e->addr_source;
  2934. }
  2935. }
  2936. }
  2937. /* type will only have been set if we successfully registered an si */
  2938. if (type) {
  2939. mutex_unlock(&smi_infos_lock);
  2940. return 0;
  2941. }
  2942. /* Fall back to the preferred device */
  2943. list_for_each_entry(e, &smi_infos, link) {
  2944. if (!e->irq && (!type || e->addr_source == type)) {
  2945. if (!try_smi_init(e)) {
  2946. type = e->addr_source;
  2947. }
  2948. }
  2949. }
  2950. mutex_unlock(&smi_infos_lock);
  2951. if (type)
  2952. return 0;
  2953. if (si_trydefaults) {
  2954. mutex_lock(&smi_infos_lock);
  2955. if (list_empty(&smi_infos)) {
  2956. /* No BMC was found, try defaults. */
  2957. mutex_unlock(&smi_infos_lock);
  2958. default_find_bmc();
  2959. } else
  2960. mutex_unlock(&smi_infos_lock);
  2961. }
  2962. mutex_lock(&smi_infos_lock);
  2963. if (unload_when_empty && list_empty(&smi_infos)) {
  2964. mutex_unlock(&smi_infos_lock);
  2965. cleanup_ipmi_si();
  2966. printk(KERN_WARNING PFX
  2967. "Unable to find any System Interface(s)\n");
  2968. return -ENODEV;
  2969. } else {
  2970. mutex_unlock(&smi_infos_lock);
  2971. return 0;
  2972. }
  2973. }
  2974. module_init(init_ipmi_si);
  2975. static void cleanup_one_si(struct smi_info *to_clean)
  2976. {
  2977. int rv = 0;
  2978. unsigned long flags;
  2979. if (!to_clean)
  2980. return;
  2981. list_del(&to_clean->link);
  2982. /* Tell the driver that we are shutting down. */
  2983. atomic_inc(&to_clean->stop_operation);
  2984. /*
  2985. * Make sure the timer and thread are stopped and will not run
  2986. * again.
  2987. */
  2988. wait_for_timer_and_thread(to_clean);
  2989. /*
  2990. * Timeouts are stopped, now make sure the interrupts are off
  2991. * for the device. A little tricky with locks to make sure
  2992. * there are no races.
  2993. */
  2994. spin_lock_irqsave(&to_clean->si_lock, flags);
  2995. while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
  2996. spin_unlock_irqrestore(&to_clean->si_lock, flags);
  2997. poll(to_clean);
  2998. schedule_timeout_uninterruptible(1);
  2999. spin_lock_irqsave(&to_clean->si_lock, flags);
  3000. }
  3001. disable_si_irq(to_clean);
  3002. spin_unlock_irqrestore(&to_clean->si_lock, flags);
  3003. while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
  3004. poll(to_clean);
  3005. schedule_timeout_uninterruptible(1);
  3006. }
  3007. /* Clean up interrupts and make sure that everything is done. */
  3008. if (to_clean->irq_cleanup)
  3009. to_clean->irq_cleanup(to_clean);
  3010. while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
  3011. poll(to_clean);
  3012. schedule_timeout_uninterruptible(1);
  3013. }
  3014. if (to_clean->intf)
  3015. rv = ipmi_unregister_smi(to_clean->intf);
  3016. if (rv) {
  3017. printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
  3018. rv);
  3019. }
  3020. if (to_clean->handlers)
  3021. to_clean->handlers->cleanup(to_clean->si_sm);
  3022. kfree(to_clean->si_sm);
  3023. if (to_clean->addr_source_cleanup)
  3024. to_clean->addr_source_cleanup(to_clean);
  3025. if (to_clean->io_cleanup)
  3026. to_clean->io_cleanup(to_clean);
  3027. if (to_clean->dev_registered)
  3028. platform_device_unregister(to_clean->pdev);
  3029. kfree(to_clean);
  3030. }
  3031. static void cleanup_ipmi_si(void)
  3032. {
  3033. struct smi_info *e, *tmp_e;
  3034. if (!initialized)
  3035. return;
  3036. #ifdef CONFIG_PCI
  3037. if (pci_registered)
  3038. pci_unregister_driver(&ipmi_pci_driver);
  3039. #endif
  3040. #ifdef CONFIG_ACPI
  3041. if (pnp_registered)
  3042. pnp_unregister_driver(&ipmi_pnp_driver);
  3043. #endif
  3044. platform_driver_unregister(&ipmi_driver);
  3045. mutex_lock(&smi_infos_lock);
  3046. list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
  3047. cleanup_one_si(e);
  3048. mutex_unlock(&smi_infos_lock);
  3049. }
  3050. module_exit(cleanup_ipmi_si);
  3051. MODULE_LICENSE("GPL");
  3052. MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
  3053. MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
  3054. " system interfaces.");