amd_iommu.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384
  1. /*
  2. * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
  3. * Author: Joerg Roedel <joerg.roedel@amd.com>
  4. * Leo Duran <leo.duran@amd.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/pci.h>
  20. #include <linux/gfp.h>
  21. #include <linux/bitops.h>
  22. #include <linux/scatterlist.h>
  23. #include <linux/iommu-helper.h>
  24. #include <asm/proto.h>
  25. #include <asm/iommu.h>
  26. #include <asm/amd_iommu_types.h>
  27. #include <asm/amd_iommu.h>
  28. #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  29. #define EXIT_LOOP_COUNT 10000000
  30. static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  31. /* A list of preallocated protection domains */
  32. static LIST_HEAD(iommu_pd_list);
  33. static DEFINE_SPINLOCK(iommu_pd_list_lock);
  34. /*
  35. * general struct to manage commands send to an IOMMU
  36. */
  37. struct iommu_cmd {
  38. u32 data[4];
  39. };
  40. static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
  41. struct unity_map_entry *e);
  42. /* returns !0 if the IOMMU is caching non-present entries in its TLB */
  43. static int iommu_has_npcache(struct amd_iommu *iommu)
  44. {
  45. return iommu->cap & IOMMU_CAP_NPCACHE;
  46. }
  47. /****************************************************************************
  48. *
  49. * Interrupt handling functions
  50. *
  51. ****************************************************************************/
  52. static void iommu_print_event(void *__evt)
  53. {
  54. u32 *event = __evt;
  55. int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
  56. int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
  57. int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
  58. int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
  59. u64 address = (u64)(((u64)event[3]) << 32) | event[2];
  60. printk(KERN_ERR "AMD IOMMU: Event logged [");
  61. switch (type) {
  62. case EVENT_TYPE_ILL_DEV:
  63. printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
  64. "address=0x%016llx flags=0x%04x]\n",
  65. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  66. address, flags);
  67. break;
  68. case EVENT_TYPE_IO_FAULT:
  69. printk("IO_PAGE_FAULT device=%02x:%02x.%x "
  70. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  71. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  72. domid, address, flags);
  73. break;
  74. case EVENT_TYPE_DEV_TAB_ERR:
  75. printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  76. "address=0x%016llx flags=0x%04x]\n",
  77. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  78. address, flags);
  79. break;
  80. case EVENT_TYPE_PAGE_TAB_ERR:
  81. printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  82. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  83. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  84. domid, address, flags);
  85. break;
  86. case EVENT_TYPE_ILL_CMD:
  87. printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
  88. break;
  89. case EVENT_TYPE_CMD_HARD_ERR:
  90. printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
  91. "flags=0x%04x]\n", address, flags);
  92. break;
  93. case EVENT_TYPE_IOTLB_INV_TO:
  94. printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
  95. "address=0x%016llx]\n",
  96. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  97. address);
  98. break;
  99. case EVENT_TYPE_INV_DEV_REQ:
  100. printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
  101. "address=0x%016llx flags=0x%04x]\n",
  102. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  103. address, flags);
  104. break;
  105. default:
  106. printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
  107. }
  108. }
  109. static void iommu_poll_events(struct amd_iommu *iommu)
  110. {
  111. u32 head, tail;
  112. unsigned long flags;
  113. spin_lock_irqsave(&iommu->lock, flags);
  114. head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  115. tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
  116. while (head != tail) {
  117. iommu_print_event(iommu->evt_buf + head);
  118. head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
  119. }
  120. writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  121. spin_unlock_irqrestore(&iommu->lock, flags);
  122. }
  123. irqreturn_t amd_iommu_int_handler(int irq, void *data)
  124. {
  125. struct amd_iommu *iommu;
  126. list_for_each_entry(iommu, &amd_iommu_list, list)
  127. iommu_poll_events(iommu);
  128. return IRQ_HANDLED;
  129. }
  130. /****************************************************************************
  131. *
  132. * IOMMU command queuing functions
  133. *
  134. ****************************************************************************/
  135. /*
  136. * Writes the command to the IOMMUs command buffer and informs the
  137. * hardware about the new command. Must be called with iommu->lock held.
  138. */
  139. static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  140. {
  141. u32 tail, head;
  142. u8 *target;
  143. tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  144. target = iommu->cmd_buf + tail;
  145. memcpy_toio(target, cmd, sizeof(*cmd));
  146. tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  147. head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
  148. if (tail == head)
  149. return -ENOMEM;
  150. writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  151. return 0;
  152. }
  153. /*
  154. * General queuing function for commands. Takes iommu->lock and calls
  155. * __iommu_queue_command().
  156. */
  157. static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  158. {
  159. unsigned long flags;
  160. int ret;
  161. spin_lock_irqsave(&iommu->lock, flags);
  162. ret = __iommu_queue_command(iommu, cmd);
  163. spin_unlock_irqrestore(&iommu->lock, flags);
  164. return ret;
  165. }
  166. /*
  167. * This function is called whenever we need to ensure that the IOMMU has
  168. * completed execution of all commands we sent. It sends a
  169. * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
  170. * us about that by writing a value to a physical address we pass with
  171. * the command.
  172. */
  173. static int iommu_completion_wait(struct amd_iommu *iommu)
  174. {
  175. int ret = 0, ready = 0;
  176. unsigned status = 0;
  177. struct iommu_cmd cmd;
  178. unsigned long flags, i = 0;
  179. memset(&cmd, 0, sizeof(cmd));
  180. cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
  181. CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
  182. iommu->need_sync = 0;
  183. spin_lock_irqsave(&iommu->lock, flags);
  184. ret = __iommu_queue_command(iommu, &cmd);
  185. if (ret)
  186. goto out;
  187. while (!ready && (i < EXIT_LOOP_COUNT)) {
  188. ++i;
  189. /* wait for the bit to become one */
  190. status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
  191. ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
  192. }
  193. /* set bit back to zero */
  194. status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
  195. writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
  196. if (unlikely((i == EXIT_LOOP_COUNT) && printk_ratelimit()))
  197. printk(KERN_WARNING "AMD IOMMU: Completion wait loop failed\n");
  198. out:
  199. spin_unlock_irqrestore(&iommu->lock, flags);
  200. return 0;
  201. }
  202. /*
  203. * Command send function for invalidating a device table entry
  204. */
  205. static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
  206. {
  207. struct iommu_cmd cmd;
  208. int ret;
  209. BUG_ON(iommu == NULL);
  210. memset(&cmd, 0, sizeof(cmd));
  211. CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
  212. cmd.data[0] = devid;
  213. ret = iommu_queue_command(iommu, &cmd);
  214. iommu->need_sync = 1;
  215. return ret;
  216. }
  217. /*
  218. * Generic command send function for invalidaing TLB entries
  219. */
  220. static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
  221. u64 address, u16 domid, int pde, int s)
  222. {
  223. struct iommu_cmd cmd;
  224. int ret;
  225. memset(&cmd, 0, sizeof(cmd));
  226. address &= PAGE_MASK;
  227. CMD_SET_TYPE(&cmd, CMD_INV_IOMMU_PAGES);
  228. cmd.data[1] |= domid;
  229. cmd.data[2] = lower_32_bits(address);
  230. cmd.data[3] = upper_32_bits(address);
  231. if (s) /* size bit - we flush more than one 4kb page */
  232. cmd.data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  233. if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
  234. cmd.data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  235. ret = iommu_queue_command(iommu, &cmd);
  236. iommu->need_sync = 1;
  237. return ret;
  238. }
  239. /*
  240. * TLB invalidation function which is called from the mapping functions.
  241. * It invalidates a single PTE if the range to flush is within a single
  242. * page. Otherwise it flushes the whole TLB of the IOMMU.
  243. */
  244. static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
  245. u64 address, size_t size)
  246. {
  247. int s = 0;
  248. unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
  249. address &= PAGE_MASK;
  250. if (pages > 1) {
  251. /*
  252. * If we have to flush more than one page, flush all
  253. * TLB entries for this domain
  254. */
  255. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  256. s = 1;
  257. }
  258. iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
  259. return 0;
  260. }
  261. /* Flush the whole IO/TLB for a given protection domain */
  262. static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
  263. {
  264. u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  265. iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
  266. }
  267. /****************************************************************************
  268. *
  269. * The functions below are used the create the page table mappings for
  270. * unity mapped regions.
  271. *
  272. ****************************************************************************/
  273. /*
  274. * Generic mapping functions. It maps a physical address into a DMA
  275. * address space. It allocates the page table pages if necessary.
  276. * In the future it can be extended to a generic mapping function
  277. * supporting all features of AMD IOMMU page tables like level skipping
  278. * and full 64 bit address spaces.
  279. */
  280. static int iommu_map(struct protection_domain *dom,
  281. unsigned long bus_addr,
  282. unsigned long phys_addr,
  283. int prot)
  284. {
  285. u64 __pte, *pte, *page;
  286. bus_addr = PAGE_ALIGN(bus_addr);
  287. phys_addr = PAGE_ALIGN(bus_addr);
  288. /* only support 512GB address spaces for now */
  289. if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
  290. return -EINVAL;
  291. pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
  292. if (!IOMMU_PTE_PRESENT(*pte)) {
  293. page = (u64 *)get_zeroed_page(GFP_KERNEL);
  294. if (!page)
  295. return -ENOMEM;
  296. *pte = IOMMU_L2_PDE(virt_to_phys(page));
  297. }
  298. pte = IOMMU_PTE_PAGE(*pte);
  299. pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
  300. if (!IOMMU_PTE_PRESENT(*pte)) {
  301. page = (u64 *)get_zeroed_page(GFP_KERNEL);
  302. if (!page)
  303. return -ENOMEM;
  304. *pte = IOMMU_L1_PDE(virt_to_phys(page));
  305. }
  306. pte = IOMMU_PTE_PAGE(*pte);
  307. pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];
  308. if (IOMMU_PTE_PRESENT(*pte))
  309. return -EBUSY;
  310. __pte = phys_addr | IOMMU_PTE_P;
  311. if (prot & IOMMU_PROT_IR)
  312. __pte |= IOMMU_PTE_IR;
  313. if (prot & IOMMU_PROT_IW)
  314. __pte |= IOMMU_PTE_IW;
  315. *pte = __pte;
  316. return 0;
  317. }
  318. /*
  319. * This function checks if a specific unity mapping entry is needed for
  320. * this specific IOMMU.
  321. */
  322. static int iommu_for_unity_map(struct amd_iommu *iommu,
  323. struct unity_map_entry *entry)
  324. {
  325. u16 bdf, i;
  326. for (i = entry->devid_start; i <= entry->devid_end; ++i) {
  327. bdf = amd_iommu_alias_table[i];
  328. if (amd_iommu_rlookup_table[bdf] == iommu)
  329. return 1;
  330. }
  331. return 0;
  332. }
  333. /*
  334. * Init the unity mappings for a specific IOMMU in the system
  335. *
  336. * Basically iterates over all unity mapping entries and applies them to
  337. * the default domain DMA of that IOMMU if necessary.
  338. */
  339. static int iommu_init_unity_mappings(struct amd_iommu *iommu)
  340. {
  341. struct unity_map_entry *entry;
  342. int ret;
  343. list_for_each_entry(entry, &amd_iommu_unity_map, list) {
  344. if (!iommu_for_unity_map(iommu, entry))
  345. continue;
  346. ret = dma_ops_unity_map(iommu->default_dom, entry);
  347. if (ret)
  348. return ret;
  349. }
  350. return 0;
  351. }
  352. /*
  353. * This function actually applies the mapping to the page table of the
  354. * dma_ops domain.
  355. */
  356. static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
  357. struct unity_map_entry *e)
  358. {
  359. u64 addr;
  360. int ret;
  361. for (addr = e->address_start; addr < e->address_end;
  362. addr += PAGE_SIZE) {
  363. ret = iommu_map(&dma_dom->domain, addr, addr, e->prot);
  364. if (ret)
  365. return ret;
  366. /*
  367. * if unity mapping is in aperture range mark the page
  368. * as allocated in the aperture
  369. */
  370. if (addr < dma_dom->aperture_size)
  371. __set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
  372. }
  373. return 0;
  374. }
  375. /*
  376. * Inits the unity mappings required for a specific device
  377. */
  378. static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
  379. u16 devid)
  380. {
  381. struct unity_map_entry *e;
  382. int ret;
  383. list_for_each_entry(e, &amd_iommu_unity_map, list) {
  384. if (!(devid >= e->devid_start && devid <= e->devid_end))
  385. continue;
  386. ret = dma_ops_unity_map(dma_dom, e);
  387. if (ret)
  388. return ret;
  389. }
  390. return 0;
  391. }
  392. /****************************************************************************
  393. *
  394. * The next functions belong to the address allocator for the dma_ops
  395. * interface functions. They work like the allocators in the other IOMMU
  396. * drivers. Its basically a bitmap which marks the allocated pages in
  397. * the aperture. Maybe it could be enhanced in the future to a more
  398. * efficient allocator.
  399. *
  400. ****************************************************************************/
  401. /*
  402. * The address allocator core function.
  403. *
  404. * called with domain->lock held
  405. */
  406. static unsigned long dma_ops_alloc_addresses(struct device *dev,
  407. struct dma_ops_domain *dom,
  408. unsigned int pages,
  409. unsigned long align_mask,
  410. u64 dma_mask)
  411. {
  412. unsigned long limit;
  413. unsigned long address;
  414. unsigned long boundary_size;
  415. boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  416. PAGE_SIZE) >> PAGE_SHIFT;
  417. limit = iommu_device_max_index(dom->aperture_size >> PAGE_SHIFT, 0,
  418. dma_mask >> PAGE_SHIFT);
  419. if (dom->next_bit >= limit) {
  420. dom->next_bit = 0;
  421. dom->need_flush = true;
  422. }
  423. address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
  424. 0 , boundary_size, align_mask);
  425. if (address == -1) {
  426. address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
  427. 0, boundary_size, align_mask);
  428. dom->need_flush = true;
  429. }
  430. if (likely(address != -1)) {
  431. dom->next_bit = address + pages;
  432. address <<= PAGE_SHIFT;
  433. } else
  434. address = bad_dma_address;
  435. WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
  436. return address;
  437. }
  438. /*
  439. * The address free function.
  440. *
  441. * called with domain->lock held
  442. */
  443. static void dma_ops_free_addresses(struct dma_ops_domain *dom,
  444. unsigned long address,
  445. unsigned int pages)
  446. {
  447. address >>= PAGE_SHIFT;
  448. iommu_area_free(dom->bitmap, address, pages);
  449. }
  450. /****************************************************************************
  451. *
  452. * The next functions belong to the domain allocation. A domain is
  453. * allocated for every IOMMU as the default domain. If device isolation
  454. * is enabled, every device get its own domain. The most important thing
  455. * about domains is the page table mapping the DMA address space they
  456. * contain.
  457. *
  458. ****************************************************************************/
  459. static u16 domain_id_alloc(void)
  460. {
  461. unsigned long flags;
  462. int id;
  463. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  464. id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
  465. BUG_ON(id == 0);
  466. if (id > 0 && id < MAX_DOMAIN_ID)
  467. __set_bit(id, amd_iommu_pd_alloc_bitmap);
  468. else
  469. id = 0;
  470. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  471. return id;
  472. }
  473. /*
  474. * Used to reserve address ranges in the aperture (e.g. for exclusion
  475. * ranges.
  476. */
  477. static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
  478. unsigned long start_page,
  479. unsigned int pages)
  480. {
  481. unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;
  482. if (start_page + pages > last_page)
  483. pages = last_page - start_page;
  484. iommu_area_reserve(dom->bitmap, start_page, pages);
  485. }
  486. static void dma_ops_free_pagetable(struct dma_ops_domain *dma_dom)
  487. {
  488. int i, j;
  489. u64 *p1, *p2, *p3;
  490. p1 = dma_dom->domain.pt_root;
  491. if (!p1)
  492. return;
  493. for (i = 0; i < 512; ++i) {
  494. if (!IOMMU_PTE_PRESENT(p1[i]))
  495. continue;
  496. p2 = IOMMU_PTE_PAGE(p1[i]);
  497. for (j = 0; j < 512; ++i) {
  498. if (!IOMMU_PTE_PRESENT(p2[j]))
  499. continue;
  500. p3 = IOMMU_PTE_PAGE(p2[j]);
  501. free_page((unsigned long)p3);
  502. }
  503. free_page((unsigned long)p2);
  504. }
  505. free_page((unsigned long)p1);
  506. }
  507. /*
  508. * Free a domain, only used if something went wrong in the
  509. * allocation path and we need to free an already allocated page table
  510. */
  511. static void dma_ops_domain_free(struct dma_ops_domain *dom)
  512. {
  513. if (!dom)
  514. return;
  515. dma_ops_free_pagetable(dom);
  516. kfree(dom->pte_pages);
  517. kfree(dom->bitmap);
  518. kfree(dom);
  519. }
  520. /*
  521. * Allocates a new protection domain usable for the dma_ops functions.
  522. * It also intializes the page table and the address allocator data
  523. * structures required for the dma_ops interface
  524. */
  525. static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
  526. unsigned order)
  527. {
  528. struct dma_ops_domain *dma_dom;
  529. unsigned i, num_pte_pages;
  530. u64 *l2_pde;
  531. u64 address;
  532. /*
  533. * Currently the DMA aperture must be between 32 MB and 1GB in size
  534. */
  535. if ((order < 25) || (order > 30))
  536. return NULL;
  537. dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
  538. if (!dma_dom)
  539. return NULL;
  540. spin_lock_init(&dma_dom->domain.lock);
  541. dma_dom->domain.id = domain_id_alloc();
  542. if (dma_dom->domain.id == 0)
  543. goto free_dma_dom;
  544. dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
  545. dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  546. dma_dom->domain.priv = dma_dom;
  547. if (!dma_dom->domain.pt_root)
  548. goto free_dma_dom;
  549. dma_dom->aperture_size = (1ULL << order);
  550. dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
  551. GFP_KERNEL);
  552. if (!dma_dom->bitmap)
  553. goto free_dma_dom;
  554. /*
  555. * mark the first page as allocated so we never return 0 as
  556. * a valid dma-address. So we can use 0 as error value
  557. */
  558. dma_dom->bitmap[0] = 1;
  559. dma_dom->next_bit = 0;
  560. dma_dom->need_flush = false;
  561. dma_dom->target_dev = 0xffff;
  562. /* Intialize the exclusion range if necessary */
  563. if (iommu->exclusion_start &&
  564. iommu->exclusion_start < dma_dom->aperture_size) {
  565. unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
  566. int pages = iommu_num_pages(iommu->exclusion_start,
  567. iommu->exclusion_length,
  568. PAGE_SIZE);
  569. dma_ops_reserve_addresses(dma_dom, startpage, pages);
  570. }
  571. /*
  572. * At the last step, build the page tables so we don't need to
  573. * allocate page table pages in the dma_ops mapping/unmapping
  574. * path.
  575. */
  576. num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
  577. dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
  578. GFP_KERNEL);
  579. if (!dma_dom->pte_pages)
  580. goto free_dma_dom;
  581. l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
  582. if (l2_pde == NULL)
  583. goto free_dma_dom;
  584. dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));
  585. for (i = 0; i < num_pte_pages; ++i) {
  586. dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
  587. if (!dma_dom->pte_pages[i])
  588. goto free_dma_dom;
  589. address = virt_to_phys(dma_dom->pte_pages[i]);
  590. l2_pde[i] = IOMMU_L1_PDE(address);
  591. }
  592. return dma_dom;
  593. free_dma_dom:
  594. dma_ops_domain_free(dma_dom);
  595. return NULL;
  596. }
  597. /*
  598. * Find out the protection domain structure for a given PCI device. This
  599. * will give us the pointer to the page table root for example.
  600. */
  601. static struct protection_domain *domain_for_device(u16 devid)
  602. {
  603. struct protection_domain *dom;
  604. unsigned long flags;
  605. read_lock_irqsave(&amd_iommu_devtable_lock, flags);
  606. dom = amd_iommu_pd_table[devid];
  607. read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  608. return dom;
  609. }
  610. /*
  611. * If a device is not yet associated with a domain, this function does
  612. * assigns it visible for the hardware
  613. */
  614. static void set_device_domain(struct amd_iommu *iommu,
  615. struct protection_domain *domain,
  616. u16 devid)
  617. {
  618. unsigned long flags;
  619. u64 pte_root = virt_to_phys(domain->pt_root);
  620. pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
  621. << DEV_ENTRY_MODE_SHIFT;
  622. pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
  623. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  624. amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
  625. amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
  626. amd_iommu_dev_table[devid].data[2] = domain->id;
  627. amd_iommu_pd_table[devid] = domain;
  628. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  629. iommu_queue_inv_dev_entry(iommu, devid);
  630. iommu->need_sync = 1;
  631. }
  632. /*****************************************************************************
  633. *
  634. * The next functions belong to the dma_ops mapping/unmapping code.
  635. *
  636. *****************************************************************************/
  637. /*
  638. * This function checks if the driver got a valid device from the caller to
  639. * avoid dereferencing invalid pointers.
  640. */
  641. static bool check_device(struct device *dev)
  642. {
  643. if (!dev || !dev->dma_mask)
  644. return false;
  645. return true;
  646. }
  647. /*
  648. * In this function the list of preallocated protection domains is traversed to
  649. * find the domain for a specific device
  650. */
  651. static struct dma_ops_domain *find_protection_domain(u16 devid)
  652. {
  653. struct dma_ops_domain *entry, *ret = NULL;
  654. unsigned long flags;
  655. if (list_empty(&iommu_pd_list))
  656. return NULL;
  657. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  658. list_for_each_entry(entry, &iommu_pd_list, list) {
  659. if (entry->target_dev == devid) {
  660. ret = entry;
  661. list_del(&ret->list);
  662. break;
  663. }
  664. }
  665. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  666. return ret;
  667. }
  668. /*
  669. * In the dma_ops path we only have the struct device. This function
  670. * finds the corresponding IOMMU, the protection domain and the
  671. * requestor id for a given device.
  672. * If the device is not yet associated with a domain this is also done
  673. * in this function.
  674. */
  675. static int get_device_resources(struct device *dev,
  676. struct amd_iommu **iommu,
  677. struct protection_domain **domain,
  678. u16 *bdf)
  679. {
  680. struct dma_ops_domain *dma_dom;
  681. struct pci_dev *pcidev;
  682. u16 _bdf;
  683. *iommu = NULL;
  684. *domain = NULL;
  685. *bdf = 0xffff;
  686. if (dev->bus != &pci_bus_type)
  687. return 0;
  688. pcidev = to_pci_dev(dev);
  689. _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
  690. /* device not translated by any IOMMU in the system? */
  691. if (_bdf > amd_iommu_last_bdf)
  692. return 0;
  693. *bdf = amd_iommu_alias_table[_bdf];
  694. *iommu = amd_iommu_rlookup_table[*bdf];
  695. if (*iommu == NULL)
  696. return 0;
  697. *domain = domain_for_device(*bdf);
  698. if (*domain == NULL) {
  699. dma_dom = find_protection_domain(*bdf);
  700. if (!dma_dom)
  701. dma_dom = (*iommu)->default_dom;
  702. *domain = &dma_dom->domain;
  703. set_device_domain(*iommu, *domain, *bdf);
  704. printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
  705. "device ", (*domain)->id);
  706. print_devid(_bdf, 1);
  707. }
  708. return 1;
  709. }
  710. /*
  711. * This is the generic map function. It maps one 4kb page at paddr to
  712. * the given address in the DMA address space for the domain.
  713. */
  714. static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
  715. struct dma_ops_domain *dom,
  716. unsigned long address,
  717. phys_addr_t paddr,
  718. int direction)
  719. {
  720. u64 *pte, __pte;
  721. WARN_ON(address > dom->aperture_size);
  722. paddr &= PAGE_MASK;
  723. pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
  724. pte += IOMMU_PTE_L0_INDEX(address);
  725. __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
  726. if (direction == DMA_TO_DEVICE)
  727. __pte |= IOMMU_PTE_IR;
  728. else if (direction == DMA_FROM_DEVICE)
  729. __pte |= IOMMU_PTE_IW;
  730. else if (direction == DMA_BIDIRECTIONAL)
  731. __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
  732. WARN_ON(*pte);
  733. *pte = __pte;
  734. return (dma_addr_t)address;
  735. }
  736. /*
  737. * The generic unmapping function for on page in the DMA address space.
  738. */
  739. static void dma_ops_domain_unmap(struct amd_iommu *iommu,
  740. struct dma_ops_domain *dom,
  741. unsigned long address)
  742. {
  743. u64 *pte;
  744. if (address >= dom->aperture_size)
  745. return;
  746. WARN_ON(address & 0xfffULL || address > dom->aperture_size);
  747. pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
  748. pte += IOMMU_PTE_L0_INDEX(address);
  749. WARN_ON(!*pte);
  750. *pte = 0ULL;
  751. }
  752. /*
  753. * This function contains common code for mapping of a physically
  754. * contiguous memory region into DMA address space. It is uses by all
  755. * mapping functions provided by this IOMMU driver.
  756. * Must be called with the domain lock held.
  757. */
  758. static dma_addr_t __map_single(struct device *dev,
  759. struct amd_iommu *iommu,
  760. struct dma_ops_domain *dma_dom,
  761. phys_addr_t paddr,
  762. size_t size,
  763. int dir,
  764. bool align,
  765. u64 dma_mask)
  766. {
  767. dma_addr_t offset = paddr & ~PAGE_MASK;
  768. dma_addr_t address, start;
  769. unsigned int pages;
  770. unsigned long align_mask = 0;
  771. int i;
  772. pages = iommu_num_pages(paddr, size, PAGE_SIZE);
  773. paddr &= PAGE_MASK;
  774. if (align)
  775. align_mask = (1UL << get_order(size)) - 1;
  776. address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
  777. dma_mask);
  778. if (unlikely(address == bad_dma_address))
  779. goto out;
  780. start = address;
  781. for (i = 0; i < pages; ++i) {
  782. dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
  783. paddr += PAGE_SIZE;
  784. start += PAGE_SIZE;
  785. }
  786. address += offset;
  787. if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
  788. iommu_flush_tlb(iommu, dma_dom->domain.id);
  789. dma_dom->need_flush = false;
  790. } else if (unlikely(iommu_has_npcache(iommu)))
  791. iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
  792. out:
  793. return address;
  794. }
  795. /*
  796. * Does the reverse of the __map_single function. Must be called with
  797. * the domain lock held too
  798. */
  799. static void __unmap_single(struct amd_iommu *iommu,
  800. struct dma_ops_domain *dma_dom,
  801. dma_addr_t dma_addr,
  802. size_t size,
  803. int dir)
  804. {
  805. dma_addr_t i, start;
  806. unsigned int pages;
  807. if ((dma_addr == 0) || (dma_addr + size > dma_dom->aperture_size))
  808. return;
  809. pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  810. dma_addr &= PAGE_MASK;
  811. start = dma_addr;
  812. for (i = 0; i < pages; ++i) {
  813. dma_ops_domain_unmap(iommu, dma_dom, start);
  814. start += PAGE_SIZE;
  815. }
  816. dma_ops_free_addresses(dma_dom, dma_addr, pages);
  817. if (amd_iommu_unmap_flush)
  818. iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
  819. }
  820. /*
  821. * The exported map_single function for dma_ops.
  822. */
  823. static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
  824. size_t size, int dir)
  825. {
  826. unsigned long flags;
  827. struct amd_iommu *iommu;
  828. struct protection_domain *domain;
  829. u16 devid;
  830. dma_addr_t addr;
  831. u64 dma_mask;
  832. if (!check_device(dev))
  833. return bad_dma_address;
  834. dma_mask = *dev->dma_mask;
  835. get_device_resources(dev, &iommu, &domain, &devid);
  836. if (iommu == NULL || domain == NULL)
  837. /* device not handled by any AMD IOMMU */
  838. return (dma_addr_t)paddr;
  839. spin_lock_irqsave(&domain->lock, flags);
  840. addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
  841. dma_mask);
  842. if (addr == bad_dma_address)
  843. goto out;
  844. if (unlikely(iommu->need_sync))
  845. iommu_completion_wait(iommu);
  846. out:
  847. spin_unlock_irqrestore(&domain->lock, flags);
  848. return addr;
  849. }
  850. /*
  851. * The exported unmap_single function for dma_ops.
  852. */
  853. static void unmap_single(struct device *dev, dma_addr_t dma_addr,
  854. size_t size, int dir)
  855. {
  856. unsigned long flags;
  857. struct amd_iommu *iommu;
  858. struct protection_domain *domain;
  859. u16 devid;
  860. if (!check_device(dev) ||
  861. !get_device_resources(dev, &iommu, &domain, &devid))
  862. /* device not handled by any AMD IOMMU */
  863. return;
  864. spin_lock_irqsave(&domain->lock, flags);
  865. __unmap_single(iommu, domain->priv, dma_addr, size, dir);
  866. if (unlikely(iommu->need_sync))
  867. iommu_completion_wait(iommu);
  868. spin_unlock_irqrestore(&domain->lock, flags);
  869. }
  870. /*
  871. * This is a special map_sg function which is used if we should map a
  872. * device which is not handled by an AMD IOMMU in the system.
  873. */
  874. static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
  875. int nelems, int dir)
  876. {
  877. struct scatterlist *s;
  878. int i;
  879. for_each_sg(sglist, s, nelems, i) {
  880. s->dma_address = (dma_addr_t)sg_phys(s);
  881. s->dma_length = s->length;
  882. }
  883. return nelems;
  884. }
  885. /*
  886. * The exported map_sg function for dma_ops (handles scatter-gather
  887. * lists).
  888. */
  889. static int map_sg(struct device *dev, struct scatterlist *sglist,
  890. int nelems, int dir)
  891. {
  892. unsigned long flags;
  893. struct amd_iommu *iommu;
  894. struct protection_domain *domain;
  895. u16 devid;
  896. int i;
  897. struct scatterlist *s;
  898. phys_addr_t paddr;
  899. int mapped_elems = 0;
  900. u64 dma_mask;
  901. if (!check_device(dev))
  902. return 0;
  903. dma_mask = *dev->dma_mask;
  904. get_device_resources(dev, &iommu, &domain, &devid);
  905. if (!iommu || !domain)
  906. return map_sg_no_iommu(dev, sglist, nelems, dir);
  907. spin_lock_irqsave(&domain->lock, flags);
  908. for_each_sg(sglist, s, nelems, i) {
  909. paddr = sg_phys(s);
  910. s->dma_address = __map_single(dev, iommu, domain->priv,
  911. paddr, s->length, dir, false,
  912. dma_mask);
  913. if (s->dma_address) {
  914. s->dma_length = s->length;
  915. mapped_elems++;
  916. } else
  917. goto unmap;
  918. }
  919. if (unlikely(iommu->need_sync))
  920. iommu_completion_wait(iommu);
  921. out:
  922. spin_unlock_irqrestore(&domain->lock, flags);
  923. return mapped_elems;
  924. unmap:
  925. for_each_sg(sglist, s, mapped_elems, i) {
  926. if (s->dma_address)
  927. __unmap_single(iommu, domain->priv, s->dma_address,
  928. s->dma_length, dir);
  929. s->dma_address = s->dma_length = 0;
  930. }
  931. mapped_elems = 0;
  932. goto out;
  933. }
  934. /*
  935. * The exported map_sg function for dma_ops (handles scatter-gather
  936. * lists).
  937. */
  938. static void unmap_sg(struct device *dev, struct scatterlist *sglist,
  939. int nelems, int dir)
  940. {
  941. unsigned long flags;
  942. struct amd_iommu *iommu;
  943. struct protection_domain *domain;
  944. struct scatterlist *s;
  945. u16 devid;
  946. int i;
  947. if (!check_device(dev) ||
  948. !get_device_resources(dev, &iommu, &domain, &devid))
  949. return;
  950. spin_lock_irqsave(&domain->lock, flags);
  951. for_each_sg(sglist, s, nelems, i) {
  952. __unmap_single(iommu, domain->priv, s->dma_address,
  953. s->dma_length, dir);
  954. s->dma_address = s->dma_length = 0;
  955. }
  956. if (unlikely(iommu->need_sync))
  957. iommu_completion_wait(iommu);
  958. spin_unlock_irqrestore(&domain->lock, flags);
  959. }
  960. /*
  961. * The exported alloc_coherent function for dma_ops.
  962. */
  963. static void *alloc_coherent(struct device *dev, size_t size,
  964. dma_addr_t *dma_addr, gfp_t flag)
  965. {
  966. unsigned long flags;
  967. void *virt_addr;
  968. struct amd_iommu *iommu;
  969. struct protection_domain *domain;
  970. u16 devid;
  971. phys_addr_t paddr;
  972. u64 dma_mask = dev->coherent_dma_mask;
  973. if (!check_device(dev))
  974. return NULL;
  975. if (!get_device_resources(dev, &iommu, &domain, &devid))
  976. flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
  977. flag |= __GFP_ZERO;
  978. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  979. if (!virt_addr)
  980. return 0;
  981. paddr = virt_to_phys(virt_addr);
  982. if (!iommu || !domain) {
  983. *dma_addr = (dma_addr_t)paddr;
  984. return virt_addr;
  985. }
  986. if (!dma_mask)
  987. dma_mask = *dev->dma_mask;
  988. spin_lock_irqsave(&domain->lock, flags);
  989. *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
  990. size, DMA_BIDIRECTIONAL, true, dma_mask);
  991. if (*dma_addr == bad_dma_address) {
  992. free_pages((unsigned long)virt_addr, get_order(size));
  993. virt_addr = NULL;
  994. goto out;
  995. }
  996. if (unlikely(iommu->need_sync))
  997. iommu_completion_wait(iommu);
  998. out:
  999. spin_unlock_irqrestore(&domain->lock, flags);
  1000. return virt_addr;
  1001. }
  1002. /*
  1003. * The exported free_coherent function for dma_ops.
  1004. */
  1005. static void free_coherent(struct device *dev, size_t size,
  1006. void *virt_addr, dma_addr_t dma_addr)
  1007. {
  1008. unsigned long flags;
  1009. struct amd_iommu *iommu;
  1010. struct protection_domain *domain;
  1011. u16 devid;
  1012. if (!check_device(dev))
  1013. return;
  1014. get_device_resources(dev, &iommu, &domain, &devid);
  1015. if (!iommu || !domain)
  1016. goto free_mem;
  1017. spin_lock_irqsave(&domain->lock, flags);
  1018. __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
  1019. if (unlikely(iommu->need_sync))
  1020. iommu_completion_wait(iommu);
  1021. spin_unlock_irqrestore(&domain->lock, flags);
  1022. free_mem:
  1023. free_pages((unsigned long)virt_addr, get_order(size));
  1024. }
  1025. /*
  1026. * This function is called by the DMA layer to find out if we can handle a
  1027. * particular device. It is part of the dma_ops.
  1028. */
  1029. static int amd_iommu_dma_supported(struct device *dev, u64 mask)
  1030. {
  1031. u16 bdf;
  1032. struct pci_dev *pcidev;
  1033. /* No device or no PCI device */
  1034. if (!dev || dev->bus != &pci_bus_type)
  1035. return 0;
  1036. pcidev = to_pci_dev(dev);
  1037. bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
  1038. /* Out of our scope? */
  1039. if (bdf > amd_iommu_last_bdf)
  1040. return 0;
  1041. return 1;
  1042. }
  1043. /*
  1044. * The function for pre-allocating protection domains.
  1045. *
  1046. * If the driver core informs the DMA layer if a driver grabs a device
  1047. * we don't need to preallocate the protection domains anymore.
  1048. * For now we have to.
  1049. */
  1050. void prealloc_protection_domains(void)
  1051. {
  1052. struct pci_dev *dev = NULL;
  1053. struct dma_ops_domain *dma_dom;
  1054. struct amd_iommu *iommu;
  1055. int order = amd_iommu_aperture_order;
  1056. u16 devid;
  1057. while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
  1058. devid = (dev->bus->number << 8) | dev->devfn;
  1059. if (devid > amd_iommu_last_bdf)
  1060. continue;
  1061. devid = amd_iommu_alias_table[devid];
  1062. if (domain_for_device(devid))
  1063. continue;
  1064. iommu = amd_iommu_rlookup_table[devid];
  1065. if (!iommu)
  1066. continue;
  1067. dma_dom = dma_ops_domain_alloc(iommu, order);
  1068. if (!dma_dom)
  1069. continue;
  1070. init_unity_mappings_for_device(dma_dom, devid);
  1071. dma_dom->target_dev = devid;
  1072. list_add_tail(&dma_dom->list, &iommu_pd_list);
  1073. }
  1074. }
  1075. static struct dma_mapping_ops amd_iommu_dma_ops = {
  1076. .alloc_coherent = alloc_coherent,
  1077. .free_coherent = free_coherent,
  1078. .map_single = map_single,
  1079. .unmap_single = unmap_single,
  1080. .map_sg = map_sg,
  1081. .unmap_sg = unmap_sg,
  1082. .dma_supported = amd_iommu_dma_supported,
  1083. };
  1084. /*
  1085. * The function which clues the AMD IOMMU driver into dma_ops.
  1086. */
  1087. int __init amd_iommu_init_dma_ops(void)
  1088. {
  1089. struct amd_iommu *iommu;
  1090. int order = amd_iommu_aperture_order;
  1091. int ret;
  1092. /*
  1093. * first allocate a default protection domain for every IOMMU we
  1094. * found in the system. Devices not assigned to any other
  1095. * protection domain will be assigned to the default one.
  1096. */
  1097. list_for_each_entry(iommu, &amd_iommu_list, list) {
  1098. iommu->default_dom = dma_ops_domain_alloc(iommu, order);
  1099. if (iommu->default_dom == NULL)
  1100. return -ENOMEM;
  1101. ret = iommu_init_unity_mappings(iommu);
  1102. if (ret)
  1103. goto free_domains;
  1104. }
  1105. /*
  1106. * If device isolation is enabled, pre-allocate the protection
  1107. * domains for each device.
  1108. */
  1109. if (amd_iommu_isolate)
  1110. prealloc_protection_domains();
  1111. iommu_detected = 1;
  1112. force_iommu = 1;
  1113. bad_dma_address = 0;
  1114. #ifdef CONFIG_GART_IOMMU
  1115. gart_iommu_aperture_disabled = 1;
  1116. gart_iommu_aperture = 0;
  1117. #endif
  1118. /* Make the driver finally visible to the drivers */
  1119. dma_ops = &amd_iommu_dma_ops;
  1120. return 0;
  1121. free_domains:
  1122. list_for_each_entry(iommu, &amd_iommu_list, list) {
  1123. if (iommu->default_dom)
  1124. dma_ops_domain_free(iommu->default_dom);
  1125. }
  1126. return ret;
  1127. }