workqueue.c 104 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788
  1. /*
  2. * kernel/workqueue.c - generic async execution with shared worker pool
  3. *
  4. * Copyright (C) 2002 Ingo Molnar
  5. *
  6. * Derived from the taskqueue/keventd code by:
  7. * David Woodhouse <dwmw2@infradead.org>
  8. * Andrew Morton
  9. * Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10. * Theodore Ts'o <tytso@mit.edu>
  11. *
  12. * Made to use alloc_percpu by Christoph Lameter.
  13. *
  14. * Copyright (C) 2010 SUSE Linux Products GmbH
  15. * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
  16. *
  17. * This is the generic async execution mechanism. Work items as are
  18. * executed in process context. The worker pool is shared and
  19. * automatically managed. There is one worker pool for each CPU and
  20. * one extra for works which are better served by workers which are
  21. * not bound to any specific CPU.
  22. *
  23. * Please read Documentation/workqueue.txt for details.
  24. */
  25. #include <linux/export.h>
  26. #include <linux/kernel.h>
  27. #include <linux/sched.h>
  28. #include <linux/init.h>
  29. #include <linux/signal.h>
  30. #include <linux/completion.h>
  31. #include <linux/workqueue.h>
  32. #include <linux/slab.h>
  33. #include <linux/cpu.h>
  34. #include <linux/notifier.h>
  35. #include <linux/kthread.h>
  36. #include <linux/hardirq.h>
  37. #include <linux/mempolicy.h>
  38. #include <linux/freezer.h>
  39. #include <linux/kallsyms.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/lockdep.h>
  42. #include <linux/idr.h>
  43. #include <linux/hashtable.h>
  44. #include "workqueue_internal.h"
  45. enum {
  46. /*
  47. * worker_pool flags
  48. *
  49. * A bound pool is either associated or disassociated with its CPU.
  50. * While associated (!DISASSOCIATED), all workers are bound to the
  51. * CPU and none has %WORKER_UNBOUND set and concurrency management
  52. * is in effect.
  53. *
  54. * While DISASSOCIATED, the cpu may be offline and all workers have
  55. * %WORKER_UNBOUND set and concurrency management disabled, and may
  56. * be executing on any CPU. The pool behaves as an unbound one.
  57. *
  58. * Note that DISASSOCIATED can be flipped only while holding
  59. * assoc_mutex to avoid changing binding state while
  60. * create_worker() is in progress.
  61. */
  62. POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
  63. POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
  64. POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
  65. POOL_FREEZING = 1 << 3, /* freeze in progress */
  66. /* worker flags */
  67. WORKER_STARTED = 1 << 0, /* started */
  68. WORKER_DIE = 1 << 1, /* die die die */
  69. WORKER_IDLE = 1 << 2, /* is idle */
  70. WORKER_PREP = 1 << 3, /* preparing to run works */
  71. WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
  72. WORKER_UNBOUND = 1 << 7, /* worker is unbound */
  73. WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
  74. WORKER_CPU_INTENSIVE,
  75. NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
  76. BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
  77. MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
  78. IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
  79. MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
  80. /* call for help after 10ms
  81. (min two ticks) */
  82. MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
  83. CREATE_COOLDOWN = HZ, /* time to breath after fail */
  84. /*
  85. * Rescue workers are used only on emergencies and shared by
  86. * all cpus. Give -20.
  87. */
  88. RESCUER_NICE_LEVEL = -20,
  89. HIGHPRI_NICE_LEVEL = -20,
  90. };
  91. /*
  92. * Structure fields follow one of the following exclusion rules.
  93. *
  94. * I: Modifiable by initialization/destruction paths and read-only for
  95. * everyone else.
  96. *
  97. * P: Preemption protected. Disabling preemption is enough and should
  98. * only be modified and accessed from the local cpu.
  99. *
  100. * L: pool->lock protected. Access with pool->lock held.
  101. *
  102. * X: During normal operation, modification requires pool->lock and should
  103. * be done only from local cpu. Either disabling preemption on local
  104. * cpu or grabbing pool->lock is enough for read access. If
  105. * POOL_DISASSOCIATED is set, it's identical to L.
  106. *
  107. * F: wq->flush_mutex protected.
  108. *
  109. * W: workqueue_lock protected.
  110. */
  111. /* struct worker is defined in workqueue_internal.h */
  112. struct worker_pool {
  113. spinlock_t lock; /* the pool lock */
  114. unsigned int cpu; /* I: the associated cpu */
  115. int id; /* I: pool ID */
  116. unsigned int flags; /* X: flags */
  117. struct list_head worklist; /* L: list of pending works */
  118. int nr_workers; /* L: total number of workers */
  119. /* nr_idle includes the ones off idle_list for rebinding */
  120. int nr_idle; /* L: currently idle ones */
  121. struct list_head idle_list; /* X: list of idle workers */
  122. struct timer_list idle_timer; /* L: worker idle timeout */
  123. struct timer_list mayday_timer; /* L: SOS timer for workers */
  124. /* workers are chained either in busy_hash or idle_list */
  125. DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
  126. /* L: hash of busy workers */
  127. struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
  128. struct ida worker_ida; /* L: for worker IDs */
  129. /*
  130. * The current concurrency level. As it's likely to be accessed
  131. * from other CPUs during try_to_wake_up(), put it in a separate
  132. * cacheline.
  133. */
  134. atomic_t nr_running ____cacheline_aligned_in_smp;
  135. } ____cacheline_aligned_in_smp;
  136. /*
  137. * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
  138. * of work_struct->data are used for flags and the remaining high bits
  139. * point to the pwq; thus, pwqs need to be aligned at two's power of the
  140. * number of flag bits.
  141. */
  142. struct pool_workqueue {
  143. struct worker_pool *pool; /* I: the associated pool */
  144. struct workqueue_struct *wq; /* I: the owning workqueue */
  145. int work_color; /* L: current color */
  146. int flush_color; /* L: flushing color */
  147. int nr_in_flight[WORK_NR_COLORS];
  148. /* L: nr of in_flight works */
  149. int nr_active; /* L: nr of active works */
  150. int max_active; /* L: max active works */
  151. struct list_head delayed_works; /* L: delayed works */
  152. };
  153. /*
  154. * Structure used to wait for workqueue flush.
  155. */
  156. struct wq_flusher {
  157. struct list_head list; /* F: list of flushers */
  158. int flush_color; /* F: flush color waiting for */
  159. struct completion done; /* flush completion */
  160. };
  161. /*
  162. * All cpumasks are assumed to be always set on UP and thus can't be
  163. * used to determine whether there's something to be done.
  164. */
  165. #ifdef CONFIG_SMP
  166. typedef cpumask_var_t mayday_mask_t;
  167. #define mayday_test_and_set_cpu(cpu, mask) \
  168. cpumask_test_and_set_cpu((cpu), (mask))
  169. #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
  170. #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
  171. #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
  172. #define free_mayday_mask(mask) free_cpumask_var((mask))
  173. #else
  174. typedef unsigned long mayday_mask_t;
  175. #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
  176. #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
  177. #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
  178. #define alloc_mayday_mask(maskp, gfp) true
  179. #define free_mayday_mask(mask) do { } while (0)
  180. #endif
  181. /*
  182. * The externally visible workqueue abstraction is an array of
  183. * per-CPU workqueues:
  184. */
  185. struct workqueue_struct {
  186. unsigned int flags; /* W: WQ_* flags */
  187. union {
  188. struct pool_workqueue __percpu *pcpu;
  189. struct pool_workqueue *single;
  190. unsigned long v;
  191. } pool_wq; /* I: pwq's */
  192. struct list_head list; /* W: list of all workqueues */
  193. struct mutex flush_mutex; /* protects wq flushing */
  194. int work_color; /* F: current work color */
  195. int flush_color; /* F: current flush color */
  196. atomic_t nr_pwqs_to_flush; /* flush in progress */
  197. struct wq_flusher *first_flusher; /* F: first flusher */
  198. struct list_head flusher_queue; /* F: flush waiters */
  199. struct list_head flusher_overflow; /* F: flush overflow list */
  200. mayday_mask_t mayday_mask; /* cpus requesting rescue */
  201. struct worker *rescuer; /* I: rescue worker */
  202. int nr_drainers; /* W: drain in progress */
  203. int saved_max_active; /* W: saved pwq max_active */
  204. #ifdef CONFIG_LOCKDEP
  205. struct lockdep_map lockdep_map;
  206. #endif
  207. char name[]; /* I: workqueue name */
  208. };
  209. struct workqueue_struct *system_wq __read_mostly;
  210. EXPORT_SYMBOL_GPL(system_wq);
  211. struct workqueue_struct *system_highpri_wq __read_mostly;
  212. EXPORT_SYMBOL_GPL(system_highpri_wq);
  213. struct workqueue_struct *system_long_wq __read_mostly;
  214. EXPORT_SYMBOL_GPL(system_long_wq);
  215. struct workqueue_struct *system_unbound_wq __read_mostly;
  216. EXPORT_SYMBOL_GPL(system_unbound_wq);
  217. struct workqueue_struct *system_freezable_wq __read_mostly;
  218. EXPORT_SYMBOL_GPL(system_freezable_wq);
  219. #define CREATE_TRACE_POINTS
  220. #include <trace/events/workqueue.h>
  221. #define for_each_std_worker_pool(pool, cpu) \
  222. for ((pool) = &std_worker_pools(cpu)[0]; \
  223. (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
  224. #define for_each_busy_worker(worker, i, pool) \
  225. hash_for_each(pool->busy_hash, i, worker, hentry)
  226. static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
  227. unsigned int sw)
  228. {
  229. if (cpu < nr_cpu_ids) {
  230. if (sw & 1) {
  231. cpu = cpumask_next(cpu, mask);
  232. if (cpu < nr_cpu_ids)
  233. return cpu;
  234. }
  235. if (sw & 2)
  236. return WORK_CPU_UNBOUND;
  237. }
  238. return WORK_CPU_END;
  239. }
  240. static inline int __next_pwq_cpu(int cpu, const struct cpumask *mask,
  241. struct workqueue_struct *wq)
  242. {
  243. return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
  244. }
  245. /*
  246. * CPU iterators
  247. *
  248. * An extra cpu number is defined using an invalid cpu number
  249. * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
  250. * specific CPU. The following iterators are similar to for_each_*_cpu()
  251. * iterators but also considers the unbound CPU.
  252. *
  253. * for_each_wq_cpu() : possible CPUs + WORK_CPU_UNBOUND
  254. * for_each_online_wq_cpu() : online CPUs + WORK_CPU_UNBOUND
  255. * for_each_pwq_cpu() : possible CPUs for bound workqueues,
  256. * WORK_CPU_UNBOUND for unbound workqueues
  257. */
  258. #define for_each_wq_cpu(cpu) \
  259. for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3); \
  260. (cpu) < WORK_CPU_END; \
  261. (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
  262. #define for_each_online_wq_cpu(cpu) \
  263. for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3); \
  264. (cpu) < WORK_CPU_END; \
  265. (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
  266. #define for_each_pwq_cpu(cpu, wq) \
  267. for ((cpu) = __next_pwq_cpu(-1, cpu_possible_mask, (wq)); \
  268. (cpu) < WORK_CPU_END; \
  269. (cpu) = __next_pwq_cpu((cpu), cpu_possible_mask, (wq)))
  270. #ifdef CONFIG_DEBUG_OBJECTS_WORK
  271. static struct debug_obj_descr work_debug_descr;
  272. static void *work_debug_hint(void *addr)
  273. {
  274. return ((struct work_struct *) addr)->func;
  275. }
  276. /*
  277. * fixup_init is called when:
  278. * - an active object is initialized
  279. */
  280. static int work_fixup_init(void *addr, enum debug_obj_state state)
  281. {
  282. struct work_struct *work = addr;
  283. switch (state) {
  284. case ODEBUG_STATE_ACTIVE:
  285. cancel_work_sync(work);
  286. debug_object_init(work, &work_debug_descr);
  287. return 1;
  288. default:
  289. return 0;
  290. }
  291. }
  292. /*
  293. * fixup_activate is called when:
  294. * - an active object is activated
  295. * - an unknown object is activated (might be a statically initialized object)
  296. */
  297. static int work_fixup_activate(void *addr, enum debug_obj_state state)
  298. {
  299. struct work_struct *work = addr;
  300. switch (state) {
  301. case ODEBUG_STATE_NOTAVAILABLE:
  302. /*
  303. * This is not really a fixup. The work struct was
  304. * statically initialized. We just make sure that it
  305. * is tracked in the object tracker.
  306. */
  307. if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
  308. debug_object_init(work, &work_debug_descr);
  309. debug_object_activate(work, &work_debug_descr);
  310. return 0;
  311. }
  312. WARN_ON_ONCE(1);
  313. return 0;
  314. case ODEBUG_STATE_ACTIVE:
  315. WARN_ON(1);
  316. default:
  317. return 0;
  318. }
  319. }
  320. /*
  321. * fixup_free is called when:
  322. * - an active object is freed
  323. */
  324. static int work_fixup_free(void *addr, enum debug_obj_state state)
  325. {
  326. struct work_struct *work = addr;
  327. switch (state) {
  328. case ODEBUG_STATE_ACTIVE:
  329. cancel_work_sync(work);
  330. debug_object_free(work, &work_debug_descr);
  331. return 1;
  332. default:
  333. return 0;
  334. }
  335. }
  336. static struct debug_obj_descr work_debug_descr = {
  337. .name = "work_struct",
  338. .debug_hint = work_debug_hint,
  339. .fixup_init = work_fixup_init,
  340. .fixup_activate = work_fixup_activate,
  341. .fixup_free = work_fixup_free,
  342. };
  343. static inline void debug_work_activate(struct work_struct *work)
  344. {
  345. debug_object_activate(work, &work_debug_descr);
  346. }
  347. static inline void debug_work_deactivate(struct work_struct *work)
  348. {
  349. debug_object_deactivate(work, &work_debug_descr);
  350. }
  351. void __init_work(struct work_struct *work, int onstack)
  352. {
  353. if (onstack)
  354. debug_object_init_on_stack(work, &work_debug_descr);
  355. else
  356. debug_object_init(work, &work_debug_descr);
  357. }
  358. EXPORT_SYMBOL_GPL(__init_work);
  359. void destroy_work_on_stack(struct work_struct *work)
  360. {
  361. debug_object_free(work, &work_debug_descr);
  362. }
  363. EXPORT_SYMBOL_GPL(destroy_work_on_stack);
  364. #else
  365. static inline void debug_work_activate(struct work_struct *work) { }
  366. static inline void debug_work_deactivate(struct work_struct *work) { }
  367. #endif
  368. /* Serializes the accesses to the list of workqueues. */
  369. static DEFINE_SPINLOCK(workqueue_lock);
  370. static LIST_HEAD(workqueues);
  371. static bool workqueue_freezing; /* W: have wqs started freezing? */
  372. /*
  373. * The CPU and unbound standard worker pools. The unbound ones have
  374. * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
  375. */
  376. static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
  377. cpu_std_worker_pools);
  378. static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
  379. /* idr of all pools */
  380. static DEFINE_MUTEX(worker_pool_idr_mutex);
  381. static DEFINE_IDR(worker_pool_idr);
  382. static int worker_thread(void *__worker);
  383. static struct worker_pool *std_worker_pools(int cpu)
  384. {
  385. if (cpu != WORK_CPU_UNBOUND)
  386. return per_cpu(cpu_std_worker_pools, cpu);
  387. else
  388. return unbound_std_worker_pools;
  389. }
  390. static int std_worker_pool_pri(struct worker_pool *pool)
  391. {
  392. return pool - std_worker_pools(pool->cpu);
  393. }
  394. /* allocate ID and assign it to @pool */
  395. static int worker_pool_assign_id(struct worker_pool *pool)
  396. {
  397. int ret;
  398. mutex_lock(&worker_pool_idr_mutex);
  399. idr_pre_get(&worker_pool_idr, GFP_KERNEL);
  400. ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
  401. mutex_unlock(&worker_pool_idr_mutex);
  402. return ret;
  403. }
  404. /*
  405. * Lookup worker_pool by id. The idr currently is built during boot and
  406. * never modified. Don't worry about locking for now.
  407. */
  408. static struct worker_pool *worker_pool_by_id(int pool_id)
  409. {
  410. return idr_find(&worker_pool_idr, pool_id);
  411. }
  412. static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
  413. {
  414. struct worker_pool *pools = std_worker_pools(cpu);
  415. return &pools[highpri];
  416. }
  417. static struct pool_workqueue *get_pwq(unsigned int cpu,
  418. struct workqueue_struct *wq)
  419. {
  420. if (!(wq->flags & WQ_UNBOUND)) {
  421. if (likely(cpu < nr_cpu_ids))
  422. return per_cpu_ptr(wq->pool_wq.pcpu, cpu);
  423. } else if (likely(cpu == WORK_CPU_UNBOUND))
  424. return wq->pool_wq.single;
  425. return NULL;
  426. }
  427. static unsigned int work_color_to_flags(int color)
  428. {
  429. return color << WORK_STRUCT_COLOR_SHIFT;
  430. }
  431. static int get_work_color(struct work_struct *work)
  432. {
  433. return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
  434. ((1 << WORK_STRUCT_COLOR_BITS) - 1);
  435. }
  436. static int work_next_color(int color)
  437. {
  438. return (color + 1) % WORK_NR_COLORS;
  439. }
  440. /*
  441. * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
  442. * contain the pointer to the queued pwq. Once execution starts, the flag
  443. * is cleared and the high bits contain OFFQ flags and pool ID.
  444. *
  445. * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
  446. * and clear_work_data() can be used to set the pwq, pool or clear
  447. * work->data. These functions should only be called while the work is
  448. * owned - ie. while the PENDING bit is set.
  449. *
  450. * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
  451. * corresponding to a work. Pool is available once the work has been
  452. * queued anywhere after initialization until it is sync canceled. pwq is
  453. * available only while the work item is queued.
  454. *
  455. * %WORK_OFFQ_CANCELING is used to mark a work item which is being
  456. * canceled. While being canceled, a work item may have its PENDING set
  457. * but stay off timer and worklist for arbitrarily long and nobody should
  458. * try to steal the PENDING bit.
  459. */
  460. static inline void set_work_data(struct work_struct *work, unsigned long data,
  461. unsigned long flags)
  462. {
  463. BUG_ON(!work_pending(work));
  464. atomic_long_set(&work->data, data | flags | work_static(work));
  465. }
  466. static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
  467. unsigned long extra_flags)
  468. {
  469. set_work_data(work, (unsigned long)pwq,
  470. WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
  471. }
  472. static void set_work_pool_and_keep_pending(struct work_struct *work,
  473. int pool_id)
  474. {
  475. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
  476. WORK_STRUCT_PENDING);
  477. }
  478. static void set_work_pool_and_clear_pending(struct work_struct *work,
  479. int pool_id)
  480. {
  481. /*
  482. * The following wmb is paired with the implied mb in
  483. * test_and_set_bit(PENDING) and ensures all updates to @work made
  484. * here are visible to and precede any updates by the next PENDING
  485. * owner.
  486. */
  487. smp_wmb();
  488. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
  489. }
  490. static void clear_work_data(struct work_struct *work)
  491. {
  492. smp_wmb(); /* see set_work_pool_and_clear_pending() */
  493. set_work_data(work, WORK_STRUCT_NO_POOL, 0);
  494. }
  495. static struct pool_workqueue *get_work_pwq(struct work_struct *work)
  496. {
  497. unsigned long data = atomic_long_read(&work->data);
  498. if (data & WORK_STRUCT_PWQ)
  499. return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
  500. else
  501. return NULL;
  502. }
  503. /**
  504. * get_work_pool - return the worker_pool a given work was associated with
  505. * @work: the work item of interest
  506. *
  507. * Return the worker_pool @work was last associated with. %NULL if none.
  508. */
  509. static struct worker_pool *get_work_pool(struct work_struct *work)
  510. {
  511. unsigned long data = atomic_long_read(&work->data);
  512. struct worker_pool *pool;
  513. int pool_id;
  514. if (data & WORK_STRUCT_PWQ)
  515. return ((struct pool_workqueue *)
  516. (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
  517. pool_id = data >> WORK_OFFQ_POOL_SHIFT;
  518. if (pool_id == WORK_OFFQ_POOL_NONE)
  519. return NULL;
  520. pool = worker_pool_by_id(pool_id);
  521. WARN_ON_ONCE(!pool);
  522. return pool;
  523. }
  524. /**
  525. * get_work_pool_id - return the worker pool ID a given work is associated with
  526. * @work: the work item of interest
  527. *
  528. * Return the worker_pool ID @work was last associated with.
  529. * %WORK_OFFQ_POOL_NONE if none.
  530. */
  531. static int get_work_pool_id(struct work_struct *work)
  532. {
  533. unsigned long data = atomic_long_read(&work->data);
  534. if (data & WORK_STRUCT_PWQ)
  535. return ((struct pool_workqueue *)
  536. (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
  537. return data >> WORK_OFFQ_POOL_SHIFT;
  538. }
  539. static void mark_work_canceling(struct work_struct *work)
  540. {
  541. unsigned long pool_id = get_work_pool_id(work);
  542. pool_id <<= WORK_OFFQ_POOL_SHIFT;
  543. set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
  544. }
  545. static bool work_is_canceling(struct work_struct *work)
  546. {
  547. unsigned long data = atomic_long_read(&work->data);
  548. return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
  549. }
  550. /*
  551. * Policy functions. These define the policies on how the global worker
  552. * pools are managed. Unless noted otherwise, these functions assume that
  553. * they're being called with pool->lock held.
  554. */
  555. static bool __need_more_worker(struct worker_pool *pool)
  556. {
  557. return !atomic_read(&pool->nr_running);
  558. }
  559. /*
  560. * Need to wake up a worker? Called from anything but currently
  561. * running workers.
  562. *
  563. * Note that, because unbound workers never contribute to nr_running, this
  564. * function will always return %true for unbound pools as long as the
  565. * worklist isn't empty.
  566. */
  567. static bool need_more_worker(struct worker_pool *pool)
  568. {
  569. return !list_empty(&pool->worklist) && __need_more_worker(pool);
  570. }
  571. /* Can I start working? Called from busy but !running workers. */
  572. static bool may_start_working(struct worker_pool *pool)
  573. {
  574. return pool->nr_idle;
  575. }
  576. /* Do I need to keep working? Called from currently running workers. */
  577. static bool keep_working(struct worker_pool *pool)
  578. {
  579. return !list_empty(&pool->worklist) &&
  580. atomic_read(&pool->nr_running) <= 1;
  581. }
  582. /* Do we need a new worker? Called from manager. */
  583. static bool need_to_create_worker(struct worker_pool *pool)
  584. {
  585. return need_more_worker(pool) && !may_start_working(pool);
  586. }
  587. /* Do I need to be the manager? */
  588. static bool need_to_manage_workers(struct worker_pool *pool)
  589. {
  590. return need_to_create_worker(pool) ||
  591. (pool->flags & POOL_MANAGE_WORKERS);
  592. }
  593. /* Do we have too many workers and should some go away? */
  594. static bool too_many_workers(struct worker_pool *pool)
  595. {
  596. bool managing = pool->flags & POOL_MANAGING_WORKERS;
  597. int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
  598. int nr_busy = pool->nr_workers - nr_idle;
  599. /*
  600. * nr_idle and idle_list may disagree if idle rebinding is in
  601. * progress. Never return %true if idle_list is empty.
  602. */
  603. if (list_empty(&pool->idle_list))
  604. return false;
  605. return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
  606. }
  607. /*
  608. * Wake up functions.
  609. */
  610. /* Return the first worker. Safe with preemption disabled */
  611. static struct worker *first_worker(struct worker_pool *pool)
  612. {
  613. if (unlikely(list_empty(&pool->idle_list)))
  614. return NULL;
  615. return list_first_entry(&pool->idle_list, struct worker, entry);
  616. }
  617. /**
  618. * wake_up_worker - wake up an idle worker
  619. * @pool: worker pool to wake worker from
  620. *
  621. * Wake up the first idle worker of @pool.
  622. *
  623. * CONTEXT:
  624. * spin_lock_irq(pool->lock).
  625. */
  626. static void wake_up_worker(struct worker_pool *pool)
  627. {
  628. struct worker *worker = first_worker(pool);
  629. if (likely(worker))
  630. wake_up_process(worker->task);
  631. }
  632. /**
  633. * wq_worker_waking_up - a worker is waking up
  634. * @task: task waking up
  635. * @cpu: CPU @task is waking up to
  636. *
  637. * This function is called during try_to_wake_up() when a worker is
  638. * being awoken.
  639. *
  640. * CONTEXT:
  641. * spin_lock_irq(rq->lock)
  642. */
  643. void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
  644. {
  645. struct worker *worker = kthread_data(task);
  646. if (!(worker->flags & WORKER_NOT_RUNNING)) {
  647. WARN_ON_ONCE(worker->pool->cpu != cpu);
  648. atomic_inc(&worker->pool->nr_running);
  649. }
  650. }
  651. /**
  652. * wq_worker_sleeping - a worker is going to sleep
  653. * @task: task going to sleep
  654. * @cpu: CPU in question, must be the current CPU number
  655. *
  656. * This function is called during schedule() when a busy worker is
  657. * going to sleep. Worker on the same cpu can be woken up by
  658. * returning pointer to its task.
  659. *
  660. * CONTEXT:
  661. * spin_lock_irq(rq->lock)
  662. *
  663. * RETURNS:
  664. * Worker task on @cpu to wake up, %NULL if none.
  665. */
  666. struct task_struct *wq_worker_sleeping(struct task_struct *task,
  667. unsigned int cpu)
  668. {
  669. struct worker *worker = kthread_data(task), *to_wakeup = NULL;
  670. struct worker_pool *pool;
  671. /*
  672. * Rescuers, which may not have all the fields set up like normal
  673. * workers, also reach here, let's not access anything before
  674. * checking NOT_RUNNING.
  675. */
  676. if (worker->flags & WORKER_NOT_RUNNING)
  677. return NULL;
  678. pool = worker->pool;
  679. /* this can only happen on the local cpu */
  680. BUG_ON(cpu != raw_smp_processor_id());
  681. /*
  682. * The counterpart of the following dec_and_test, implied mb,
  683. * worklist not empty test sequence is in insert_work().
  684. * Please read comment there.
  685. *
  686. * NOT_RUNNING is clear. This means that we're bound to and
  687. * running on the local cpu w/ rq lock held and preemption
  688. * disabled, which in turn means that none else could be
  689. * manipulating idle_list, so dereferencing idle_list without pool
  690. * lock is safe.
  691. */
  692. if (atomic_dec_and_test(&pool->nr_running) &&
  693. !list_empty(&pool->worklist))
  694. to_wakeup = first_worker(pool);
  695. return to_wakeup ? to_wakeup->task : NULL;
  696. }
  697. /**
  698. * worker_set_flags - set worker flags and adjust nr_running accordingly
  699. * @worker: self
  700. * @flags: flags to set
  701. * @wakeup: wakeup an idle worker if necessary
  702. *
  703. * Set @flags in @worker->flags and adjust nr_running accordingly. If
  704. * nr_running becomes zero and @wakeup is %true, an idle worker is
  705. * woken up.
  706. *
  707. * CONTEXT:
  708. * spin_lock_irq(pool->lock)
  709. */
  710. static inline void worker_set_flags(struct worker *worker, unsigned int flags,
  711. bool wakeup)
  712. {
  713. struct worker_pool *pool = worker->pool;
  714. WARN_ON_ONCE(worker->task != current);
  715. /*
  716. * If transitioning into NOT_RUNNING, adjust nr_running and
  717. * wake up an idle worker as necessary if requested by
  718. * @wakeup.
  719. */
  720. if ((flags & WORKER_NOT_RUNNING) &&
  721. !(worker->flags & WORKER_NOT_RUNNING)) {
  722. if (wakeup) {
  723. if (atomic_dec_and_test(&pool->nr_running) &&
  724. !list_empty(&pool->worklist))
  725. wake_up_worker(pool);
  726. } else
  727. atomic_dec(&pool->nr_running);
  728. }
  729. worker->flags |= flags;
  730. }
  731. /**
  732. * worker_clr_flags - clear worker flags and adjust nr_running accordingly
  733. * @worker: self
  734. * @flags: flags to clear
  735. *
  736. * Clear @flags in @worker->flags and adjust nr_running accordingly.
  737. *
  738. * CONTEXT:
  739. * spin_lock_irq(pool->lock)
  740. */
  741. static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
  742. {
  743. struct worker_pool *pool = worker->pool;
  744. unsigned int oflags = worker->flags;
  745. WARN_ON_ONCE(worker->task != current);
  746. worker->flags &= ~flags;
  747. /*
  748. * If transitioning out of NOT_RUNNING, increment nr_running. Note
  749. * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
  750. * of multiple flags, not a single flag.
  751. */
  752. if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
  753. if (!(worker->flags & WORKER_NOT_RUNNING))
  754. atomic_inc(&pool->nr_running);
  755. }
  756. /**
  757. * find_worker_executing_work - find worker which is executing a work
  758. * @pool: pool of interest
  759. * @work: work to find worker for
  760. *
  761. * Find a worker which is executing @work on @pool by searching
  762. * @pool->busy_hash which is keyed by the address of @work. For a worker
  763. * to match, its current execution should match the address of @work and
  764. * its work function. This is to avoid unwanted dependency between
  765. * unrelated work executions through a work item being recycled while still
  766. * being executed.
  767. *
  768. * This is a bit tricky. A work item may be freed once its execution
  769. * starts and nothing prevents the freed area from being recycled for
  770. * another work item. If the same work item address ends up being reused
  771. * before the original execution finishes, workqueue will identify the
  772. * recycled work item as currently executing and make it wait until the
  773. * current execution finishes, introducing an unwanted dependency.
  774. *
  775. * This function checks the work item address, work function and workqueue
  776. * to avoid false positives. Note that this isn't complete as one may
  777. * construct a work function which can introduce dependency onto itself
  778. * through a recycled work item. Well, if somebody wants to shoot oneself
  779. * in the foot that badly, there's only so much we can do, and if such
  780. * deadlock actually occurs, it should be easy to locate the culprit work
  781. * function.
  782. *
  783. * CONTEXT:
  784. * spin_lock_irq(pool->lock).
  785. *
  786. * RETURNS:
  787. * Pointer to worker which is executing @work if found, NULL
  788. * otherwise.
  789. */
  790. static struct worker *find_worker_executing_work(struct worker_pool *pool,
  791. struct work_struct *work)
  792. {
  793. struct worker *worker;
  794. hash_for_each_possible(pool->busy_hash, worker, hentry,
  795. (unsigned long)work)
  796. if (worker->current_work == work &&
  797. worker->current_func == work->func)
  798. return worker;
  799. return NULL;
  800. }
  801. /**
  802. * move_linked_works - move linked works to a list
  803. * @work: start of series of works to be scheduled
  804. * @head: target list to append @work to
  805. * @nextp: out paramter for nested worklist walking
  806. *
  807. * Schedule linked works starting from @work to @head. Work series to
  808. * be scheduled starts at @work and includes any consecutive work with
  809. * WORK_STRUCT_LINKED set in its predecessor.
  810. *
  811. * If @nextp is not NULL, it's updated to point to the next work of
  812. * the last scheduled work. This allows move_linked_works() to be
  813. * nested inside outer list_for_each_entry_safe().
  814. *
  815. * CONTEXT:
  816. * spin_lock_irq(pool->lock).
  817. */
  818. static void move_linked_works(struct work_struct *work, struct list_head *head,
  819. struct work_struct **nextp)
  820. {
  821. struct work_struct *n;
  822. /*
  823. * Linked worklist will always end before the end of the list,
  824. * use NULL for list head.
  825. */
  826. list_for_each_entry_safe_from(work, n, NULL, entry) {
  827. list_move_tail(&work->entry, head);
  828. if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
  829. break;
  830. }
  831. /*
  832. * If we're already inside safe list traversal and have moved
  833. * multiple works to the scheduled queue, the next position
  834. * needs to be updated.
  835. */
  836. if (nextp)
  837. *nextp = n;
  838. }
  839. static void pwq_activate_delayed_work(struct work_struct *work)
  840. {
  841. struct pool_workqueue *pwq = get_work_pwq(work);
  842. trace_workqueue_activate_work(work);
  843. move_linked_works(work, &pwq->pool->worklist, NULL);
  844. __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
  845. pwq->nr_active++;
  846. }
  847. static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
  848. {
  849. struct work_struct *work = list_first_entry(&pwq->delayed_works,
  850. struct work_struct, entry);
  851. pwq_activate_delayed_work(work);
  852. }
  853. /**
  854. * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
  855. * @pwq: pwq of interest
  856. * @color: color of work which left the queue
  857. *
  858. * A work either has completed or is removed from pending queue,
  859. * decrement nr_in_flight of its pwq and handle workqueue flushing.
  860. *
  861. * CONTEXT:
  862. * spin_lock_irq(pool->lock).
  863. */
  864. static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
  865. {
  866. /* ignore uncolored works */
  867. if (color == WORK_NO_COLOR)
  868. return;
  869. pwq->nr_in_flight[color]--;
  870. pwq->nr_active--;
  871. if (!list_empty(&pwq->delayed_works)) {
  872. /* one down, submit a delayed one */
  873. if (pwq->nr_active < pwq->max_active)
  874. pwq_activate_first_delayed(pwq);
  875. }
  876. /* is flush in progress and are we at the flushing tip? */
  877. if (likely(pwq->flush_color != color))
  878. return;
  879. /* are there still in-flight works? */
  880. if (pwq->nr_in_flight[color])
  881. return;
  882. /* this pwq is done, clear flush_color */
  883. pwq->flush_color = -1;
  884. /*
  885. * If this was the last pwq, wake up the first flusher. It
  886. * will handle the rest.
  887. */
  888. if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
  889. complete(&pwq->wq->first_flusher->done);
  890. }
  891. /**
  892. * try_to_grab_pending - steal work item from worklist and disable irq
  893. * @work: work item to steal
  894. * @is_dwork: @work is a delayed_work
  895. * @flags: place to store irq state
  896. *
  897. * Try to grab PENDING bit of @work. This function can handle @work in any
  898. * stable state - idle, on timer or on worklist. Return values are
  899. *
  900. * 1 if @work was pending and we successfully stole PENDING
  901. * 0 if @work was idle and we claimed PENDING
  902. * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
  903. * -ENOENT if someone else is canceling @work, this state may persist
  904. * for arbitrarily long
  905. *
  906. * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
  907. * interrupted while holding PENDING and @work off queue, irq must be
  908. * disabled on entry. This, combined with delayed_work->timer being
  909. * irqsafe, ensures that we return -EAGAIN for finite short period of time.
  910. *
  911. * On successful return, >= 0, irq is disabled and the caller is
  912. * responsible for releasing it using local_irq_restore(*@flags).
  913. *
  914. * This function is safe to call from any context including IRQ handler.
  915. */
  916. static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
  917. unsigned long *flags)
  918. {
  919. struct worker_pool *pool;
  920. struct pool_workqueue *pwq;
  921. local_irq_save(*flags);
  922. /* try to steal the timer if it exists */
  923. if (is_dwork) {
  924. struct delayed_work *dwork = to_delayed_work(work);
  925. /*
  926. * dwork->timer is irqsafe. If del_timer() fails, it's
  927. * guaranteed that the timer is not queued anywhere and not
  928. * running on the local CPU.
  929. */
  930. if (likely(del_timer(&dwork->timer)))
  931. return 1;
  932. }
  933. /* try to claim PENDING the normal way */
  934. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
  935. return 0;
  936. /*
  937. * The queueing is in progress, or it is already queued. Try to
  938. * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
  939. */
  940. pool = get_work_pool(work);
  941. if (!pool)
  942. goto fail;
  943. spin_lock(&pool->lock);
  944. /*
  945. * work->data is guaranteed to point to pwq only while the work
  946. * item is queued on pwq->wq, and both updating work->data to point
  947. * to pwq on queueing and to pool on dequeueing are done under
  948. * pwq->pool->lock. This in turn guarantees that, if work->data
  949. * points to pwq which is associated with a locked pool, the work
  950. * item is currently queued on that pool.
  951. */
  952. pwq = get_work_pwq(work);
  953. if (pwq && pwq->pool == pool) {
  954. debug_work_deactivate(work);
  955. /*
  956. * A delayed work item cannot be grabbed directly because
  957. * it might have linked NO_COLOR work items which, if left
  958. * on the delayed_list, will confuse pwq->nr_active
  959. * management later on and cause stall. Make sure the work
  960. * item is activated before grabbing.
  961. */
  962. if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
  963. pwq_activate_delayed_work(work);
  964. list_del_init(&work->entry);
  965. pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
  966. /* work->data points to pwq iff queued, point to pool */
  967. set_work_pool_and_keep_pending(work, pool->id);
  968. spin_unlock(&pool->lock);
  969. return 1;
  970. }
  971. spin_unlock(&pool->lock);
  972. fail:
  973. local_irq_restore(*flags);
  974. if (work_is_canceling(work))
  975. return -ENOENT;
  976. cpu_relax();
  977. return -EAGAIN;
  978. }
  979. /**
  980. * insert_work - insert a work into a pool
  981. * @pwq: pwq @work belongs to
  982. * @work: work to insert
  983. * @head: insertion point
  984. * @extra_flags: extra WORK_STRUCT_* flags to set
  985. *
  986. * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
  987. * work_struct flags.
  988. *
  989. * CONTEXT:
  990. * spin_lock_irq(pool->lock).
  991. */
  992. static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
  993. struct list_head *head, unsigned int extra_flags)
  994. {
  995. struct worker_pool *pool = pwq->pool;
  996. /* we own @work, set data and link */
  997. set_work_pwq(work, pwq, extra_flags);
  998. list_add_tail(&work->entry, head);
  999. /*
  1000. * Ensure either worker_sched_deactivated() sees the above
  1001. * list_add_tail() or we see zero nr_running to avoid workers
  1002. * lying around lazily while there are works to be processed.
  1003. */
  1004. smp_mb();
  1005. if (__need_more_worker(pool))
  1006. wake_up_worker(pool);
  1007. }
  1008. /*
  1009. * Test whether @work is being queued from another work executing on the
  1010. * same workqueue.
  1011. */
  1012. static bool is_chained_work(struct workqueue_struct *wq)
  1013. {
  1014. struct worker *worker;
  1015. worker = current_wq_worker();
  1016. /*
  1017. * Return %true iff I'm a worker execuing a work item on @wq. If
  1018. * I'm @worker, it's safe to dereference it without locking.
  1019. */
  1020. return worker && worker->current_pwq->wq == wq;
  1021. }
  1022. static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
  1023. struct work_struct *work)
  1024. {
  1025. struct pool_workqueue *pwq;
  1026. struct list_head *worklist;
  1027. unsigned int work_flags;
  1028. unsigned int req_cpu = cpu;
  1029. /*
  1030. * While a work item is PENDING && off queue, a task trying to
  1031. * steal the PENDING will busy-loop waiting for it to either get
  1032. * queued or lose PENDING. Grabbing PENDING and queueing should
  1033. * happen with IRQ disabled.
  1034. */
  1035. WARN_ON_ONCE(!irqs_disabled());
  1036. debug_work_activate(work);
  1037. /* if dying, only works from the same workqueue are allowed */
  1038. if (unlikely(wq->flags & WQ_DRAINING) &&
  1039. WARN_ON_ONCE(!is_chained_work(wq)))
  1040. return;
  1041. /* determine the pwq to use */
  1042. if (!(wq->flags & WQ_UNBOUND)) {
  1043. struct worker_pool *last_pool;
  1044. if (cpu == WORK_CPU_UNBOUND)
  1045. cpu = raw_smp_processor_id();
  1046. /*
  1047. * It's multi cpu. If @work was previously on a different
  1048. * cpu, it might still be running there, in which case the
  1049. * work needs to be queued on that cpu to guarantee
  1050. * non-reentrancy.
  1051. */
  1052. pwq = get_pwq(cpu, wq);
  1053. last_pool = get_work_pool(work);
  1054. if (last_pool && last_pool != pwq->pool) {
  1055. struct worker *worker;
  1056. spin_lock(&last_pool->lock);
  1057. worker = find_worker_executing_work(last_pool, work);
  1058. if (worker && worker->current_pwq->wq == wq) {
  1059. pwq = get_pwq(last_pool->cpu, wq);
  1060. } else {
  1061. /* meh... not running there, queue here */
  1062. spin_unlock(&last_pool->lock);
  1063. spin_lock(&pwq->pool->lock);
  1064. }
  1065. } else {
  1066. spin_lock(&pwq->pool->lock);
  1067. }
  1068. } else {
  1069. pwq = get_pwq(WORK_CPU_UNBOUND, wq);
  1070. spin_lock(&pwq->pool->lock);
  1071. }
  1072. /* pwq determined, queue */
  1073. trace_workqueue_queue_work(req_cpu, pwq, work);
  1074. if (WARN_ON(!list_empty(&work->entry))) {
  1075. spin_unlock(&pwq->pool->lock);
  1076. return;
  1077. }
  1078. pwq->nr_in_flight[pwq->work_color]++;
  1079. work_flags = work_color_to_flags(pwq->work_color);
  1080. if (likely(pwq->nr_active < pwq->max_active)) {
  1081. trace_workqueue_activate_work(work);
  1082. pwq->nr_active++;
  1083. worklist = &pwq->pool->worklist;
  1084. } else {
  1085. work_flags |= WORK_STRUCT_DELAYED;
  1086. worklist = &pwq->delayed_works;
  1087. }
  1088. insert_work(pwq, work, worklist, work_flags);
  1089. spin_unlock(&pwq->pool->lock);
  1090. }
  1091. /**
  1092. * queue_work_on - queue work on specific cpu
  1093. * @cpu: CPU number to execute work on
  1094. * @wq: workqueue to use
  1095. * @work: work to queue
  1096. *
  1097. * Returns %false if @work was already on a queue, %true otherwise.
  1098. *
  1099. * We queue the work to a specific CPU, the caller must ensure it
  1100. * can't go away.
  1101. */
  1102. bool queue_work_on(int cpu, struct workqueue_struct *wq,
  1103. struct work_struct *work)
  1104. {
  1105. bool ret = false;
  1106. unsigned long flags;
  1107. local_irq_save(flags);
  1108. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1109. __queue_work(cpu, wq, work);
  1110. ret = true;
  1111. }
  1112. local_irq_restore(flags);
  1113. return ret;
  1114. }
  1115. EXPORT_SYMBOL_GPL(queue_work_on);
  1116. /**
  1117. * queue_work - queue work on a workqueue
  1118. * @wq: workqueue to use
  1119. * @work: work to queue
  1120. *
  1121. * Returns %false if @work was already on a queue, %true otherwise.
  1122. *
  1123. * We queue the work to the CPU on which it was submitted, but if the CPU dies
  1124. * it can be processed by another CPU.
  1125. */
  1126. bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
  1127. {
  1128. return queue_work_on(WORK_CPU_UNBOUND, wq, work);
  1129. }
  1130. EXPORT_SYMBOL_GPL(queue_work);
  1131. void delayed_work_timer_fn(unsigned long __data)
  1132. {
  1133. struct delayed_work *dwork = (struct delayed_work *)__data;
  1134. /* should have been called from irqsafe timer with irq already off */
  1135. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  1136. }
  1137. EXPORT_SYMBOL(delayed_work_timer_fn);
  1138. static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
  1139. struct delayed_work *dwork, unsigned long delay)
  1140. {
  1141. struct timer_list *timer = &dwork->timer;
  1142. struct work_struct *work = &dwork->work;
  1143. WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
  1144. timer->data != (unsigned long)dwork);
  1145. WARN_ON_ONCE(timer_pending(timer));
  1146. WARN_ON_ONCE(!list_empty(&work->entry));
  1147. /*
  1148. * If @delay is 0, queue @dwork->work immediately. This is for
  1149. * both optimization and correctness. The earliest @timer can
  1150. * expire is on the closest next tick and delayed_work users depend
  1151. * on that there's no such delay when @delay is 0.
  1152. */
  1153. if (!delay) {
  1154. __queue_work(cpu, wq, &dwork->work);
  1155. return;
  1156. }
  1157. timer_stats_timer_set_start_info(&dwork->timer);
  1158. dwork->wq = wq;
  1159. dwork->cpu = cpu;
  1160. timer->expires = jiffies + delay;
  1161. if (unlikely(cpu != WORK_CPU_UNBOUND))
  1162. add_timer_on(timer, cpu);
  1163. else
  1164. add_timer(timer);
  1165. }
  1166. /**
  1167. * queue_delayed_work_on - queue work on specific CPU after delay
  1168. * @cpu: CPU number to execute work on
  1169. * @wq: workqueue to use
  1170. * @dwork: work to queue
  1171. * @delay: number of jiffies to wait before queueing
  1172. *
  1173. * Returns %false if @work was already on a queue, %true otherwise. If
  1174. * @delay is zero and @dwork is idle, it will be scheduled for immediate
  1175. * execution.
  1176. */
  1177. bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1178. struct delayed_work *dwork, unsigned long delay)
  1179. {
  1180. struct work_struct *work = &dwork->work;
  1181. bool ret = false;
  1182. unsigned long flags;
  1183. /* read the comment in __queue_work() */
  1184. local_irq_save(flags);
  1185. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1186. __queue_delayed_work(cpu, wq, dwork, delay);
  1187. ret = true;
  1188. }
  1189. local_irq_restore(flags);
  1190. return ret;
  1191. }
  1192. EXPORT_SYMBOL_GPL(queue_delayed_work_on);
  1193. /**
  1194. * queue_delayed_work - queue work on a workqueue after delay
  1195. * @wq: workqueue to use
  1196. * @dwork: delayable work to queue
  1197. * @delay: number of jiffies to wait before queueing
  1198. *
  1199. * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
  1200. */
  1201. bool queue_delayed_work(struct workqueue_struct *wq,
  1202. struct delayed_work *dwork, unsigned long delay)
  1203. {
  1204. return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
  1205. }
  1206. EXPORT_SYMBOL_GPL(queue_delayed_work);
  1207. /**
  1208. * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
  1209. * @cpu: CPU number to execute work on
  1210. * @wq: workqueue to use
  1211. * @dwork: work to queue
  1212. * @delay: number of jiffies to wait before queueing
  1213. *
  1214. * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
  1215. * modify @dwork's timer so that it expires after @delay. If @delay is
  1216. * zero, @work is guaranteed to be scheduled immediately regardless of its
  1217. * current state.
  1218. *
  1219. * Returns %false if @dwork was idle and queued, %true if @dwork was
  1220. * pending and its timer was modified.
  1221. *
  1222. * This function is safe to call from any context including IRQ handler.
  1223. * See try_to_grab_pending() for details.
  1224. */
  1225. bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1226. struct delayed_work *dwork, unsigned long delay)
  1227. {
  1228. unsigned long flags;
  1229. int ret;
  1230. do {
  1231. ret = try_to_grab_pending(&dwork->work, true, &flags);
  1232. } while (unlikely(ret == -EAGAIN));
  1233. if (likely(ret >= 0)) {
  1234. __queue_delayed_work(cpu, wq, dwork, delay);
  1235. local_irq_restore(flags);
  1236. }
  1237. /* -ENOENT from try_to_grab_pending() becomes %true */
  1238. return ret;
  1239. }
  1240. EXPORT_SYMBOL_GPL(mod_delayed_work_on);
  1241. /**
  1242. * mod_delayed_work - modify delay of or queue a delayed work
  1243. * @wq: workqueue to use
  1244. * @dwork: work to queue
  1245. * @delay: number of jiffies to wait before queueing
  1246. *
  1247. * mod_delayed_work_on() on local CPU.
  1248. */
  1249. bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
  1250. unsigned long delay)
  1251. {
  1252. return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
  1253. }
  1254. EXPORT_SYMBOL_GPL(mod_delayed_work);
  1255. /**
  1256. * worker_enter_idle - enter idle state
  1257. * @worker: worker which is entering idle state
  1258. *
  1259. * @worker is entering idle state. Update stats and idle timer if
  1260. * necessary.
  1261. *
  1262. * LOCKING:
  1263. * spin_lock_irq(pool->lock).
  1264. */
  1265. static void worker_enter_idle(struct worker *worker)
  1266. {
  1267. struct worker_pool *pool = worker->pool;
  1268. BUG_ON(worker->flags & WORKER_IDLE);
  1269. BUG_ON(!list_empty(&worker->entry) &&
  1270. (worker->hentry.next || worker->hentry.pprev));
  1271. /* can't use worker_set_flags(), also called from start_worker() */
  1272. worker->flags |= WORKER_IDLE;
  1273. pool->nr_idle++;
  1274. worker->last_active = jiffies;
  1275. /* idle_list is LIFO */
  1276. list_add(&worker->entry, &pool->idle_list);
  1277. if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
  1278. mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
  1279. /*
  1280. * Sanity check nr_running. Because wq_unbind_fn() releases
  1281. * pool->lock between setting %WORKER_UNBOUND and zapping
  1282. * nr_running, the warning may trigger spuriously. Check iff
  1283. * unbind is not in progress.
  1284. */
  1285. WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
  1286. pool->nr_workers == pool->nr_idle &&
  1287. atomic_read(&pool->nr_running));
  1288. }
  1289. /**
  1290. * worker_leave_idle - leave idle state
  1291. * @worker: worker which is leaving idle state
  1292. *
  1293. * @worker is leaving idle state. Update stats.
  1294. *
  1295. * LOCKING:
  1296. * spin_lock_irq(pool->lock).
  1297. */
  1298. static void worker_leave_idle(struct worker *worker)
  1299. {
  1300. struct worker_pool *pool = worker->pool;
  1301. BUG_ON(!(worker->flags & WORKER_IDLE));
  1302. worker_clr_flags(worker, WORKER_IDLE);
  1303. pool->nr_idle--;
  1304. list_del_init(&worker->entry);
  1305. }
  1306. /**
  1307. * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock pool
  1308. * @worker: self
  1309. *
  1310. * Works which are scheduled while the cpu is online must at least be
  1311. * scheduled to a worker which is bound to the cpu so that if they are
  1312. * flushed from cpu callbacks while cpu is going down, they are
  1313. * guaranteed to execute on the cpu.
  1314. *
  1315. * This function is to be used by unbound workers and rescuers to bind
  1316. * themselves to the target cpu and may race with cpu going down or
  1317. * coming online. kthread_bind() can't be used because it may put the
  1318. * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
  1319. * verbatim as it's best effort and blocking and pool may be
  1320. * [dis]associated in the meantime.
  1321. *
  1322. * This function tries set_cpus_allowed() and locks pool and verifies the
  1323. * binding against %POOL_DISASSOCIATED which is set during
  1324. * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
  1325. * enters idle state or fetches works without dropping lock, it can
  1326. * guarantee the scheduling requirement described in the first paragraph.
  1327. *
  1328. * CONTEXT:
  1329. * Might sleep. Called without any lock but returns with pool->lock
  1330. * held.
  1331. *
  1332. * RETURNS:
  1333. * %true if the associated pool is online (@worker is successfully
  1334. * bound), %false if offline.
  1335. */
  1336. static bool worker_maybe_bind_and_lock(struct worker *worker)
  1337. __acquires(&pool->lock)
  1338. {
  1339. struct worker_pool *pool = worker->pool;
  1340. while (true) {
  1341. /*
  1342. * The following call may fail, succeed or succeed
  1343. * without actually migrating the task to the cpu if
  1344. * it races with cpu hotunplug operation. Verify
  1345. * against POOL_DISASSOCIATED.
  1346. */
  1347. if (!(pool->flags & POOL_DISASSOCIATED))
  1348. set_cpus_allowed_ptr(current, get_cpu_mask(pool->cpu));
  1349. spin_lock_irq(&pool->lock);
  1350. if (pool->flags & POOL_DISASSOCIATED)
  1351. return false;
  1352. if (task_cpu(current) == pool->cpu &&
  1353. cpumask_equal(&current->cpus_allowed,
  1354. get_cpu_mask(pool->cpu)))
  1355. return true;
  1356. spin_unlock_irq(&pool->lock);
  1357. /*
  1358. * We've raced with CPU hot[un]plug. Give it a breather
  1359. * and retry migration. cond_resched() is required here;
  1360. * otherwise, we might deadlock against cpu_stop trying to
  1361. * bring down the CPU on non-preemptive kernel.
  1362. */
  1363. cpu_relax();
  1364. cond_resched();
  1365. }
  1366. }
  1367. /*
  1368. * Rebind an idle @worker to its CPU. worker_thread() will test
  1369. * list_empty(@worker->entry) before leaving idle and call this function.
  1370. */
  1371. static void idle_worker_rebind(struct worker *worker)
  1372. {
  1373. /* CPU may go down again inbetween, clear UNBOUND only on success */
  1374. if (worker_maybe_bind_and_lock(worker))
  1375. worker_clr_flags(worker, WORKER_UNBOUND);
  1376. /* rebind complete, become available again */
  1377. list_add(&worker->entry, &worker->pool->idle_list);
  1378. spin_unlock_irq(&worker->pool->lock);
  1379. }
  1380. /*
  1381. * Function for @worker->rebind.work used to rebind unbound busy workers to
  1382. * the associated cpu which is coming back online. This is scheduled by
  1383. * cpu up but can race with other cpu hotplug operations and may be
  1384. * executed twice without intervening cpu down.
  1385. */
  1386. static void busy_worker_rebind_fn(struct work_struct *work)
  1387. {
  1388. struct worker *worker = container_of(work, struct worker, rebind_work);
  1389. if (worker_maybe_bind_and_lock(worker))
  1390. worker_clr_flags(worker, WORKER_UNBOUND);
  1391. spin_unlock_irq(&worker->pool->lock);
  1392. }
  1393. /**
  1394. * rebind_workers - rebind all workers of a pool to the associated CPU
  1395. * @pool: pool of interest
  1396. *
  1397. * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
  1398. * is different for idle and busy ones.
  1399. *
  1400. * Idle ones will be removed from the idle_list and woken up. They will
  1401. * add themselves back after completing rebind. This ensures that the
  1402. * idle_list doesn't contain any unbound workers when re-bound busy workers
  1403. * try to perform local wake-ups for concurrency management.
  1404. *
  1405. * Busy workers can rebind after they finish their current work items.
  1406. * Queueing the rebind work item at the head of the scheduled list is
  1407. * enough. Note that nr_running will be properly bumped as busy workers
  1408. * rebind.
  1409. *
  1410. * On return, all non-manager workers are scheduled for rebind - see
  1411. * manage_workers() for the manager special case. Any idle worker
  1412. * including the manager will not appear on @idle_list until rebind is
  1413. * complete, making local wake-ups safe.
  1414. */
  1415. static void rebind_workers(struct worker_pool *pool)
  1416. {
  1417. struct worker *worker, *n;
  1418. int i;
  1419. lockdep_assert_held(&pool->assoc_mutex);
  1420. lockdep_assert_held(&pool->lock);
  1421. /* dequeue and kick idle ones */
  1422. list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
  1423. /*
  1424. * idle workers should be off @pool->idle_list until rebind
  1425. * is complete to avoid receiving premature local wake-ups.
  1426. */
  1427. list_del_init(&worker->entry);
  1428. /*
  1429. * worker_thread() will see the above dequeuing and call
  1430. * idle_worker_rebind().
  1431. */
  1432. wake_up_process(worker->task);
  1433. }
  1434. /* rebind busy workers */
  1435. for_each_busy_worker(worker, i, pool) {
  1436. struct work_struct *rebind_work = &worker->rebind_work;
  1437. struct workqueue_struct *wq;
  1438. if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
  1439. work_data_bits(rebind_work)))
  1440. continue;
  1441. debug_work_activate(rebind_work);
  1442. /*
  1443. * wq doesn't really matter but let's keep @worker->pool
  1444. * and @pwq->pool consistent for sanity.
  1445. */
  1446. if (std_worker_pool_pri(worker->pool))
  1447. wq = system_highpri_wq;
  1448. else
  1449. wq = system_wq;
  1450. insert_work(get_pwq(pool->cpu, wq), rebind_work,
  1451. worker->scheduled.next,
  1452. work_color_to_flags(WORK_NO_COLOR));
  1453. }
  1454. }
  1455. static struct worker *alloc_worker(void)
  1456. {
  1457. struct worker *worker;
  1458. worker = kzalloc(sizeof(*worker), GFP_KERNEL);
  1459. if (worker) {
  1460. INIT_LIST_HEAD(&worker->entry);
  1461. INIT_LIST_HEAD(&worker->scheduled);
  1462. INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
  1463. /* on creation a worker is in !idle && prep state */
  1464. worker->flags = WORKER_PREP;
  1465. }
  1466. return worker;
  1467. }
  1468. /**
  1469. * create_worker - create a new workqueue worker
  1470. * @pool: pool the new worker will belong to
  1471. *
  1472. * Create a new worker which is bound to @pool. The returned worker
  1473. * can be started by calling start_worker() or destroyed using
  1474. * destroy_worker().
  1475. *
  1476. * CONTEXT:
  1477. * Might sleep. Does GFP_KERNEL allocations.
  1478. *
  1479. * RETURNS:
  1480. * Pointer to the newly created worker.
  1481. */
  1482. static struct worker *create_worker(struct worker_pool *pool)
  1483. {
  1484. const char *pri = std_worker_pool_pri(pool) ? "H" : "";
  1485. struct worker *worker = NULL;
  1486. int id = -1;
  1487. spin_lock_irq(&pool->lock);
  1488. while (ida_get_new(&pool->worker_ida, &id)) {
  1489. spin_unlock_irq(&pool->lock);
  1490. if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
  1491. goto fail;
  1492. spin_lock_irq(&pool->lock);
  1493. }
  1494. spin_unlock_irq(&pool->lock);
  1495. worker = alloc_worker();
  1496. if (!worker)
  1497. goto fail;
  1498. worker->pool = pool;
  1499. worker->id = id;
  1500. if (pool->cpu != WORK_CPU_UNBOUND)
  1501. worker->task = kthread_create_on_node(worker_thread,
  1502. worker, cpu_to_node(pool->cpu),
  1503. "kworker/%u:%d%s", pool->cpu, id, pri);
  1504. else
  1505. worker->task = kthread_create(worker_thread, worker,
  1506. "kworker/u:%d%s", id, pri);
  1507. if (IS_ERR(worker->task))
  1508. goto fail;
  1509. if (std_worker_pool_pri(pool))
  1510. set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
  1511. /*
  1512. * Determine CPU binding of the new worker depending on
  1513. * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
  1514. * flag remains stable across this function. See the comments
  1515. * above the flag definition for details.
  1516. *
  1517. * As an unbound worker may later become a regular one if CPU comes
  1518. * online, make sure every worker has %PF_THREAD_BOUND set.
  1519. */
  1520. if (!(pool->flags & POOL_DISASSOCIATED)) {
  1521. kthread_bind(worker->task, pool->cpu);
  1522. } else {
  1523. worker->task->flags |= PF_THREAD_BOUND;
  1524. worker->flags |= WORKER_UNBOUND;
  1525. }
  1526. return worker;
  1527. fail:
  1528. if (id >= 0) {
  1529. spin_lock_irq(&pool->lock);
  1530. ida_remove(&pool->worker_ida, id);
  1531. spin_unlock_irq(&pool->lock);
  1532. }
  1533. kfree(worker);
  1534. return NULL;
  1535. }
  1536. /**
  1537. * start_worker - start a newly created worker
  1538. * @worker: worker to start
  1539. *
  1540. * Make the pool aware of @worker and start it.
  1541. *
  1542. * CONTEXT:
  1543. * spin_lock_irq(pool->lock).
  1544. */
  1545. static void start_worker(struct worker *worker)
  1546. {
  1547. worker->flags |= WORKER_STARTED;
  1548. worker->pool->nr_workers++;
  1549. worker_enter_idle(worker);
  1550. wake_up_process(worker->task);
  1551. }
  1552. /**
  1553. * destroy_worker - destroy a workqueue worker
  1554. * @worker: worker to be destroyed
  1555. *
  1556. * Destroy @worker and adjust @pool stats accordingly.
  1557. *
  1558. * CONTEXT:
  1559. * spin_lock_irq(pool->lock) which is released and regrabbed.
  1560. */
  1561. static void destroy_worker(struct worker *worker)
  1562. {
  1563. struct worker_pool *pool = worker->pool;
  1564. int id = worker->id;
  1565. /* sanity check frenzy */
  1566. BUG_ON(worker->current_work);
  1567. BUG_ON(!list_empty(&worker->scheduled));
  1568. if (worker->flags & WORKER_STARTED)
  1569. pool->nr_workers--;
  1570. if (worker->flags & WORKER_IDLE)
  1571. pool->nr_idle--;
  1572. list_del_init(&worker->entry);
  1573. worker->flags |= WORKER_DIE;
  1574. spin_unlock_irq(&pool->lock);
  1575. kthread_stop(worker->task);
  1576. kfree(worker);
  1577. spin_lock_irq(&pool->lock);
  1578. ida_remove(&pool->worker_ida, id);
  1579. }
  1580. static void idle_worker_timeout(unsigned long __pool)
  1581. {
  1582. struct worker_pool *pool = (void *)__pool;
  1583. spin_lock_irq(&pool->lock);
  1584. if (too_many_workers(pool)) {
  1585. struct worker *worker;
  1586. unsigned long expires;
  1587. /* idle_list is kept in LIFO order, check the last one */
  1588. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1589. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1590. if (time_before(jiffies, expires))
  1591. mod_timer(&pool->idle_timer, expires);
  1592. else {
  1593. /* it's been idle for too long, wake up manager */
  1594. pool->flags |= POOL_MANAGE_WORKERS;
  1595. wake_up_worker(pool);
  1596. }
  1597. }
  1598. spin_unlock_irq(&pool->lock);
  1599. }
  1600. static bool send_mayday(struct work_struct *work)
  1601. {
  1602. struct pool_workqueue *pwq = get_work_pwq(work);
  1603. struct workqueue_struct *wq = pwq->wq;
  1604. unsigned int cpu;
  1605. if (!(wq->flags & WQ_RESCUER))
  1606. return false;
  1607. /* mayday mayday mayday */
  1608. cpu = pwq->pool->cpu;
  1609. /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
  1610. if (cpu == WORK_CPU_UNBOUND)
  1611. cpu = 0;
  1612. if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
  1613. wake_up_process(wq->rescuer->task);
  1614. return true;
  1615. }
  1616. static void pool_mayday_timeout(unsigned long __pool)
  1617. {
  1618. struct worker_pool *pool = (void *)__pool;
  1619. struct work_struct *work;
  1620. spin_lock_irq(&pool->lock);
  1621. if (need_to_create_worker(pool)) {
  1622. /*
  1623. * We've been trying to create a new worker but
  1624. * haven't been successful. We might be hitting an
  1625. * allocation deadlock. Send distress signals to
  1626. * rescuers.
  1627. */
  1628. list_for_each_entry(work, &pool->worklist, entry)
  1629. send_mayday(work);
  1630. }
  1631. spin_unlock_irq(&pool->lock);
  1632. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
  1633. }
  1634. /**
  1635. * maybe_create_worker - create a new worker if necessary
  1636. * @pool: pool to create a new worker for
  1637. *
  1638. * Create a new worker for @pool if necessary. @pool is guaranteed to
  1639. * have at least one idle worker on return from this function. If
  1640. * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
  1641. * sent to all rescuers with works scheduled on @pool to resolve
  1642. * possible allocation deadlock.
  1643. *
  1644. * On return, need_to_create_worker() is guaranteed to be false and
  1645. * may_start_working() true.
  1646. *
  1647. * LOCKING:
  1648. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1649. * multiple times. Does GFP_KERNEL allocations. Called only from
  1650. * manager.
  1651. *
  1652. * RETURNS:
  1653. * false if no action was taken and pool->lock stayed locked, true
  1654. * otherwise.
  1655. */
  1656. static bool maybe_create_worker(struct worker_pool *pool)
  1657. __releases(&pool->lock)
  1658. __acquires(&pool->lock)
  1659. {
  1660. if (!need_to_create_worker(pool))
  1661. return false;
  1662. restart:
  1663. spin_unlock_irq(&pool->lock);
  1664. /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
  1665. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
  1666. while (true) {
  1667. struct worker *worker;
  1668. worker = create_worker(pool);
  1669. if (worker) {
  1670. del_timer_sync(&pool->mayday_timer);
  1671. spin_lock_irq(&pool->lock);
  1672. start_worker(worker);
  1673. BUG_ON(need_to_create_worker(pool));
  1674. return true;
  1675. }
  1676. if (!need_to_create_worker(pool))
  1677. break;
  1678. __set_current_state(TASK_INTERRUPTIBLE);
  1679. schedule_timeout(CREATE_COOLDOWN);
  1680. if (!need_to_create_worker(pool))
  1681. break;
  1682. }
  1683. del_timer_sync(&pool->mayday_timer);
  1684. spin_lock_irq(&pool->lock);
  1685. if (need_to_create_worker(pool))
  1686. goto restart;
  1687. return true;
  1688. }
  1689. /**
  1690. * maybe_destroy_worker - destroy workers which have been idle for a while
  1691. * @pool: pool to destroy workers for
  1692. *
  1693. * Destroy @pool workers which have been idle for longer than
  1694. * IDLE_WORKER_TIMEOUT.
  1695. *
  1696. * LOCKING:
  1697. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1698. * multiple times. Called only from manager.
  1699. *
  1700. * RETURNS:
  1701. * false if no action was taken and pool->lock stayed locked, true
  1702. * otherwise.
  1703. */
  1704. static bool maybe_destroy_workers(struct worker_pool *pool)
  1705. {
  1706. bool ret = false;
  1707. while (too_many_workers(pool)) {
  1708. struct worker *worker;
  1709. unsigned long expires;
  1710. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1711. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1712. if (time_before(jiffies, expires)) {
  1713. mod_timer(&pool->idle_timer, expires);
  1714. break;
  1715. }
  1716. destroy_worker(worker);
  1717. ret = true;
  1718. }
  1719. return ret;
  1720. }
  1721. /**
  1722. * manage_workers - manage worker pool
  1723. * @worker: self
  1724. *
  1725. * Assume the manager role and manage the worker pool @worker belongs
  1726. * to. At any given time, there can be only zero or one manager per
  1727. * pool. The exclusion is handled automatically by this function.
  1728. *
  1729. * The caller can safely start processing works on false return. On
  1730. * true return, it's guaranteed that need_to_create_worker() is false
  1731. * and may_start_working() is true.
  1732. *
  1733. * CONTEXT:
  1734. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1735. * multiple times. Does GFP_KERNEL allocations.
  1736. *
  1737. * RETURNS:
  1738. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1739. * multiple times. Does GFP_KERNEL allocations.
  1740. */
  1741. static bool manage_workers(struct worker *worker)
  1742. {
  1743. struct worker_pool *pool = worker->pool;
  1744. bool ret = false;
  1745. if (pool->flags & POOL_MANAGING_WORKERS)
  1746. return ret;
  1747. pool->flags |= POOL_MANAGING_WORKERS;
  1748. /*
  1749. * To simplify both worker management and CPU hotplug, hold off
  1750. * management while hotplug is in progress. CPU hotplug path can't
  1751. * grab %POOL_MANAGING_WORKERS to achieve this because that can
  1752. * lead to idle worker depletion (all become busy thinking someone
  1753. * else is managing) which in turn can result in deadlock under
  1754. * extreme circumstances. Use @pool->assoc_mutex to synchronize
  1755. * manager against CPU hotplug.
  1756. *
  1757. * assoc_mutex would always be free unless CPU hotplug is in
  1758. * progress. trylock first without dropping @pool->lock.
  1759. */
  1760. if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
  1761. spin_unlock_irq(&pool->lock);
  1762. mutex_lock(&pool->assoc_mutex);
  1763. /*
  1764. * CPU hotplug could have happened while we were waiting
  1765. * for assoc_mutex. Hotplug itself can't handle us
  1766. * because manager isn't either on idle or busy list, and
  1767. * @pool's state and ours could have deviated.
  1768. *
  1769. * As hotplug is now excluded via assoc_mutex, we can
  1770. * simply try to bind. It will succeed or fail depending
  1771. * on @pool's current state. Try it and adjust
  1772. * %WORKER_UNBOUND accordingly.
  1773. */
  1774. if (worker_maybe_bind_and_lock(worker))
  1775. worker->flags &= ~WORKER_UNBOUND;
  1776. else
  1777. worker->flags |= WORKER_UNBOUND;
  1778. ret = true;
  1779. }
  1780. pool->flags &= ~POOL_MANAGE_WORKERS;
  1781. /*
  1782. * Destroy and then create so that may_start_working() is true
  1783. * on return.
  1784. */
  1785. ret |= maybe_destroy_workers(pool);
  1786. ret |= maybe_create_worker(pool);
  1787. pool->flags &= ~POOL_MANAGING_WORKERS;
  1788. mutex_unlock(&pool->assoc_mutex);
  1789. return ret;
  1790. }
  1791. /**
  1792. * process_one_work - process single work
  1793. * @worker: self
  1794. * @work: work to process
  1795. *
  1796. * Process @work. This function contains all the logics necessary to
  1797. * process a single work including synchronization against and
  1798. * interaction with other workers on the same cpu, queueing and
  1799. * flushing. As long as context requirement is met, any worker can
  1800. * call this function to process a work.
  1801. *
  1802. * CONTEXT:
  1803. * spin_lock_irq(pool->lock) which is released and regrabbed.
  1804. */
  1805. static void process_one_work(struct worker *worker, struct work_struct *work)
  1806. __releases(&pool->lock)
  1807. __acquires(&pool->lock)
  1808. {
  1809. struct pool_workqueue *pwq = get_work_pwq(work);
  1810. struct worker_pool *pool = worker->pool;
  1811. bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
  1812. int work_color;
  1813. struct worker *collision;
  1814. #ifdef CONFIG_LOCKDEP
  1815. /*
  1816. * It is permissible to free the struct work_struct from
  1817. * inside the function that is called from it, this we need to
  1818. * take into account for lockdep too. To avoid bogus "held
  1819. * lock freed" warnings as well as problems when looking into
  1820. * work->lockdep_map, make a copy and use that here.
  1821. */
  1822. struct lockdep_map lockdep_map;
  1823. lockdep_copy_map(&lockdep_map, &work->lockdep_map);
  1824. #endif
  1825. /*
  1826. * Ensure we're on the correct CPU. DISASSOCIATED test is
  1827. * necessary to avoid spurious warnings from rescuers servicing the
  1828. * unbound or a disassociated pool.
  1829. */
  1830. WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
  1831. !(pool->flags & POOL_DISASSOCIATED) &&
  1832. raw_smp_processor_id() != pool->cpu);
  1833. /*
  1834. * A single work shouldn't be executed concurrently by
  1835. * multiple workers on a single cpu. Check whether anyone is
  1836. * already processing the work. If so, defer the work to the
  1837. * currently executing one.
  1838. */
  1839. collision = find_worker_executing_work(pool, work);
  1840. if (unlikely(collision)) {
  1841. move_linked_works(work, &collision->scheduled, NULL);
  1842. return;
  1843. }
  1844. /* claim and dequeue */
  1845. debug_work_deactivate(work);
  1846. hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
  1847. worker->current_work = work;
  1848. worker->current_func = work->func;
  1849. worker->current_pwq = pwq;
  1850. work_color = get_work_color(work);
  1851. list_del_init(&work->entry);
  1852. /*
  1853. * CPU intensive works don't participate in concurrency
  1854. * management. They're the scheduler's responsibility.
  1855. */
  1856. if (unlikely(cpu_intensive))
  1857. worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
  1858. /*
  1859. * Unbound pool isn't concurrency managed and work items should be
  1860. * executed ASAP. Wake up another worker if necessary.
  1861. */
  1862. if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
  1863. wake_up_worker(pool);
  1864. /*
  1865. * Record the last pool and clear PENDING which should be the last
  1866. * update to @work. Also, do this inside @pool->lock so that
  1867. * PENDING and queued state changes happen together while IRQ is
  1868. * disabled.
  1869. */
  1870. set_work_pool_and_clear_pending(work, pool->id);
  1871. spin_unlock_irq(&pool->lock);
  1872. lock_map_acquire_read(&pwq->wq->lockdep_map);
  1873. lock_map_acquire(&lockdep_map);
  1874. trace_workqueue_execute_start(work);
  1875. worker->current_func(work);
  1876. /*
  1877. * While we must be careful to not use "work" after this, the trace
  1878. * point will only record its address.
  1879. */
  1880. trace_workqueue_execute_end(work);
  1881. lock_map_release(&lockdep_map);
  1882. lock_map_release(&pwq->wq->lockdep_map);
  1883. if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
  1884. pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
  1885. " last function: %pf\n",
  1886. current->comm, preempt_count(), task_pid_nr(current),
  1887. worker->current_func);
  1888. debug_show_held_locks(current);
  1889. dump_stack();
  1890. }
  1891. spin_lock_irq(&pool->lock);
  1892. /* clear cpu intensive status */
  1893. if (unlikely(cpu_intensive))
  1894. worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
  1895. /* we're done with it, release */
  1896. hash_del(&worker->hentry);
  1897. worker->current_work = NULL;
  1898. worker->current_func = NULL;
  1899. worker->current_pwq = NULL;
  1900. pwq_dec_nr_in_flight(pwq, work_color);
  1901. }
  1902. /**
  1903. * process_scheduled_works - process scheduled works
  1904. * @worker: self
  1905. *
  1906. * Process all scheduled works. Please note that the scheduled list
  1907. * may change while processing a work, so this function repeatedly
  1908. * fetches a work from the top and executes it.
  1909. *
  1910. * CONTEXT:
  1911. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1912. * multiple times.
  1913. */
  1914. static void process_scheduled_works(struct worker *worker)
  1915. {
  1916. while (!list_empty(&worker->scheduled)) {
  1917. struct work_struct *work = list_first_entry(&worker->scheduled,
  1918. struct work_struct, entry);
  1919. process_one_work(worker, work);
  1920. }
  1921. }
  1922. /**
  1923. * worker_thread - the worker thread function
  1924. * @__worker: self
  1925. *
  1926. * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
  1927. * of these per each cpu. These workers process all works regardless of
  1928. * their specific target workqueue. The only exception is works which
  1929. * belong to workqueues with a rescuer which will be explained in
  1930. * rescuer_thread().
  1931. */
  1932. static int worker_thread(void *__worker)
  1933. {
  1934. struct worker *worker = __worker;
  1935. struct worker_pool *pool = worker->pool;
  1936. /* tell the scheduler that this is a workqueue worker */
  1937. worker->task->flags |= PF_WQ_WORKER;
  1938. woke_up:
  1939. spin_lock_irq(&pool->lock);
  1940. /* we are off idle list if destruction or rebind is requested */
  1941. if (unlikely(list_empty(&worker->entry))) {
  1942. spin_unlock_irq(&pool->lock);
  1943. /* if DIE is set, destruction is requested */
  1944. if (worker->flags & WORKER_DIE) {
  1945. worker->task->flags &= ~PF_WQ_WORKER;
  1946. return 0;
  1947. }
  1948. /* otherwise, rebind */
  1949. idle_worker_rebind(worker);
  1950. goto woke_up;
  1951. }
  1952. worker_leave_idle(worker);
  1953. recheck:
  1954. /* no more worker necessary? */
  1955. if (!need_more_worker(pool))
  1956. goto sleep;
  1957. /* do we need to manage? */
  1958. if (unlikely(!may_start_working(pool)) && manage_workers(worker))
  1959. goto recheck;
  1960. /*
  1961. * ->scheduled list can only be filled while a worker is
  1962. * preparing to process a work or actually processing it.
  1963. * Make sure nobody diddled with it while I was sleeping.
  1964. */
  1965. BUG_ON(!list_empty(&worker->scheduled));
  1966. /*
  1967. * When control reaches this point, we're guaranteed to have
  1968. * at least one idle worker or that someone else has already
  1969. * assumed the manager role.
  1970. */
  1971. worker_clr_flags(worker, WORKER_PREP);
  1972. do {
  1973. struct work_struct *work =
  1974. list_first_entry(&pool->worklist,
  1975. struct work_struct, entry);
  1976. if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
  1977. /* optimization path, not strictly necessary */
  1978. process_one_work(worker, work);
  1979. if (unlikely(!list_empty(&worker->scheduled)))
  1980. process_scheduled_works(worker);
  1981. } else {
  1982. move_linked_works(work, &worker->scheduled, NULL);
  1983. process_scheduled_works(worker);
  1984. }
  1985. } while (keep_working(pool));
  1986. worker_set_flags(worker, WORKER_PREP, false);
  1987. sleep:
  1988. if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
  1989. goto recheck;
  1990. /*
  1991. * pool->lock is held and there's no work to process and no need to
  1992. * manage, sleep. Workers are woken up only while holding
  1993. * pool->lock or from local cpu, so setting the current state
  1994. * before releasing pool->lock is enough to prevent losing any
  1995. * event.
  1996. */
  1997. worker_enter_idle(worker);
  1998. __set_current_state(TASK_INTERRUPTIBLE);
  1999. spin_unlock_irq(&pool->lock);
  2000. schedule();
  2001. goto woke_up;
  2002. }
  2003. /**
  2004. * rescuer_thread - the rescuer thread function
  2005. * @__rescuer: self
  2006. *
  2007. * Workqueue rescuer thread function. There's one rescuer for each
  2008. * workqueue which has WQ_RESCUER set.
  2009. *
  2010. * Regular work processing on a pool may block trying to create a new
  2011. * worker which uses GFP_KERNEL allocation which has slight chance of
  2012. * developing into deadlock if some works currently on the same queue
  2013. * need to be processed to satisfy the GFP_KERNEL allocation. This is
  2014. * the problem rescuer solves.
  2015. *
  2016. * When such condition is possible, the pool summons rescuers of all
  2017. * workqueues which have works queued on the pool and let them process
  2018. * those works so that forward progress can be guaranteed.
  2019. *
  2020. * This should happen rarely.
  2021. */
  2022. static int rescuer_thread(void *__rescuer)
  2023. {
  2024. struct worker *rescuer = __rescuer;
  2025. struct workqueue_struct *wq = rescuer->rescue_wq;
  2026. struct list_head *scheduled = &rescuer->scheduled;
  2027. bool is_unbound = wq->flags & WQ_UNBOUND;
  2028. unsigned int cpu;
  2029. set_user_nice(current, RESCUER_NICE_LEVEL);
  2030. /*
  2031. * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
  2032. * doesn't participate in concurrency management.
  2033. */
  2034. rescuer->task->flags |= PF_WQ_WORKER;
  2035. repeat:
  2036. set_current_state(TASK_INTERRUPTIBLE);
  2037. if (kthread_should_stop()) {
  2038. __set_current_state(TASK_RUNNING);
  2039. rescuer->task->flags &= ~PF_WQ_WORKER;
  2040. return 0;
  2041. }
  2042. /*
  2043. * See whether any cpu is asking for help. Unbounded
  2044. * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
  2045. */
  2046. for_each_mayday_cpu(cpu, wq->mayday_mask) {
  2047. unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
  2048. struct pool_workqueue *pwq = get_pwq(tcpu, wq);
  2049. struct worker_pool *pool = pwq->pool;
  2050. struct work_struct *work, *n;
  2051. __set_current_state(TASK_RUNNING);
  2052. mayday_clear_cpu(cpu, wq->mayday_mask);
  2053. /* migrate to the target cpu if possible */
  2054. rescuer->pool = pool;
  2055. worker_maybe_bind_and_lock(rescuer);
  2056. /*
  2057. * Slurp in all works issued via this workqueue and
  2058. * process'em.
  2059. */
  2060. BUG_ON(!list_empty(&rescuer->scheduled));
  2061. list_for_each_entry_safe(work, n, &pool->worklist, entry)
  2062. if (get_work_pwq(work) == pwq)
  2063. move_linked_works(work, scheduled, &n);
  2064. process_scheduled_works(rescuer);
  2065. /*
  2066. * Leave this pool. If keep_working() is %true, notify a
  2067. * regular worker; otherwise, we end up with 0 concurrency
  2068. * and stalling the execution.
  2069. */
  2070. if (keep_working(pool))
  2071. wake_up_worker(pool);
  2072. spin_unlock_irq(&pool->lock);
  2073. }
  2074. /* rescuers should never participate in concurrency management */
  2075. WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
  2076. schedule();
  2077. goto repeat;
  2078. }
  2079. struct wq_barrier {
  2080. struct work_struct work;
  2081. struct completion done;
  2082. };
  2083. static void wq_barrier_func(struct work_struct *work)
  2084. {
  2085. struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
  2086. complete(&barr->done);
  2087. }
  2088. /**
  2089. * insert_wq_barrier - insert a barrier work
  2090. * @pwq: pwq to insert barrier into
  2091. * @barr: wq_barrier to insert
  2092. * @target: target work to attach @barr to
  2093. * @worker: worker currently executing @target, NULL if @target is not executing
  2094. *
  2095. * @barr is linked to @target such that @barr is completed only after
  2096. * @target finishes execution. Please note that the ordering
  2097. * guarantee is observed only with respect to @target and on the local
  2098. * cpu.
  2099. *
  2100. * Currently, a queued barrier can't be canceled. This is because
  2101. * try_to_grab_pending() can't determine whether the work to be
  2102. * grabbed is at the head of the queue and thus can't clear LINKED
  2103. * flag of the previous work while there must be a valid next work
  2104. * after a work with LINKED flag set.
  2105. *
  2106. * Note that when @worker is non-NULL, @target may be modified
  2107. * underneath us, so we can't reliably determine pwq from @target.
  2108. *
  2109. * CONTEXT:
  2110. * spin_lock_irq(pool->lock).
  2111. */
  2112. static void insert_wq_barrier(struct pool_workqueue *pwq,
  2113. struct wq_barrier *barr,
  2114. struct work_struct *target, struct worker *worker)
  2115. {
  2116. struct list_head *head;
  2117. unsigned int linked = 0;
  2118. /*
  2119. * debugobject calls are safe here even with pool->lock locked
  2120. * as we know for sure that this will not trigger any of the
  2121. * checks and call back into the fixup functions where we
  2122. * might deadlock.
  2123. */
  2124. INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
  2125. __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
  2126. init_completion(&barr->done);
  2127. /*
  2128. * If @target is currently being executed, schedule the
  2129. * barrier to the worker; otherwise, put it after @target.
  2130. */
  2131. if (worker)
  2132. head = worker->scheduled.next;
  2133. else {
  2134. unsigned long *bits = work_data_bits(target);
  2135. head = target->entry.next;
  2136. /* there can already be other linked works, inherit and set */
  2137. linked = *bits & WORK_STRUCT_LINKED;
  2138. __set_bit(WORK_STRUCT_LINKED_BIT, bits);
  2139. }
  2140. debug_work_activate(&barr->work);
  2141. insert_work(pwq, &barr->work, head,
  2142. work_color_to_flags(WORK_NO_COLOR) | linked);
  2143. }
  2144. /**
  2145. * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
  2146. * @wq: workqueue being flushed
  2147. * @flush_color: new flush color, < 0 for no-op
  2148. * @work_color: new work color, < 0 for no-op
  2149. *
  2150. * Prepare pwqs for workqueue flushing.
  2151. *
  2152. * If @flush_color is non-negative, flush_color on all pwqs should be
  2153. * -1. If no pwq has in-flight commands at the specified color, all
  2154. * pwq->flush_color's stay at -1 and %false is returned. If any pwq
  2155. * has in flight commands, its pwq->flush_color is set to
  2156. * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
  2157. * wakeup logic is armed and %true is returned.
  2158. *
  2159. * The caller should have initialized @wq->first_flusher prior to
  2160. * calling this function with non-negative @flush_color. If
  2161. * @flush_color is negative, no flush color update is done and %false
  2162. * is returned.
  2163. *
  2164. * If @work_color is non-negative, all pwqs should have the same
  2165. * work_color which is previous to @work_color and all will be
  2166. * advanced to @work_color.
  2167. *
  2168. * CONTEXT:
  2169. * mutex_lock(wq->flush_mutex).
  2170. *
  2171. * RETURNS:
  2172. * %true if @flush_color >= 0 and there's something to flush. %false
  2173. * otherwise.
  2174. */
  2175. static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
  2176. int flush_color, int work_color)
  2177. {
  2178. bool wait = false;
  2179. unsigned int cpu;
  2180. if (flush_color >= 0) {
  2181. BUG_ON(atomic_read(&wq->nr_pwqs_to_flush));
  2182. atomic_set(&wq->nr_pwqs_to_flush, 1);
  2183. }
  2184. for_each_pwq_cpu(cpu, wq) {
  2185. struct pool_workqueue *pwq = get_pwq(cpu, wq);
  2186. struct worker_pool *pool = pwq->pool;
  2187. spin_lock_irq(&pool->lock);
  2188. if (flush_color >= 0) {
  2189. BUG_ON(pwq->flush_color != -1);
  2190. if (pwq->nr_in_flight[flush_color]) {
  2191. pwq->flush_color = flush_color;
  2192. atomic_inc(&wq->nr_pwqs_to_flush);
  2193. wait = true;
  2194. }
  2195. }
  2196. if (work_color >= 0) {
  2197. BUG_ON(work_color != work_next_color(pwq->work_color));
  2198. pwq->work_color = work_color;
  2199. }
  2200. spin_unlock_irq(&pool->lock);
  2201. }
  2202. if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
  2203. complete(&wq->first_flusher->done);
  2204. return wait;
  2205. }
  2206. /**
  2207. * flush_workqueue - ensure that any scheduled work has run to completion.
  2208. * @wq: workqueue to flush
  2209. *
  2210. * Forces execution of the workqueue and blocks until its completion.
  2211. * This is typically used in driver shutdown handlers.
  2212. *
  2213. * We sleep until all works which were queued on entry have been handled,
  2214. * but we are not livelocked by new incoming ones.
  2215. */
  2216. void flush_workqueue(struct workqueue_struct *wq)
  2217. {
  2218. struct wq_flusher this_flusher = {
  2219. .list = LIST_HEAD_INIT(this_flusher.list),
  2220. .flush_color = -1,
  2221. .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
  2222. };
  2223. int next_color;
  2224. lock_map_acquire(&wq->lockdep_map);
  2225. lock_map_release(&wq->lockdep_map);
  2226. mutex_lock(&wq->flush_mutex);
  2227. /*
  2228. * Start-to-wait phase
  2229. */
  2230. next_color = work_next_color(wq->work_color);
  2231. if (next_color != wq->flush_color) {
  2232. /*
  2233. * Color space is not full. The current work_color
  2234. * becomes our flush_color and work_color is advanced
  2235. * by one.
  2236. */
  2237. BUG_ON(!list_empty(&wq->flusher_overflow));
  2238. this_flusher.flush_color = wq->work_color;
  2239. wq->work_color = next_color;
  2240. if (!wq->first_flusher) {
  2241. /* no flush in progress, become the first flusher */
  2242. BUG_ON(wq->flush_color != this_flusher.flush_color);
  2243. wq->first_flusher = &this_flusher;
  2244. if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
  2245. wq->work_color)) {
  2246. /* nothing to flush, done */
  2247. wq->flush_color = next_color;
  2248. wq->first_flusher = NULL;
  2249. goto out_unlock;
  2250. }
  2251. } else {
  2252. /* wait in queue */
  2253. BUG_ON(wq->flush_color == this_flusher.flush_color);
  2254. list_add_tail(&this_flusher.list, &wq->flusher_queue);
  2255. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2256. }
  2257. } else {
  2258. /*
  2259. * Oops, color space is full, wait on overflow queue.
  2260. * The next flush completion will assign us
  2261. * flush_color and transfer to flusher_queue.
  2262. */
  2263. list_add_tail(&this_flusher.list, &wq->flusher_overflow);
  2264. }
  2265. mutex_unlock(&wq->flush_mutex);
  2266. wait_for_completion(&this_flusher.done);
  2267. /*
  2268. * Wake-up-and-cascade phase
  2269. *
  2270. * First flushers are responsible for cascading flushes and
  2271. * handling overflow. Non-first flushers can simply return.
  2272. */
  2273. if (wq->first_flusher != &this_flusher)
  2274. return;
  2275. mutex_lock(&wq->flush_mutex);
  2276. /* we might have raced, check again with mutex held */
  2277. if (wq->first_flusher != &this_flusher)
  2278. goto out_unlock;
  2279. wq->first_flusher = NULL;
  2280. BUG_ON(!list_empty(&this_flusher.list));
  2281. BUG_ON(wq->flush_color != this_flusher.flush_color);
  2282. while (true) {
  2283. struct wq_flusher *next, *tmp;
  2284. /* complete all the flushers sharing the current flush color */
  2285. list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
  2286. if (next->flush_color != wq->flush_color)
  2287. break;
  2288. list_del_init(&next->list);
  2289. complete(&next->done);
  2290. }
  2291. BUG_ON(!list_empty(&wq->flusher_overflow) &&
  2292. wq->flush_color != work_next_color(wq->work_color));
  2293. /* this flush_color is finished, advance by one */
  2294. wq->flush_color = work_next_color(wq->flush_color);
  2295. /* one color has been freed, handle overflow queue */
  2296. if (!list_empty(&wq->flusher_overflow)) {
  2297. /*
  2298. * Assign the same color to all overflowed
  2299. * flushers, advance work_color and append to
  2300. * flusher_queue. This is the start-to-wait
  2301. * phase for these overflowed flushers.
  2302. */
  2303. list_for_each_entry(tmp, &wq->flusher_overflow, list)
  2304. tmp->flush_color = wq->work_color;
  2305. wq->work_color = work_next_color(wq->work_color);
  2306. list_splice_tail_init(&wq->flusher_overflow,
  2307. &wq->flusher_queue);
  2308. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2309. }
  2310. if (list_empty(&wq->flusher_queue)) {
  2311. BUG_ON(wq->flush_color != wq->work_color);
  2312. break;
  2313. }
  2314. /*
  2315. * Need to flush more colors. Make the next flusher
  2316. * the new first flusher and arm pwqs.
  2317. */
  2318. BUG_ON(wq->flush_color == wq->work_color);
  2319. BUG_ON(wq->flush_color != next->flush_color);
  2320. list_del_init(&next->list);
  2321. wq->first_flusher = next;
  2322. if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
  2323. break;
  2324. /*
  2325. * Meh... this color is already done, clear first
  2326. * flusher and repeat cascading.
  2327. */
  2328. wq->first_flusher = NULL;
  2329. }
  2330. out_unlock:
  2331. mutex_unlock(&wq->flush_mutex);
  2332. }
  2333. EXPORT_SYMBOL_GPL(flush_workqueue);
  2334. /**
  2335. * drain_workqueue - drain a workqueue
  2336. * @wq: workqueue to drain
  2337. *
  2338. * Wait until the workqueue becomes empty. While draining is in progress,
  2339. * only chain queueing is allowed. IOW, only currently pending or running
  2340. * work items on @wq can queue further work items on it. @wq is flushed
  2341. * repeatedly until it becomes empty. The number of flushing is detemined
  2342. * by the depth of chaining and should be relatively short. Whine if it
  2343. * takes too long.
  2344. */
  2345. void drain_workqueue(struct workqueue_struct *wq)
  2346. {
  2347. unsigned int flush_cnt = 0;
  2348. unsigned int cpu;
  2349. /*
  2350. * __queue_work() needs to test whether there are drainers, is much
  2351. * hotter than drain_workqueue() and already looks at @wq->flags.
  2352. * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
  2353. */
  2354. spin_lock(&workqueue_lock);
  2355. if (!wq->nr_drainers++)
  2356. wq->flags |= WQ_DRAINING;
  2357. spin_unlock(&workqueue_lock);
  2358. reflush:
  2359. flush_workqueue(wq);
  2360. for_each_pwq_cpu(cpu, wq) {
  2361. struct pool_workqueue *pwq = get_pwq(cpu, wq);
  2362. bool drained;
  2363. spin_lock_irq(&pwq->pool->lock);
  2364. drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
  2365. spin_unlock_irq(&pwq->pool->lock);
  2366. if (drained)
  2367. continue;
  2368. if (++flush_cnt == 10 ||
  2369. (flush_cnt % 100 == 0 && flush_cnt <= 1000))
  2370. pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
  2371. wq->name, flush_cnt);
  2372. goto reflush;
  2373. }
  2374. spin_lock(&workqueue_lock);
  2375. if (!--wq->nr_drainers)
  2376. wq->flags &= ~WQ_DRAINING;
  2377. spin_unlock(&workqueue_lock);
  2378. }
  2379. EXPORT_SYMBOL_GPL(drain_workqueue);
  2380. static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
  2381. {
  2382. struct worker *worker = NULL;
  2383. struct worker_pool *pool;
  2384. struct pool_workqueue *pwq;
  2385. might_sleep();
  2386. pool = get_work_pool(work);
  2387. if (!pool)
  2388. return false;
  2389. spin_lock_irq(&pool->lock);
  2390. /* see the comment in try_to_grab_pending() with the same code */
  2391. pwq = get_work_pwq(work);
  2392. if (pwq) {
  2393. if (unlikely(pwq->pool != pool))
  2394. goto already_gone;
  2395. } else {
  2396. worker = find_worker_executing_work(pool, work);
  2397. if (!worker)
  2398. goto already_gone;
  2399. pwq = worker->current_pwq;
  2400. }
  2401. insert_wq_barrier(pwq, barr, work, worker);
  2402. spin_unlock_irq(&pool->lock);
  2403. /*
  2404. * If @max_active is 1 or rescuer is in use, flushing another work
  2405. * item on the same workqueue may lead to deadlock. Make sure the
  2406. * flusher is not running on the same workqueue by verifying write
  2407. * access.
  2408. */
  2409. if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
  2410. lock_map_acquire(&pwq->wq->lockdep_map);
  2411. else
  2412. lock_map_acquire_read(&pwq->wq->lockdep_map);
  2413. lock_map_release(&pwq->wq->lockdep_map);
  2414. return true;
  2415. already_gone:
  2416. spin_unlock_irq(&pool->lock);
  2417. return false;
  2418. }
  2419. /**
  2420. * flush_work - wait for a work to finish executing the last queueing instance
  2421. * @work: the work to flush
  2422. *
  2423. * Wait until @work has finished execution. @work is guaranteed to be idle
  2424. * on return if it hasn't been requeued since flush started.
  2425. *
  2426. * RETURNS:
  2427. * %true if flush_work() waited for the work to finish execution,
  2428. * %false if it was already idle.
  2429. */
  2430. bool flush_work(struct work_struct *work)
  2431. {
  2432. struct wq_barrier barr;
  2433. lock_map_acquire(&work->lockdep_map);
  2434. lock_map_release(&work->lockdep_map);
  2435. if (start_flush_work(work, &barr)) {
  2436. wait_for_completion(&barr.done);
  2437. destroy_work_on_stack(&barr.work);
  2438. return true;
  2439. } else {
  2440. return false;
  2441. }
  2442. }
  2443. EXPORT_SYMBOL_GPL(flush_work);
  2444. static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
  2445. {
  2446. unsigned long flags;
  2447. int ret;
  2448. do {
  2449. ret = try_to_grab_pending(work, is_dwork, &flags);
  2450. /*
  2451. * If someone else is canceling, wait for the same event it
  2452. * would be waiting for before retrying.
  2453. */
  2454. if (unlikely(ret == -ENOENT))
  2455. flush_work(work);
  2456. } while (unlikely(ret < 0));
  2457. /* tell other tasks trying to grab @work to back off */
  2458. mark_work_canceling(work);
  2459. local_irq_restore(flags);
  2460. flush_work(work);
  2461. clear_work_data(work);
  2462. return ret;
  2463. }
  2464. /**
  2465. * cancel_work_sync - cancel a work and wait for it to finish
  2466. * @work: the work to cancel
  2467. *
  2468. * Cancel @work and wait for its execution to finish. This function
  2469. * can be used even if the work re-queues itself or migrates to
  2470. * another workqueue. On return from this function, @work is
  2471. * guaranteed to be not pending or executing on any CPU.
  2472. *
  2473. * cancel_work_sync(&delayed_work->work) must not be used for
  2474. * delayed_work's. Use cancel_delayed_work_sync() instead.
  2475. *
  2476. * The caller must ensure that the workqueue on which @work was last
  2477. * queued can't be destroyed before this function returns.
  2478. *
  2479. * RETURNS:
  2480. * %true if @work was pending, %false otherwise.
  2481. */
  2482. bool cancel_work_sync(struct work_struct *work)
  2483. {
  2484. return __cancel_work_timer(work, false);
  2485. }
  2486. EXPORT_SYMBOL_GPL(cancel_work_sync);
  2487. /**
  2488. * flush_delayed_work - wait for a dwork to finish executing the last queueing
  2489. * @dwork: the delayed work to flush
  2490. *
  2491. * Delayed timer is cancelled and the pending work is queued for
  2492. * immediate execution. Like flush_work(), this function only
  2493. * considers the last queueing instance of @dwork.
  2494. *
  2495. * RETURNS:
  2496. * %true if flush_work() waited for the work to finish execution,
  2497. * %false if it was already idle.
  2498. */
  2499. bool flush_delayed_work(struct delayed_work *dwork)
  2500. {
  2501. local_irq_disable();
  2502. if (del_timer_sync(&dwork->timer))
  2503. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  2504. local_irq_enable();
  2505. return flush_work(&dwork->work);
  2506. }
  2507. EXPORT_SYMBOL(flush_delayed_work);
  2508. /**
  2509. * cancel_delayed_work - cancel a delayed work
  2510. * @dwork: delayed_work to cancel
  2511. *
  2512. * Kill off a pending delayed_work. Returns %true if @dwork was pending
  2513. * and canceled; %false if wasn't pending. Note that the work callback
  2514. * function may still be running on return, unless it returns %true and the
  2515. * work doesn't re-arm itself. Explicitly flush or use
  2516. * cancel_delayed_work_sync() to wait on it.
  2517. *
  2518. * This function is safe to call from any context including IRQ handler.
  2519. */
  2520. bool cancel_delayed_work(struct delayed_work *dwork)
  2521. {
  2522. unsigned long flags;
  2523. int ret;
  2524. do {
  2525. ret = try_to_grab_pending(&dwork->work, true, &flags);
  2526. } while (unlikely(ret == -EAGAIN));
  2527. if (unlikely(ret < 0))
  2528. return false;
  2529. set_work_pool_and_clear_pending(&dwork->work,
  2530. get_work_pool_id(&dwork->work));
  2531. local_irq_restore(flags);
  2532. return ret;
  2533. }
  2534. EXPORT_SYMBOL(cancel_delayed_work);
  2535. /**
  2536. * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
  2537. * @dwork: the delayed work cancel
  2538. *
  2539. * This is cancel_work_sync() for delayed works.
  2540. *
  2541. * RETURNS:
  2542. * %true if @dwork was pending, %false otherwise.
  2543. */
  2544. bool cancel_delayed_work_sync(struct delayed_work *dwork)
  2545. {
  2546. return __cancel_work_timer(&dwork->work, true);
  2547. }
  2548. EXPORT_SYMBOL(cancel_delayed_work_sync);
  2549. /**
  2550. * schedule_work_on - put work task on a specific cpu
  2551. * @cpu: cpu to put the work task on
  2552. * @work: job to be done
  2553. *
  2554. * This puts a job on a specific cpu
  2555. */
  2556. bool schedule_work_on(int cpu, struct work_struct *work)
  2557. {
  2558. return queue_work_on(cpu, system_wq, work);
  2559. }
  2560. EXPORT_SYMBOL(schedule_work_on);
  2561. /**
  2562. * schedule_work - put work task in global workqueue
  2563. * @work: job to be done
  2564. *
  2565. * Returns %false if @work was already on the kernel-global workqueue and
  2566. * %true otherwise.
  2567. *
  2568. * This puts a job in the kernel-global workqueue if it was not already
  2569. * queued and leaves it in the same position on the kernel-global
  2570. * workqueue otherwise.
  2571. */
  2572. bool schedule_work(struct work_struct *work)
  2573. {
  2574. return queue_work(system_wq, work);
  2575. }
  2576. EXPORT_SYMBOL(schedule_work);
  2577. /**
  2578. * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
  2579. * @cpu: cpu to use
  2580. * @dwork: job to be done
  2581. * @delay: number of jiffies to wait
  2582. *
  2583. * After waiting for a given time this puts a job in the kernel-global
  2584. * workqueue on the specified CPU.
  2585. */
  2586. bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
  2587. unsigned long delay)
  2588. {
  2589. return queue_delayed_work_on(cpu, system_wq, dwork, delay);
  2590. }
  2591. EXPORT_SYMBOL(schedule_delayed_work_on);
  2592. /**
  2593. * schedule_delayed_work - put work task in global workqueue after delay
  2594. * @dwork: job to be done
  2595. * @delay: number of jiffies to wait or 0 for immediate execution
  2596. *
  2597. * After waiting for a given time this puts a job in the kernel-global
  2598. * workqueue.
  2599. */
  2600. bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
  2601. {
  2602. return queue_delayed_work(system_wq, dwork, delay);
  2603. }
  2604. EXPORT_SYMBOL(schedule_delayed_work);
  2605. /**
  2606. * schedule_on_each_cpu - execute a function synchronously on each online CPU
  2607. * @func: the function to call
  2608. *
  2609. * schedule_on_each_cpu() executes @func on each online CPU using the
  2610. * system workqueue and blocks until all CPUs have completed.
  2611. * schedule_on_each_cpu() is very slow.
  2612. *
  2613. * RETURNS:
  2614. * 0 on success, -errno on failure.
  2615. */
  2616. int schedule_on_each_cpu(work_func_t func)
  2617. {
  2618. int cpu;
  2619. struct work_struct __percpu *works;
  2620. works = alloc_percpu(struct work_struct);
  2621. if (!works)
  2622. return -ENOMEM;
  2623. get_online_cpus();
  2624. for_each_online_cpu(cpu) {
  2625. struct work_struct *work = per_cpu_ptr(works, cpu);
  2626. INIT_WORK(work, func);
  2627. schedule_work_on(cpu, work);
  2628. }
  2629. for_each_online_cpu(cpu)
  2630. flush_work(per_cpu_ptr(works, cpu));
  2631. put_online_cpus();
  2632. free_percpu(works);
  2633. return 0;
  2634. }
  2635. /**
  2636. * flush_scheduled_work - ensure that any scheduled work has run to completion.
  2637. *
  2638. * Forces execution of the kernel-global workqueue and blocks until its
  2639. * completion.
  2640. *
  2641. * Think twice before calling this function! It's very easy to get into
  2642. * trouble if you don't take great care. Either of the following situations
  2643. * will lead to deadlock:
  2644. *
  2645. * One of the work items currently on the workqueue needs to acquire
  2646. * a lock held by your code or its caller.
  2647. *
  2648. * Your code is running in the context of a work routine.
  2649. *
  2650. * They will be detected by lockdep when they occur, but the first might not
  2651. * occur very often. It depends on what work items are on the workqueue and
  2652. * what locks they need, which you have no control over.
  2653. *
  2654. * In most situations flushing the entire workqueue is overkill; you merely
  2655. * need to know that a particular work item isn't queued and isn't running.
  2656. * In such cases you should use cancel_delayed_work_sync() or
  2657. * cancel_work_sync() instead.
  2658. */
  2659. void flush_scheduled_work(void)
  2660. {
  2661. flush_workqueue(system_wq);
  2662. }
  2663. EXPORT_SYMBOL(flush_scheduled_work);
  2664. /**
  2665. * execute_in_process_context - reliably execute the routine with user context
  2666. * @fn: the function to execute
  2667. * @ew: guaranteed storage for the execute work structure (must
  2668. * be available when the work executes)
  2669. *
  2670. * Executes the function immediately if process context is available,
  2671. * otherwise schedules the function for delayed execution.
  2672. *
  2673. * Returns: 0 - function was executed
  2674. * 1 - function was scheduled for execution
  2675. */
  2676. int execute_in_process_context(work_func_t fn, struct execute_work *ew)
  2677. {
  2678. if (!in_interrupt()) {
  2679. fn(&ew->work);
  2680. return 0;
  2681. }
  2682. INIT_WORK(&ew->work, fn);
  2683. schedule_work(&ew->work);
  2684. return 1;
  2685. }
  2686. EXPORT_SYMBOL_GPL(execute_in_process_context);
  2687. int keventd_up(void)
  2688. {
  2689. return system_wq != NULL;
  2690. }
  2691. static int alloc_pwqs(struct workqueue_struct *wq)
  2692. {
  2693. /*
  2694. * pwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
  2695. * Make sure that the alignment isn't lower than that of
  2696. * unsigned long long.
  2697. */
  2698. const size_t size = sizeof(struct pool_workqueue);
  2699. const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
  2700. __alignof__(unsigned long long));
  2701. if (!(wq->flags & WQ_UNBOUND))
  2702. wq->pool_wq.pcpu = __alloc_percpu(size, align);
  2703. else {
  2704. void *ptr;
  2705. /*
  2706. * Allocate enough room to align pwq and put an extra
  2707. * pointer at the end pointing back to the originally
  2708. * allocated pointer which will be used for free.
  2709. */
  2710. ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
  2711. if (ptr) {
  2712. wq->pool_wq.single = PTR_ALIGN(ptr, align);
  2713. *(void **)(wq->pool_wq.single + 1) = ptr;
  2714. }
  2715. }
  2716. /* just in case, make sure it's actually aligned */
  2717. BUG_ON(!IS_ALIGNED(wq->pool_wq.v, align));
  2718. return wq->pool_wq.v ? 0 : -ENOMEM;
  2719. }
  2720. static void free_pwqs(struct workqueue_struct *wq)
  2721. {
  2722. if (!(wq->flags & WQ_UNBOUND))
  2723. free_percpu(wq->pool_wq.pcpu);
  2724. else if (wq->pool_wq.single) {
  2725. /* the pointer to free is stored right after the pwq */
  2726. kfree(*(void **)(wq->pool_wq.single + 1));
  2727. }
  2728. }
  2729. static int wq_clamp_max_active(int max_active, unsigned int flags,
  2730. const char *name)
  2731. {
  2732. int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
  2733. if (max_active < 1 || max_active > lim)
  2734. pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
  2735. max_active, name, 1, lim);
  2736. return clamp_val(max_active, 1, lim);
  2737. }
  2738. struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
  2739. unsigned int flags,
  2740. int max_active,
  2741. struct lock_class_key *key,
  2742. const char *lock_name, ...)
  2743. {
  2744. va_list args, args1;
  2745. struct workqueue_struct *wq;
  2746. unsigned int cpu;
  2747. size_t namelen;
  2748. /* determine namelen, allocate wq and format name */
  2749. va_start(args, lock_name);
  2750. va_copy(args1, args);
  2751. namelen = vsnprintf(NULL, 0, fmt, args) + 1;
  2752. wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
  2753. if (!wq)
  2754. goto err;
  2755. vsnprintf(wq->name, namelen, fmt, args1);
  2756. va_end(args);
  2757. va_end(args1);
  2758. /*
  2759. * Workqueues which may be used during memory reclaim should
  2760. * have a rescuer to guarantee forward progress.
  2761. */
  2762. if (flags & WQ_MEM_RECLAIM)
  2763. flags |= WQ_RESCUER;
  2764. max_active = max_active ?: WQ_DFL_ACTIVE;
  2765. max_active = wq_clamp_max_active(max_active, flags, wq->name);
  2766. /* init wq */
  2767. wq->flags = flags;
  2768. wq->saved_max_active = max_active;
  2769. mutex_init(&wq->flush_mutex);
  2770. atomic_set(&wq->nr_pwqs_to_flush, 0);
  2771. INIT_LIST_HEAD(&wq->flusher_queue);
  2772. INIT_LIST_HEAD(&wq->flusher_overflow);
  2773. lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
  2774. INIT_LIST_HEAD(&wq->list);
  2775. if (alloc_pwqs(wq) < 0)
  2776. goto err;
  2777. for_each_pwq_cpu(cpu, wq) {
  2778. struct pool_workqueue *pwq = get_pwq(cpu, wq);
  2779. BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
  2780. pwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
  2781. pwq->wq = wq;
  2782. pwq->flush_color = -1;
  2783. pwq->max_active = max_active;
  2784. INIT_LIST_HEAD(&pwq->delayed_works);
  2785. }
  2786. if (flags & WQ_RESCUER) {
  2787. struct worker *rescuer;
  2788. if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
  2789. goto err;
  2790. wq->rescuer = rescuer = alloc_worker();
  2791. if (!rescuer)
  2792. goto err;
  2793. rescuer->rescue_wq = wq;
  2794. rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
  2795. wq->name);
  2796. if (IS_ERR(rescuer->task))
  2797. goto err;
  2798. rescuer->task->flags |= PF_THREAD_BOUND;
  2799. wake_up_process(rescuer->task);
  2800. }
  2801. /*
  2802. * workqueue_lock protects global freeze state and workqueues
  2803. * list. Grab it, set max_active accordingly and add the new
  2804. * workqueue to workqueues list.
  2805. */
  2806. spin_lock(&workqueue_lock);
  2807. if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
  2808. for_each_pwq_cpu(cpu, wq)
  2809. get_pwq(cpu, wq)->max_active = 0;
  2810. list_add(&wq->list, &workqueues);
  2811. spin_unlock(&workqueue_lock);
  2812. return wq;
  2813. err:
  2814. if (wq) {
  2815. free_pwqs(wq);
  2816. free_mayday_mask(wq->mayday_mask);
  2817. kfree(wq->rescuer);
  2818. kfree(wq);
  2819. }
  2820. return NULL;
  2821. }
  2822. EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
  2823. /**
  2824. * destroy_workqueue - safely terminate a workqueue
  2825. * @wq: target workqueue
  2826. *
  2827. * Safely destroy a workqueue. All work currently pending will be done first.
  2828. */
  2829. void destroy_workqueue(struct workqueue_struct *wq)
  2830. {
  2831. unsigned int cpu;
  2832. /* drain it before proceeding with destruction */
  2833. drain_workqueue(wq);
  2834. /*
  2835. * wq list is used to freeze wq, remove from list after
  2836. * flushing is complete in case freeze races us.
  2837. */
  2838. spin_lock(&workqueue_lock);
  2839. list_del(&wq->list);
  2840. spin_unlock(&workqueue_lock);
  2841. /* sanity check */
  2842. for_each_pwq_cpu(cpu, wq) {
  2843. struct pool_workqueue *pwq = get_pwq(cpu, wq);
  2844. int i;
  2845. for (i = 0; i < WORK_NR_COLORS; i++)
  2846. BUG_ON(pwq->nr_in_flight[i]);
  2847. BUG_ON(pwq->nr_active);
  2848. BUG_ON(!list_empty(&pwq->delayed_works));
  2849. }
  2850. if (wq->flags & WQ_RESCUER) {
  2851. kthread_stop(wq->rescuer->task);
  2852. free_mayday_mask(wq->mayday_mask);
  2853. kfree(wq->rescuer);
  2854. }
  2855. free_pwqs(wq);
  2856. kfree(wq);
  2857. }
  2858. EXPORT_SYMBOL_GPL(destroy_workqueue);
  2859. /**
  2860. * pwq_set_max_active - adjust max_active of a pwq
  2861. * @pwq: target pool_workqueue
  2862. * @max_active: new max_active value.
  2863. *
  2864. * Set @pwq->max_active to @max_active and activate delayed works if
  2865. * increased.
  2866. *
  2867. * CONTEXT:
  2868. * spin_lock_irq(pool->lock).
  2869. */
  2870. static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
  2871. {
  2872. pwq->max_active = max_active;
  2873. while (!list_empty(&pwq->delayed_works) &&
  2874. pwq->nr_active < pwq->max_active)
  2875. pwq_activate_first_delayed(pwq);
  2876. }
  2877. /**
  2878. * workqueue_set_max_active - adjust max_active of a workqueue
  2879. * @wq: target workqueue
  2880. * @max_active: new max_active value.
  2881. *
  2882. * Set max_active of @wq to @max_active.
  2883. *
  2884. * CONTEXT:
  2885. * Don't call from IRQ context.
  2886. */
  2887. void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
  2888. {
  2889. unsigned int cpu;
  2890. max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
  2891. spin_lock(&workqueue_lock);
  2892. wq->saved_max_active = max_active;
  2893. for_each_pwq_cpu(cpu, wq) {
  2894. struct pool_workqueue *pwq = get_pwq(cpu, wq);
  2895. struct worker_pool *pool = pwq->pool;
  2896. spin_lock_irq(&pool->lock);
  2897. if (!(wq->flags & WQ_FREEZABLE) ||
  2898. !(pool->flags & POOL_FREEZING))
  2899. pwq_set_max_active(pwq, max_active);
  2900. spin_unlock_irq(&pool->lock);
  2901. }
  2902. spin_unlock(&workqueue_lock);
  2903. }
  2904. EXPORT_SYMBOL_GPL(workqueue_set_max_active);
  2905. /**
  2906. * workqueue_congested - test whether a workqueue is congested
  2907. * @cpu: CPU in question
  2908. * @wq: target workqueue
  2909. *
  2910. * Test whether @wq's cpu workqueue for @cpu is congested. There is
  2911. * no synchronization around this function and the test result is
  2912. * unreliable and only useful as advisory hints or for debugging.
  2913. *
  2914. * RETURNS:
  2915. * %true if congested, %false otherwise.
  2916. */
  2917. bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
  2918. {
  2919. struct pool_workqueue *pwq = get_pwq(cpu, wq);
  2920. return !list_empty(&pwq->delayed_works);
  2921. }
  2922. EXPORT_SYMBOL_GPL(workqueue_congested);
  2923. /**
  2924. * work_busy - test whether a work is currently pending or running
  2925. * @work: the work to be tested
  2926. *
  2927. * Test whether @work is currently pending or running. There is no
  2928. * synchronization around this function and the test result is
  2929. * unreliable and only useful as advisory hints or for debugging.
  2930. *
  2931. * RETURNS:
  2932. * OR'd bitmask of WORK_BUSY_* bits.
  2933. */
  2934. unsigned int work_busy(struct work_struct *work)
  2935. {
  2936. struct worker_pool *pool = get_work_pool(work);
  2937. unsigned long flags;
  2938. unsigned int ret = 0;
  2939. if (work_pending(work))
  2940. ret |= WORK_BUSY_PENDING;
  2941. if (pool) {
  2942. spin_lock_irqsave(&pool->lock, flags);
  2943. if (find_worker_executing_work(pool, work))
  2944. ret |= WORK_BUSY_RUNNING;
  2945. spin_unlock_irqrestore(&pool->lock, flags);
  2946. }
  2947. return ret;
  2948. }
  2949. EXPORT_SYMBOL_GPL(work_busy);
  2950. /*
  2951. * CPU hotplug.
  2952. *
  2953. * There are two challenges in supporting CPU hotplug. Firstly, there
  2954. * are a lot of assumptions on strong associations among work, pwq and
  2955. * pool which make migrating pending and scheduled works very
  2956. * difficult to implement without impacting hot paths. Secondly,
  2957. * worker pools serve mix of short, long and very long running works making
  2958. * blocked draining impractical.
  2959. *
  2960. * This is solved by allowing the pools to be disassociated from the CPU
  2961. * running as an unbound one and allowing it to be reattached later if the
  2962. * cpu comes back online.
  2963. */
  2964. static void wq_unbind_fn(struct work_struct *work)
  2965. {
  2966. int cpu = smp_processor_id();
  2967. struct worker_pool *pool;
  2968. struct worker *worker;
  2969. int i;
  2970. for_each_std_worker_pool(pool, cpu) {
  2971. BUG_ON(cpu != smp_processor_id());
  2972. mutex_lock(&pool->assoc_mutex);
  2973. spin_lock_irq(&pool->lock);
  2974. /*
  2975. * We've claimed all manager positions. Make all workers
  2976. * unbound and set DISASSOCIATED. Before this, all workers
  2977. * except for the ones which are still executing works from
  2978. * before the last CPU down must be on the cpu. After
  2979. * this, they may become diasporas.
  2980. */
  2981. list_for_each_entry(worker, &pool->idle_list, entry)
  2982. worker->flags |= WORKER_UNBOUND;
  2983. for_each_busy_worker(worker, i, pool)
  2984. worker->flags |= WORKER_UNBOUND;
  2985. pool->flags |= POOL_DISASSOCIATED;
  2986. spin_unlock_irq(&pool->lock);
  2987. mutex_unlock(&pool->assoc_mutex);
  2988. }
  2989. /*
  2990. * Call schedule() so that we cross rq->lock and thus can guarantee
  2991. * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
  2992. * as scheduler callbacks may be invoked from other cpus.
  2993. */
  2994. schedule();
  2995. /*
  2996. * Sched callbacks are disabled now. Zap nr_running. After this,
  2997. * nr_running stays zero and need_more_worker() and keep_working()
  2998. * are always true as long as the worklist is not empty. Pools on
  2999. * @cpu now behave as unbound (in terms of concurrency management)
  3000. * pools which are served by workers tied to the CPU.
  3001. *
  3002. * On return from this function, the current worker would trigger
  3003. * unbound chain execution of pending work items if other workers
  3004. * didn't already.
  3005. */
  3006. for_each_std_worker_pool(pool, cpu)
  3007. atomic_set(&pool->nr_running, 0);
  3008. }
  3009. /*
  3010. * Workqueues should be brought up before normal priority CPU notifiers.
  3011. * This will be registered high priority CPU notifier.
  3012. */
  3013. static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
  3014. unsigned long action,
  3015. void *hcpu)
  3016. {
  3017. unsigned int cpu = (unsigned long)hcpu;
  3018. struct worker_pool *pool;
  3019. switch (action & ~CPU_TASKS_FROZEN) {
  3020. case CPU_UP_PREPARE:
  3021. for_each_std_worker_pool(pool, cpu) {
  3022. struct worker *worker;
  3023. if (pool->nr_workers)
  3024. continue;
  3025. worker = create_worker(pool);
  3026. if (!worker)
  3027. return NOTIFY_BAD;
  3028. spin_lock_irq(&pool->lock);
  3029. start_worker(worker);
  3030. spin_unlock_irq(&pool->lock);
  3031. }
  3032. break;
  3033. case CPU_DOWN_FAILED:
  3034. case CPU_ONLINE:
  3035. for_each_std_worker_pool(pool, cpu) {
  3036. mutex_lock(&pool->assoc_mutex);
  3037. spin_lock_irq(&pool->lock);
  3038. pool->flags &= ~POOL_DISASSOCIATED;
  3039. rebind_workers(pool);
  3040. spin_unlock_irq(&pool->lock);
  3041. mutex_unlock(&pool->assoc_mutex);
  3042. }
  3043. break;
  3044. }
  3045. return NOTIFY_OK;
  3046. }
  3047. /*
  3048. * Workqueues should be brought down after normal priority CPU notifiers.
  3049. * This will be registered as low priority CPU notifier.
  3050. */
  3051. static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
  3052. unsigned long action,
  3053. void *hcpu)
  3054. {
  3055. unsigned int cpu = (unsigned long)hcpu;
  3056. struct work_struct unbind_work;
  3057. switch (action & ~CPU_TASKS_FROZEN) {
  3058. case CPU_DOWN_PREPARE:
  3059. /* unbinding should happen on the local CPU */
  3060. INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
  3061. queue_work_on(cpu, system_highpri_wq, &unbind_work);
  3062. flush_work(&unbind_work);
  3063. break;
  3064. }
  3065. return NOTIFY_OK;
  3066. }
  3067. #ifdef CONFIG_SMP
  3068. struct work_for_cpu {
  3069. struct work_struct work;
  3070. long (*fn)(void *);
  3071. void *arg;
  3072. long ret;
  3073. };
  3074. static void work_for_cpu_fn(struct work_struct *work)
  3075. {
  3076. struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
  3077. wfc->ret = wfc->fn(wfc->arg);
  3078. }
  3079. /**
  3080. * work_on_cpu - run a function in user context on a particular cpu
  3081. * @cpu: the cpu to run on
  3082. * @fn: the function to run
  3083. * @arg: the function arg
  3084. *
  3085. * This will return the value @fn returns.
  3086. * It is up to the caller to ensure that the cpu doesn't go offline.
  3087. * The caller must not hold any locks which would prevent @fn from completing.
  3088. */
  3089. long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
  3090. {
  3091. struct work_for_cpu wfc = { .fn = fn, .arg = arg };
  3092. INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
  3093. schedule_work_on(cpu, &wfc.work);
  3094. flush_work(&wfc.work);
  3095. return wfc.ret;
  3096. }
  3097. EXPORT_SYMBOL_GPL(work_on_cpu);
  3098. #endif /* CONFIG_SMP */
  3099. #ifdef CONFIG_FREEZER
  3100. /**
  3101. * freeze_workqueues_begin - begin freezing workqueues
  3102. *
  3103. * Start freezing workqueues. After this function returns, all freezable
  3104. * workqueues will queue new works to their frozen_works list instead of
  3105. * pool->worklist.
  3106. *
  3107. * CONTEXT:
  3108. * Grabs and releases workqueue_lock and pool->lock's.
  3109. */
  3110. void freeze_workqueues_begin(void)
  3111. {
  3112. unsigned int cpu;
  3113. spin_lock(&workqueue_lock);
  3114. BUG_ON(workqueue_freezing);
  3115. workqueue_freezing = true;
  3116. for_each_wq_cpu(cpu) {
  3117. struct worker_pool *pool;
  3118. struct workqueue_struct *wq;
  3119. for_each_std_worker_pool(pool, cpu) {
  3120. spin_lock_irq(&pool->lock);
  3121. WARN_ON_ONCE(pool->flags & POOL_FREEZING);
  3122. pool->flags |= POOL_FREEZING;
  3123. list_for_each_entry(wq, &workqueues, list) {
  3124. struct pool_workqueue *pwq = get_pwq(cpu, wq);
  3125. if (pwq && pwq->pool == pool &&
  3126. (wq->flags & WQ_FREEZABLE))
  3127. pwq->max_active = 0;
  3128. }
  3129. spin_unlock_irq(&pool->lock);
  3130. }
  3131. }
  3132. spin_unlock(&workqueue_lock);
  3133. }
  3134. /**
  3135. * freeze_workqueues_busy - are freezable workqueues still busy?
  3136. *
  3137. * Check whether freezing is complete. This function must be called
  3138. * between freeze_workqueues_begin() and thaw_workqueues().
  3139. *
  3140. * CONTEXT:
  3141. * Grabs and releases workqueue_lock.
  3142. *
  3143. * RETURNS:
  3144. * %true if some freezable workqueues are still busy. %false if freezing
  3145. * is complete.
  3146. */
  3147. bool freeze_workqueues_busy(void)
  3148. {
  3149. unsigned int cpu;
  3150. bool busy = false;
  3151. spin_lock(&workqueue_lock);
  3152. BUG_ON(!workqueue_freezing);
  3153. for_each_wq_cpu(cpu) {
  3154. struct workqueue_struct *wq;
  3155. /*
  3156. * nr_active is monotonically decreasing. It's safe
  3157. * to peek without lock.
  3158. */
  3159. list_for_each_entry(wq, &workqueues, list) {
  3160. struct pool_workqueue *pwq = get_pwq(cpu, wq);
  3161. if (!pwq || !(wq->flags & WQ_FREEZABLE))
  3162. continue;
  3163. BUG_ON(pwq->nr_active < 0);
  3164. if (pwq->nr_active) {
  3165. busy = true;
  3166. goto out_unlock;
  3167. }
  3168. }
  3169. }
  3170. out_unlock:
  3171. spin_unlock(&workqueue_lock);
  3172. return busy;
  3173. }
  3174. /**
  3175. * thaw_workqueues - thaw workqueues
  3176. *
  3177. * Thaw workqueues. Normal queueing is restored and all collected
  3178. * frozen works are transferred to their respective pool worklists.
  3179. *
  3180. * CONTEXT:
  3181. * Grabs and releases workqueue_lock and pool->lock's.
  3182. */
  3183. void thaw_workqueues(void)
  3184. {
  3185. unsigned int cpu;
  3186. spin_lock(&workqueue_lock);
  3187. if (!workqueue_freezing)
  3188. goto out_unlock;
  3189. for_each_wq_cpu(cpu) {
  3190. struct worker_pool *pool;
  3191. struct workqueue_struct *wq;
  3192. for_each_std_worker_pool(pool, cpu) {
  3193. spin_lock_irq(&pool->lock);
  3194. WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
  3195. pool->flags &= ~POOL_FREEZING;
  3196. list_for_each_entry(wq, &workqueues, list) {
  3197. struct pool_workqueue *pwq = get_pwq(cpu, wq);
  3198. if (!pwq || pwq->pool != pool ||
  3199. !(wq->flags & WQ_FREEZABLE))
  3200. continue;
  3201. /* restore max_active and repopulate worklist */
  3202. pwq_set_max_active(pwq, wq->saved_max_active);
  3203. }
  3204. wake_up_worker(pool);
  3205. spin_unlock_irq(&pool->lock);
  3206. }
  3207. }
  3208. workqueue_freezing = false;
  3209. out_unlock:
  3210. spin_unlock(&workqueue_lock);
  3211. }
  3212. #endif /* CONFIG_FREEZER */
  3213. static int __init init_workqueues(void)
  3214. {
  3215. unsigned int cpu;
  3216. /* make sure we have enough bits for OFFQ pool ID */
  3217. BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
  3218. WORK_CPU_END * NR_STD_WORKER_POOLS);
  3219. cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
  3220. hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
  3221. /* initialize CPU pools */
  3222. for_each_wq_cpu(cpu) {
  3223. struct worker_pool *pool;
  3224. for_each_std_worker_pool(pool, cpu) {
  3225. spin_lock_init(&pool->lock);
  3226. pool->cpu = cpu;
  3227. pool->flags |= POOL_DISASSOCIATED;
  3228. INIT_LIST_HEAD(&pool->worklist);
  3229. INIT_LIST_HEAD(&pool->idle_list);
  3230. hash_init(pool->busy_hash);
  3231. init_timer_deferrable(&pool->idle_timer);
  3232. pool->idle_timer.function = idle_worker_timeout;
  3233. pool->idle_timer.data = (unsigned long)pool;
  3234. setup_timer(&pool->mayday_timer, pool_mayday_timeout,
  3235. (unsigned long)pool);
  3236. mutex_init(&pool->assoc_mutex);
  3237. ida_init(&pool->worker_ida);
  3238. /* alloc pool ID */
  3239. BUG_ON(worker_pool_assign_id(pool));
  3240. }
  3241. }
  3242. /* create the initial worker */
  3243. for_each_online_wq_cpu(cpu) {
  3244. struct worker_pool *pool;
  3245. for_each_std_worker_pool(pool, cpu) {
  3246. struct worker *worker;
  3247. if (cpu != WORK_CPU_UNBOUND)
  3248. pool->flags &= ~POOL_DISASSOCIATED;
  3249. worker = create_worker(pool);
  3250. BUG_ON(!worker);
  3251. spin_lock_irq(&pool->lock);
  3252. start_worker(worker);
  3253. spin_unlock_irq(&pool->lock);
  3254. }
  3255. }
  3256. system_wq = alloc_workqueue("events", 0, 0);
  3257. system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
  3258. system_long_wq = alloc_workqueue("events_long", 0, 0);
  3259. system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
  3260. WQ_UNBOUND_MAX_ACTIVE);
  3261. system_freezable_wq = alloc_workqueue("events_freezable",
  3262. WQ_FREEZABLE, 0);
  3263. BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
  3264. !system_unbound_wq || !system_freezable_wq);
  3265. return 0;
  3266. }
  3267. early_initcall(init_workqueues);