cfq-iosched.c 107 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "cfq.h"
  18. /*
  19. * tunables
  20. */
  21. /* max queue in one round of service */
  22. static const int cfq_quantum = 8;
  23. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  24. /* maximum backwards seek, in KiB */
  25. static const int cfq_back_max = 16 * 1024;
  26. /* penalty of a backwards seek */
  27. static const int cfq_back_penalty = 2;
  28. static const int cfq_slice_sync = HZ / 10;
  29. static int cfq_slice_async = HZ / 25;
  30. static const int cfq_slice_async_rq = 2;
  31. static int cfq_slice_idle = HZ / 125;
  32. static int cfq_group_idle = HZ / 125;
  33. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  34. static const int cfq_hist_divisor = 4;
  35. /*
  36. * offset from end of service tree
  37. */
  38. #define CFQ_IDLE_DELAY (HZ / 5)
  39. /*
  40. * below this threshold, we consider thinktime immediate
  41. */
  42. #define CFQ_MIN_TT (2)
  43. #define CFQ_SLICE_SCALE (5)
  44. #define CFQ_HW_QUEUE_MIN (5)
  45. #define CFQ_SERVICE_SHIFT 12
  46. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  47. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  48. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  49. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  50. #define RQ_CIC(rq) \
  51. ((struct cfq_io_context *) (rq)->elevator_private[0])
  52. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
  53. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
  54. static struct kmem_cache *cfq_pool;
  55. static struct kmem_cache *cfq_ioc_pool;
  56. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  57. static struct completion *ioc_gone;
  58. static DEFINE_SPINLOCK(ioc_gone_lock);
  59. static DEFINE_SPINLOCK(cic_index_lock);
  60. static DEFINE_IDA(cic_index_ida);
  61. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  62. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  63. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  64. #define sample_valid(samples) ((samples) > 80)
  65. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  66. /*
  67. * Most of our rbtree usage is for sorting with min extraction, so
  68. * if we cache the leftmost node we don't have to walk down the tree
  69. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  70. * move this into the elevator for the rq sorting as well.
  71. */
  72. struct cfq_rb_root {
  73. struct rb_root rb;
  74. struct rb_node *left;
  75. unsigned count;
  76. unsigned total_weight;
  77. u64 min_vdisktime;
  78. struct cfq_ttime ttime;
  79. };
  80. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
  81. .ttime = {.last_end_request = jiffies,},}
  82. /*
  83. * Per process-grouping structure
  84. */
  85. struct cfq_queue {
  86. /* reference count */
  87. int ref;
  88. /* various state flags, see below */
  89. unsigned int flags;
  90. /* parent cfq_data */
  91. struct cfq_data *cfqd;
  92. /* service_tree member */
  93. struct rb_node rb_node;
  94. /* service_tree key */
  95. unsigned long rb_key;
  96. /* prio tree member */
  97. struct rb_node p_node;
  98. /* prio tree root we belong to, if any */
  99. struct rb_root *p_root;
  100. /* sorted list of pending requests */
  101. struct rb_root sort_list;
  102. /* if fifo isn't expired, next request to serve */
  103. struct request *next_rq;
  104. /* requests queued in sort_list */
  105. int queued[2];
  106. /* currently allocated requests */
  107. int allocated[2];
  108. /* fifo list of requests in sort_list */
  109. struct list_head fifo;
  110. /* time when queue got scheduled in to dispatch first request. */
  111. unsigned long dispatch_start;
  112. unsigned int allocated_slice;
  113. unsigned int slice_dispatch;
  114. /* time when first request from queue completed and slice started. */
  115. unsigned long slice_start;
  116. unsigned long slice_end;
  117. long slice_resid;
  118. /* number of requests that are on the dispatch list or inside driver */
  119. int dispatched;
  120. /* io prio of this group */
  121. unsigned short ioprio, org_ioprio;
  122. unsigned short ioprio_class;
  123. pid_t pid;
  124. u32 seek_history;
  125. sector_t last_request_pos;
  126. struct cfq_rb_root *service_tree;
  127. struct cfq_queue *new_cfqq;
  128. struct cfq_group *cfqg;
  129. /* Number of sectors dispatched from queue in single dispatch round */
  130. unsigned long nr_sectors;
  131. };
  132. /*
  133. * First index in the service_trees.
  134. * IDLE is handled separately, so it has negative index
  135. */
  136. enum wl_prio_t {
  137. BE_WORKLOAD = 0,
  138. RT_WORKLOAD = 1,
  139. IDLE_WORKLOAD = 2,
  140. CFQ_PRIO_NR,
  141. };
  142. /*
  143. * Second index in the service_trees.
  144. */
  145. enum wl_type_t {
  146. ASYNC_WORKLOAD = 0,
  147. SYNC_NOIDLE_WORKLOAD = 1,
  148. SYNC_WORKLOAD = 2
  149. };
  150. /* This is per cgroup per device grouping structure */
  151. struct cfq_group {
  152. /* group service_tree member */
  153. struct rb_node rb_node;
  154. /* group service_tree key */
  155. u64 vdisktime;
  156. unsigned int weight;
  157. unsigned int new_weight;
  158. bool needs_update;
  159. /* number of cfqq currently on this group */
  160. int nr_cfqq;
  161. /*
  162. * Per group busy queues average. Useful for workload slice calc. We
  163. * create the array for each prio class but at run time it is used
  164. * only for RT and BE class and slot for IDLE class remains unused.
  165. * This is primarily done to avoid confusion and a gcc warning.
  166. */
  167. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  168. /*
  169. * rr lists of queues with requests. We maintain service trees for
  170. * RT and BE classes. These trees are subdivided in subclasses
  171. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  172. * class there is no subclassification and all the cfq queues go on
  173. * a single tree service_tree_idle.
  174. * Counts are embedded in the cfq_rb_root
  175. */
  176. struct cfq_rb_root service_trees[2][3];
  177. struct cfq_rb_root service_tree_idle;
  178. unsigned long saved_workload_slice;
  179. enum wl_type_t saved_workload;
  180. enum wl_prio_t saved_serving_prio;
  181. struct blkio_group blkg;
  182. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  183. struct hlist_node cfqd_node;
  184. int ref;
  185. #endif
  186. /* number of requests that are on the dispatch list or inside driver */
  187. int dispatched;
  188. };
  189. /*
  190. * Per block device queue structure
  191. */
  192. struct cfq_data {
  193. struct request_queue *queue;
  194. /* Root service tree for cfq_groups */
  195. struct cfq_rb_root grp_service_tree;
  196. struct cfq_group root_group;
  197. /*
  198. * The priority currently being served
  199. */
  200. enum wl_prio_t serving_prio;
  201. enum wl_type_t serving_type;
  202. unsigned long workload_expires;
  203. struct cfq_group *serving_group;
  204. /*
  205. * Each priority tree is sorted by next_request position. These
  206. * trees are used when determining if two or more queues are
  207. * interleaving requests (see cfq_close_cooperator).
  208. */
  209. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  210. unsigned int busy_queues;
  211. unsigned int busy_sync_queues;
  212. int rq_in_driver;
  213. int rq_in_flight[2];
  214. /*
  215. * queue-depth detection
  216. */
  217. int rq_queued;
  218. int hw_tag;
  219. /*
  220. * hw_tag can be
  221. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  222. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  223. * 0 => no NCQ
  224. */
  225. int hw_tag_est_depth;
  226. unsigned int hw_tag_samples;
  227. /*
  228. * idle window management
  229. */
  230. struct timer_list idle_slice_timer;
  231. struct work_struct unplug_work;
  232. struct cfq_queue *active_queue;
  233. struct cfq_io_context *active_cic;
  234. /*
  235. * async queue for each priority case
  236. */
  237. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  238. struct cfq_queue *async_idle_cfqq;
  239. sector_t last_position;
  240. /*
  241. * tunables, see top of file
  242. */
  243. unsigned int cfq_quantum;
  244. unsigned int cfq_fifo_expire[2];
  245. unsigned int cfq_back_penalty;
  246. unsigned int cfq_back_max;
  247. unsigned int cfq_slice[2];
  248. unsigned int cfq_slice_async_rq;
  249. unsigned int cfq_slice_idle;
  250. unsigned int cfq_group_idle;
  251. unsigned int cfq_latency;
  252. unsigned int cic_index;
  253. struct list_head cic_list;
  254. /*
  255. * Fallback dummy cfqq for extreme OOM conditions
  256. */
  257. struct cfq_queue oom_cfqq;
  258. unsigned long last_delayed_sync;
  259. /* List of cfq groups being managed on this device*/
  260. struct hlist_head cfqg_list;
  261. /* Number of groups which are on blkcg->blkg_list */
  262. unsigned int nr_blkcg_linked_grps;
  263. };
  264. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  265. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  266. enum wl_prio_t prio,
  267. enum wl_type_t type)
  268. {
  269. if (!cfqg)
  270. return NULL;
  271. if (prio == IDLE_WORKLOAD)
  272. return &cfqg->service_tree_idle;
  273. return &cfqg->service_trees[prio][type];
  274. }
  275. enum cfqq_state_flags {
  276. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  277. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  278. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  279. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  280. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  281. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  282. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  283. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  284. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  285. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  286. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  287. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  288. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  289. };
  290. #define CFQ_CFQQ_FNS(name) \
  291. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  292. { \
  293. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  294. } \
  295. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  296. { \
  297. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  298. } \
  299. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  300. { \
  301. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  302. }
  303. CFQ_CFQQ_FNS(on_rr);
  304. CFQ_CFQQ_FNS(wait_request);
  305. CFQ_CFQQ_FNS(must_dispatch);
  306. CFQ_CFQQ_FNS(must_alloc_slice);
  307. CFQ_CFQQ_FNS(fifo_expire);
  308. CFQ_CFQQ_FNS(idle_window);
  309. CFQ_CFQQ_FNS(prio_changed);
  310. CFQ_CFQQ_FNS(slice_new);
  311. CFQ_CFQQ_FNS(sync);
  312. CFQ_CFQQ_FNS(coop);
  313. CFQ_CFQQ_FNS(split_coop);
  314. CFQ_CFQQ_FNS(deep);
  315. CFQ_CFQQ_FNS(wait_busy);
  316. #undef CFQ_CFQQ_FNS
  317. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  318. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  319. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  320. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  321. blkg_path(&(cfqq)->cfqg->blkg), ##args)
  322. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  323. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  324. blkg_path(&(cfqg)->blkg), ##args) \
  325. #else
  326. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  327. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  328. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
  329. #endif
  330. #define cfq_log(cfqd, fmt, args...) \
  331. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  332. /* Traverses through cfq group service trees */
  333. #define for_each_cfqg_st(cfqg, i, j, st) \
  334. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  335. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  336. : &cfqg->service_tree_idle; \
  337. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  338. (i == IDLE_WORKLOAD && j == 0); \
  339. j++, st = i < IDLE_WORKLOAD ? \
  340. &cfqg->service_trees[i][j]: NULL) \
  341. static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
  342. struct cfq_ttime *ttime, bool group_idle)
  343. {
  344. unsigned long slice;
  345. if (!sample_valid(ttime->ttime_samples))
  346. return false;
  347. if (group_idle)
  348. slice = cfqd->cfq_group_idle;
  349. else
  350. slice = cfqd->cfq_slice_idle;
  351. return ttime->ttime_mean > slice;
  352. }
  353. static inline bool iops_mode(struct cfq_data *cfqd)
  354. {
  355. /*
  356. * If we are not idling on queues and it is a NCQ drive, parallel
  357. * execution of requests is on and measuring time is not possible
  358. * in most of the cases until and unless we drive shallower queue
  359. * depths and that becomes a performance bottleneck. In such cases
  360. * switch to start providing fairness in terms of number of IOs.
  361. */
  362. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  363. return true;
  364. else
  365. return false;
  366. }
  367. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  368. {
  369. if (cfq_class_idle(cfqq))
  370. return IDLE_WORKLOAD;
  371. if (cfq_class_rt(cfqq))
  372. return RT_WORKLOAD;
  373. return BE_WORKLOAD;
  374. }
  375. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  376. {
  377. if (!cfq_cfqq_sync(cfqq))
  378. return ASYNC_WORKLOAD;
  379. if (!cfq_cfqq_idle_window(cfqq))
  380. return SYNC_NOIDLE_WORKLOAD;
  381. return SYNC_WORKLOAD;
  382. }
  383. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  384. struct cfq_data *cfqd,
  385. struct cfq_group *cfqg)
  386. {
  387. if (wl == IDLE_WORKLOAD)
  388. return cfqg->service_tree_idle.count;
  389. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  390. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  391. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  392. }
  393. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  394. struct cfq_group *cfqg)
  395. {
  396. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  397. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  398. }
  399. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  400. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  401. struct io_context *, gfp_t);
  402. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  403. struct io_context *);
  404. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  405. bool is_sync)
  406. {
  407. return cic->cfqq[is_sync];
  408. }
  409. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  410. struct cfq_queue *cfqq, bool is_sync)
  411. {
  412. cic->cfqq[is_sync] = cfqq;
  413. }
  414. #define CIC_DEAD_KEY 1ul
  415. #define CIC_DEAD_INDEX_SHIFT 1
  416. static inline void *cfqd_dead_key(struct cfq_data *cfqd)
  417. {
  418. return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
  419. }
  420. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
  421. {
  422. struct cfq_data *cfqd = cic->key;
  423. if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
  424. return NULL;
  425. return cfqd;
  426. }
  427. /*
  428. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  429. * set (in which case it could also be direct WRITE).
  430. */
  431. static inline bool cfq_bio_sync(struct bio *bio)
  432. {
  433. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  434. }
  435. /*
  436. * scheduler run of queue, if there are requests pending and no one in the
  437. * driver that will restart queueing
  438. */
  439. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  440. {
  441. if (cfqd->busy_queues) {
  442. cfq_log(cfqd, "schedule dispatch");
  443. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  444. }
  445. }
  446. /*
  447. * Scale schedule slice based on io priority. Use the sync time slice only
  448. * if a queue is marked sync and has sync io queued. A sync queue with async
  449. * io only, should not get full sync slice length.
  450. */
  451. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  452. unsigned short prio)
  453. {
  454. const int base_slice = cfqd->cfq_slice[sync];
  455. WARN_ON(prio >= IOPRIO_BE_NR);
  456. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  457. }
  458. static inline int
  459. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  460. {
  461. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  462. }
  463. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  464. {
  465. u64 d = delta << CFQ_SERVICE_SHIFT;
  466. d = d * BLKIO_WEIGHT_DEFAULT;
  467. do_div(d, cfqg->weight);
  468. return d;
  469. }
  470. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  471. {
  472. s64 delta = (s64)(vdisktime - min_vdisktime);
  473. if (delta > 0)
  474. min_vdisktime = vdisktime;
  475. return min_vdisktime;
  476. }
  477. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  478. {
  479. s64 delta = (s64)(vdisktime - min_vdisktime);
  480. if (delta < 0)
  481. min_vdisktime = vdisktime;
  482. return min_vdisktime;
  483. }
  484. static void update_min_vdisktime(struct cfq_rb_root *st)
  485. {
  486. struct cfq_group *cfqg;
  487. if (st->left) {
  488. cfqg = rb_entry_cfqg(st->left);
  489. st->min_vdisktime = max_vdisktime(st->min_vdisktime,
  490. cfqg->vdisktime);
  491. }
  492. }
  493. /*
  494. * get averaged number of queues of RT/BE priority.
  495. * average is updated, with a formula that gives more weight to higher numbers,
  496. * to quickly follows sudden increases and decrease slowly
  497. */
  498. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  499. struct cfq_group *cfqg, bool rt)
  500. {
  501. unsigned min_q, max_q;
  502. unsigned mult = cfq_hist_divisor - 1;
  503. unsigned round = cfq_hist_divisor / 2;
  504. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  505. min_q = min(cfqg->busy_queues_avg[rt], busy);
  506. max_q = max(cfqg->busy_queues_avg[rt], busy);
  507. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  508. cfq_hist_divisor;
  509. return cfqg->busy_queues_avg[rt];
  510. }
  511. static inline unsigned
  512. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  513. {
  514. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  515. return cfq_target_latency * cfqg->weight / st->total_weight;
  516. }
  517. static inline unsigned
  518. cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  519. {
  520. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  521. if (cfqd->cfq_latency) {
  522. /*
  523. * interested queues (we consider only the ones with the same
  524. * priority class in the cfq group)
  525. */
  526. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  527. cfq_class_rt(cfqq));
  528. unsigned sync_slice = cfqd->cfq_slice[1];
  529. unsigned expect_latency = sync_slice * iq;
  530. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  531. if (expect_latency > group_slice) {
  532. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  533. /* scale low_slice according to IO priority
  534. * and sync vs async */
  535. unsigned low_slice =
  536. min(slice, base_low_slice * slice / sync_slice);
  537. /* the adapted slice value is scaled to fit all iqs
  538. * into the target latency */
  539. slice = max(slice * group_slice / expect_latency,
  540. low_slice);
  541. }
  542. }
  543. return slice;
  544. }
  545. static inline void
  546. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  547. {
  548. unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
  549. cfqq->slice_start = jiffies;
  550. cfqq->slice_end = jiffies + slice;
  551. cfqq->allocated_slice = slice;
  552. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  553. }
  554. /*
  555. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  556. * isn't valid until the first request from the dispatch is activated
  557. * and the slice time set.
  558. */
  559. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  560. {
  561. if (cfq_cfqq_slice_new(cfqq))
  562. return false;
  563. if (time_before(jiffies, cfqq->slice_end))
  564. return false;
  565. return true;
  566. }
  567. /*
  568. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  569. * We choose the request that is closest to the head right now. Distance
  570. * behind the head is penalized and only allowed to a certain extent.
  571. */
  572. static struct request *
  573. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  574. {
  575. sector_t s1, s2, d1 = 0, d2 = 0;
  576. unsigned long back_max;
  577. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  578. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  579. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  580. if (rq1 == NULL || rq1 == rq2)
  581. return rq2;
  582. if (rq2 == NULL)
  583. return rq1;
  584. if (rq_is_sync(rq1) != rq_is_sync(rq2))
  585. return rq_is_sync(rq1) ? rq1 : rq2;
  586. s1 = blk_rq_pos(rq1);
  587. s2 = blk_rq_pos(rq2);
  588. /*
  589. * by definition, 1KiB is 2 sectors
  590. */
  591. back_max = cfqd->cfq_back_max * 2;
  592. /*
  593. * Strict one way elevator _except_ in the case where we allow
  594. * short backward seeks which are biased as twice the cost of a
  595. * similar forward seek.
  596. */
  597. if (s1 >= last)
  598. d1 = s1 - last;
  599. else if (s1 + back_max >= last)
  600. d1 = (last - s1) * cfqd->cfq_back_penalty;
  601. else
  602. wrap |= CFQ_RQ1_WRAP;
  603. if (s2 >= last)
  604. d2 = s2 - last;
  605. else if (s2 + back_max >= last)
  606. d2 = (last - s2) * cfqd->cfq_back_penalty;
  607. else
  608. wrap |= CFQ_RQ2_WRAP;
  609. /* Found required data */
  610. /*
  611. * By doing switch() on the bit mask "wrap" we avoid having to
  612. * check two variables for all permutations: --> faster!
  613. */
  614. switch (wrap) {
  615. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  616. if (d1 < d2)
  617. return rq1;
  618. else if (d2 < d1)
  619. return rq2;
  620. else {
  621. if (s1 >= s2)
  622. return rq1;
  623. else
  624. return rq2;
  625. }
  626. case CFQ_RQ2_WRAP:
  627. return rq1;
  628. case CFQ_RQ1_WRAP:
  629. return rq2;
  630. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  631. default:
  632. /*
  633. * Since both rqs are wrapped,
  634. * start with the one that's further behind head
  635. * (--> only *one* back seek required),
  636. * since back seek takes more time than forward.
  637. */
  638. if (s1 <= s2)
  639. return rq1;
  640. else
  641. return rq2;
  642. }
  643. }
  644. /*
  645. * The below is leftmost cache rbtree addon
  646. */
  647. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  648. {
  649. /* Service tree is empty */
  650. if (!root->count)
  651. return NULL;
  652. if (!root->left)
  653. root->left = rb_first(&root->rb);
  654. if (root->left)
  655. return rb_entry(root->left, struct cfq_queue, rb_node);
  656. return NULL;
  657. }
  658. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  659. {
  660. if (!root->left)
  661. root->left = rb_first(&root->rb);
  662. if (root->left)
  663. return rb_entry_cfqg(root->left);
  664. return NULL;
  665. }
  666. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  667. {
  668. rb_erase(n, root);
  669. RB_CLEAR_NODE(n);
  670. }
  671. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  672. {
  673. if (root->left == n)
  674. root->left = NULL;
  675. rb_erase_init(n, &root->rb);
  676. --root->count;
  677. }
  678. /*
  679. * would be nice to take fifo expire time into account as well
  680. */
  681. static struct request *
  682. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  683. struct request *last)
  684. {
  685. struct rb_node *rbnext = rb_next(&last->rb_node);
  686. struct rb_node *rbprev = rb_prev(&last->rb_node);
  687. struct request *next = NULL, *prev = NULL;
  688. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  689. if (rbprev)
  690. prev = rb_entry_rq(rbprev);
  691. if (rbnext)
  692. next = rb_entry_rq(rbnext);
  693. else {
  694. rbnext = rb_first(&cfqq->sort_list);
  695. if (rbnext && rbnext != &last->rb_node)
  696. next = rb_entry_rq(rbnext);
  697. }
  698. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  699. }
  700. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  701. struct cfq_queue *cfqq)
  702. {
  703. /*
  704. * just an approximation, should be ok.
  705. */
  706. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  707. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  708. }
  709. static inline s64
  710. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  711. {
  712. return cfqg->vdisktime - st->min_vdisktime;
  713. }
  714. static void
  715. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  716. {
  717. struct rb_node **node = &st->rb.rb_node;
  718. struct rb_node *parent = NULL;
  719. struct cfq_group *__cfqg;
  720. s64 key = cfqg_key(st, cfqg);
  721. int left = 1;
  722. while (*node != NULL) {
  723. parent = *node;
  724. __cfqg = rb_entry_cfqg(parent);
  725. if (key < cfqg_key(st, __cfqg))
  726. node = &parent->rb_left;
  727. else {
  728. node = &parent->rb_right;
  729. left = 0;
  730. }
  731. }
  732. if (left)
  733. st->left = &cfqg->rb_node;
  734. rb_link_node(&cfqg->rb_node, parent, node);
  735. rb_insert_color(&cfqg->rb_node, &st->rb);
  736. }
  737. static void
  738. cfq_update_group_weight(struct cfq_group *cfqg)
  739. {
  740. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  741. if (cfqg->needs_update) {
  742. cfqg->weight = cfqg->new_weight;
  743. cfqg->needs_update = false;
  744. }
  745. }
  746. static void
  747. cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  748. {
  749. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  750. cfq_update_group_weight(cfqg);
  751. __cfq_group_service_tree_add(st, cfqg);
  752. st->total_weight += cfqg->weight;
  753. }
  754. static void
  755. cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  756. {
  757. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  758. struct cfq_group *__cfqg;
  759. struct rb_node *n;
  760. cfqg->nr_cfqq++;
  761. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  762. return;
  763. /*
  764. * Currently put the group at the end. Later implement something
  765. * so that groups get lesser vtime based on their weights, so that
  766. * if group does not loose all if it was not continuously backlogged.
  767. */
  768. n = rb_last(&st->rb);
  769. if (n) {
  770. __cfqg = rb_entry_cfqg(n);
  771. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  772. } else
  773. cfqg->vdisktime = st->min_vdisktime;
  774. cfq_group_service_tree_add(st, cfqg);
  775. }
  776. static void
  777. cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
  778. {
  779. st->total_weight -= cfqg->weight;
  780. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  781. cfq_rb_erase(&cfqg->rb_node, st);
  782. }
  783. static void
  784. cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  785. {
  786. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  787. BUG_ON(cfqg->nr_cfqq < 1);
  788. cfqg->nr_cfqq--;
  789. /* If there are other cfq queues under this group, don't delete it */
  790. if (cfqg->nr_cfqq)
  791. return;
  792. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  793. cfq_group_service_tree_del(st, cfqg);
  794. cfqg->saved_workload_slice = 0;
  795. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  796. }
  797. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
  798. unsigned int *unaccounted_time)
  799. {
  800. unsigned int slice_used;
  801. /*
  802. * Queue got expired before even a single request completed or
  803. * got expired immediately after first request completion.
  804. */
  805. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  806. /*
  807. * Also charge the seek time incurred to the group, otherwise
  808. * if there are mutiple queues in the group, each can dispatch
  809. * a single request on seeky media and cause lots of seek time
  810. * and group will never know it.
  811. */
  812. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  813. 1);
  814. } else {
  815. slice_used = jiffies - cfqq->slice_start;
  816. if (slice_used > cfqq->allocated_slice) {
  817. *unaccounted_time = slice_used - cfqq->allocated_slice;
  818. slice_used = cfqq->allocated_slice;
  819. }
  820. if (time_after(cfqq->slice_start, cfqq->dispatch_start))
  821. *unaccounted_time += cfqq->slice_start -
  822. cfqq->dispatch_start;
  823. }
  824. return slice_used;
  825. }
  826. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  827. struct cfq_queue *cfqq)
  828. {
  829. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  830. unsigned int used_sl, charge, unaccounted_sl = 0;
  831. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  832. - cfqg->service_tree_idle.count;
  833. BUG_ON(nr_sync < 0);
  834. used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
  835. if (iops_mode(cfqd))
  836. charge = cfqq->slice_dispatch;
  837. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  838. charge = cfqq->allocated_slice;
  839. /* Can't update vdisktime while group is on service tree */
  840. cfq_group_service_tree_del(st, cfqg);
  841. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  842. /* If a new weight was requested, update now, off tree */
  843. cfq_group_service_tree_add(st, cfqg);
  844. /* This group is being expired. Save the context */
  845. if (time_after(cfqd->workload_expires, jiffies)) {
  846. cfqg->saved_workload_slice = cfqd->workload_expires
  847. - jiffies;
  848. cfqg->saved_workload = cfqd->serving_type;
  849. cfqg->saved_serving_prio = cfqd->serving_prio;
  850. } else
  851. cfqg->saved_workload_slice = 0;
  852. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  853. st->min_vdisktime);
  854. cfq_log_cfqq(cfqq->cfqd, cfqq,
  855. "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
  856. used_sl, cfqq->slice_dispatch, charge,
  857. iops_mode(cfqd), cfqq->nr_sectors);
  858. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
  859. unaccounted_sl);
  860. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  861. }
  862. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  863. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  864. {
  865. if (blkg)
  866. return container_of(blkg, struct cfq_group, blkg);
  867. return NULL;
  868. }
  869. static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
  870. unsigned int weight)
  871. {
  872. struct cfq_group *cfqg = cfqg_of_blkg(blkg);
  873. cfqg->new_weight = weight;
  874. cfqg->needs_update = true;
  875. }
  876. static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
  877. struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
  878. {
  879. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  880. unsigned int major, minor;
  881. /*
  882. * Add group onto cgroup list. It might happen that bdi->dev is
  883. * not initialized yet. Initialize this new group without major
  884. * and minor info and this info will be filled in once a new thread
  885. * comes for IO.
  886. */
  887. if (bdi->dev) {
  888. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  889. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
  890. (void *)cfqd, MKDEV(major, minor));
  891. } else
  892. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
  893. (void *)cfqd, 0);
  894. cfqd->nr_blkcg_linked_grps++;
  895. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  896. /* Add group on cfqd list */
  897. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  898. }
  899. /*
  900. * Should be called from sleepable context. No request queue lock as per
  901. * cpu stats are allocated dynamically and alloc_percpu needs to be called
  902. * from sleepable context.
  903. */
  904. static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
  905. {
  906. struct cfq_group *cfqg = NULL;
  907. int i, j, ret;
  908. struct cfq_rb_root *st;
  909. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  910. if (!cfqg)
  911. return NULL;
  912. for_each_cfqg_st(cfqg, i, j, st)
  913. *st = CFQ_RB_ROOT;
  914. RB_CLEAR_NODE(&cfqg->rb_node);
  915. /*
  916. * Take the initial reference that will be released on destroy
  917. * This can be thought of a joint reference by cgroup and
  918. * elevator which will be dropped by either elevator exit
  919. * or cgroup deletion path depending on who is exiting first.
  920. */
  921. cfqg->ref = 1;
  922. ret = blkio_alloc_blkg_stats(&cfqg->blkg);
  923. if (ret) {
  924. kfree(cfqg);
  925. return NULL;
  926. }
  927. return cfqg;
  928. }
  929. static struct cfq_group *
  930. cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
  931. {
  932. struct cfq_group *cfqg = NULL;
  933. void *key = cfqd;
  934. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  935. unsigned int major, minor;
  936. /*
  937. * This is the common case when there are no blkio cgroups.
  938. * Avoid lookup in this case
  939. */
  940. if (blkcg == &blkio_root_cgroup)
  941. cfqg = &cfqd->root_group;
  942. else
  943. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  944. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  945. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  946. cfqg->blkg.dev = MKDEV(major, minor);
  947. }
  948. return cfqg;
  949. }
  950. /*
  951. * Search for the cfq group current task belongs to. request_queue lock must
  952. * be held.
  953. */
  954. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
  955. {
  956. struct blkio_cgroup *blkcg;
  957. struct cfq_group *cfqg = NULL, *__cfqg = NULL;
  958. struct request_queue *q = cfqd->queue;
  959. rcu_read_lock();
  960. blkcg = task_blkio_cgroup(current);
  961. cfqg = cfq_find_cfqg(cfqd, blkcg);
  962. if (cfqg) {
  963. rcu_read_unlock();
  964. return cfqg;
  965. }
  966. /*
  967. * Need to allocate a group. Allocation of group also needs allocation
  968. * of per cpu stats which in-turn takes a mutex() and can block. Hence
  969. * we need to drop rcu lock and queue_lock before we call alloc.
  970. *
  971. * Not taking any queue reference here and assuming that queue is
  972. * around by the time we return. CFQ queue allocation code does
  973. * the same. It might be racy though.
  974. */
  975. rcu_read_unlock();
  976. spin_unlock_irq(q->queue_lock);
  977. cfqg = cfq_alloc_cfqg(cfqd);
  978. spin_lock_irq(q->queue_lock);
  979. rcu_read_lock();
  980. blkcg = task_blkio_cgroup(current);
  981. /*
  982. * If some other thread already allocated the group while we were
  983. * not holding queue lock, free up the group
  984. */
  985. __cfqg = cfq_find_cfqg(cfqd, blkcg);
  986. if (__cfqg) {
  987. kfree(cfqg);
  988. rcu_read_unlock();
  989. return __cfqg;
  990. }
  991. if (!cfqg)
  992. cfqg = &cfqd->root_group;
  993. cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
  994. rcu_read_unlock();
  995. return cfqg;
  996. }
  997. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  998. {
  999. cfqg->ref++;
  1000. return cfqg;
  1001. }
  1002. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  1003. {
  1004. /* Currently, all async queues are mapped to root group */
  1005. if (!cfq_cfqq_sync(cfqq))
  1006. cfqg = &cfqq->cfqd->root_group;
  1007. cfqq->cfqg = cfqg;
  1008. /* cfqq reference on cfqg */
  1009. cfqq->cfqg->ref++;
  1010. }
  1011. static void cfq_put_cfqg(struct cfq_group *cfqg)
  1012. {
  1013. struct cfq_rb_root *st;
  1014. int i, j;
  1015. BUG_ON(cfqg->ref <= 0);
  1016. cfqg->ref--;
  1017. if (cfqg->ref)
  1018. return;
  1019. for_each_cfqg_st(cfqg, i, j, st)
  1020. BUG_ON(!RB_EMPTY_ROOT(&st->rb));
  1021. free_percpu(cfqg->blkg.stats_cpu);
  1022. kfree(cfqg);
  1023. }
  1024. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1025. {
  1026. /* Something wrong if we are trying to remove same group twice */
  1027. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  1028. hlist_del_init(&cfqg->cfqd_node);
  1029. /*
  1030. * Put the reference taken at the time of creation so that when all
  1031. * queues are gone, group can be destroyed.
  1032. */
  1033. cfq_put_cfqg(cfqg);
  1034. }
  1035. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  1036. {
  1037. struct hlist_node *pos, *n;
  1038. struct cfq_group *cfqg;
  1039. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  1040. /*
  1041. * If cgroup removal path got to blk_group first and removed
  1042. * it from cgroup list, then it will take care of destroying
  1043. * cfqg also.
  1044. */
  1045. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  1046. cfq_destroy_cfqg(cfqd, cfqg);
  1047. }
  1048. }
  1049. /*
  1050. * Blk cgroup controller notification saying that blkio_group object is being
  1051. * delinked as associated cgroup object is going away. That also means that
  1052. * no new IO will come in this group. So get rid of this group as soon as
  1053. * any pending IO in the group is finished.
  1054. *
  1055. * This function is called under rcu_read_lock(). key is the rcu protected
  1056. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  1057. * read lock.
  1058. *
  1059. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  1060. * it should not be NULL as even if elevator was exiting, cgroup deltion
  1061. * path got to it first.
  1062. */
  1063. static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  1064. {
  1065. unsigned long flags;
  1066. struct cfq_data *cfqd = key;
  1067. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1068. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  1069. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1070. }
  1071. #else /* GROUP_IOSCHED */
  1072. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
  1073. {
  1074. return &cfqd->root_group;
  1075. }
  1076. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  1077. {
  1078. return cfqg;
  1079. }
  1080. static inline void
  1081. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  1082. cfqq->cfqg = cfqg;
  1083. }
  1084. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  1085. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  1086. #endif /* GROUP_IOSCHED */
  1087. /*
  1088. * The cfqd->service_trees holds all pending cfq_queue's that have
  1089. * requests waiting to be processed. It is sorted in the order that
  1090. * we will service the queues.
  1091. */
  1092. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1093. bool add_front)
  1094. {
  1095. struct rb_node **p, *parent;
  1096. struct cfq_queue *__cfqq;
  1097. unsigned long rb_key;
  1098. struct cfq_rb_root *service_tree;
  1099. int left;
  1100. int new_cfqq = 1;
  1101. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1102. cfqq_type(cfqq));
  1103. if (cfq_class_idle(cfqq)) {
  1104. rb_key = CFQ_IDLE_DELAY;
  1105. parent = rb_last(&service_tree->rb);
  1106. if (parent && parent != &cfqq->rb_node) {
  1107. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1108. rb_key += __cfqq->rb_key;
  1109. } else
  1110. rb_key += jiffies;
  1111. } else if (!add_front) {
  1112. /*
  1113. * Get our rb key offset. Subtract any residual slice
  1114. * value carried from last service. A negative resid
  1115. * count indicates slice overrun, and this should position
  1116. * the next service time further away in the tree.
  1117. */
  1118. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1119. rb_key -= cfqq->slice_resid;
  1120. cfqq->slice_resid = 0;
  1121. } else {
  1122. rb_key = -HZ;
  1123. __cfqq = cfq_rb_first(service_tree);
  1124. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1125. }
  1126. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1127. new_cfqq = 0;
  1128. /*
  1129. * same position, nothing more to do
  1130. */
  1131. if (rb_key == cfqq->rb_key &&
  1132. cfqq->service_tree == service_tree)
  1133. return;
  1134. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1135. cfqq->service_tree = NULL;
  1136. }
  1137. left = 1;
  1138. parent = NULL;
  1139. cfqq->service_tree = service_tree;
  1140. p = &service_tree->rb.rb_node;
  1141. while (*p) {
  1142. struct rb_node **n;
  1143. parent = *p;
  1144. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1145. /*
  1146. * sort by key, that represents service time.
  1147. */
  1148. if (time_before(rb_key, __cfqq->rb_key))
  1149. n = &(*p)->rb_left;
  1150. else {
  1151. n = &(*p)->rb_right;
  1152. left = 0;
  1153. }
  1154. p = n;
  1155. }
  1156. if (left)
  1157. service_tree->left = &cfqq->rb_node;
  1158. cfqq->rb_key = rb_key;
  1159. rb_link_node(&cfqq->rb_node, parent, p);
  1160. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1161. service_tree->count++;
  1162. if (add_front || !new_cfqq)
  1163. return;
  1164. cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
  1165. }
  1166. static struct cfq_queue *
  1167. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1168. sector_t sector, struct rb_node **ret_parent,
  1169. struct rb_node ***rb_link)
  1170. {
  1171. struct rb_node **p, *parent;
  1172. struct cfq_queue *cfqq = NULL;
  1173. parent = NULL;
  1174. p = &root->rb_node;
  1175. while (*p) {
  1176. struct rb_node **n;
  1177. parent = *p;
  1178. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1179. /*
  1180. * Sort strictly based on sector. Smallest to the left,
  1181. * largest to the right.
  1182. */
  1183. if (sector > blk_rq_pos(cfqq->next_rq))
  1184. n = &(*p)->rb_right;
  1185. else if (sector < blk_rq_pos(cfqq->next_rq))
  1186. n = &(*p)->rb_left;
  1187. else
  1188. break;
  1189. p = n;
  1190. cfqq = NULL;
  1191. }
  1192. *ret_parent = parent;
  1193. if (rb_link)
  1194. *rb_link = p;
  1195. return cfqq;
  1196. }
  1197. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1198. {
  1199. struct rb_node **p, *parent;
  1200. struct cfq_queue *__cfqq;
  1201. if (cfqq->p_root) {
  1202. rb_erase(&cfqq->p_node, cfqq->p_root);
  1203. cfqq->p_root = NULL;
  1204. }
  1205. if (cfq_class_idle(cfqq))
  1206. return;
  1207. if (!cfqq->next_rq)
  1208. return;
  1209. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1210. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1211. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1212. if (!__cfqq) {
  1213. rb_link_node(&cfqq->p_node, parent, p);
  1214. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1215. } else
  1216. cfqq->p_root = NULL;
  1217. }
  1218. /*
  1219. * Update cfqq's position in the service tree.
  1220. */
  1221. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1222. {
  1223. /*
  1224. * Resorting requires the cfqq to be on the RR list already.
  1225. */
  1226. if (cfq_cfqq_on_rr(cfqq)) {
  1227. cfq_service_tree_add(cfqd, cfqq, 0);
  1228. cfq_prio_tree_add(cfqd, cfqq);
  1229. }
  1230. }
  1231. /*
  1232. * add to busy list of queues for service, trying to be fair in ordering
  1233. * the pending list according to last request service
  1234. */
  1235. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1236. {
  1237. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1238. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1239. cfq_mark_cfqq_on_rr(cfqq);
  1240. cfqd->busy_queues++;
  1241. if (cfq_cfqq_sync(cfqq))
  1242. cfqd->busy_sync_queues++;
  1243. cfq_resort_rr_list(cfqd, cfqq);
  1244. }
  1245. /*
  1246. * Called when the cfqq no longer has requests pending, remove it from
  1247. * the service tree.
  1248. */
  1249. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1250. {
  1251. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1252. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1253. cfq_clear_cfqq_on_rr(cfqq);
  1254. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1255. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1256. cfqq->service_tree = NULL;
  1257. }
  1258. if (cfqq->p_root) {
  1259. rb_erase(&cfqq->p_node, cfqq->p_root);
  1260. cfqq->p_root = NULL;
  1261. }
  1262. cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
  1263. BUG_ON(!cfqd->busy_queues);
  1264. cfqd->busy_queues--;
  1265. if (cfq_cfqq_sync(cfqq))
  1266. cfqd->busy_sync_queues--;
  1267. }
  1268. /*
  1269. * rb tree support functions
  1270. */
  1271. static void cfq_del_rq_rb(struct request *rq)
  1272. {
  1273. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1274. const int sync = rq_is_sync(rq);
  1275. BUG_ON(!cfqq->queued[sync]);
  1276. cfqq->queued[sync]--;
  1277. elv_rb_del(&cfqq->sort_list, rq);
  1278. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1279. /*
  1280. * Queue will be deleted from service tree when we actually
  1281. * expire it later. Right now just remove it from prio tree
  1282. * as it is empty.
  1283. */
  1284. if (cfqq->p_root) {
  1285. rb_erase(&cfqq->p_node, cfqq->p_root);
  1286. cfqq->p_root = NULL;
  1287. }
  1288. }
  1289. }
  1290. static void cfq_add_rq_rb(struct request *rq)
  1291. {
  1292. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1293. struct cfq_data *cfqd = cfqq->cfqd;
  1294. struct request *prev;
  1295. cfqq->queued[rq_is_sync(rq)]++;
  1296. elv_rb_add(&cfqq->sort_list, rq);
  1297. if (!cfq_cfqq_on_rr(cfqq))
  1298. cfq_add_cfqq_rr(cfqd, cfqq);
  1299. /*
  1300. * check if this request is a better next-serve candidate
  1301. */
  1302. prev = cfqq->next_rq;
  1303. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1304. /*
  1305. * adjust priority tree position, if ->next_rq changes
  1306. */
  1307. if (prev != cfqq->next_rq)
  1308. cfq_prio_tree_add(cfqd, cfqq);
  1309. BUG_ON(!cfqq->next_rq);
  1310. }
  1311. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1312. {
  1313. elv_rb_del(&cfqq->sort_list, rq);
  1314. cfqq->queued[rq_is_sync(rq)]--;
  1315. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1316. rq_data_dir(rq), rq_is_sync(rq));
  1317. cfq_add_rq_rb(rq);
  1318. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1319. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1320. rq_is_sync(rq));
  1321. }
  1322. static struct request *
  1323. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1324. {
  1325. struct task_struct *tsk = current;
  1326. struct cfq_io_context *cic;
  1327. struct cfq_queue *cfqq;
  1328. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1329. if (!cic)
  1330. return NULL;
  1331. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1332. if (cfqq) {
  1333. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1334. return elv_rb_find(&cfqq->sort_list, sector);
  1335. }
  1336. return NULL;
  1337. }
  1338. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1339. {
  1340. struct cfq_data *cfqd = q->elevator->elevator_data;
  1341. cfqd->rq_in_driver++;
  1342. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1343. cfqd->rq_in_driver);
  1344. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1345. }
  1346. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1347. {
  1348. struct cfq_data *cfqd = q->elevator->elevator_data;
  1349. WARN_ON(!cfqd->rq_in_driver);
  1350. cfqd->rq_in_driver--;
  1351. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1352. cfqd->rq_in_driver);
  1353. }
  1354. static void cfq_remove_request(struct request *rq)
  1355. {
  1356. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1357. if (cfqq->next_rq == rq)
  1358. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1359. list_del_init(&rq->queuelist);
  1360. cfq_del_rq_rb(rq);
  1361. cfqq->cfqd->rq_queued--;
  1362. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1363. rq_data_dir(rq), rq_is_sync(rq));
  1364. }
  1365. static int cfq_merge(struct request_queue *q, struct request **req,
  1366. struct bio *bio)
  1367. {
  1368. struct cfq_data *cfqd = q->elevator->elevator_data;
  1369. struct request *__rq;
  1370. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1371. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1372. *req = __rq;
  1373. return ELEVATOR_FRONT_MERGE;
  1374. }
  1375. return ELEVATOR_NO_MERGE;
  1376. }
  1377. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1378. int type)
  1379. {
  1380. if (type == ELEVATOR_FRONT_MERGE) {
  1381. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1382. cfq_reposition_rq_rb(cfqq, req);
  1383. }
  1384. }
  1385. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1386. struct bio *bio)
  1387. {
  1388. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1389. bio_data_dir(bio), cfq_bio_sync(bio));
  1390. }
  1391. static void
  1392. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1393. struct request *next)
  1394. {
  1395. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1396. /*
  1397. * reposition in fifo if next is older than rq
  1398. */
  1399. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1400. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1401. list_move(&rq->queuelist, &next->queuelist);
  1402. rq_set_fifo_time(rq, rq_fifo_time(next));
  1403. }
  1404. if (cfqq->next_rq == next)
  1405. cfqq->next_rq = rq;
  1406. cfq_remove_request(next);
  1407. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1408. rq_data_dir(next), rq_is_sync(next));
  1409. }
  1410. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1411. struct bio *bio)
  1412. {
  1413. struct cfq_data *cfqd = q->elevator->elevator_data;
  1414. struct cfq_io_context *cic;
  1415. struct cfq_queue *cfqq;
  1416. /*
  1417. * Disallow merge of a sync bio into an async request.
  1418. */
  1419. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1420. return false;
  1421. /*
  1422. * Lookup the cfqq that this bio will be queued with. Allow
  1423. * merge only if rq is queued there.
  1424. */
  1425. cic = cfq_cic_lookup(cfqd, current->io_context);
  1426. if (!cic)
  1427. return false;
  1428. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1429. return cfqq == RQ_CFQQ(rq);
  1430. }
  1431. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1432. {
  1433. del_timer(&cfqd->idle_slice_timer);
  1434. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1435. }
  1436. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1437. struct cfq_queue *cfqq)
  1438. {
  1439. if (cfqq) {
  1440. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1441. cfqd->serving_prio, cfqd->serving_type);
  1442. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1443. cfqq->slice_start = 0;
  1444. cfqq->dispatch_start = jiffies;
  1445. cfqq->allocated_slice = 0;
  1446. cfqq->slice_end = 0;
  1447. cfqq->slice_dispatch = 0;
  1448. cfqq->nr_sectors = 0;
  1449. cfq_clear_cfqq_wait_request(cfqq);
  1450. cfq_clear_cfqq_must_dispatch(cfqq);
  1451. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1452. cfq_clear_cfqq_fifo_expire(cfqq);
  1453. cfq_mark_cfqq_slice_new(cfqq);
  1454. cfq_del_timer(cfqd, cfqq);
  1455. }
  1456. cfqd->active_queue = cfqq;
  1457. }
  1458. /*
  1459. * current cfqq expired its slice (or was too idle), select new one
  1460. */
  1461. static void
  1462. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1463. bool timed_out)
  1464. {
  1465. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1466. if (cfq_cfqq_wait_request(cfqq))
  1467. cfq_del_timer(cfqd, cfqq);
  1468. cfq_clear_cfqq_wait_request(cfqq);
  1469. cfq_clear_cfqq_wait_busy(cfqq);
  1470. /*
  1471. * If this cfqq is shared between multiple processes, check to
  1472. * make sure that those processes are still issuing I/Os within
  1473. * the mean seek distance. If not, it may be time to break the
  1474. * queues apart again.
  1475. */
  1476. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1477. cfq_mark_cfqq_split_coop(cfqq);
  1478. /*
  1479. * store what was left of this slice, if the queue idled/timed out
  1480. */
  1481. if (timed_out) {
  1482. if (cfq_cfqq_slice_new(cfqq))
  1483. cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
  1484. else
  1485. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1486. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1487. }
  1488. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1489. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1490. cfq_del_cfqq_rr(cfqd, cfqq);
  1491. cfq_resort_rr_list(cfqd, cfqq);
  1492. if (cfqq == cfqd->active_queue)
  1493. cfqd->active_queue = NULL;
  1494. if (cfqd->active_cic) {
  1495. put_io_context(cfqd->active_cic->ioc);
  1496. cfqd->active_cic = NULL;
  1497. }
  1498. }
  1499. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1500. {
  1501. struct cfq_queue *cfqq = cfqd->active_queue;
  1502. if (cfqq)
  1503. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1504. }
  1505. /*
  1506. * Get next queue for service. Unless we have a queue preemption,
  1507. * we'll simply select the first cfqq in the service tree.
  1508. */
  1509. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1510. {
  1511. struct cfq_rb_root *service_tree =
  1512. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1513. cfqd->serving_type);
  1514. if (!cfqd->rq_queued)
  1515. return NULL;
  1516. /* There is nothing to dispatch */
  1517. if (!service_tree)
  1518. return NULL;
  1519. if (RB_EMPTY_ROOT(&service_tree->rb))
  1520. return NULL;
  1521. return cfq_rb_first(service_tree);
  1522. }
  1523. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1524. {
  1525. struct cfq_group *cfqg;
  1526. struct cfq_queue *cfqq;
  1527. int i, j;
  1528. struct cfq_rb_root *st;
  1529. if (!cfqd->rq_queued)
  1530. return NULL;
  1531. cfqg = cfq_get_next_cfqg(cfqd);
  1532. if (!cfqg)
  1533. return NULL;
  1534. for_each_cfqg_st(cfqg, i, j, st)
  1535. if ((cfqq = cfq_rb_first(st)) != NULL)
  1536. return cfqq;
  1537. return NULL;
  1538. }
  1539. /*
  1540. * Get and set a new active queue for service.
  1541. */
  1542. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1543. struct cfq_queue *cfqq)
  1544. {
  1545. if (!cfqq)
  1546. cfqq = cfq_get_next_queue(cfqd);
  1547. __cfq_set_active_queue(cfqd, cfqq);
  1548. return cfqq;
  1549. }
  1550. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1551. struct request *rq)
  1552. {
  1553. if (blk_rq_pos(rq) >= cfqd->last_position)
  1554. return blk_rq_pos(rq) - cfqd->last_position;
  1555. else
  1556. return cfqd->last_position - blk_rq_pos(rq);
  1557. }
  1558. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1559. struct request *rq)
  1560. {
  1561. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1562. }
  1563. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1564. struct cfq_queue *cur_cfqq)
  1565. {
  1566. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1567. struct rb_node *parent, *node;
  1568. struct cfq_queue *__cfqq;
  1569. sector_t sector = cfqd->last_position;
  1570. if (RB_EMPTY_ROOT(root))
  1571. return NULL;
  1572. /*
  1573. * First, if we find a request starting at the end of the last
  1574. * request, choose it.
  1575. */
  1576. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1577. if (__cfqq)
  1578. return __cfqq;
  1579. /*
  1580. * If the exact sector wasn't found, the parent of the NULL leaf
  1581. * will contain the closest sector.
  1582. */
  1583. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1584. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1585. return __cfqq;
  1586. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1587. node = rb_next(&__cfqq->p_node);
  1588. else
  1589. node = rb_prev(&__cfqq->p_node);
  1590. if (!node)
  1591. return NULL;
  1592. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1593. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1594. return __cfqq;
  1595. return NULL;
  1596. }
  1597. /*
  1598. * cfqd - obvious
  1599. * cur_cfqq - passed in so that we don't decide that the current queue is
  1600. * closely cooperating with itself.
  1601. *
  1602. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1603. * one request, and that cfqd->last_position reflects a position on the disk
  1604. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1605. * assumption.
  1606. */
  1607. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1608. struct cfq_queue *cur_cfqq)
  1609. {
  1610. struct cfq_queue *cfqq;
  1611. if (cfq_class_idle(cur_cfqq))
  1612. return NULL;
  1613. if (!cfq_cfqq_sync(cur_cfqq))
  1614. return NULL;
  1615. if (CFQQ_SEEKY(cur_cfqq))
  1616. return NULL;
  1617. /*
  1618. * Don't search priority tree if it's the only queue in the group.
  1619. */
  1620. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1621. return NULL;
  1622. /*
  1623. * We should notice if some of the queues are cooperating, eg
  1624. * working closely on the same area of the disk. In that case,
  1625. * we can group them together and don't waste time idling.
  1626. */
  1627. cfqq = cfqq_close(cfqd, cur_cfqq);
  1628. if (!cfqq)
  1629. return NULL;
  1630. /* If new queue belongs to different cfq_group, don't choose it */
  1631. if (cur_cfqq->cfqg != cfqq->cfqg)
  1632. return NULL;
  1633. /*
  1634. * It only makes sense to merge sync queues.
  1635. */
  1636. if (!cfq_cfqq_sync(cfqq))
  1637. return NULL;
  1638. if (CFQQ_SEEKY(cfqq))
  1639. return NULL;
  1640. /*
  1641. * Do not merge queues of different priority classes
  1642. */
  1643. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1644. return NULL;
  1645. return cfqq;
  1646. }
  1647. /*
  1648. * Determine whether we should enforce idle window for this queue.
  1649. */
  1650. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1651. {
  1652. enum wl_prio_t prio = cfqq_prio(cfqq);
  1653. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1654. BUG_ON(!service_tree);
  1655. BUG_ON(!service_tree->count);
  1656. if (!cfqd->cfq_slice_idle)
  1657. return false;
  1658. /* We never do for idle class queues. */
  1659. if (prio == IDLE_WORKLOAD)
  1660. return false;
  1661. /* We do for queues that were marked with idle window flag. */
  1662. if (cfq_cfqq_idle_window(cfqq) &&
  1663. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1664. return true;
  1665. /*
  1666. * Otherwise, we do only if they are the last ones
  1667. * in their service tree.
  1668. */
  1669. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
  1670. !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
  1671. return true;
  1672. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1673. service_tree->count);
  1674. return false;
  1675. }
  1676. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1677. {
  1678. struct cfq_queue *cfqq = cfqd->active_queue;
  1679. struct cfq_io_context *cic;
  1680. unsigned long sl, group_idle = 0;
  1681. /*
  1682. * SSD device without seek penalty, disable idling. But only do so
  1683. * for devices that support queuing, otherwise we still have a problem
  1684. * with sync vs async workloads.
  1685. */
  1686. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1687. return;
  1688. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1689. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1690. /*
  1691. * idle is disabled, either manually or by past process history
  1692. */
  1693. if (!cfq_should_idle(cfqd, cfqq)) {
  1694. /* no queue idling. Check for group idling */
  1695. if (cfqd->cfq_group_idle)
  1696. group_idle = cfqd->cfq_group_idle;
  1697. else
  1698. return;
  1699. }
  1700. /*
  1701. * still active requests from this queue, don't idle
  1702. */
  1703. if (cfqq->dispatched)
  1704. return;
  1705. /*
  1706. * task has exited, don't wait
  1707. */
  1708. cic = cfqd->active_cic;
  1709. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1710. return;
  1711. /*
  1712. * If our average think time is larger than the remaining time
  1713. * slice, then don't idle. This avoids overrunning the allotted
  1714. * time slice.
  1715. */
  1716. if (sample_valid(cic->ttime.ttime_samples) &&
  1717. (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
  1718. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
  1719. cic->ttime.ttime_mean);
  1720. return;
  1721. }
  1722. /* There are other queues in the group, don't do group idle */
  1723. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1724. return;
  1725. cfq_mark_cfqq_wait_request(cfqq);
  1726. if (group_idle)
  1727. sl = cfqd->cfq_group_idle;
  1728. else
  1729. sl = cfqd->cfq_slice_idle;
  1730. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1731. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1732. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1733. group_idle ? 1 : 0);
  1734. }
  1735. /*
  1736. * Move request from internal lists to the request queue dispatch list.
  1737. */
  1738. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1739. {
  1740. struct cfq_data *cfqd = q->elevator->elevator_data;
  1741. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1742. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1743. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1744. cfq_remove_request(rq);
  1745. cfqq->dispatched++;
  1746. (RQ_CFQG(rq))->dispatched++;
  1747. elv_dispatch_sort(q, rq);
  1748. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1749. cfqq->nr_sectors += blk_rq_sectors(rq);
  1750. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1751. rq_data_dir(rq), rq_is_sync(rq));
  1752. }
  1753. /*
  1754. * return expired entry, or NULL to just start from scratch in rbtree
  1755. */
  1756. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1757. {
  1758. struct request *rq = NULL;
  1759. if (cfq_cfqq_fifo_expire(cfqq))
  1760. return NULL;
  1761. cfq_mark_cfqq_fifo_expire(cfqq);
  1762. if (list_empty(&cfqq->fifo))
  1763. return NULL;
  1764. rq = rq_entry_fifo(cfqq->fifo.next);
  1765. if (time_before(jiffies, rq_fifo_time(rq)))
  1766. rq = NULL;
  1767. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1768. return rq;
  1769. }
  1770. static inline int
  1771. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1772. {
  1773. const int base_rq = cfqd->cfq_slice_async_rq;
  1774. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1775. return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
  1776. }
  1777. /*
  1778. * Must be called with the queue_lock held.
  1779. */
  1780. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1781. {
  1782. int process_refs, io_refs;
  1783. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1784. process_refs = cfqq->ref - io_refs;
  1785. BUG_ON(process_refs < 0);
  1786. return process_refs;
  1787. }
  1788. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1789. {
  1790. int process_refs, new_process_refs;
  1791. struct cfq_queue *__cfqq;
  1792. /*
  1793. * If there are no process references on the new_cfqq, then it is
  1794. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1795. * chain may have dropped their last reference (not just their
  1796. * last process reference).
  1797. */
  1798. if (!cfqq_process_refs(new_cfqq))
  1799. return;
  1800. /* Avoid a circular list and skip interim queue merges */
  1801. while ((__cfqq = new_cfqq->new_cfqq)) {
  1802. if (__cfqq == cfqq)
  1803. return;
  1804. new_cfqq = __cfqq;
  1805. }
  1806. process_refs = cfqq_process_refs(cfqq);
  1807. new_process_refs = cfqq_process_refs(new_cfqq);
  1808. /*
  1809. * If the process for the cfqq has gone away, there is no
  1810. * sense in merging the queues.
  1811. */
  1812. if (process_refs == 0 || new_process_refs == 0)
  1813. return;
  1814. /*
  1815. * Merge in the direction of the lesser amount of work.
  1816. */
  1817. if (new_process_refs >= process_refs) {
  1818. cfqq->new_cfqq = new_cfqq;
  1819. new_cfqq->ref += process_refs;
  1820. } else {
  1821. new_cfqq->new_cfqq = cfqq;
  1822. cfqq->ref += new_process_refs;
  1823. }
  1824. }
  1825. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1826. struct cfq_group *cfqg, enum wl_prio_t prio)
  1827. {
  1828. struct cfq_queue *queue;
  1829. int i;
  1830. bool key_valid = false;
  1831. unsigned long lowest_key = 0;
  1832. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1833. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1834. /* select the one with lowest rb_key */
  1835. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1836. if (queue &&
  1837. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1838. lowest_key = queue->rb_key;
  1839. cur_best = i;
  1840. key_valid = true;
  1841. }
  1842. }
  1843. return cur_best;
  1844. }
  1845. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1846. {
  1847. unsigned slice;
  1848. unsigned count;
  1849. struct cfq_rb_root *st;
  1850. unsigned group_slice;
  1851. enum wl_prio_t original_prio = cfqd->serving_prio;
  1852. /* Choose next priority. RT > BE > IDLE */
  1853. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1854. cfqd->serving_prio = RT_WORKLOAD;
  1855. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1856. cfqd->serving_prio = BE_WORKLOAD;
  1857. else {
  1858. cfqd->serving_prio = IDLE_WORKLOAD;
  1859. cfqd->workload_expires = jiffies + 1;
  1860. return;
  1861. }
  1862. if (original_prio != cfqd->serving_prio)
  1863. goto new_workload;
  1864. /*
  1865. * For RT and BE, we have to choose also the type
  1866. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1867. * expiration time
  1868. */
  1869. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1870. count = st->count;
  1871. /*
  1872. * check workload expiration, and that we still have other queues ready
  1873. */
  1874. if (count && !time_after(jiffies, cfqd->workload_expires))
  1875. return;
  1876. new_workload:
  1877. /* otherwise select new workload type */
  1878. cfqd->serving_type =
  1879. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1880. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1881. count = st->count;
  1882. /*
  1883. * the workload slice is computed as a fraction of target latency
  1884. * proportional to the number of queues in that workload, over
  1885. * all the queues in the same priority class
  1886. */
  1887. group_slice = cfq_group_slice(cfqd, cfqg);
  1888. slice = group_slice * count /
  1889. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1890. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1891. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1892. unsigned int tmp;
  1893. /*
  1894. * Async queues are currently system wide. Just taking
  1895. * proportion of queues with-in same group will lead to higher
  1896. * async ratio system wide as generally root group is going
  1897. * to have higher weight. A more accurate thing would be to
  1898. * calculate system wide asnc/sync ratio.
  1899. */
  1900. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1901. tmp = tmp/cfqd->busy_queues;
  1902. slice = min_t(unsigned, slice, tmp);
  1903. /* async workload slice is scaled down according to
  1904. * the sync/async slice ratio. */
  1905. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1906. } else
  1907. /* sync workload slice is at least 2 * cfq_slice_idle */
  1908. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1909. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1910. cfq_log(cfqd, "workload slice:%d", slice);
  1911. cfqd->workload_expires = jiffies + slice;
  1912. }
  1913. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1914. {
  1915. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1916. struct cfq_group *cfqg;
  1917. if (RB_EMPTY_ROOT(&st->rb))
  1918. return NULL;
  1919. cfqg = cfq_rb_first_group(st);
  1920. update_min_vdisktime(st);
  1921. return cfqg;
  1922. }
  1923. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1924. {
  1925. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1926. cfqd->serving_group = cfqg;
  1927. /* Restore the workload type data */
  1928. if (cfqg->saved_workload_slice) {
  1929. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1930. cfqd->serving_type = cfqg->saved_workload;
  1931. cfqd->serving_prio = cfqg->saved_serving_prio;
  1932. } else
  1933. cfqd->workload_expires = jiffies - 1;
  1934. choose_service_tree(cfqd, cfqg);
  1935. }
  1936. /*
  1937. * Select a queue for service. If we have a current active queue,
  1938. * check whether to continue servicing it, or retrieve and set a new one.
  1939. */
  1940. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1941. {
  1942. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1943. cfqq = cfqd->active_queue;
  1944. if (!cfqq)
  1945. goto new_queue;
  1946. if (!cfqd->rq_queued)
  1947. return NULL;
  1948. /*
  1949. * We were waiting for group to get backlogged. Expire the queue
  1950. */
  1951. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1952. goto expire;
  1953. /*
  1954. * The active queue has run out of time, expire it and select new.
  1955. */
  1956. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1957. /*
  1958. * If slice had not expired at the completion of last request
  1959. * we might not have turned on wait_busy flag. Don't expire
  1960. * the queue yet. Allow the group to get backlogged.
  1961. *
  1962. * The very fact that we have used the slice, that means we
  1963. * have been idling all along on this queue and it should be
  1964. * ok to wait for this request to complete.
  1965. */
  1966. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1967. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1968. cfqq = NULL;
  1969. goto keep_queue;
  1970. } else
  1971. goto check_group_idle;
  1972. }
  1973. /*
  1974. * The active queue has requests and isn't expired, allow it to
  1975. * dispatch.
  1976. */
  1977. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1978. goto keep_queue;
  1979. /*
  1980. * If another queue has a request waiting within our mean seek
  1981. * distance, let it run. The expire code will check for close
  1982. * cooperators and put the close queue at the front of the service
  1983. * tree. If possible, merge the expiring queue with the new cfqq.
  1984. */
  1985. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1986. if (new_cfqq) {
  1987. if (!cfqq->new_cfqq)
  1988. cfq_setup_merge(cfqq, new_cfqq);
  1989. goto expire;
  1990. }
  1991. /*
  1992. * No requests pending. If the active queue still has requests in
  1993. * flight or is idling for a new request, allow either of these
  1994. * conditions to happen (or time out) before selecting a new queue.
  1995. */
  1996. if (timer_pending(&cfqd->idle_slice_timer)) {
  1997. cfqq = NULL;
  1998. goto keep_queue;
  1999. }
  2000. /*
  2001. * This is a deep seek queue, but the device is much faster than
  2002. * the queue can deliver, don't idle
  2003. **/
  2004. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  2005. (cfq_cfqq_slice_new(cfqq) ||
  2006. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  2007. cfq_clear_cfqq_deep(cfqq);
  2008. cfq_clear_cfqq_idle_window(cfqq);
  2009. }
  2010. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  2011. cfqq = NULL;
  2012. goto keep_queue;
  2013. }
  2014. /*
  2015. * If group idle is enabled and there are requests dispatched from
  2016. * this group, wait for requests to complete.
  2017. */
  2018. check_group_idle:
  2019. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
  2020. && cfqq->cfqg->dispatched) {
  2021. cfqq = NULL;
  2022. goto keep_queue;
  2023. }
  2024. expire:
  2025. cfq_slice_expired(cfqd, 0);
  2026. new_queue:
  2027. /*
  2028. * Current queue expired. Check if we have to switch to a new
  2029. * service tree
  2030. */
  2031. if (!new_cfqq)
  2032. cfq_choose_cfqg(cfqd);
  2033. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  2034. keep_queue:
  2035. return cfqq;
  2036. }
  2037. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  2038. {
  2039. int dispatched = 0;
  2040. while (cfqq->next_rq) {
  2041. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  2042. dispatched++;
  2043. }
  2044. BUG_ON(!list_empty(&cfqq->fifo));
  2045. /* By default cfqq is not expired if it is empty. Do it explicitly */
  2046. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  2047. return dispatched;
  2048. }
  2049. /*
  2050. * Drain our current requests. Used for barriers and when switching
  2051. * io schedulers on-the-fly.
  2052. */
  2053. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  2054. {
  2055. struct cfq_queue *cfqq;
  2056. int dispatched = 0;
  2057. /* Expire the timeslice of the current active queue first */
  2058. cfq_slice_expired(cfqd, 0);
  2059. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  2060. __cfq_set_active_queue(cfqd, cfqq);
  2061. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  2062. }
  2063. BUG_ON(cfqd->busy_queues);
  2064. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  2065. return dispatched;
  2066. }
  2067. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  2068. struct cfq_queue *cfqq)
  2069. {
  2070. /* the queue hasn't finished any request, can't estimate */
  2071. if (cfq_cfqq_slice_new(cfqq))
  2072. return true;
  2073. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2074. cfqq->slice_end))
  2075. return true;
  2076. return false;
  2077. }
  2078. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2079. {
  2080. unsigned int max_dispatch;
  2081. /*
  2082. * Drain async requests before we start sync IO
  2083. */
  2084. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2085. return false;
  2086. /*
  2087. * If this is an async queue and we have sync IO in flight, let it wait
  2088. */
  2089. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2090. return false;
  2091. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2092. if (cfq_class_idle(cfqq))
  2093. max_dispatch = 1;
  2094. /*
  2095. * Does this cfqq already have too much IO in flight?
  2096. */
  2097. if (cfqq->dispatched >= max_dispatch) {
  2098. bool promote_sync = false;
  2099. /*
  2100. * idle queue must always only have a single IO in flight
  2101. */
  2102. if (cfq_class_idle(cfqq))
  2103. return false;
  2104. /*
  2105. * If there is only one sync queue
  2106. * we can ignore async queue here and give the sync
  2107. * queue no dispatch limit. The reason is a sync queue can
  2108. * preempt async queue, limiting the sync queue doesn't make
  2109. * sense. This is useful for aiostress test.
  2110. */
  2111. if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
  2112. promote_sync = true;
  2113. /*
  2114. * We have other queues, don't allow more IO from this one
  2115. */
  2116. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
  2117. !promote_sync)
  2118. return false;
  2119. /*
  2120. * Sole queue user, no limit
  2121. */
  2122. if (cfqd->busy_queues == 1 || promote_sync)
  2123. max_dispatch = -1;
  2124. else
  2125. /*
  2126. * Normally we start throttling cfqq when cfq_quantum/2
  2127. * requests have been dispatched. But we can drive
  2128. * deeper queue depths at the beginning of slice
  2129. * subjected to upper limit of cfq_quantum.
  2130. * */
  2131. max_dispatch = cfqd->cfq_quantum;
  2132. }
  2133. /*
  2134. * Async queues must wait a bit before being allowed dispatch.
  2135. * We also ramp up the dispatch depth gradually for async IO,
  2136. * based on the last sync IO we serviced
  2137. */
  2138. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2139. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2140. unsigned int depth;
  2141. depth = last_sync / cfqd->cfq_slice[1];
  2142. if (!depth && !cfqq->dispatched)
  2143. depth = 1;
  2144. if (depth < max_dispatch)
  2145. max_dispatch = depth;
  2146. }
  2147. /*
  2148. * If we're below the current max, allow a dispatch
  2149. */
  2150. return cfqq->dispatched < max_dispatch;
  2151. }
  2152. /*
  2153. * Dispatch a request from cfqq, moving them to the request queue
  2154. * dispatch list.
  2155. */
  2156. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2157. {
  2158. struct request *rq;
  2159. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2160. if (!cfq_may_dispatch(cfqd, cfqq))
  2161. return false;
  2162. /*
  2163. * follow expired path, else get first next available
  2164. */
  2165. rq = cfq_check_fifo(cfqq);
  2166. if (!rq)
  2167. rq = cfqq->next_rq;
  2168. /*
  2169. * insert request into driver dispatch list
  2170. */
  2171. cfq_dispatch_insert(cfqd->queue, rq);
  2172. if (!cfqd->active_cic) {
  2173. struct cfq_io_context *cic = RQ_CIC(rq);
  2174. atomic_long_inc(&cic->ioc->refcount);
  2175. cfqd->active_cic = cic;
  2176. }
  2177. return true;
  2178. }
  2179. /*
  2180. * Find the cfqq that we need to service and move a request from that to the
  2181. * dispatch list
  2182. */
  2183. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2184. {
  2185. struct cfq_data *cfqd = q->elevator->elevator_data;
  2186. struct cfq_queue *cfqq;
  2187. if (!cfqd->busy_queues)
  2188. return 0;
  2189. if (unlikely(force))
  2190. return cfq_forced_dispatch(cfqd);
  2191. cfqq = cfq_select_queue(cfqd);
  2192. if (!cfqq)
  2193. return 0;
  2194. /*
  2195. * Dispatch a request from this cfqq, if it is allowed
  2196. */
  2197. if (!cfq_dispatch_request(cfqd, cfqq))
  2198. return 0;
  2199. cfqq->slice_dispatch++;
  2200. cfq_clear_cfqq_must_dispatch(cfqq);
  2201. /*
  2202. * expire an async queue immediately if it has used up its slice. idle
  2203. * queue always expire after 1 dispatch round.
  2204. */
  2205. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2206. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2207. cfq_class_idle(cfqq))) {
  2208. cfqq->slice_end = jiffies + 1;
  2209. cfq_slice_expired(cfqd, 0);
  2210. }
  2211. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2212. return 1;
  2213. }
  2214. /*
  2215. * task holds one reference to the queue, dropped when task exits. each rq
  2216. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2217. *
  2218. * Each cfq queue took a reference on the parent group. Drop it now.
  2219. * queue lock must be held here.
  2220. */
  2221. static void cfq_put_queue(struct cfq_queue *cfqq)
  2222. {
  2223. struct cfq_data *cfqd = cfqq->cfqd;
  2224. struct cfq_group *cfqg;
  2225. BUG_ON(cfqq->ref <= 0);
  2226. cfqq->ref--;
  2227. if (cfqq->ref)
  2228. return;
  2229. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2230. BUG_ON(rb_first(&cfqq->sort_list));
  2231. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2232. cfqg = cfqq->cfqg;
  2233. if (unlikely(cfqd->active_queue == cfqq)) {
  2234. __cfq_slice_expired(cfqd, cfqq, 0);
  2235. cfq_schedule_dispatch(cfqd);
  2236. }
  2237. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2238. kmem_cache_free(cfq_pool, cfqq);
  2239. cfq_put_cfqg(cfqg);
  2240. }
  2241. /*
  2242. * Call func for each cic attached to this ioc.
  2243. */
  2244. static void
  2245. call_for_each_cic(struct io_context *ioc,
  2246. void (*func)(struct io_context *, struct cfq_io_context *))
  2247. {
  2248. struct cfq_io_context *cic;
  2249. struct hlist_node *n;
  2250. rcu_read_lock();
  2251. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2252. func(ioc, cic);
  2253. rcu_read_unlock();
  2254. }
  2255. static void cfq_cic_free_rcu(struct rcu_head *head)
  2256. {
  2257. struct cfq_io_context *cic;
  2258. cic = container_of(head, struct cfq_io_context, rcu_head);
  2259. kmem_cache_free(cfq_ioc_pool, cic);
  2260. elv_ioc_count_dec(cfq_ioc_count);
  2261. if (ioc_gone) {
  2262. /*
  2263. * CFQ scheduler is exiting, grab exit lock and check
  2264. * the pending io context count. If it hits zero,
  2265. * complete ioc_gone and set it back to NULL
  2266. */
  2267. spin_lock(&ioc_gone_lock);
  2268. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2269. complete(ioc_gone);
  2270. ioc_gone = NULL;
  2271. }
  2272. spin_unlock(&ioc_gone_lock);
  2273. }
  2274. }
  2275. static void cfq_cic_free(struct cfq_io_context *cic)
  2276. {
  2277. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2278. }
  2279. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2280. {
  2281. unsigned long flags;
  2282. unsigned long dead_key = (unsigned long) cic->key;
  2283. BUG_ON(!(dead_key & CIC_DEAD_KEY));
  2284. spin_lock_irqsave(&ioc->lock, flags);
  2285. radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
  2286. hlist_del_rcu(&cic->cic_list);
  2287. spin_unlock_irqrestore(&ioc->lock, flags);
  2288. cfq_cic_free(cic);
  2289. }
  2290. /*
  2291. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2292. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2293. * and ->trim() which is called with the task lock held
  2294. */
  2295. static void cfq_free_io_context(struct io_context *ioc)
  2296. {
  2297. /*
  2298. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2299. * so no more cic's are allowed to be linked into this ioc. So it
  2300. * should be ok to iterate over the known list, we will see all cic's
  2301. * since no new ones are added.
  2302. */
  2303. call_for_each_cic(ioc, cic_free_func);
  2304. }
  2305. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2306. {
  2307. struct cfq_queue *__cfqq, *next;
  2308. /*
  2309. * If this queue was scheduled to merge with another queue, be
  2310. * sure to drop the reference taken on that queue (and others in
  2311. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2312. */
  2313. __cfqq = cfqq->new_cfqq;
  2314. while (__cfqq) {
  2315. if (__cfqq == cfqq) {
  2316. WARN(1, "cfqq->new_cfqq loop detected\n");
  2317. break;
  2318. }
  2319. next = __cfqq->new_cfqq;
  2320. cfq_put_queue(__cfqq);
  2321. __cfqq = next;
  2322. }
  2323. }
  2324. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2325. {
  2326. if (unlikely(cfqq == cfqd->active_queue)) {
  2327. __cfq_slice_expired(cfqd, cfqq, 0);
  2328. cfq_schedule_dispatch(cfqd);
  2329. }
  2330. cfq_put_cooperator(cfqq);
  2331. cfq_put_queue(cfqq);
  2332. }
  2333. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2334. struct cfq_io_context *cic)
  2335. {
  2336. struct io_context *ioc = cic->ioc;
  2337. list_del_init(&cic->queue_list);
  2338. /*
  2339. * Make sure dead mark is seen for dead queues
  2340. */
  2341. smp_wmb();
  2342. cic->key = cfqd_dead_key(cfqd);
  2343. rcu_read_lock();
  2344. if (rcu_dereference(ioc->ioc_data) == cic) {
  2345. rcu_read_unlock();
  2346. spin_lock(&ioc->lock);
  2347. rcu_assign_pointer(ioc->ioc_data, NULL);
  2348. spin_unlock(&ioc->lock);
  2349. } else
  2350. rcu_read_unlock();
  2351. if (cic->cfqq[BLK_RW_ASYNC]) {
  2352. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2353. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2354. }
  2355. if (cic->cfqq[BLK_RW_SYNC]) {
  2356. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2357. cic->cfqq[BLK_RW_SYNC] = NULL;
  2358. }
  2359. }
  2360. static void cfq_exit_single_io_context(struct io_context *ioc,
  2361. struct cfq_io_context *cic)
  2362. {
  2363. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2364. if (cfqd) {
  2365. struct request_queue *q = cfqd->queue;
  2366. unsigned long flags;
  2367. spin_lock_irqsave(q->queue_lock, flags);
  2368. /*
  2369. * Ensure we get a fresh copy of the ->key to prevent
  2370. * race between exiting task and queue
  2371. */
  2372. smp_read_barrier_depends();
  2373. if (cic->key == cfqd)
  2374. __cfq_exit_single_io_context(cfqd, cic);
  2375. spin_unlock_irqrestore(q->queue_lock, flags);
  2376. }
  2377. }
  2378. /*
  2379. * The process that ioc belongs to has exited, we need to clean up
  2380. * and put the internal structures we have that belongs to that process.
  2381. */
  2382. static void cfq_exit_io_context(struct io_context *ioc)
  2383. {
  2384. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2385. }
  2386. static struct cfq_io_context *
  2387. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2388. {
  2389. struct cfq_io_context *cic;
  2390. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2391. cfqd->queue->node);
  2392. if (cic) {
  2393. cic->ttime.last_end_request = jiffies;
  2394. INIT_LIST_HEAD(&cic->queue_list);
  2395. INIT_HLIST_NODE(&cic->cic_list);
  2396. cic->dtor = cfq_free_io_context;
  2397. cic->exit = cfq_exit_io_context;
  2398. elv_ioc_count_inc(cfq_ioc_count);
  2399. }
  2400. return cic;
  2401. }
  2402. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2403. {
  2404. struct task_struct *tsk = current;
  2405. int ioprio_class;
  2406. if (!cfq_cfqq_prio_changed(cfqq))
  2407. return;
  2408. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2409. switch (ioprio_class) {
  2410. default:
  2411. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2412. case IOPRIO_CLASS_NONE:
  2413. /*
  2414. * no prio set, inherit CPU scheduling settings
  2415. */
  2416. cfqq->ioprio = task_nice_ioprio(tsk);
  2417. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2418. break;
  2419. case IOPRIO_CLASS_RT:
  2420. cfqq->ioprio = task_ioprio(ioc);
  2421. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2422. break;
  2423. case IOPRIO_CLASS_BE:
  2424. cfqq->ioprio = task_ioprio(ioc);
  2425. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2426. break;
  2427. case IOPRIO_CLASS_IDLE:
  2428. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2429. cfqq->ioprio = 7;
  2430. cfq_clear_cfqq_idle_window(cfqq);
  2431. break;
  2432. }
  2433. /*
  2434. * keep track of original prio settings in case we have to temporarily
  2435. * elevate the priority of this queue
  2436. */
  2437. cfqq->org_ioprio = cfqq->ioprio;
  2438. cfq_clear_cfqq_prio_changed(cfqq);
  2439. }
  2440. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2441. {
  2442. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2443. struct cfq_queue *cfqq;
  2444. unsigned long flags;
  2445. if (unlikely(!cfqd))
  2446. return;
  2447. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2448. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2449. if (cfqq) {
  2450. struct cfq_queue *new_cfqq;
  2451. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2452. GFP_ATOMIC);
  2453. if (new_cfqq) {
  2454. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2455. cfq_put_queue(cfqq);
  2456. }
  2457. }
  2458. cfqq = cic->cfqq[BLK_RW_SYNC];
  2459. if (cfqq)
  2460. cfq_mark_cfqq_prio_changed(cfqq);
  2461. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2462. }
  2463. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2464. {
  2465. call_for_each_cic(ioc, changed_ioprio);
  2466. ioc->ioprio_changed = 0;
  2467. }
  2468. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2469. pid_t pid, bool is_sync)
  2470. {
  2471. RB_CLEAR_NODE(&cfqq->rb_node);
  2472. RB_CLEAR_NODE(&cfqq->p_node);
  2473. INIT_LIST_HEAD(&cfqq->fifo);
  2474. cfqq->ref = 0;
  2475. cfqq->cfqd = cfqd;
  2476. cfq_mark_cfqq_prio_changed(cfqq);
  2477. if (is_sync) {
  2478. if (!cfq_class_idle(cfqq))
  2479. cfq_mark_cfqq_idle_window(cfqq);
  2480. cfq_mark_cfqq_sync(cfqq);
  2481. }
  2482. cfqq->pid = pid;
  2483. }
  2484. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2485. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2486. {
  2487. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2488. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2489. unsigned long flags;
  2490. struct request_queue *q;
  2491. if (unlikely(!cfqd))
  2492. return;
  2493. q = cfqd->queue;
  2494. spin_lock_irqsave(q->queue_lock, flags);
  2495. if (sync_cfqq) {
  2496. /*
  2497. * Drop reference to sync queue. A new sync queue will be
  2498. * assigned in new group upon arrival of a fresh request.
  2499. */
  2500. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2501. cic_set_cfqq(cic, NULL, 1);
  2502. cfq_put_queue(sync_cfqq);
  2503. }
  2504. spin_unlock_irqrestore(q->queue_lock, flags);
  2505. }
  2506. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2507. {
  2508. call_for_each_cic(ioc, changed_cgroup);
  2509. ioc->cgroup_changed = 0;
  2510. }
  2511. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2512. static struct cfq_queue *
  2513. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2514. struct io_context *ioc, gfp_t gfp_mask)
  2515. {
  2516. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2517. struct cfq_io_context *cic;
  2518. struct cfq_group *cfqg;
  2519. retry:
  2520. cfqg = cfq_get_cfqg(cfqd);
  2521. cic = cfq_cic_lookup(cfqd, ioc);
  2522. /* cic always exists here */
  2523. cfqq = cic_to_cfqq(cic, is_sync);
  2524. /*
  2525. * Always try a new alloc if we fell back to the OOM cfqq
  2526. * originally, since it should just be a temporary situation.
  2527. */
  2528. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2529. cfqq = NULL;
  2530. if (new_cfqq) {
  2531. cfqq = new_cfqq;
  2532. new_cfqq = NULL;
  2533. } else if (gfp_mask & __GFP_WAIT) {
  2534. spin_unlock_irq(cfqd->queue->queue_lock);
  2535. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2536. gfp_mask | __GFP_ZERO,
  2537. cfqd->queue->node);
  2538. spin_lock_irq(cfqd->queue->queue_lock);
  2539. if (new_cfqq)
  2540. goto retry;
  2541. } else {
  2542. cfqq = kmem_cache_alloc_node(cfq_pool,
  2543. gfp_mask | __GFP_ZERO,
  2544. cfqd->queue->node);
  2545. }
  2546. if (cfqq) {
  2547. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2548. cfq_init_prio_data(cfqq, ioc);
  2549. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2550. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2551. } else
  2552. cfqq = &cfqd->oom_cfqq;
  2553. }
  2554. if (new_cfqq)
  2555. kmem_cache_free(cfq_pool, new_cfqq);
  2556. return cfqq;
  2557. }
  2558. static struct cfq_queue **
  2559. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2560. {
  2561. switch (ioprio_class) {
  2562. case IOPRIO_CLASS_RT:
  2563. return &cfqd->async_cfqq[0][ioprio];
  2564. case IOPRIO_CLASS_BE:
  2565. return &cfqd->async_cfqq[1][ioprio];
  2566. case IOPRIO_CLASS_IDLE:
  2567. return &cfqd->async_idle_cfqq;
  2568. default:
  2569. BUG();
  2570. }
  2571. }
  2572. static struct cfq_queue *
  2573. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2574. gfp_t gfp_mask)
  2575. {
  2576. const int ioprio = task_ioprio(ioc);
  2577. const int ioprio_class = task_ioprio_class(ioc);
  2578. struct cfq_queue **async_cfqq = NULL;
  2579. struct cfq_queue *cfqq = NULL;
  2580. if (!is_sync) {
  2581. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2582. cfqq = *async_cfqq;
  2583. }
  2584. if (!cfqq)
  2585. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2586. /*
  2587. * pin the queue now that it's allocated, scheduler exit will prune it
  2588. */
  2589. if (!is_sync && !(*async_cfqq)) {
  2590. cfqq->ref++;
  2591. *async_cfqq = cfqq;
  2592. }
  2593. cfqq->ref++;
  2594. return cfqq;
  2595. }
  2596. /*
  2597. * We drop cfq io contexts lazily, so we may find a dead one.
  2598. */
  2599. static void
  2600. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2601. struct cfq_io_context *cic)
  2602. {
  2603. unsigned long flags;
  2604. WARN_ON(!list_empty(&cic->queue_list));
  2605. BUG_ON(cic->key != cfqd_dead_key(cfqd));
  2606. spin_lock_irqsave(&ioc->lock, flags);
  2607. BUG_ON(rcu_dereference_check(ioc->ioc_data,
  2608. lockdep_is_held(&ioc->lock)) == cic);
  2609. radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
  2610. hlist_del_rcu(&cic->cic_list);
  2611. spin_unlock_irqrestore(&ioc->lock, flags);
  2612. cfq_cic_free(cic);
  2613. }
  2614. static struct cfq_io_context *
  2615. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2616. {
  2617. struct cfq_io_context *cic;
  2618. unsigned long flags;
  2619. if (unlikely(!ioc))
  2620. return NULL;
  2621. rcu_read_lock();
  2622. /*
  2623. * we maintain a last-hit cache, to avoid browsing over the tree
  2624. */
  2625. cic = rcu_dereference(ioc->ioc_data);
  2626. if (cic && cic->key == cfqd) {
  2627. rcu_read_unlock();
  2628. return cic;
  2629. }
  2630. do {
  2631. cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
  2632. rcu_read_unlock();
  2633. if (!cic)
  2634. break;
  2635. if (unlikely(cic->key != cfqd)) {
  2636. cfq_drop_dead_cic(cfqd, ioc, cic);
  2637. rcu_read_lock();
  2638. continue;
  2639. }
  2640. spin_lock_irqsave(&ioc->lock, flags);
  2641. rcu_assign_pointer(ioc->ioc_data, cic);
  2642. spin_unlock_irqrestore(&ioc->lock, flags);
  2643. break;
  2644. } while (1);
  2645. return cic;
  2646. }
  2647. /*
  2648. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2649. * the process specific cfq io context when entered from the block layer.
  2650. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2651. */
  2652. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2653. struct cfq_io_context *cic, gfp_t gfp_mask)
  2654. {
  2655. unsigned long flags;
  2656. int ret;
  2657. ret = radix_tree_preload(gfp_mask);
  2658. if (!ret) {
  2659. cic->ioc = ioc;
  2660. cic->key = cfqd;
  2661. spin_lock_irqsave(&ioc->lock, flags);
  2662. ret = radix_tree_insert(&ioc->radix_root,
  2663. cfqd->cic_index, cic);
  2664. if (!ret)
  2665. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2666. spin_unlock_irqrestore(&ioc->lock, flags);
  2667. radix_tree_preload_end();
  2668. if (!ret) {
  2669. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2670. list_add(&cic->queue_list, &cfqd->cic_list);
  2671. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2672. }
  2673. }
  2674. if (ret)
  2675. printk(KERN_ERR "cfq: cic link failed!\n");
  2676. return ret;
  2677. }
  2678. /*
  2679. * Setup general io context and cfq io context. There can be several cfq
  2680. * io contexts per general io context, if this process is doing io to more
  2681. * than one device managed by cfq.
  2682. */
  2683. static struct cfq_io_context *
  2684. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2685. {
  2686. struct io_context *ioc = NULL;
  2687. struct cfq_io_context *cic;
  2688. might_sleep_if(gfp_mask & __GFP_WAIT);
  2689. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2690. if (!ioc)
  2691. return NULL;
  2692. cic = cfq_cic_lookup(cfqd, ioc);
  2693. if (cic)
  2694. goto out;
  2695. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2696. if (cic == NULL)
  2697. goto err;
  2698. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2699. goto err_free;
  2700. out:
  2701. smp_read_barrier_depends();
  2702. if (unlikely(ioc->ioprio_changed))
  2703. cfq_ioc_set_ioprio(ioc);
  2704. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2705. if (unlikely(ioc->cgroup_changed))
  2706. cfq_ioc_set_cgroup(ioc);
  2707. #endif
  2708. return cic;
  2709. err_free:
  2710. cfq_cic_free(cic);
  2711. err:
  2712. put_io_context(ioc);
  2713. return NULL;
  2714. }
  2715. static void
  2716. __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
  2717. {
  2718. unsigned long elapsed = jiffies - ttime->last_end_request;
  2719. elapsed = min(elapsed, 2UL * slice_idle);
  2720. ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
  2721. ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
  2722. ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
  2723. }
  2724. static void
  2725. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2726. struct cfq_io_context *cic)
  2727. {
  2728. if (cfq_cfqq_sync(cfqq)) {
  2729. __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
  2730. __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
  2731. cfqd->cfq_slice_idle);
  2732. }
  2733. }
  2734. static void
  2735. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2736. struct request *rq)
  2737. {
  2738. sector_t sdist = 0;
  2739. sector_t n_sec = blk_rq_sectors(rq);
  2740. if (cfqq->last_request_pos) {
  2741. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2742. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2743. else
  2744. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2745. }
  2746. cfqq->seek_history <<= 1;
  2747. if (blk_queue_nonrot(cfqd->queue))
  2748. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2749. else
  2750. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2751. }
  2752. /*
  2753. * Disable idle window if the process thinks too long or seeks so much that
  2754. * it doesn't matter
  2755. */
  2756. static void
  2757. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2758. struct cfq_io_context *cic)
  2759. {
  2760. int old_idle, enable_idle;
  2761. /*
  2762. * Don't idle for async or idle io prio class
  2763. */
  2764. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2765. return;
  2766. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2767. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2768. cfq_mark_cfqq_deep(cfqq);
  2769. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2770. enable_idle = 0;
  2771. else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2772. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2773. enable_idle = 0;
  2774. else if (sample_valid(cic->ttime.ttime_samples)) {
  2775. if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
  2776. enable_idle = 0;
  2777. else
  2778. enable_idle = 1;
  2779. }
  2780. if (old_idle != enable_idle) {
  2781. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2782. if (enable_idle)
  2783. cfq_mark_cfqq_idle_window(cfqq);
  2784. else
  2785. cfq_clear_cfqq_idle_window(cfqq);
  2786. }
  2787. }
  2788. /*
  2789. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2790. * no or if we aren't sure, a 1 will cause a preempt.
  2791. */
  2792. static bool
  2793. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2794. struct request *rq)
  2795. {
  2796. struct cfq_queue *cfqq;
  2797. cfqq = cfqd->active_queue;
  2798. if (!cfqq)
  2799. return false;
  2800. if (cfq_class_idle(new_cfqq))
  2801. return false;
  2802. if (cfq_class_idle(cfqq))
  2803. return true;
  2804. /*
  2805. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2806. */
  2807. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2808. return false;
  2809. /*
  2810. * if the new request is sync, but the currently running queue is
  2811. * not, let the sync request have priority.
  2812. */
  2813. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2814. return true;
  2815. if (new_cfqq->cfqg != cfqq->cfqg)
  2816. return false;
  2817. if (cfq_slice_used(cfqq))
  2818. return true;
  2819. /* Allow preemption only if we are idling on sync-noidle tree */
  2820. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2821. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2822. new_cfqq->service_tree->count == 2 &&
  2823. RB_EMPTY_ROOT(&cfqq->sort_list))
  2824. return true;
  2825. /*
  2826. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2827. */
  2828. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2829. return true;
  2830. /* An idle queue should not be idle now for some reason */
  2831. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2832. return true;
  2833. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2834. return false;
  2835. /*
  2836. * if this request is as-good as one we would expect from the
  2837. * current cfqq, let it preempt
  2838. */
  2839. if (cfq_rq_close(cfqd, cfqq, rq))
  2840. return true;
  2841. return false;
  2842. }
  2843. /*
  2844. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2845. * let it have half of its nominal slice.
  2846. */
  2847. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2848. {
  2849. struct cfq_queue *old_cfqq = cfqd->active_queue;
  2850. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2851. cfq_slice_expired(cfqd, 1);
  2852. /*
  2853. * workload type is changed, don't save slice, otherwise preempt
  2854. * doesn't happen
  2855. */
  2856. if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
  2857. cfqq->cfqg->saved_workload_slice = 0;
  2858. /*
  2859. * Put the new queue at the front of the of the current list,
  2860. * so we know that it will be selected next.
  2861. */
  2862. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2863. cfq_service_tree_add(cfqd, cfqq, 1);
  2864. cfqq->slice_end = 0;
  2865. cfq_mark_cfqq_slice_new(cfqq);
  2866. }
  2867. /*
  2868. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2869. * something we should do about it
  2870. */
  2871. static void
  2872. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2873. struct request *rq)
  2874. {
  2875. struct cfq_io_context *cic = RQ_CIC(rq);
  2876. cfqd->rq_queued++;
  2877. cfq_update_io_thinktime(cfqd, cfqq, cic);
  2878. cfq_update_io_seektime(cfqd, cfqq, rq);
  2879. cfq_update_idle_window(cfqd, cfqq, cic);
  2880. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2881. if (cfqq == cfqd->active_queue) {
  2882. /*
  2883. * Remember that we saw a request from this process, but
  2884. * don't start queuing just yet. Otherwise we risk seeing lots
  2885. * of tiny requests, because we disrupt the normal plugging
  2886. * and merging. If the request is already larger than a single
  2887. * page, let it rip immediately. For that case we assume that
  2888. * merging is already done. Ditto for a busy system that
  2889. * has other work pending, don't risk delaying until the
  2890. * idle timer unplug to continue working.
  2891. */
  2892. if (cfq_cfqq_wait_request(cfqq)) {
  2893. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2894. cfqd->busy_queues > 1) {
  2895. cfq_del_timer(cfqd, cfqq);
  2896. cfq_clear_cfqq_wait_request(cfqq);
  2897. __blk_run_queue(cfqd->queue);
  2898. } else {
  2899. cfq_blkiocg_update_idle_time_stats(
  2900. &cfqq->cfqg->blkg);
  2901. cfq_mark_cfqq_must_dispatch(cfqq);
  2902. }
  2903. }
  2904. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2905. /*
  2906. * not the active queue - expire current slice if it is
  2907. * idle and has expired it's mean thinktime or this new queue
  2908. * has some old slice time left and is of higher priority or
  2909. * this new queue is RT and the current one is BE
  2910. */
  2911. cfq_preempt_queue(cfqd, cfqq);
  2912. __blk_run_queue(cfqd->queue);
  2913. }
  2914. }
  2915. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2916. {
  2917. struct cfq_data *cfqd = q->elevator->elevator_data;
  2918. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2919. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2920. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2921. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2922. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2923. cfq_add_rq_rb(rq);
  2924. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2925. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2926. rq_is_sync(rq));
  2927. cfq_rq_enqueued(cfqd, cfqq, rq);
  2928. }
  2929. /*
  2930. * Update hw_tag based on peak queue depth over 50 samples under
  2931. * sufficient load.
  2932. */
  2933. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2934. {
  2935. struct cfq_queue *cfqq = cfqd->active_queue;
  2936. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2937. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2938. if (cfqd->hw_tag == 1)
  2939. return;
  2940. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2941. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2942. return;
  2943. /*
  2944. * If active queue hasn't enough requests and can idle, cfq might not
  2945. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2946. * case
  2947. */
  2948. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2949. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2950. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2951. return;
  2952. if (cfqd->hw_tag_samples++ < 50)
  2953. return;
  2954. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2955. cfqd->hw_tag = 1;
  2956. else
  2957. cfqd->hw_tag = 0;
  2958. }
  2959. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2960. {
  2961. struct cfq_io_context *cic = cfqd->active_cic;
  2962. /* If the queue already has requests, don't wait */
  2963. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2964. return false;
  2965. /* If there are other queues in the group, don't wait */
  2966. if (cfqq->cfqg->nr_cfqq > 1)
  2967. return false;
  2968. if (cfq_slice_used(cfqq))
  2969. return true;
  2970. /* if slice left is less than think time, wait busy */
  2971. if (cic && sample_valid(cic->ttime.ttime_samples)
  2972. && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
  2973. return true;
  2974. /*
  2975. * If think times is less than a jiffy than ttime_mean=0 and above
  2976. * will not be true. It might happen that slice has not expired yet
  2977. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2978. * case where think time is less than a jiffy, mark the queue wait
  2979. * busy if only 1 jiffy is left in the slice.
  2980. */
  2981. if (cfqq->slice_end - jiffies == 1)
  2982. return true;
  2983. return false;
  2984. }
  2985. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2986. {
  2987. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2988. struct cfq_data *cfqd = cfqq->cfqd;
  2989. const int sync = rq_is_sync(rq);
  2990. unsigned long now;
  2991. now = jiffies;
  2992. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2993. !!(rq->cmd_flags & REQ_NOIDLE));
  2994. cfq_update_hw_tag(cfqd);
  2995. WARN_ON(!cfqd->rq_in_driver);
  2996. WARN_ON(!cfqq->dispatched);
  2997. cfqd->rq_in_driver--;
  2998. cfqq->dispatched--;
  2999. (RQ_CFQG(rq))->dispatched--;
  3000. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  3001. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  3002. rq_data_dir(rq), rq_is_sync(rq));
  3003. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  3004. if (sync) {
  3005. struct cfq_rb_root *service_tree;
  3006. RQ_CIC(rq)->ttime.last_end_request = now;
  3007. if (cfq_cfqq_on_rr(cfqq))
  3008. service_tree = cfqq->service_tree;
  3009. else
  3010. service_tree = service_tree_for(cfqq->cfqg,
  3011. cfqq_prio(cfqq), cfqq_type(cfqq));
  3012. service_tree->ttime.last_end_request = now;
  3013. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  3014. cfqd->last_delayed_sync = now;
  3015. }
  3016. /*
  3017. * If this is the active queue, check if it needs to be expired,
  3018. * or if we want to idle in case it has no pending requests.
  3019. */
  3020. if (cfqd->active_queue == cfqq) {
  3021. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  3022. if (cfq_cfqq_slice_new(cfqq)) {
  3023. cfq_set_prio_slice(cfqd, cfqq);
  3024. cfq_clear_cfqq_slice_new(cfqq);
  3025. }
  3026. /*
  3027. * Should we wait for next request to come in before we expire
  3028. * the queue.
  3029. */
  3030. if (cfq_should_wait_busy(cfqd, cfqq)) {
  3031. unsigned long extend_sl = cfqd->cfq_slice_idle;
  3032. if (!cfqd->cfq_slice_idle)
  3033. extend_sl = cfqd->cfq_group_idle;
  3034. cfqq->slice_end = jiffies + extend_sl;
  3035. cfq_mark_cfqq_wait_busy(cfqq);
  3036. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  3037. }
  3038. /*
  3039. * Idling is not enabled on:
  3040. * - expired queues
  3041. * - idle-priority queues
  3042. * - async queues
  3043. * - queues with still some requests queued
  3044. * - when there is a close cooperator
  3045. */
  3046. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  3047. cfq_slice_expired(cfqd, 1);
  3048. else if (sync && cfqq_empty &&
  3049. !cfq_close_cooperator(cfqd, cfqq)) {
  3050. cfq_arm_slice_timer(cfqd);
  3051. }
  3052. }
  3053. if (!cfqd->rq_in_driver)
  3054. cfq_schedule_dispatch(cfqd);
  3055. }
  3056. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  3057. {
  3058. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  3059. cfq_mark_cfqq_must_alloc_slice(cfqq);
  3060. return ELV_MQUEUE_MUST;
  3061. }
  3062. return ELV_MQUEUE_MAY;
  3063. }
  3064. static int cfq_may_queue(struct request_queue *q, int rw)
  3065. {
  3066. struct cfq_data *cfqd = q->elevator->elevator_data;
  3067. struct task_struct *tsk = current;
  3068. struct cfq_io_context *cic;
  3069. struct cfq_queue *cfqq;
  3070. /*
  3071. * don't force setup of a queue from here, as a call to may_queue
  3072. * does not necessarily imply that a request actually will be queued.
  3073. * so just lookup a possibly existing queue, or return 'may queue'
  3074. * if that fails
  3075. */
  3076. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  3077. if (!cic)
  3078. return ELV_MQUEUE_MAY;
  3079. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  3080. if (cfqq) {
  3081. cfq_init_prio_data(cfqq, cic->ioc);
  3082. return __cfq_may_queue(cfqq);
  3083. }
  3084. return ELV_MQUEUE_MAY;
  3085. }
  3086. /*
  3087. * queue lock held here
  3088. */
  3089. static void cfq_put_request(struct request *rq)
  3090. {
  3091. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3092. if (cfqq) {
  3093. const int rw = rq_data_dir(rq);
  3094. BUG_ON(!cfqq->allocated[rw]);
  3095. cfqq->allocated[rw]--;
  3096. put_io_context(RQ_CIC(rq)->ioc);
  3097. rq->elevator_private[0] = NULL;
  3098. rq->elevator_private[1] = NULL;
  3099. /* Put down rq reference on cfqg */
  3100. cfq_put_cfqg(RQ_CFQG(rq));
  3101. rq->elevator_private[2] = NULL;
  3102. cfq_put_queue(cfqq);
  3103. }
  3104. }
  3105. static struct cfq_queue *
  3106. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  3107. struct cfq_queue *cfqq)
  3108. {
  3109. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  3110. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  3111. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  3112. cfq_put_queue(cfqq);
  3113. return cic_to_cfqq(cic, 1);
  3114. }
  3115. /*
  3116. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3117. * was the last process referring to said cfqq.
  3118. */
  3119. static struct cfq_queue *
  3120. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  3121. {
  3122. if (cfqq_process_refs(cfqq) == 1) {
  3123. cfqq->pid = current->pid;
  3124. cfq_clear_cfqq_coop(cfqq);
  3125. cfq_clear_cfqq_split_coop(cfqq);
  3126. return cfqq;
  3127. }
  3128. cic_set_cfqq(cic, NULL, 1);
  3129. cfq_put_cooperator(cfqq);
  3130. cfq_put_queue(cfqq);
  3131. return NULL;
  3132. }
  3133. /*
  3134. * Allocate cfq data structures associated with this request.
  3135. */
  3136. static int
  3137. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  3138. {
  3139. struct cfq_data *cfqd = q->elevator->elevator_data;
  3140. struct cfq_io_context *cic;
  3141. const int rw = rq_data_dir(rq);
  3142. const bool is_sync = rq_is_sync(rq);
  3143. struct cfq_queue *cfqq;
  3144. unsigned long flags;
  3145. might_sleep_if(gfp_mask & __GFP_WAIT);
  3146. cic = cfq_get_io_context(cfqd, gfp_mask);
  3147. spin_lock_irqsave(q->queue_lock, flags);
  3148. if (!cic)
  3149. goto queue_fail;
  3150. new_queue:
  3151. cfqq = cic_to_cfqq(cic, is_sync);
  3152. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3153. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  3154. cic_set_cfqq(cic, cfqq, is_sync);
  3155. } else {
  3156. /*
  3157. * If the queue was seeky for too long, break it apart.
  3158. */
  3159. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3160. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3161. cfqq = split_cfqq(cic, cfqq);
  3162. if (!cfqq)
  3163. goto new_queue;
  3164. }
  3165. /*
  3166. * Check to see if this queue is scheduled to merge with
  3167. * another, closely cooperating queue. The merging of
  3168. * queues happens here as it must be done in process context.
  3169. * The reference on new_cfqq was taken in merge_cfqqs.
  3170. */
  3171. if (cfqq->new_cfqq)
  3172. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3173. }
  3174. cfqq->allocated[rw]++;
  3175. cfqq->ref++;
  3176. rq->elevator_private[0] = cic;
  3177. rq->elevator_private[1] = cfqq;
  3178. rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
  3179. spin_unlock_irqrestore(q->queue_lock, flags);
  3180. return 0;
  3181. queue_fail:
  3182. cfq_schedule_dispatch(cfqd);
  3183. spin_unlock_irqrestore(q->queue_lock, flags);
  3184. cfq_log(cfqd, "set_request fail");
  3185. return 1;
  3186. }
  3187. static void cfq_kick_queue(struct work_struct *work)
  3188. {
  3189. struct cfq_data *cfqd =
  3190. container_of(work, struct cfq_data, unplug_work);
  3191. struct request_queue *q = cfqd->queue;
  3192. spin_lock_irq(q->queue_lock);
  3193. __blk_run_queue(cfqd->queue);
  3194. spin_unlock_irq(q->queue_lock);
  3195. }
  3196. /*
  3197. * Timer running if the active_queue is currently idling inside its time slice
  3198. */
  3199. static void cfq_idle_slice_timer(unsigned long data)
  3200. {
  3201. struct cfq_data *cfqd = (struct cfq_data *) data;
  3202. struct cfq_queue *cfqq;
  3203. unsigned long flags;
  3204. int timed_out = 1;
  3205. cfq_log(cfqd, "idle timer fired");
  3206. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3207. cfqq = cfqd->active_queue;
  3208. if (cfqq) {
  3209. timed_out = 0;
  3210. /*
  3211. * We saw a request before the queue expired, let it through
  3212. */
  3213. if (cfq_cfqq_must_dispatch(cfqq))
  3214. goto out_kick;
  3215. /*
  3216. * expired
  3217. */
  3218. if (cfq_slice_used(cfqq))
  3219. goto expire;
  3220. /*
  3221. * only expire and reinvoke request handler, if there are
  3222. * other queues with pending requests
  3223. */
  3224. if (!cfqd->busy_queues)
  3225. goto out_cont;
  3226. /*
  3227. * not expired and it has a request pending, let it dispatch
  3228. */
  3229. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3230. goto out_kick;
  3231. /*
  3232. * Queue depth flag is reset only when the idle didn't succeed
  3233. */
  3234. cfq_clear_cfqq_deep(cfqq);
  3235. }
  3236. expire:
  3237. cfq_slice_expired(cfqd, timed_out);
  3238. out_kick:
  3239. cfq_schedule_dispatch(cfqd);
  3240. out_cont:
  3241. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3242. }
  3243. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3244. {
  3245. del_timer_sync(&cfqd->idle_slice_timer);
  3246. cancel_work_sync(&cfqd->unplug_work);
  3247. }
  3248. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3249. {
  3250. int i;
  3251. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3252. if (cfqd->async_cfqq[0][i])
  3253. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3254. if (cfqd->async_cfqq[1][i])
  3255. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3256. }
  3257. if (cfqd->async_idle_cfqq)
  3258. cfq_put_queue(cfqd->async_idle_cfqq);
  3259. }
  3260. static void cfq_exit_queue(struct elevator_queue *e)
  3261. {
  3262. struct cfq_data *cfqd = e->elevator_data;
  3263. struct request_queue *q = cfqd->queue;
  3264. bool wait = false;
  3265. cfq_shutdown_timer_wq(cfqd);
  3266. spin_lock_irq(q->queue_lock);
  3267. if (cfqd->active_queue)
  3268. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3269. while (!list_empty(&cfqd->cic_list)) {
  3270. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3271. struct cfq_io_context,
  3272. queue_list);
  3273. __cfq_exit_single_io_context(cfqd, cic);
  3274. }
  3275. cfq_put_async_queues(cfqd);
  3276. cfq_release_cfq_groups(cfqd);
  3277. /*
  3278. * If there are groups which we could not unlink from blkcg list,
  3279. * wait for a rcu period for them to be freed.
  3280. */
  3281. if (cfqd->nr_blkcg_linked_grps)
  3282. wait = true;
  3283. spin_unlock_irq(q->queue_lock);
  3284. cfq_shutdown_timer_wq(cfqd);
  3285. spin_lock(&cic_index_lock);
  3286. ida_remove(&cic_index_ida, cfqd->cic_index);
  3287. spin_unlock(&cic_index_lock);
  3288. /*
  3289. * Wait for cfqg->blkg->key accessors to exit their grace periods.
  3290. * Do this wait only if there are other unlinked groups out
  3291. * there. This can happen if cgroup deletion path claimed the
  3292. * responsibility of cleaning up a group before queue cleanup code
  3293. * get to the group.
  3294. *
  3295. * Do not call synchronize_rcu() unconditionally as there are drivers
  3296. * which create/delete request queue hundreds of times during scan/boot
  3297. * and synchronize_rcu() can take significant time and slow down boot.
  3298. */
  3299. if (wait)
  3300. synchronize_rcu();
  3301. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3302. /* Free up per cpu stats for root group */
  3303. free_percpu(cfqd->root_group.blkg.stats_cpu);
  3304. #endif
  3305. kfree(cfqd);
  3306. }
  3307. static int cfq_alloc_cic_index(void)
  3308. {
  3309. int index, error;
  3310. do {
  3311. if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
  3312. return -ENOMEM;
  3313. spin_lock(&cic_index_lock);
  3314. error = ida_get_new(&cic_index_ida, &index);
  3315. spin_unlock(&cic_index_lock);
  3316. if (error && error != -EAGAIN)
  3317. return error;
  3318. } while (error);
  3319. return index;
  3320. }
  3321. static void *cfq_init_queue(struct request_queue *q)
  3322. {
  3323. struct cfq_data *cfqd;
  3324. int i, j;
  3325. struct cfq_group *cfqg;
  3326. struct cfq_rb_root *st;
  3327. i = cfq_alloc_cic_index();
  3328. if (i < 0)
  3329. return NULL;
  3330. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3331. if (!cfqd) {
  3332. spin_lock(&cic_index_lock);
  3333. ida_remove(&cic_index_ida, i);
  3334. spin_unlock(&cic_index_lock);
  3335. return NULL;
  3336. }
  3337. /*
  3338. * Don't need take queue_lock in the routine, since we are
  3339. * initializing the ioscheduler, and nobody is using cfqd
  3340. */
  3341. cfqd->cic_index = i;
  3342. /* Init root service tree */
  3343. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3344. /* Init root group */
  3345. cfqg = &cfqd->root_group;
  3346. for_each_cfqg_st(cfqg, i, j, st)
  3347. *st = CFQ_RB_ROOT;
  3348. RB_CLEAR_NODE(&cfqg->rb_node);
  3349. /* Give preference to root group over other groups */
  3350. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3351. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3352. /*
  3353. * Set root group reference to 2. One reference will be dropped when
  3354. * all groups on cfqd->cfqg_list are being deleted during queue exit.
  3355. * Other reference will remain there as we don't want to delete this
  3356. * group as it is statically allocated and gets destroyed when
  3357. * throtl_data goes away.
  3358. */
  3359. cfqg->ref = 2;
  3360. if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
  3361. kfree(cfqg);
  3362. kfree(cfqd);
  3363. return NULL;
  3364. }
  3365. rcu_read_lock();
  3366. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3367. (void *)cfqd, 0);
  3368. rcu_read_unlock();
  3369. cfqd->nr_blkcg_linked_grps++;
  3370. /* Add group on cfqd->cfqg_list */
  3371. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  3372. #endif
  3373. /*
  3374. * Not strictly needed (since RB_ROOT just clears the node and we
  3375. * zeroed cfqd on alloc), but better be safe in case someone decides
  3376. * to add magic to the rb code
  3377. */
  3378. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3379. cfqd->prio_trees[i] = RB_ROOT;
  3380. /*
  3381. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3382. * Grab a permanent reference to it, so that the normal code flow
  3383. * will not attempt to free it.
  3384. */
  3385. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3386. cfqd->oom_cfqq.ref++;
  3387. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3388. INIT_LIST_HEAD(&cfqd->cic_list);
  3389. cfqd->queue = q;
  3390. init_timer(&cfqd->idle_slice_timer);
  3391. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3392. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3393. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3394. cfqd->cfq_quantum = cfq_quantum;
  3395. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3396. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3397. cfqd->cfq_back_max = cfq_back_max;
  3398. cfqd->cfq_back_penalty = cfq_back_penalty;
  3399. cfqd->cfq_slice[0] = cfq_slice_async;
  3400. cfqd->cfq_slice[1] = cfq_slice_sync;
  3401. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3402. cfqd->cfq_slice_idle = cfq_slice_idle;
  3403. cfqd->cfq_group_idle = cfq_group_idle;
  3404. cfqd->cfq_latency = 1;
  3405. cfqd->hw_tag = -1;
  3406. /*
  3407. * we optimistically start assuming sync ops weren't delayed in last
  3408. * second, in order to have larger depth for async operations.
  3409. */
  3410. cfqd->last_delayed_sync = jiffies - HZ;
  3411. return cfqd;
  3412. }
  3413. static void cfq_slab_kill(void)
  3414. {
  3415. /*
  3416. * Caller already ensured that pending RCU callbacks are completed,
  3417. * so we should have no busy allocations at this point.
  3418. */
  3419. if (cfq_pool)
  3420. kmem_cache_destroy(cfq_pool);
  3421. if (cfq_ioc_pool)
  3422. kmem_cache_destroy(cfq_ioc_pool);
  3423. }
  3424. static int __init cfq_slab_setup(void)
  3425. {
  3426. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3427. if (!cfq_pool)
  3428. goto fail;
  3429. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3430. if (!cfq_ioc_pool)
  3431. goto fail;
  3432. return 0;
  3433. fail:
  3434. cfq_slab_kill();
  3435. return -ENOMEM;
  3436. }
  3437. /*
  3438. * sysfs parts below -->
  3439. */
  3440. static ssize_t
  3441. cfq_var_show(unsigned int var, char *page)
  3442. {
  3443. return sprintf(page, "%d\n", var);
  3444. }
  3445. static ssize_t
  3446. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3447. {
  3448. char *p = (char *) page;
  3449. *var = simple_strtoul(p, &p, 10);
  3450. return count;
  3451. }
  3452. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3453. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3454. { \
  3455. struct cfq_data *cfqd = e->elevator_data; \
  3456. unsigned int __data = __VAR; \
  3457. if (__CONV) \
  3458. __data = jiffies_to_msecs(__data); \
  3459. return cfq_var_show(__data, (page)); \
  3460. }
  3461. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3462. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3463. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3464. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3465. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3466. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3467. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3468. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3469. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3470. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3471. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3472. #undef SHOW_FUNCTION
  3473. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3474. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3475. { \
  3476. struct cfq_data *cfqd = e->elevator_data; \
  3477. unsigned int __data; \
  3478. int ret = cfq_var_store(&__data, (page), count); \
  3479. if (__data < (MIN)) \
  3480. __data = (MIN); \
  3481. else if (__data > (MAX)) \
  3482. __data = (MAX); \
  3483. if (__CONV) \
  3484. *(__PTR) = msecs_to_jiffies(__data); \
  3485. else \
  3486. *(__PTR) = __data; \
  3487. return ret; \
  3488. }
  3489. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3490. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3491. UINT_MAX, 1);
  3492. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3493. UINT_MAX, 1);
  3494. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3495. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3496. UINT_MAX, 0);
  3497. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3498. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3499. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3500. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3501. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3502. UINT_MAX, 0);
  3503. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3504. #undef STORE_FUNCTION
  3505. #define CFQ_ATTR(name) \
  3506. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3507. static struct elv_fs_entry cfq_attrs[] = {
  3508. CFQ_ATTR(quantum),
  3509. CFQ_ATTR(fifo_expire_sync),
  3510. CFQ_ATTR(fifo_expire_async),
  3511. CFQ_ATTR(back_seek_max),
  3512. CFQ_ATTR(back_seek_penalty),
  3513. CFQ_ATTR(slice_sync),
  3514. CFQ_ATTR(slice_async),
  3515. CFQ_ATTR(slice_async_rq),
  3516. CFQ_ATTR(slice_idle),
  3517. CFQ_ATTR(group_idle),
  3518. CFQ_ATTR(low_latency),
  3519. __ATTR_NULL
  3520. };
  3521. static struct elevator_type iosched_cfq = {
  3522. .ops = {
  3523. .elevator_merge_fn = cfq_merge,
  3524. .elevator_merged_fn = cfq_merged_request,
  3525. .elevator_merge_req_fn = cfq_merged_requests,
  3526. .elevator_allow_merge_fn = cfq_allow_merge,
  3527. .elevator_bio_merged_fn = cfq_bio_merged,
  3528. .elevator_dispatch_fn = cfq_dispatch_requests,
  3529. .elevator_add_req_fn = cfq_insert_request,
  3530. .elevator_activate_req_fn = cfq_activate_request,
  3531. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3532. .elevator_completed_req_fn = cfq_completed_request,
  3533. .elevator_former_req_fn = elv_rb_former_request,
  3534. .elevator_latter_req_fn = elv_rb_latter_request,
  3535. .elevator_set_req_fn = cfq_set_request,
  3536. .elevator_put_req_fn = cfq_put_request,
  3537. .elevator_may_queue_fn = cfq_may_queue,
  3538. .elevator_init_fn = cfq_init_queue,
  3539. .elevator_exit_fn = cfq_exit_queue,
  3540. .trim = cfq_free_io_context,
  3541. },
  3542. .elevator_attrs = cfq_attrs,
  3543. .elevator_name = "cfq",
  3544. .elevator_owner = THIS_MODULE,
  3545. };
  3546. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3547. static struct blkio_policy_type blkio_policy_cfq = {
  3548. .ops = {
  3549. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3550. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3551. },
  3552. .plid = BLKIO_POLICY_PROP,
  3553. };
  3554. #else
  3555. static struct blkio_policy_type blkio_policy_cfq;
  3556. #endif
  3557. static int __init cfq_init(void)
  3558. {
  3559. /*
  3560. * could be 0 on HZ < 1000 setups
  3561. */
  3562. if (!cfq_slice_async)
  3563. cfq_slice_async = 1;
  3564. if (!cfq_slice_idle)
  3565. cfq_slice_idle = 1;
  3566. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3567. if (!cfq_group_idle)
  3568. cfq_group_idle = 1;
  3569. #else
  3570. cfq_group_idle = 0;
  3571. #endif
  3572. if (cfq_slab_setup())
  3573. return -ENOMEM;
  3574. elv_register(&iosched_cfq);
  3575. blkio_policy_register(&blkio_policy_cfq);
  3576. return 0;
  3577. }
  3578. static void __exit cfq_exit(void)
  3579. {
  3580. DECLARE_COMPLETION_ONSTACK(all_gone);
  3581. blkio_policy_unregister(&blkio_policy_cfq);
  3582. elv_unregister(&iosched_cfq);
  3583. ioc_gone = &all_gone;
  3584. /* ioc_gone's update must be visible before reading ioc_count */
  3585. smp_wmb();
  3586. /*
  3587. * this also protects us from entering cfq_slab_kill() with
  3588. * pending RCU callbacks
  3589. */
  3590. if (elv_ioc_count_read(cfq_ioc_count))
  3591. wait_for_completion(&all_gone);
  3592. ida_destroy(&cic_index_ida);
  3593. cfq_slab_kill();
  3594. }
  3595. module_init(cfq_init);
  3596. module_exit(cfq_exit);
  3597. MODULE_AUTHOR("Jens Axboe");
  3598. MODULE_LICENSE("GPL");
  3599. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");