smp.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768
  1. /*
  2. * Intel SMP support routines.
  3. *
  4. * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
  5. * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
  6. *
  7. * This code is released under the GNU General Public License version 2 or
  8. * later.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/mm.h>
  12. #include <linux/delay.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/smp_lock.h>
  15. #include <linux/kernel_stat.h>
  16. #include <linux/mc146818rtc.h>
  17. #include <linux/cache.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/cpu.h>
  20. #include <linux/module.h>
  21. #include <asm/mtrr.h>
  22. #include <asm/tlbflush.h>
  23. #include <mach_apic.h>
  24. /*
  25. * Some notes on x86 processor bugs affecting SMP operation:
  26. *
  27. * Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
  28. * The Linux implications for SMP are handled as follows:
  29. *
  30. * Pentium III / [Xeon]
  31. * None of the E1AP-E3AP errata are visible to the user.
  32. *
  33. * E1AP. see PII A1AP
  34. * E2AP. see PII A2AP
  35. * E3AP. see PII A3AP
  36. *
  37. * Pentium II / [Xeon]
  38. * None of the A1AP-A3AP errata are visible to the user.
  39. *
  40. * A1AP. see PPro 1AP
  41. * A2AP. see PPro 2AP
  42. * A3AP. see PPro 7AP
  43. *
  44. * Pentium Pro
  45. * None of 1AP-9AP errata are visible to the normal user,
  46. * except occasional delivery of 'spurious interrupt' as trap #15.
  47. * This is very rare and a non-problem.
  48. *
  49. * 1AP. Linux maps APIC as non-cacheable
  50. * 2AP. worked around in hardware
  51. * 3AP. fixed in C0 and above steppings microcode update.
  52. * Linux does not use excessive STARTUP_IPIs.
  53. * 4AP. worked around in hardware
  54. * 5AP. symmetric IO mode (normal Linux operation) not affected.
  55. * 'noapic' mode has vector 0xf filled out properly.
  56. * 6AP. 'noapic' mode might be affected - fixed in later steppings
  57. * 7AP. We do not assume writes to the LVT deassering IRQs
  58. * 8AP. We do not enable low power mode (deep sleep) during MP bootup
  59. * 9AP. We do not use mixed mode
  60. *
  61. * Pentium
  62. * There is a marginal case where REP MOVS on 100MHz SMP
  63. * machines with B stepping processors can fail. XXX should provide
  64. * an L1cache=Writethrough or L1cache=off option.
  65. *
  66. * B stepping CPUs may hang. There are hardware work arounds
  67. * for this. We warn about it in case your board doesn't have the work
  68. * arounds. Basically thats so I can tell anyone with a B stepping
  69. * CPU and SMP problems "tough".
  70. *
  71. * Specific items [From Pentium Processor Specification Update]
  72. *
  73. * 1AP. Linux doesn't use remote read
  74. * 2AP. Linux doesn't trust APIC errors
  75. * 3AP. We work around this
  76. * 4AP. Linux never generated 3 interrupts of the same priority
  77. * to cause a lost local interrupt.
  78. * 5AP. Remote read is never used
  79. * 6AP. not affected - worked around in hardware
  80. * 7AP. not affected - worked around in hardware
  81. * 8AP. worked around in hardware - we get explicit CS errors if not
  82. * 9AP. only 'noapic' mode affected. Might generate spurious
  83. * interrupts, we log only the first one and count the
  84. * rest silently.
  85. * 10AP. not affected - worked around in hardware
  86. * 11AP. Linux reads the APIC between writes to avoid this, as per
  87. * the documentation. Make sure you preserve this as it affects
  88. * the C stepping chips too.
  89. * 12AP. not affected - worked around in hardware
  90. * 13AP. not affected - worked around in hardware
  91. * 14AP. we always deassert INIT during bootup
  92. * 15AP. not affected - worked around in hardware
  93. * 16AP. not affected - worked around in hardware
  94. * 17AP. not affected - worked around in hardware
  95. * 18AP. not affected - worked around in hardware
  96. * 19AP. not affected - worked around in BIOS
  97. *
  98. * If this sounds worrying believe me these bugs are either ___RARE___,
  99. * or are signal timing bugs worked around in hardware and there's
  100. * about nothing of note with C stepping upwards.
  101. */
  102. DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0, };
  103. /*
  104. * the following functions deal with sending IPIs between CPUs.
  105. *
  106. * We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
  107. */
  108. static inline int __prepare_ICR (unsigned int shortcut, int vector)
  109. {
  110. unsigned int icr = shortcut | APIC_DEST_LOGICAL;
  111. switch (vector) {
  112. default:
  113. icr |= APIC_DM_FIXED | vector;
  114. break;
  115. case NMI_VECTOR:
  116. icr |= APIC_DM_NMI;
  117. break;
  118. }
  119. return icr;
  120. }
  121. static inline int __prepare_ICR2 (unsigned int mask)
  122. {
  123. return SET_APIC_DEST_FIELD(mask);
  124. }
  125. void __send_IPI_shortcut(unsigned int shortcut, int vector)
  126. {
  127. /*
  128. * Subtle. In the case of the 'never do double writes' workaround
  129. * we have to lock out interrupts to be safe. As we don't care
  130. * of the value read we use an atomic rmw access to avoid costly
  131. * cli/sti. Otherwise we use an even cheaper single atomic write
  132. * to the APIC.
  133. */
  134. unsigned int cfg;
  135. /*
  136. * Wait for idle.
  137. */
  138. apic_wait_icr_idle();
  139. /*
  140. * No need to touch the target chip field
  141. */
  142. cfg = __prepare_ICR(shortcut, vector);
  143. /*
  144. * Send the IPI. The write to APIC_ICR fires this off.
  145. */
  146. apic_write_around(APIC_ICR, cfg);
  147. }
  148. void fastcall send_IPI_self(int vector)
  149. {
  150. __send_IPI_shortcut(APIC_DEST_SELF, vector);
  151. }
  152. /*
  153. * This is used to send an IPI with no shorthand notation (the destination is
  154. * specified in bits 56 to 63 of the ICR).
  155. */
  156. static inline void __send_IPI_dest_field(unsigned long mask, int vector)
  157. {
  158. unsigned long cfg;
  159. /*
  160. * Wait for idle.
  161. */
  162. if (unlikely(vector == NMI_VECTOR))
  163. safe_apic_wait_icr_idle();
  164. else
  165. apic_wait_icr_idle();
  166. /*
  167. * prepare target chip field
  168. */
  169. cfg = __prepare_ICR2(mask);
  170. apic_write_around(APIC_ICR2, cfg);
  171. /*
  172. * program the ICR
  173. */
  174. cfg = __prepare_ICR(0, vector);
  175. /*
  176. * Send the IPI. The write to APIC_ICR fires this off.
  177. */
  178. apic_write_around(APIC_ICR, cfg);
  179. }
  180. /*
  181. * This is only used on smaller machines.
  182. */
  183. void send_IPI_mask_bitmask(cpumask_t cpumask, int vector)
  184. {
  185. unsigned long mask = cpus_addr(cpumask)[0];
  186. unsigned long flags;
  187. local_irq_save(flags);
  188. WARN_ON(mask & ~cpus_addr(cpu_online_map)[0]);
  189. __send_IPI_dest_field(mask, vector);
  190. local_irq_restore(flags);
  191. }
  192. void send_IPI_mask_sequence(cpumask_t mask, int vector)
  193. {
  194. unsigned long flags;
  195. unsigned int query_cpu;
  196. /*
  197. * Hack. The clustered APIC addressing mode doesn't allow us to send
  198. * to an arbitrary mask, so I do a unicasts to each CPU instead. This
  199. * should be modified to do 1 message per cluster ID - mbligh
  200. */
  201. local_irq_save(flags);
  202. for (query_cpu = 0; query_cpu < NR_CPUS; ++query_cpu) {
  203. if (cpu_isset(query_cpu, mask)) {
  204. __send_IPI_dest_field(cpu_to_logical_apicid(query_cpu),
  205. vector);
  206. }
  207. }
  208. local_irq_restore(flags);
  209. }
  210. #include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */
  211. /*
  212. * Smarter SMP flushing macros.
  213. * c/o Linus Torvalds.
  214. *
  215. * These mean you can really definitely utterly forget about
  216. * writing to user space from interrupts. (Its not allowed anyway).
  217. *
  218. * Optimizations Manfred Spraul <manfred@colorfullife.com>
  219. */
  220. static cpumask_t flush_cpumask;
  221. static struct mm_struct * flush_mm;
  222. static unsigned long flush_va;
  223. static DEFINE_SPINLOCK(tlbstate_lock);
  224. /*
  225. * We cannot call mmdrop() because we are in interrupt context,
  226. * instead update mm->cpu_vm_mask.
  227. *
  228. * We need to reload %cr3 since the page tables may be going
  229. * away from under us..
  230. */
  231. static inline void leave_mm (unsigned long cpu)
  232. {
  233. if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
  234. BUG();
  235. cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
  236. load_cr3(swapper_pg_dir);
  237. }
  238. /*
  239. *
  240. * The flush IPI assumes that a thread switch happens in this order:
  241. * [cpu0: the cpu that switches]
  242. * 1) switch_mm() either 1a) or 1b)
  243. * 1a) thread switch to a different mm
  244. * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
  245. * Stop ipi delivery for the old mm. This is not synchronized with
  246. * the other cpus, but smp_invalidate_interrupt ignore flush ipis
  247. * for the wrong mm, and in the worst case we perform a superflous
  248. * tlb flush.
  249. * 1a2) set cpu_tlbstate to TLBSTATE_OK
  250. * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
  251. * was in lazy tlb mode.
  252. * 1a3) update cpu_tlbstate[].active_mm
  253. * Now cpu0 accepts tlb flushes for the new mm.
  254. * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
  255. * Now the other cpus will send tlb flush ipis.
  256. * 1a4) change cr3.
  257. * 1b) thread switch without mm change
  258. * cpu_tlbstate[].active_mm is correct, cpu0 already handles
  259. * flush ipis.
  260. * 1b1) set cpu_tlbstate to TLBSTATE_OK
  261. * 1b2) test_and_set the cpu bit in cpu_vm_mask.
  262. * Atomically set the bit [other cpus will start sending flush ipis],
  263. * and test the bit.
  264. * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
  265. * 2) switch %%esp, ie current
  266. *
  267. * The interrupt must handle 2 special cases:
  268. * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
  269. * - the cpu performs speculative tlb reads, i.e. even if the cpu only
  270. * runs in kernel space, the cpu could load tlb entries for user space
  271. * pages.
  272. *
  273. * The good news is that cpu_tlbstate is local to each cpu, no
  274. * write/read ordering problems.
  275. */
  276. /*
  277. * TLB flush IPI:
  278. *
  279. * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
  280. * 2) Leave the mm if we are in the lazy tlb mode.
  281. */
  282. fastcall void smp_invalidate_interrupt(struct pt_regs *regs)
  283. {
  284. unsigned long cpu;
  285. cpu = get_cpu();
  286. if (!cpu_isset(cpu, flush_cpumask))
  287. goto out;
  288. /*
  289. * This was a BUG() but until someone can quote me the
  290. * line from the intel manual that guarantees an IPI to
  291. * multiple CPUs is retried _only_ on the erroring CPUs
  292. * its staying as a return
  293. *
  294. * BUG();
  295. */
  296. if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
  297. if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
  298. if (flush_va == TLB_FLUSH_ALL)
  299. local_flush_tlb();
  300. else
  301. __flush_tlb_one(flush_va);
  302. } else
  303. leave_mm(cpu);
  304. }
  305. ack_APIC_irq();
  306. smp_mb__before_clear_bit();
  307. cpu_clear(cpu, flush_cpumask);
  308. smp_mb__after_clear_bit();
  309. out:
  310. put_cpu_no_resched();
  311. }
  312. void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm,
  313. unsigned long va)
  314. {
  315. cpumask_t cpumask = *cpumaskp;
  316. /*
  317. * A couple of (to be removed) sanity checks:
  318. *
  319. * - current CPU must not be in mask
  320. * - mask must exist :)
  321. */
  322. BUG_ON(cpus_empty(cpumask));
  323. BUG_ON(cpu_isset(smp_processor_id(), cpumask));
  324. BUG_ON(!mm);
  325. /* If a CPU which we ran on has gone down, OK. */
  326. cpus_and(cpumask, cpumask, cpu_online_map);
  327. if (cpus_empty(cpumask))
  328. return;
  329. /*
  330. * i'm not happy about this global shared spinlock in the
  331. * MM hot path, but we'll see how contended it is.
  332. * AK: x86-64 has a faster method that could be ported.
  333. */
  334. spin_lock(&tlbstate_lock);
  335. flush_mm = mm;
  336. flush_va = va;
  337. #if NR_CPUS <= BITS_PER_LONG
  338. atomic_set_mask(cpumask, &flush_cpumask);
  339. #else
  340. {
  341. int k;
  342. unsigned long *flush_mask = (unsigned long *)&flush_cpumask;
  343. unsigned long *cpu_mask = (unsigned long *)&cpumask;
  344. for (k = 0; k < BITS_TO_LONGS(NR_CPUS); ++k)
  345. atomic_set_mask(cpu_mask[k], &flush_mask[k]);
  346. }
  347. #endif
  348. /*
  349. * We have to send the IPI only to
  350. * CPUs affected.
  351. */
  352. send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);
  353. while (!cpus_empty(flush_cpumask))
  354. /* nothing. lockup detection does not belong here */
  355. cpu_relax();
  356. flush_mm = NULL;
  357. flush_va = 0;
  358. spin_unlock(&tlbstate_lock);
  359. }
  360. void flush_tlb_current_task(void)
  361. {
  362. struct mm_struct *mm = current->mm;
  363. cpumask_t cpu_mask;
  364. preempt_disable();
  365. cpu_mask = mm->cpu_vm_mask;
  366. cpu_clear(smp_processor_id(), cpu_mask);
  367. local_flush_tlb();
  368. if (!cpus_empty(cpu_mask))
  369. flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
  370. preempt_enable();
  371. }
  372. void flush_tlb_mm (struct mm_struct * mm)
  373. {
  374. cpumask_t cpu_mask;
  375. preempt_disable();
  376. cpu_mask = mm->cpu_vm_mask;
  377. cpu_clear(smp_processor_id(), cpu_mask);
  378. if (current->active_mm == mm) {
  379. if (current->mm)
  380. local_flush_tlb();
  381. else
  382. leave_mm(smp_processor_id());
  383. }
  384. if (!cpus_empty(cpu_mask))
  385. flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
  386. preempt_enable();
  387. }
  388. void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
  389. {
  390. struct mm_struct *mm = vma->vm_mm;
  391. cpumask_t cpu_mask;
  392. preempt_disable();
  393. cpu_mask = mm->cpu_vm_mask;
  394. cpu_clear(smp_processor_id(), cpu_mask);
  395. if (current->active_mm == mm) {
  396. if(current->mm)
  397. __flush_tlb_one(va);
  398. else
  399. leave_mm(smp_processor_id());
  400. }
  401. if (!cpus_empty(cpu_mask))
  402. flush_tlb_others(cpu_mask, mm, va);
  403. preempt_enable();
  404. }
  405. EXPORT_SYMBOL(flush_tlb_page);
  406. static void do_flush_tlb_all(void* info)
  407. {
  408. unsigned long cpu = smp_processor_id();
  409. __flush_tlb_all();
  410. if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
  411. leave_mm(cpu);
  412. }
  413. void flush_tlb_all(void)
  414. {
  415. on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
  416. }
  417. /*
  418. * this function sends a 'reschedule' IPI to another CPU.
  419. * it goes straight through and wastes no time serializing
  420. * anything. Worst case is that we lose a reschedule ...
  421. */
  422. void native_smp_send_reschedule(int cpu)
  423. {
  424. WARN_ON(cpu_is_offline(cpu));
  425. send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
  426. }
  427. /*
  428. * Structure and data for smp_call_function(). This is designed to minimise
  429. * static memory requirements. It also looks cleaner.
  430. */
  431. static DEFINE_SPINLOCK(call_lock);
  432. struct call_data_struct {
  433. void (*func) (void *info);
  434. void *info;
  435. atomic_t started;
  436. atomic_t finished;
  437. int wait;
  438. };
  439. void lock_ipi_call_lock(void)
  440. {
  441. spin_lock_irq(&call_lock);
  442. }
  443. void unlock_ipi_call_lock(void)
  444. {
  445. spin_unlock_irq(&call_lock);
  446. }
  447. static struct call_data_struct *call_data;
  448. static void __smp_call_function(void (*func) (void *info), void *info,
  449. int nonatomic, int wait)
  450. {
  451. struct call_data_struct data;
  452. int cpus = num_online_cpus() - 1;
  453. if (!cpus)
  454. return;
  455. data.func = func;
  456. data.info = info;
  457. atomic_set(&data.started, 0);
  458. data.wait = wait;
  459. if (wait)
  460. atomic_set(&data.finished, 0);
  461. call_data = &data;
  462. mb();
  463. /* Send a message to all other CPUs and wait for them to respond */
  464. send_IPI_allbutself(CALL_FUNCTION_VECTOR);
  465. /* Wait for response */
  466. while (atomic_read(&data.started) != cpus)
  467. cpu_relax();
  468. if (wait)
  469. while (atomic_read(&data.finished) != cpus)
  470. cpu_relax();
  471. }
  472. /**
  473. * smp_call_function_mask(): Run a function on a set of other CPUs.
  474. * @mask: The set of cpus to run on. Must not include the current cpu.
  475. * @func: The function to run. This must be fast and non-blocking.
  476. * @info: An arbitrary pointer to pass to the function.
  477. * @wait: If true, wait (atomically) until function has completed on other CPUs.
  478. *
  479. * Returns 0 on success, else a negative status code.
  480. *
  481. * If @wait is true, then returns once @func has returned; otherwise
  482. * it returns just before the target cpu calls @func.
  483. *
  484. * You must not call this function with disabled interrupts or from a
  485. * hardware interrupt handler or from a bottom half handler.
  486. */
  487. int native_smp_call_function_mask(cpumask_t mask,
  488. void (*func)(void *), void *info,
  489. int wait)
  490. {
  491. struct call_data_struct data;
  492. cpumask_t allbutself;
  493. int cpus;
  494. /* Can deadlock when called with interrupts disabled */
  495. WARN_ON(irqs_disabled());
  496. /* Holding any lock stops cpus from going down. */
  497. spin_lock(&call_lock);
  498. allbutself = cpu_online_map;
  499. cpu_clear(smp_processor_id(), allbutself);
  500. cpus_and(mask, mask, allbutself);
  501. cpus = cpus_weight(mask);
  502. if (!cpus) {
  503. spin_unlock(&call_lock);
  504. return 0;
  505. }
  506. data.func = func;
  507. data.info = info;
  508. atomic_set(&data.started, 0);
  509. data.wait = wait;
  510. if (wait)
  511. atomic_set(&data.finished, 0);
  512. call_data = &data;
  513. mb();
  514. /* Send a message to other CPUs */
  515. if (cpus_equal(mask, allbutself))
  516. send_IPI_allbutself(CALL_FUNCTION_VECTOR);
  517. else
  518. send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
  519. /* Wait for response */
  520. while (atomic_read(&data.started) != cpus)
  521. cpu_relax();
  522. if (wait)
  523. while (atomic_read(&data.finished) != cpus)
  524. cpu_relax();
  525. spin_unlock(&call_lock);
  526. return 0;
  527. }
  528. /**
  529. * smp_call_function(): Run a function on all other CPUs.
  530. * @func: The function to run. This must be fast and non-blocking.
  531. * @info: An arbitrary pointer to pass to the function.
  532. * @nonatomic: Unused.
  533. * @wait: If true, wait (atomically) until function has completed on other CPUs.
  534. *
  535. * Returns 0 on success, else a negative status code.
  536. *
  537. * If @wait is true, then returns once @func has returned; otherwise
  538. * it returns just before the target cpu calls @func.
  539. *
  540. * You must not call this function with disabled interrupts or from a
  541. * hardware interrupt handler or from a bottom half handler.
  542. */
  543. int smp_call_function(void (*func) (void *info), void *info, int nonatomic,
  544. int wait)
  545. {
  546. return smp_call_function_mask(cpu_online_map, func, info, wait);
  547. }
  548. EXPORT_SYMBOL(smp_call_function);
  549. /**
  550. * smp_call_function_single - Run a function on another CPU
  551. * @cpu: The target CPU. Cannot be the calling CPU.
  552. * @func: The function to run. This must be fast and non-blocking.
  553. * @info: An arbitrary pointer to pass to the function.
  554. * @nonatomic: Unused.
  555. * @wait: If true, wait until function has completed on other CPUs.
  556. *
  557. * Returns 0 on success, else a negative status code.
  558. *
  559. * If @wait is true, then returns once @func has returned; otherwise
  560. * it returns just before the target cpu calls @func.
  561. */
  562. int smp_call_function_single(int cpu, void (*func) (void *info), void *info,
  563. int nonatomic, int wait)
  564. {
  565. /* prevent preemption and reschedule on another processor */
  566. int ret;
  567. int me = get_cpu();
  568. if (cpu == me) {
  569. WARN_ON(1);
  570. put_cpu();
  571. return -EBUSY;
  572. }
  573. ret = smp_call_function_mask(cpumask_of_cpu(cpu), func, info, wait);
  574. put_cpu();
  575. return ret;
  576. }
  577. EXPORT_SYMBOL(smp_call_function_single);
  578. static void stop_this_cpu (void * dummy)
  579. {
  580. local_irq_disable();
  581. /*
  582. * Remove this CPU:
  583. */
  584. cpu_clear(smp_processor_id(), cpu_online_map);
  585. disable_local_APIC();
  586. if (cpu_data[smp_processor_id()].hlt_works_ok)
  587. for(;;) halt();
  588. for (;;);
  589. }
  590. /*
  591. * this function calls the 'stop' function on all other CPUs in the system.
  592. */
  593. void native_smp_send_stop(void)
  594. {
  595. /* Don't deadlock on the call lock in panic */
  596. int nolock = !spin_trylock(&call_lock);
  597. unsigned long flags;
  598. local_irq_save(flags);
  599. __smp_call_function(stop_this_cpu, NULL, 0, 0);
  600. if (!nolock)
  601. spin_unlock(&call_lock);
  602. disable_local_APIC();
  603. local_irq_restore(flags);
  604. }
  605. /*
  606. * Reschedule call back. Nothing to do,
  607. * all the work is done automatically when
  608. * we return from the interrupt.
  609. */
  610. fastcall void smp_reschedule_interrupt(struct pt_regs *regs)
  611. {
  612. ack_APIC_irq();
  613. }
  614. fastcall void smp_call_function_interrupt(struct pt_regs *regs)
  615. {
  616. void (*func) (void *info) = call_data->func;
  617. void *info = call_data->info;
  618. int wait = call_data->wait;
  619. ack_APIC_irq();
  620. /*
  621. * Notify initiating CPU that I've grabbed the data and am
  622. * about to execute the function
  623. */
  624. mb();
  625. atomic_inc(&call_data->started);
  626. /*
  627. * At this point the info structure may be out of scope unless wait==1
  628. */
  629. irq_enter();
  630. (*func)(info);
  631. irq_exit();
  632. if (wait) {
  633. mb();
  634. atomic_inc(&call_data->finished);
  635. }
  636. }
  637. static int convert_apicid_to_cpu(int apic_id)
  638. {
  639. int i;
  640. for (i = 0; i < NR_CPUS; i++) {
  641. if (x86_cpu_to_apicid[i] == apic_id)
  642. return i;
  643. }
  644. return -1;
  645. }
  646. int safe_smp_processor_id(void)
  647. {
  648. int apicid, cpuid;
  649. if (!boot_cpu_has(X86_FEATURE_APIC))
  650. return 0;
  651. apicid = hard_smp_processor_id();
  652. if (apicid == BAD_APICID)
  653. return 0;
  654. cpuid = convert_apicid_to_cpu(apicid);
  655. return cpuid >= 0 ? cpuid : 0;
  656. }
  657. struct smp_ops smp_ops = {
  658. .smp_prepare_boot_cpu = native_smp_prepare_boot_cpu,
  659. .smp_prepare_cpus = native_smp_prepare_cpus,
  660. .cpu_up = native_cpu_up,
  661. .smp_cpus_done = native_smp_cpus_done,
  662. .smp_send_stop = native_smp_send_stop,
  663. .smp_send_reschedule = native_smp_send_reschedule,
  664. .smp_call_function_mask = native_smp_call_function_mask,
  665. };