mcp251x.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166
  1. /*
  2. * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
  3. *
  4. * MCP2510 support and bug fixes by Christian Pellegrin
  5. * <chripell@evolware.org>
  6. *
  7. * Copyright 2009 Christian Pellegrin EVOL S.r.l.
  8. *
  9. * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10. * Written under contract by:
  11. * Chris Elston, Katalix Systems, Ltd.
  12. *
  13. * Based on Microchip MCP251x CAN controller driver written by
  14. * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15. *
  16. * Based on CAN bus driver for the CCAN controller written by
  17. * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18. * - Simon Kallweit, intefo AG
  19. * Copyright 2007
  20. *
  21. * This program is free software; you can redistribute it and/or modify
  22. * it under the terms of the version 2 of the GNU General Public License
  23. * as published by the Free Software Foundation
  24. *
  25. * This program is distributed in the hope that it will be useful,
  26. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28. * GNU General Public License for more details.
  29. *
  30. * You should have received a copy of the GNU General Public License
  31. * along with this program; if not, write to the Free Software
  32. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  33. *
  34. *
  35. *
  36. * Your platform definition file should specify something like:
  37. *
  38. * static struct mcp251x_platform_data mcp251x_info = {
  39. * .oscillator_frequency = 8000000,
  40. * .board_specific_setup = &mcp251x_setup,
  41. * .model = CAN_MCP251X_MCP2510,
  42. * .power_enable = mcp251x_power_enable,
  43. * .transceiver_enable = NULL,
  44. * };
  45. *
  46. * static struct spi_board_info spi_board_info[] = {
  47. * {
  48. * .modalias = "mcp251x",
  49. * .platform_data = &mcp251x_info,
  50. * .irq = IRQ_EINT13,
  51. * .max_speed_hz = 2*1000*1000,
  52. * .chip_select = 2,
  53. * },
  54. * };
  55. *
  56. * Please see mcp251x.h for a description of the fields in
  57. * struct mcp251x_platform_data.
  58. *
  59. */
  60. #include <linux/can.h>
  61. #include <linux/can/core.h>
  62. #include <linux/can/dev.h>
  63. #include <linux/can/platform/mcp251x.h>
  64. #include <linux/completion.h>
  65. #include <linux/delay.h>
  66. #include <linux/device.h>
  67. #include <linux/dma-mapping.h>
  68. #include <linux/freezer.h>
  69. #include <linux/interrupt.h>
  70. #include <linux/io.h>
  71. #include <linux/kernel.h>
  72. #include <linux/module.h>
  73. #include <linux/netdevice.h>
  74. #include <linux/platform_device.h>
  75. #include <linux/spi/spi.h>
  76. #include <linux/uaccess.h>
  77. /* SPI interface instruction set */
  78. #define INSTRUCTION_WRITE 0x02
  79. #define INSTRUCTION_READ 0x03
  80. #define INSTRUCTION_BIT_MODIFY 0x05
  81. #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
  82. #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
  83. #define INSTRUCTION_RESET 0xC0
  84. /* MPC251x registers */
  85. #define CANSTAT 0x0e
  86. #define CANCTRL 0x0f
  87. # define CANCTRL_REQOP_MASK 0xe0
  88. # define CANCTRL_REQOP_CONF 0x80
  89. # define CANCTRL_REQOP_LISTEN_ONLY 0x60
  90. # define CANCTRL_REQOP_LOOPBACK 0x40
  91. # define CANCTRL_REQOP_SLEEP 0x20
  92. # define CANCTRL_REQOP_NORMAL 0x00
  93. # define CANCTRL_OSM 0x08
  94. # define CANCTRL_ABAT 0x10
  95. #define TEC 0x1c
  96. #define REC 0x1d
  97. #define CNF1 0x2a
  98. # define CNF1_SJW_SHIFT 6
  99. #define CNF2 0x29
  100. # define CNF2_BTLMODE 0x80
  101. # define CNF2_SAM 0x40
  102. # define CNF2_PS1_SHIFT 3
  103. #define CNF3 0x28
  104. # define CNF3_SOF 0x08
  105. # define CNF3_WAKFIL 0x04
  106. # define CNF3_PHSEG2_MASK 0x07
  107. #define CANINTE 0x2b
  108. # define CANINTE_MERRE 0x80
  109. # define CANINTE_WAKIE 0x40
  110. # define CANINTE_ERRIE 0x20
  111. # define CANINTE_TX2IE 0x10
  112. # define CANINTE_TX1IE 0x08
  113. # define CANINTE_TX0IE 0x04
  114. # define CANINTE_RX1IE 0x02
  115. # define CANINTE_RX0IE 0x01
  116. #define CANINTF 0x2c
  117. # define CANINTF_MERRF 0x80
  118. # define CANINTF_WAKIF 0x40
  119. # define CANINTF_ERRIF 0x20
  120. # define CANINTF_TX2IF 0x10
  121. # define CANINTF_TX1IF 0x08
  122. # define CANINTF_TX0IF 0x04
  123. # define CANINTF_RX1IF 0x02
  124. # define CANINTF_RX0IF 0x01
  125. #define EFLG 0x2d
  126. # define EFLG_EWARN 0x01
  127. # define EFLG_RXWAR 0x02
  128. # define EFLG_TXWAR 0x04
  129. # define EFLG_RXEP 0x08
  130. # define EFLG_TXEP 0x10
  131. # define EFLG_TXBO 0x20
  132. # define EFLG_RX0OVR 0x40
  133. # define EFLG_RX1OVR 0x80
  134. #define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
  135. # define TXBCTRL_ABTF 0x40
  136. # define TXBCTRL_MLOA 0x20
  137. # define TXBCTRL_TXERR 0x10
  138. # define TXBCTRL_TXREQ 0x08
  139. #define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
  140. # define SIDH_SHIFT 3
  141. #define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
  142. # define SIDL_SID_MASK 7
  143. # define SIDL_SID_SHIFT 5
  144. # define SIDL_EXIDE_SHIFT 3
  145. # define SIDL_EID_SHIFT 16
  146. # define SIDL_EID_MASK 3
  147. #define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
  148. #define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
  149. #define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
  150. # define DLC_RTR_SHIFT 6
  151. #define TXBCTRL_OFF 0
  152. #define TXBSIDH_OFF 1
  153. #define TXBSIDL_OFF 2
  154. #define TXBEID8_OFF 3
  155. #define TXBEID0_OFF 4
  156. #define TXBDLC_OFF 5
  157. #define TXBDAT_OFF 6
  158. #define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
  159. # define RXBCTRL_BUKT 0x04
  160. # define RXBCTRL_RXM0 0x20
  161. # define RXBCTRL_RXM1 0x40
  162. #define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
  163. # define RXBSIDH_SHIFT 3
  164. #define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
  165. # define RXBSIDL_IDE 0x08
  166. # define RXBSIDL_EID 3
  167. # define RXBSIDL_SHIFT 5
  168. #define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
  169. #define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
  170. #define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
  171. # define RXBDLC_LEN_MASK 0x0f
  172. # define RXBDLC_RTR 0x40
  173. #define RXBCTRL_OFF 0
  174. #define RXBSIDH_OFF 1
  175. #define RXBSIDL_OFF 2
  176. #define RXBEID8_OFF 3
  177. #define RXBEID0_OFF 4
  178. #define RXBDLC_OFF 5
  179. #define RXBDAT_OFF 6
  180. #define GET_BYTE(val, byte) \
  181. (((val) >> ((byte) * 8)) & 0xff)
  182. #define SET_BYTE(val, byte) \
  183. (((val) & 0xff) << ((byte) * 8))
  184. /*
  185. * Buffer size required for the largest SPI transfer (i.e., reading a
  186. * frame)
  187. */
  188. #define CAN_FRAME_MAX_DATA_LEN 8
  189. #define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
  190. #define CAN_FRAME_MAX_BITS 128
  191. #define TX_ECHO_SKB_MAX 1
  192. #define DEVICE_NAME "mcp251x"
  193. static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
  194. module_param(mcp251x_enable_dma, int, S_IRUGO);
  195. MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
  196. static struct can_bittiming_const mcp251x_bittiming_const = {
  197. .name = DEVICE_NAME,
  198. .tseg1_min = 3,
  199. .tseg1_max = 16,
  200. .tseg2_min = 2,
  201. .tseg2_max = 8,
  202. .sjw_max = 4,
  203. .brp_min = 1,
  204. .brp_max = 64,
  205. .brp_inc = 1,
  206. };
  207. struct mcp251x_priv {
  208. struct can_priv can;
  209. struct net_device *net;
  210. struct spi_device *spi;
  211. struct mutex spi_lock; /* SPI buffer lock */
  212. u8 *spi_tx_buf;
  213. u8 *spi_rx_buf;
  214. dma_addr_t spi_tx_dma;
  215. dma_addr_t spi_rx_dma;
  216. struct sk_buff *tx_skb;
  217. int tx_len;
  218. struct workqueue_struct *wq;
  219. struct work_struct tx_work;
  220. struct work_struct irq_work;
  221. struct completion awake;
  222. int wake;
  223. int force_quit;
  224. int after_suspend;
  225. #define AFTER_SUSPEND_UP 1
  226. #define AFTER_SUSPEND_DOWN 2
  227. #define AFTER_SUSPEND_POWER 4
  228. #define AFTER_SUSPEND_RESTART 8
  229. int restart_tx;
  230. };
  231. static void mcp251x_clean(struct net_device *net)
  232. {
  233. struct mcp251x_priv *priv = netdev_priv(net);
  234. net->stats.tx_errors++;
  235. if (priv->tx_skb)
  236. dev_kfree_skb(priv->tx_skb);
  237. if (priv->tx_len)
  238. can_free_echo_skb(priv->net, 0);
  239. priv->tx_skb = NULL;
  240. priv->tx_len = 0;
  241. }
  242. /*
  243. * Note about handling of error return of mcp251x_spi_trans: accessing
  244. * registers via SPI is not really different conceptually than using
  245. * normal I/O assembler instructions, although it's much more
  246. * complicated from a practical POV. So it's not advisable to always
  247. * check the return value of this function. Imagine that every
  248. * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
  249. * error();", it would be a great mess (well there are some situation
  250. * when exception handling C++ like could be useful after all). So we
  251. * just check that transfers are OK at the beginning of our
  252. * conversation with the chip and to avoid doing really nasty things
  253. * (like injecting bogus packets in the network stack).
  254. */
  255. static int mcp251x_spi_trans(struct spi_device *spi, int len)
  256. {
  257. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  258. struct spi_transfer t = {
  259. .tx_buf = priv->spi_tx_buf,
  260. .rx_buf = priv->spi_rx_buf,
  261. .len = len,
  262. .cs_change = 0,
  263. };
  264. struct spi_message m;
  265. int ret;
  266. spi_message_init(&m);
  267. if (mcp251x_enable_dma) {
  268. t.tx_dma = priv->spi_tx_dma;
  269. t.rx_dma = priv->spi_rx_dma;
  270. m.is_dma_mapped = 1;
  271. }
  272. spi_message_add_tail(&t, &m);
  273. ret = spi_sync(spi, &m);
  274. if (ret)
  275. dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
  276. return ret;
  277. }
  278. static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
  279. {
  280. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  281. u8 val = 0;
  282. mutex_lock(&priv->spi_lock);
  283. priv->spi_tx_buf[0] = INSTRUCTION_READ;
  284. priv->spi_tx_buf[1] = reg;
  285. mcp251x_spi_trans(spi, 3);
  286. val = priv->spi_rx_buf[2];
  287. mutex_unlock(&priv->spi_lock);
  288. return val;
  289. }
  290. static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
  291. {
  292. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  293. mutex_lock(&priv->spi_lock);
  294. priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
  295. priv->spi_tx_buf[1] = reg;
  296. priv->spi_tx_buf[2] = val;
  297. mcp251x_spi_trans(spi, 3);
  298. mutex_unlock(&priv->spi_lock);
  299. }
  300. static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
  301. u8 mask, uint8_t val)
  302. {
  303. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  304. mutex_lock(&priv->spi_lock);
  305. priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
  306. priv->spi_tx_buf[1] = reg;
  307. priv->spi_tx_buf[2] = mask;
  308. priv->spi_tx_buf[3] = val;
  309. mcp251x_spi_trans(spi, 4);
  310. mutex_unlock(&priv->spi_lock);
  311. }
  312. static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
  313. int len, int tx_buf_idx)
  314. {
  315. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  316. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  317. if (pdata->model == CAN_MCP251X_MCP2510) {
  318. int i;
  319. for (i = 1; i < TXBDAT_OFF + len; i++)
  320. mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
  321. buf[i]);
  322. } else {
  323. mutex_lock(&priv->spi_lock);
  324. memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
  325. mcp251x_spi_trans(spi, TXBDAT_OFF + len);
  326. mutex_unlock(&priv->spi_lock);
  327. }
  328. }
  329. static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
  330. int tx_buf_idx)
  331. {
  332. u32 sid, eid, exide, rtr;
  333. u8 buf[SPI_TRANSFER_BUF_LEN];
  334. exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
  335. if (exide)
  336. sid = (frame->can_id & CAN_EFF_MASK) >> 18;
  337. else
  338. sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
  339. eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
  340. rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
  341. buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
  342. buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
  343. buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
  344. (exide << SIDL_EXIDE_SHIFT) |
  345. ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
  346. buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
  347. buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
  348. buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
  349. memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
  350. mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
  351. mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx), TXBCTRL_TXREQ);
  352. }
  353. static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
  354. int buf_idx)
  355. {
  356. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  357. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  358. if (pdata->model == CAN_MCP251X_MCP2510) {
  359. int i, len;
  360. for (i = 1; i < RXBDAT_OFF; i++)
  361. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  362. len = buf[RXBDLC_OFF] & RXBDLC_LEN_MASK;
  363. if (len > 8)
  364. len = 8;
  365. for (; i < (RXBDAT_OFF + len); i++)
  366. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  367. } else {
  368. mutex_lock(&priv->spi_lock);
  369. priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
  370. mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
  371. memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
  372. mutex_unlock(&priv->spi_lock);
  373. }
  374. }
  375. static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
  376. {
  377. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  378. struct sk_buff *skb;
  379. struct can_frame *frame;
  380. u8 buf[SPI_TRANSFER_BUF_LEN];
  381. skb = alloc_can_skb(priv->net, &frame);
  382. if (!skb) {
  383. dev_err(&spi->dev, "cannot allocate RX skb\n");
  384. priv->net->stats.rx_dropped++;
  385. return;
  386. }
  387. mcp251x_hw_rx_frame(spi, buf, buf_idx);
  388. if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
  389. /* Extended ID format */
  390. frame->can_id = CAN_EFF_FLAG;
  391. frame->can_id |=
  392. /* Extended ID part */
  393. SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
  394. SET_BYTE(buf[RXBEID8_OFF], 1) |
  395. SET_BYTE(buf[RXBEID0_OFF], 0) |
  396. /* Standard ID part */
  397. (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  398. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
  399. /* Remote transmission request */
  400. if (buf[RXBDLC_OFF] & RXBDLC_RTR)
  401. frame->can_id |= CAN_RTR_FLAG;
  402. } else {
  403. /* Standard ID format */
  404. frame->can_id =
  405. (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  406. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
  407. }
  408. /* Data length */
  409. frame->can_dlc = buf[RXBDLC_OFF] & RXBDLC_LEN_MASK;
  410. if (frame->can_dlc > 8) {
  411. dev_warn(&spi->dev, "invalid frame recevied\n");
  412. priv->net->stats.rx_errors++;
  413. dev_kfree_skb(skb);
  414. return;
  415. }
  416. memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
  417. priv->net->stats.rx_packets++;
  418. priv->net->stats.rx_bytes += frame->can_dlc;
  419. netif_rx(skb);
  420. }
  421. static void mcp251x_hw_sleep(struct spi_device *spi)
  422. {
  423. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
  424. }
  425. static void mcp251x_hw_wakeup(struct spi_device *spi)
  426. {
  427. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  428. priv->wake = 1;
  429. /* Can only wake up by generating a wake-up interrupt. */
  430. mcp251x_write_bits(spi, CANINTE, CANINTE_WAKIE, CANINTE_WAKIE);
  431. mcp251x_write_bits(spi, CANINTF, CANINTF_WAKIF, CANINTF_WAKIF);
  432. /* Wait until the device is awake */
  433. if (!wait_for_completion_timeout(&priv->awake, HZ))
  434. dev_err(&spi->dev, "MCP251x didn't wake-up\n");
  435. }
  436. static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
  437. struct net_device *net)
  438. {
  439. struct mcp251x_priv *priv = netdev_priv(net);
  440. struct spi_device *spi = priv->spi;
  441. if (priv->tx_skb || priv->tx_len) {
  442. dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
  443. netif_stop_queue(net);
  444. return NETDEV_TX_BUSY;
  445. }
  446. if (skb->len != sizeof(struct can_frame)) {
  447. dev_err(&spi->dev, "dropping packet - bad length\n");
  448. dev_kfree_skb(skb);
  449. net->stats.tx_dropped++;
  450. return NETDEV_TX_OK;
  451. }
  452. netif_stop_queue(net);
  453. priv->tx_skb = skb;
  454. net->trans_start = jiffies;
  455. queue_work(priv->wq, &priv->tx_work);
  456. return NETDEV_TX_OK;
  457. }
  458. static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
  459. {
  460. struct mcp251x_priv *priv = netdev_priv(net);
  461. switch (mode) {
  462. case CAN_MODE_START:
  463. /* We have to delay work since SPI I/O may sleep */
  464. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  465. priv->restart_tx = 1;
  466. if (priv->can.restart_ms == 0)
  467. priv->after_suspend = AFTER_SUSPEND_RESTART;
  468. queue_work(priv->wq, &priv->irq_work);
  469. break;
  470. default:
  471. return -EOPNOTSUPP;
  472. }
  473. return 0;
  474. }
  475. static void mcp251x_set_normal_mode(struct spi_device *spi)
  476. {
  477. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  478. unsigned long timeout;
  479. /* Enable interrupts */
  480. mcp251x_write_reg(spi, CANINTE,
  481. CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
  482. CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE |
  483. CANINTF_MERRF);
  484. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
  485. /* Put device into loopback mode */
  486. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
  487. } else {
  488. /* Put device into normal mode */
  489. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
  490. /* Wait for the device to enter normal mode */
  491. timeout = jiffies + HZ;
  492. while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
  493. schedule();
  494. if (time_after(jiffies, timeout)) {
  495. dev_err(&spi->dev, "MCP251x didn't"
  496. " enter in normal mode\n");
  497. return;
  498. }
  499. }
  500. }
  501. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  502. }
  503. static int mcp251x_do_set_bittiming(struct net_device *net)
  504. {
  505. struct mcp251x_priv *priv = netdev_priv(net);
  506. struct can_bittiming *bt = &priv->can.bittiming;
  507. struct spi_device *spi = priv->spi;
  508. mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
  509. (bt->brp - 1));
  510. mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
  511. (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
  512. CNF2_SAM : 0) |
  513. ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
  514. (bt->prop_seg - 1));
  515. mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
  516. (bt->phase_seg2 - 1));
  517. dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
  518. mcp251x_read_reg(spi, CNF1),
  519. mcp251x_read_reg(spi, CNF2),
  520. mcp251x_read_reg(spi, CNF3));
  521. return 0;
  522. }
  523. static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
  524. struct spi_device *spi)
  525. {
  526. mcp251x_do_set_bittiming(net);
  527. /* Enable RX0->RX1 buffer roll over and disable filters */
  528. mcp251x_write_bits(spi, RXBCTRL(0),
  529. RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1,
  530. RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
  531. mcp251x_write_bits(spi, RXBCTRL(1),
  532. RXBCTRL_RXM0 | RXBCTRL_RXM1,
  533. RXBCTRL_RXM0 | RXBCTRL_RXM1);
  534. return 0;
  535. }
  536. static void mcp251x_hw_reset(struct spi_device *spi)
  537. {
  538. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  539. int ret;
  540. mutex_lock(&priv->spi_lock);
  541. priv->spi_tx_buf[0] = INSTRUCTION_RESET;
  542. ret = spi_write(spi, priv->spi_tx_buf, 1);
  543. mutex_unlock(&priv->spi_lock);
  544. if (ret)
  545. dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
  546. /* Wait for reset to finish */
  547. mdelay(10);
  548. }
  549. static int mcp251x_hw_probe(struct spi_device *spi)
  550. {
  551. int st1, st2;
  552. mcp251x_hw_reset(spi);
  553. /*
  554. * Please note that these are "magic values" based on after
  555. * reset defaults taken from data sheet which allows us to see
  556. * if we really have a chip on the bus (we avoid common all
  557. * zeroes or all ones situations)
  558. */
  559. st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
  560. st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
  561. dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
  562. /* Check for power up default values */
  563. return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
  564. }
  565. static irqreturn_t mcp251x_can_isr(int irq, void *dev_id)
  566. {
  567. struct net_device *net = (struct net_device *)dev_id;
  568. struct mcp251x_priv *priv = netdev_priv(net);
  569. /* Schedule bottom half */
  570. if (!work_pending(&priv->irq_work))
  571. queue_work(priv->wq, &priv->irq_work);
  572. return IRQ_HANDLED;
  573. }
  574. static int mcp251x_open(struct net_device *net)
  575. {
  576. struct mcp251x_priv *priv = netdev_priv(net);
  577. struct spi_device *spi = priv->spi;
  578. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  579. int ret;
  580. ret = open_candev(net);
  581. if (ret) {
  582. dev_err(&spi->dev, "unable to set initial baudrate!\n");
  583. return ret;
  584. }
  585. if (pdata->transceiver_enable)
  586. pdata->transceiver_enable(1);
  587. priv->force_quit = 0;
  588. priv->tx_skb = NULL;
  589. priv->tx_len = 0;
  590. ret = request_irq(spi->irq, mcp251x_can_isr,
  591. IRQF_TRIGGER_FALLING, DEVICE_NAME, net);
  592. if (ret) {
  593. dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
  594. if (pdata->transceiver_enable)
  595. pdata->transceiver_enable(0);
  596. close_candev(net);
  597. return ret;
  598. }
  599. mcp251x_hw_wakeup(spi);
  600. mcp251x_hw_reset(spi);
  601. ret = mcp251x_setup(net, priv, spi);
  602. if (ret) {
  603. free_irq(spi->irq, net);
  604. mcp251x_hw_sleep(spi);
  605. if (pdata->transceiver_enable)
  606. pdata->transceiver_enable(0);
  607. close_candev(net);
  608. return ret;
  609. }
  610. mcp251x_set_normal_mode(spi);
  611. netif_wake_queue(net);
  612. return 0;
  613. }
  614. static int mcp251x_stop(struct net_device *net)
  615. {
  616. struct mcp251x_priv *priv = netdev_priv(net);
  617. struct spi_device *spi = priv->spi;
  618. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  619. close_candev(net);
  620. /* Disable and clear pending interrupts */
  621. mcp251x_write_reg(spi, CANINTE, 0x00);
  622. mcp251x_write_reg(spi, CANINTF, 0x00);
  623. priv->force_quit = 1;
  624. free_irq(spi->irq, net);
  625. flush_workqueue(priv->wq);
  626. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  627. if (priv->tx_skb || priv->tx_len)
  628. mcp251x_clean(net);
  629. mcp251x_hw_sleep(spi);
  630. if (pdata->transceiver_enable)
  631. pdata->transceiver_enable(0);
  632. priv->can.state = CAN_STATE_STOPPED;
  633. return 0;
  634. }
  635. static void mcp251x_tx_work_handler(struct work_struct *ws)
  636. {
  637. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  638. tx_work);
  639. struct spi_device *spi = priv->spi;
  640. struct net_device *net = priv->net;
  641. struct can_frame *frame;
  642. if (priv->tx_skb) {
  643. frame = (struct can_frame *)priv->tx_skb->data;
  644. if (priv->can.state == CAN_STATE_BUS_OFF) {
  645. mcp251x_clean(net);
  646. netif_wake_queue(net);
  647. return;
  648. }
  649. if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
  650. frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
  651. mcp251x_hw_tx(spi, frame, 0);
  652. priv->tx_len = 1 + frame->can_dlc;
  653. can_put_echo_skb(priv->tx_skb, net, 0);
  654. priv->tx_skb = NULL;
  655. }
  656. }
  657. static void mcp251x_irq_work_handler(struct work_struct *ws)
  658. {
  659. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  660. irq_work);
  661. struct spi_device *spi = priv->spi;
  662. struct net_device *net = priv->net;
  663. u8 txbnctrl;
  664. u8 intf;
  665. enum can_state new_state;
  666. if (priv->after_suspend) {
  667. mdelay(10);
  668. mcp251x_hw_reset(spi);
  669. mcp251x_setup(net, priv, spi);
  670. if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
  671. mcp251x_set_normal_mode(spi);
  672. } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
  673. netif_device_attach(net);
  674. /* Clean since we lost tx buffer */
  675. if (priv->tx_skb || priv->tx_len) {
  676. mcp251x_clean(net);
  677. netif_wake_queue(net);
  678. }
  679. mcp251x_set_normal_mode(spi);
  680. } else {
  681. mcp251x_hw_sleep(spi);
  682. }
  683. priv->after_suspend = 0;
  684. }
  685. if (priv->can.restart_ms == 0 && priv->can.state == CAN_STATE_BUS_OFF)
  686. return;
  687. while (!priv->force_quit && !freezing(current)) {
  688. u8 eflag = mcp251x_read_reg(spi, EFLG);
  689. int can_id = 0, data1 = 0;
  690. mcp251x_write_reg(spi, EFLG, 0x00);
  691. if (priv->restart_tx) {
  692. priv->restart_tx = 0;
  693. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  694. if (priv->tx_skb || priv->tx_len)
  695. mcp251x_clean(net);
  696. netif_wake_queue(net);
  697. can_id |= CAN_ERR_RESTARTED;
  698. }
  699. if (priv->wake) {
  700. /* Wait whilst the device wakes up */
  701. mdelay(10);
  702. priv->wake = 0;
  703. }
  704. intf = mcp251x_read_reg(spi, CANINTF);
  705. mcp251x_write_bits(spi, CANINTF, intf, 0x00);
  706. /* Update can state */
  707. if (eflag & EFLG_TXBO) {
  708. new_state = CAN_STATE_BUS_OFF;
  709. can_id |= CAN_ERR_BUSOFF;
  710. } else if (eflag & EFLG_TXEP) {
  711. new_state = CAN_STATE_ERROR_PASSIVE;
  712. can_id |= CAN_ERR_CRTL;
  713. data1 |= CAN_ERR_CRTL_TX_PASSIVE;
  714. } else if (eflag & EFLG_RXEP) {
  715. new_state = CAN_STATE_ERROR_PASSIVE;
  716. can_id |= CAN_ERR_CRTL;
  717. data1 |= CAN_ERR_CRTL_RX_PASSIVE;
  718. } else if (eflag & EFLG_TXWAR) {
  719. new_state = CAN_STATE_ERROR_WARNING;
  720. can_id |= CAN_ERR_CRTL;
  721. data1 |= CAN_ERR_CRTL_TX_WARNING;
  722. } else if (eflag & EFLG_RXWAR) {
  723. new_state = CAN_STATE_ERROR_WARNING;
  724. can_id |= CAN_ERR_CRTL;
  725. data1 |= CAN_ERR_CRTL_RX_WARNING;
  726. } else {
  727. new_state = CAN_STATE_ERROR_ACTIVE;
  728. }
  729. /* Update can state statistics */
  730. switch (priv->can.state) {
  731. case CAN_STATE_ERROR_ACTIVE:
  732. if (new_state >= CAN_STATE_ERROR_WARNING &&
  733. new_state <= CAN_STATE_BUS_OFF)
  734. priv->can.can_stats.error_warning++;
  735. case CAN_STATE_ERROR_WARNING: /* fallthrough */
  736. if (new_state >= CAN_STATE_ERROR_PASSIVE &&
  737. new_state <= CAN_STATE_BUS_OFF)
  738. priv->can.can_stats.error_passive++;
  739. break;
  740. default:
  741. break;
  742. }
  743. priv->can.state = new_state;
  744. if ((intf & CANINTF_ERRIF) || (can_id & CAN_ERR_RESTARTED)) {
  745. struct sk_buff *skb;
  746. struct can_frame *frame;
  747. /* Create error frame */
  748. skb = alloc_can_err_skb(net, &frame);
  749. if (skb) {
  750. /* Set error frame flags based on bus state */
  751. frame->can_id = can_id;
  752. frame->data[1] = data1;
  753. /* Update net stats for overflows */
  754. if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
  755. if (eflag & EFLG_RX0OVR)
  756. net->stats.rx_over_errors++;
  757. if (eflag & EFLG_RX1OVR)
  758. net->stats.rx_over_errors++;
  759. frame->can_id |= CAN_ERR_CRTL;
  760. frame->data[1] |=
  761. CAN_ERR_CRTL_RX_OVERFLOW;
  762. }
  763. netif_rx(skb);
  764. } else {
  765. dev_info(&spi->dev,
  766. "cannot allocate error skb\n");
  767. }
  768. }
  769. if (priv->can.state == CAN_STATE_BUS_OFF) {
  770. if (priv->can.restart_ms == 0) {
  771. can_bus_off(net);
  772. mcp251x_hw_sleep(spi);
  773. return;
  774. }
  775. }
  776. if (intf == 0)
  777. break;
  778. if (intf & CANINTF_WAKIF)
  779. complete(&priv->awake);
  780. if (intf & CANINTF_MERRF) {
  781. /* If there are pending Tx buffers, restart queue */
  782. txbnctrl = mcp251x_read_reg(spi, TXBCTRL(0));
  783. if (!(txbnctrl & TXBCTRL_TXREQ)) {
  784. if (priv->tx_skb || priv->tx_len)
  785. mcp251x_clean(net);
  786. netif_wake_queue(net);
  787. }
  788. }
  789. if (intf & (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)) {
  790. net->stats.tx_packets++;
  791. net->stats.tx_bytes += priv->tx_len - 1;
  792. if (priv->tx_len) {
  793. can_get_echo_skb(net, 0);
  794. priv->tx_len = 0;
  795. }
  796. netif_wake_queue(net);
  797. }
  798. if (intf & CANINTF_RX0IF)
  799. mcp251x_hw_rx(spi, 0);
  800. if (intf & CANINTF_RX1IF)
  801. mcp251x_hw_rx(spi, 1);
  802. }
  803. }
  804. static const struct net_device_ops mcp251x_netdev_ops = {
  805. .ndo_open = mcp251x_open,
  806. .ndo_stop = mcp251x_stop,
  807. .ndo_start_xmit = mcp251x_hard_start_xmit,
  808. };
  809. static int __devinit mcp251x_can_probe(struct spi_device *spi)
  810. {
  811. struct net_device *net;
  812. struct mcp251x_priv *priv;
  813. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  814. int ret = -ENODEV;
  815. if (!pdata)
  816. /* Platform data is required for osc freq */
  817. goto error_out;
  818. /* Allocate can/net device */
  819. net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
  820. if (!net) {
  821. ret = -ENOMEM;
  822. goto error_alloc;
  823. }
  824. net->netdev_ops = &mcp251x_netdev_ops;
  825. net->flags |= IFF_ECHO;
  826. priv = netdev_priv(net);
  827. priv->can.bittiming_const = &mcp251x_bittiming_const;
  828. priv->can.do_set_mode = mcp251x_do_set_mode;
  829. priv->can.clock.freq = pdata->oscillator_frequency / 2;
  830. priv->net = net;
  831. dev_set_drvdata(&spi->dev, priv);
  832. priv->spi = spi;
  833. mutex_init(&priv->spi_lock);
  834. /* If requested, allocate DMA buffers */
  835. if (mcp251x_enable_dma) {
  836. spi->dev.coherent_dma_mask = ~0;
  837. /*
  838. * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
  839. * that much and share it between Tx and Rx DMA buffers.
  840. */
  841. priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
  842. PAGE_SIZE,
  843. &priv->spi_tx_dma,
  844. GFP_DMA);
  845. if (priv->spi_tx_buf) {
  846. priv->spi_rx_buf = (u8 *)(priv->spi_tx_buf +
  847. (PAGE_SIZE / 2));
  848. priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
  849. (PAGE_SIZE / 2));
  850. } else {
  851. /* Fall back to non-DMA */
  852. mcp251x_enable_dma = 0;
  853. }
  854. }
  855. /* Allocate non-DMA buffers */
  856. if (!mcp251x_enable_dma) {
  857. priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  858. if (!priv->spi_tx_buf) {
  859. ret = -ENOMEM;
  860. goto error_tx_buf;
  861. }
  862. priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  863. if (!priv->spi_tx_buf) {
  864. ret = -ENOMEM;
  865. goto error_rx_buf;
  866. }
  867. }
  868. if (pdata->power_enable)
  869. pdata->power_enable(1);
  870. /* Call out to platform specific setup */
  871. if (pdata->board_specific_setup)
  872. pdata->board_specific_setup(spi);
  873. SET_NETDEV_DEV(net, &spi->dev);
  874. priv->wq = create_freezeable_workqueue("mcp251x_wq");
  875. INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
  876. INIT_WORK(&priv->irq_work, mcp251x_irq_work_handler);
  877. init_completion(&priv->awake);
  878. /* Configure the SPI bus */
  879. spi->mode = SPI_MODE_0;
  880. spi->bits_per_word = 8;
  881. spi_setup(spi);
  882. if (!mcp251x_hw_probe(spi)) {
  883. dev_info(&spi->dev, "Probe failed\n");
  884. goto error_probe;
  885. }
  886. mcp251x_hw_sleep(spi);
  887. if (pdata->transceiver_enable)
  888. pdata->transceiver_enable(0);
  889. ret = register_candev(net);
  890. if (!ret) {
  891. dev_info(&spi->dev, "probed\n");
  892. return ret;
  893. }
  894. error_probe:
  895. if (!mcp251x_enable_dma)
  896. kfree(priv->spi_rx_buf);
  897. error_rx_buf:
  898. if (!mcp251x_enable_dma)
  899. kfree(priv->spi_tx_buf);
  900. error_tx_buf:
  901. free_candev(net);
  902. if (mcp251x_enable_dma)
  903. dma_free_coherent(&spi->dev, PAGE_SIZE,
  904. priv->spi_tx_buf, priv->spi_tx_dma);
  905. error_alloc:
  906. if (pdata->power_enable)
  907. pdata->power_enable(0);
  908. dev_err(&spi->dev, "probe failed\n");
  909. error_out:
  910. return ret;
  911. }
  912. static int __devexit mcp251x_can_remove(struct spi_device *spi)
  913. {
  914. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  915. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  916. struct net_device *net = priv->net;
  917. unregister_candev(net);
  918. free_candev(net);
  919. priv->force_quit = 1;
  920. flush_workqueue(priv->wq);
  921. destroy_workqueue(priv->wq);
  922. if (mcp251x_enable_dma) {
  923. dma_free_coherent(&spi->dev, PAGE_SIZE,
  924. priv->spi_tx_buf, priv->spi_tx_dma);
  925. } else {
  926. kfree(priv->spi_tx_buf);
  927. kfree(priv->spi_rx_buf);
  928. }
  929. if (pdata->power_enable)
  930. pdata->power_enable(0);
  931. return 0;
  932. }
  933. #ifdef CONFIG_PM
  934. static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
  935. {
  936. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  937. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  938. struct net_device *net = priv->net;
  939. if (netif_running(net)) {
  940. netif_device_detach(net);
  941. mcp251x_hw_sleep(spi);
  942. if (pdata->transceiver_enable)
  943. pdata->transceiver_enable(0);
  944. priv->after_suspend = AFTER_SUSPEND_UP;
  945. } else {
  946. priv->after_suspend = AFTER_SUSPEND_DOWN;
  947. }
  948. if (pdata->power_enable) {
  949. pdata->power_enable(0);
  950. priv->after_suspend |= AFTER_SUSPEND_POWER;
  951. }
  952. return 0;
  953. }
  954. static int mcp251x_can_resume(struct spi_device *spi)
  955. {
  956. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  957. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  958. if (priv->after_suspend & AFTER_SUSPEND_POWER) {
  959. pdata->power_enable(1);
  960. queue_work(priv->wq, &priv->irq_work);
  961. } else {
  962. if (priv->after_suspend & AFTER_SUSPEND_UP) {
  963. if (pdata->transceiver_enable)
  964. pdata->transceiver_enable(1);
  965. queue_work(priv->wq, &priv->irq_work);
  966. } else {
  967. priv->after_suspend = 0;
  968. }
  969. }
  970. return 0;
  971. }
  972. #else
  973. #define mcp251x_can_suspend NULL
  974. #define mcp251x_can_resume NULL
  975. #endif
  976. static struct spi_driver mcp251x_can_driver = {
  977. .driver = {
  978. .name = DEVICE_NAME,
  979. .bus = &spi_bus_type,
  980. .owner = THIS_MODULE,
  981. },
  982. .probe = mcp251x_can_probe,
  983. .remove = __devexit_p(mcp251x_can_remove),
  984. .suspend = mcp251x_can_suspend,
  985. .resume = mcp251x_can_resume,
  986. };
  987. static int __init mcp251x_can_init(void)
  988. {
  989. return spi_register_driver(&mcp251x_can_driver);
  990. }
  991. static void __exit mcp251x_can_exit(void)
  992. {
  993. spi_unregister_driver(&mcp251x_can_driver);
  994. }
  995. module_init(mcp251x_can_init);
  996. module_exit(mcp251x_can_exit);
  997. MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
  998. "Christian Pellegrin <chripell@evolware.org>");
  999. MODULE_DESCRIPTION("Microchip 251x CAN driver");
  1000. MODULE_LICENSE("GPL v2");