bnx2.c 201 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2009 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #include <linux/module.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/kernel.h>
  14. #include <linux/timer.h>
  15. #include <linux/errno.h>
  16. #include <linux/ioport.h>
  17. #include <linux/slab.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pci.h>
  21. #include <linux/init.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/skbuff.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/bitops.h>
  27. #include <asm/io.h>
  28. #include <asm/irq.h>
  29. #include <linux/delay.h>
  30. #include <asm/byteorder.h>
  31. #include <asm/page.h>
  32. #include <linux/time.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/mii.h>
  35. #include <linux/if_vlan.h>
  36. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  37. #define BCM_VLAN 1
  38. #endif
  39. #include <net/ip.h>
  40. #include <net/tcp.h>
  41. #include <net/checksum.h>
  42. #include <linux/workqueue.h>
  43. #include <linux/crc32.h>
  44. #include <linux/prefetch.h>
  45. #include <linux/cache.h>
  46. #include <linux/firmware.h>
  47. #include <linux/log2.h>
  48. #include <linux/list.h>
  49. #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
  50. #define BCM_CNIC 1
  51. #include "cnic_if.h"
  52. #endif
  53. #include "bnx2.h"
  54. #include "bnx2_fw.h"
  55. #define DRV_MODULE_NAME "bnx2"
  56. #define PFX DRV_MODULE_NAME ": "
  57. #define DRV_MODULE_VERSION "2.0.2"
  58. #define DRV_MODULE_RELDATE "Aug 21, 2009"
  59. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j3.fw"
  60. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
  61. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j3.fw"
  62. #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j3.fw"
  63. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j3.fw"
  64. #define RUN_AT(x) (jiffies + (x))
  65. /* Time in jiffies before concluding the transmitter is hung. */
  66. #define TX_TIMEOUT (5*HZ)
  67. static char version[] __devinitdata =
  68. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  69. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  70. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
  71. MODULE_LICENSE("GPL");
  72. MODULE_VERSION(DRV_MODULE_VERSION);
  73. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  74. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  75. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  76. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  77. MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
  78. static int disable_msi = 0;
  79. module_param(disable_msi, int, 0);
  80. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  81. typedef enum {
  82. BCM5706 = 0,
  83. NC370T,
  84. NC370I,
  85. BCM5706S,
  86. NC370F,
  87. BCM5708,
  88. BCM5708S,
  89. BCM5709,
  90. BCM5709S,
  91. BCM5716,
  92. BCM5716S,
  93. } board_t;
  94. /* indexed by board_t, above */
  95. static struct {
  96. char *name;
  97. } board_info[] __devinitdata = {
  98. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  99. { "HP NC370T Multifunction Gigabit Server Adapter" },
  100. { "HP NC370i Multifunction Gigabit Server Adapter" },
  101. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  102. { "HP NC370F Multifunction Gigabit Server Adapter" },
  103. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  104. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  105. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  106. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  107. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  108. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  109. };
  110. static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
  111. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  112. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  113. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  114. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  115. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  116. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  117. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  118. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  119. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  120. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  121. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  122. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  123. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  124. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  125. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  126. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  127. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  128. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  129. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  130. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  131. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  132. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  133. { 0, }
  134. };
  135. static const struct flash_spec flash_table[] =
  136. {
  137. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  138. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  139. /* Slow EEPROM */
  140. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  141. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  142. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  143. "EEPROM - slow"},
  144. /* Expansion entry 0001 */
  145. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  146. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  147. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  148. "Entry 0001"},
  149. /* Saifun SA25F010 (non-buffered flash) */
  150. /* strap, cfg1, & write1 need updates */
  151. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  152. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  153. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  154. "Non-buffered flash (128kB)"},
  155. /* Saifun SA25F020 (non-buffered flash) */
  156. /* strap, cfg1, & write1 need updates */
  157. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  158. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  159. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  160. "Non-buffered flash (256kB)"},
  161. /* Expansion entry 0100 */
  162. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  163. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  164. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  165. "Entry 0100"},
  166. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  167. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  168. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  169. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  170. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  171. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  172. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  173. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  174. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  175. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  176. /* Saifun SA25F005 (non-buffered flash) */
  177. /* strap, cfg1, & write1 need updates */
  178. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  179. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  180. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  181. "Non-buffered flash (64kB)"},
  182. /* Fast EEPROM */
  183. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  184. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  185. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  186. "EEPROM - fast"},
  187. /* Expansion entry 1001 */
  188. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  189. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  190. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  191. "Entry 1001"},
  192. /* Expansion entry 1010 */
  193. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  194. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  195. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  196. "Entry 1010"},
  197. /* ATMEL AT45DB011B (buffered flash) */
  198. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  199. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  200. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  201. "Buffered flash (128kB)"},
  202. /* Expansion entry 1100 */
  203. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  204. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  205. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  206. "Entry 1100"},
  207. /* Expansion entry 1101 */
  208. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  209. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  210. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  211. "Entry 1101"},
  212. /* Ateml Expansion entry 1110 */
  213. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  214. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  215. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  216. "Entry 1110 (Atmel)"},
  217. /* ATMEL AT45DB021B (buffered flash) */
  218. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  219. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  220. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  221. "Buffered flash (256kB)"},
  222. };
  223. static const struct flash_spec flash_5709 = {
  224. .flags = BNX2_NV_BUFFERED,
  225. .page_bits = BCM5709_FLASH_PAGE_BITS,
  226. .page_size = BCM5709_FLASH_PAGE_SIZE,
  227. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  228. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  229. .name = "5709 Buffered flash (256kB)",
  230. };
  231. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  232. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  233. {
  234. u32 diff;
  235. smp_mb();
  236. /* The ring uses 256 indices for 255 entries, one of them
  237. * needs to be skipped.
  238. */
  239. diff = txr->tx_prod - txr->tx_cons;
  240. if (unlikely(diff >= TX_DESC_CNT)) {
  241. diff &= 0xffff;
  242. if (diff == TX_DESC_CNT)
  243. diff = MAX_TX_DESC_CNT;
  244. }
  245. return (bp->tx_ring_size - diff);
  246. }
  247. static u32
  248. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  249. {
  250. u32 val;
  251. spin_lock_bh(&bp->indirect_lock);
  252. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  253. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  254. spin_unlock_bh(&bp->indirect_lock);
  255. return val;
  256. }
  257. static void
  258. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  259. {
  260. spin_lock_bh(&bp->indirect_lock);
  261. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  262. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  263. spin_unlock_bh(&bp->indirect_lock);
  264. }
  265. static void
  266. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  267. {
  268. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  269. }
  270. static u32
  271. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  272. {
  273. return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
  274. }
  275. static void
  276. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  277. {
  278. offset += cid_addr;
  279. spin_lock_bh(&bp->indirect_lock);
  280. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  281. int i;
  282. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  283. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  284. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  285. for (i = 0; i < 5; i++) {
  286. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  287. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  288. break;
  289. udelay(5);
  290. }
  291. } else {
  292. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  293. REG_WR(bp, BNX2_CTX_DATA, val);
  294. }
  295. spin_unlock_bh(&bp->indirect_lock);
  296. }
  297. #ifdef BCM_CNIC
  298. static int
  299. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  300. {
  301. struct bnx2 *bp = netdev_priv(dev);
  302. struct drv_ctl_io *io = &info->data.io;
  303. switch (info->cmd) {
  304. case DRV_CTL_IO_WR_CMD:
  305. bnx2_reg_wr_ind(bp, io->offset, io->data);
  306. break;
  307. case DRV_CTL_IO_RD_CMD:
  308. io->data = bnx2_reg_rd_ind(bp, io->offset);
  309. break;
  310. case DRV_CTL_CTX_WR_CMD:
  311. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  312. break;
  313. default:
  314. return -EINVAL;
  315. }
  316. return 0;
  317. }
  318. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  319. {
  320. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  321. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  322. int sb_id;
  323. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  324. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  325. bnapi->cnic_present = 0;
  326. sb_id = bp->irq_nvecs;
  327. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  328. } else {
  329. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  330. bnapi->cnic_tag = bnapi->last_status_idx;
  331. bnapi->cnic_present = 1;
  332. sb_id = 0;
  333. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  334. }
  335. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  336. cp->irq_arr[0].status_blk = (void *)
  337. ((unsigned long) bnapi->status_blk.msi +
  338. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  339. cp->irq_arr[0].status_blk_num = sb_id;
  340. cp->num_irq = 1;
  341. }
  342. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  343. void *data)
  344. {
  345. struct bnx2 *bp = netdev_priv(dev);
  346. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  347. if (ops == NULL)
  348. return -EINVAL;
  349. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  350. return -EBUSY;
  351. bp->cnic_data = data;
  352. rcu_assign_pointer(bp->cnic_ops, ops);
  353. cp->num_irq = 0;
  354. cp->drv_state = CNIC_DRV_STATE_REGD;
  355. bnx2_setup_cnic_irq_info(bp);
  356. return 0;
  357. }
  358. static int bnx2_unregister_cnic(struct net_device *dev)
  359. {
  360. struct bnx2 *bp = netdev_priv(dev);
  361. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  362. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  363. mutex_lock(&bp->cnic_lock);
  364. cp->drv_state = 0;
  365. bnapi->cnic_present = 0;
  366. rcu_assign_pointer(bp->cnic_ops, NULL);
  367. mutex_unlock(&bp->cnic_lock);
  368. synchronize_rcu();
  369. return 0;
  370. }
  371. struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  372. {
  373. struct bnx2 *bp = netdev_priv(dev);
  374. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  375. cp->drv_owner = THIS_MODULE;
  376. cp->chip_id = bp->chip_id;
  377. cp->pdev = bp->pdev;
  378. cp->io_base = bp->regview;
  379. cp->drv_ctl = bnx2_drv_ctl;
  380. cp->drv_register_cnic = bnx2_register_cnic;
  381. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  382. return cp;
  383. }
  384. EXPORT_SYMBOL(bnx2_cnic_probe);
  385. static void
  386. bnx2_cnic_stop(struct bnx2 *bp)
  387. {
  388. struct cnic_ops *c_ops;
  389. struct cnic_ctl_info info;
  390. mutex_lock(&bp->cnic_lock);
  391. c_ops = bp->cnic_ops;
  392. if (c_ops) {
  393. info.cmd = CNIC_CTL_STOP_CMD;
  394. c_ops->cnic_ctl(bp->cnic_data, &info);
  395. }
  396. mutex_unlock(&bp->cnic_lock);
  397. }
  398. static void
  399. bnx2_cnic_start(struct bnx2 *bp)
  400. {
  401. struct cnic_ops *c_ops;
  402. struct cnic_ctl_info info;
  403. mutex_lock(&bp->cnic_lock);
  404. c_ops = bp->cnic_ops;
  405. if (c_ops) {
  406. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  407. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  408. bnapi->cnic_tag = bnapi->last_status_idx;
  409. }
  410. info.cmd = CNIC_CTL_START_CMD;
  411. c_ops->cnic_ctl(bp->cnic_data, &info);
  412. }
  413. mutex_unlock(&bp->cnic_lock);
  414. }
  415. #else
  416. static void
  417. bnx2_cnic_stop(struct bnx2 *bp)
  418. {
  419. }
  420. static void
  421. bnx2_cnic_start(struct bnx2 *bp)
  422. {
  423. }
  424. #endif
  425. static int
  426. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  427. {
  428. u32 val1;
  429. int i, ret;
  430. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  431. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  432. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  433. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  434. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  435. udelay(40);
  436. }
  437. val1 = (bp->phy_addr << 21) | (reg << 16) |
  438. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  439. BNX2_EMAC_MDIO_COMM_START_BUSY;
  440. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  441. for (i = 0; i < 50; i++) {
  442. udelay(10);
  443. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  444. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  445. udelay(5);
  446. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  447. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  448. break;
  449. }
  450. }
  451. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  452. *val = 0x0;
  453. ret = -EBUSY;
  454. }
  455. else {
  456. *val = val1;
  457. ret = 0;
  458. }
  459. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  460. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  461. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  462. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  463. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  464. udelay(40);
  465. }
  466. return ret;
  467. }
  468. static int
  469. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  470. {
  471. u32 val1;
  472. int i, ret;
  473. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  474. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  475. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  476. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  477. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  478. udelay(40);
  479. }
  480. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  481. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  482. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  483. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  484. for (i = 0; i < 50; i++) {
  485. udelay(10);
  486. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  487. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  488. udelay(5);
  489. break;
  490. }
  491. }
  492. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  493. ret = -EBUSY;
  494. else
  495. ret = 0;
  496. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  497. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  498. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  499. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  500. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  501. udelay(40);
  502. }
  503. return ret;
  504. }
  505. static void
  506. bnx2_disable_int(struct bnx2 *bp)
  507. {
  508. int i;
  509. struct bnx2_napi *bnapi;
  510. for (i = 0; i < bp->irq_nvecs; i++) {
  511. bnapi = &bp->bnx2_napi[i];
  512. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  513. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  514. }
  515. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  516. }
  517. static void
  518. bnx2_enable_int(struct bnx2 *bp)
  519. {
  520. int i;
  521. struct bnx2_napi *bnapi;
  522. for (i = 0; i < bp->irq_nvecs; i++) {
  523. bnapi = &bp->bnx2_napi[i];
  524. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  525. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  526. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  527. bnapi->last_status_idx);
  528. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  529. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  530. bnapi->last_status_idx);
  531. }
  532. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  533. }
  534. static void
  535. bnx2_disable_int_sync(struct bnx2 *bp)
  536. {
  537. int i;
  538. atomic_inc(&bp->intr_sem);
  539. if (!netif_running(bp->dev))
  540. return;
  541. bnx2_disable_int(bp);
  542. for (i = 0; i < bp->irq_nvecs; i++)
  543. synchronize_irq(bp->irq_tbl[i].vector);
  544. }
  545. static void
  546. bnx2_napi_disable(struct bnx2 *bp)
  547. {
  548. int i;
  549. for (i = 0; i < bp->irq_nvecs; i++)
  550. napi_disable(&bp->bnx2_napi[i].napi);
  551. }
  552. static void
  553. bnx2_napi_enable(struct bnx2 *bp)
  554. {
  555. int i;
  556. for (i = 0; i < bp->irq_nvecs; i++)
  557. napi_enable(&bp->bnx2_napi[i].napi);
  558. }
  559. static void
  560. bnx2_netif_stop(struct bnx2 *bp)
  561. {
  562. bnx2_cnic_stop(bp);
  563. bnx2_disable_int_sync(bp);
  564. if (netif_running(bp->dev)) {
  565. bnx2_napi_disable(bp);
  566. netif_tx_disable(bp->dev);
  567. bp->dev->trans_start = jiffies; /* prevent tx timeout */
  568. }
  569. }
  570. static void
  571. bnx2_netif_start(struct bnx2 *bp)
  572. {
  573. if (atomic_dec_and_test(&bp->intr_sem)) {
  574. if (netif_running(bp->dev)) {
  575. netif_tx_wake_all_queues(bp->dev);
  576. bnx2_napi_enable(bp);
  577. bnx2_enable_int(bp);
  578. bnx2_cnic_start(bp);
  579. }
  580. }
  581. }
  582. static void
  583. bnx2_free_tx_mem(struct bnx2 *bp)
  584. {
  585. int i;
  586. for (i = 0; i < bp->num_tx_rings; i++) {
  587. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  588. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  589. if (txr->tx_desc_ring) {
  590. pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
  591. txr->tx_desc_ring,
  592. txr->tx_desc_mapping);
  593. txr->tx_desc_ring = NULL;
  594. }
  595. kfree(txr->tx_buf_ring);
  596. txr->tx_buf_ring = NULL;
  597. }
  598. }
  599. static void
  600. bnx2_free_rx_mem(struct bnx2 *bp)
  601. {
  602. int i;
  603. for (i = 0; i < bp->num_rx_rings; i++) {
  604. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  605. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  606. int j;
  607. for (j = 0; j < bp->rx_max_ring; j++) {
  608. if (rxr->rx_desc_ring[j])
  609. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  610. rxr->rx_desc_ring[j],
  611. rxr->rx_desc_mapping[j]);
  612. rxr->rx_desc_ring[j] = NULL;
  613. }
  614. vfree(rxr->rx_buf_ring);
  615. rxr->rx_buf_ring = NULL;
  616. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  617. if (rxr->rx_pg_desc_ring[j])
  618. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  619. rxr->rx_pg_desc_ring[j],
  620. rxr->rx_pg_desc_mapping[j]);
  621. rxr->rx_pg_desc_ring[j] = NULL;
  622. }
  623. vfree(rxr->rx_pg_ring);
  624. rxr->rx_pg_ring = NULL;
  625. }
  626. }
  627. static int
  628. bnx2_alloc_tx_mem(struct bnx2 *bp)
  629. {
  630. int i;
  631. for (i = 0; i < bp->num_tx_rings; i++) {
  632. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  633. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  634. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  635. if (txr->tx_buf_ring == NULL)
  636. return -ENOMEM;
  637. txr->tx_desc_ring =
  638. pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
  639. &txr->tx_desc_mapping);
  640. if (txr->tx_desc_ring == NULL)
  641. return -ENOMEM;
  642. }
  643. return 0;
  644. }
  645. static int
  646. bnx2_alloc_rx_mem(struct bnx2 *bp)
  647. {
  648. int i;
  649. for (i = 0; i < bp->num_rx_rings; i++) {
  650. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  651. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  652. int j;
  653. rxr->rx_buf_ring =
  654. vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  655. if (rxr->rx_buf_ring == NULL)
  656. return -ENOMEM;
  657. memset(rxr->rx_buf_ring, 0,
  658. SW_RXBD_RING_SIZE * bp->rx_max_ring);
  659. for (j = 0; j < bp->rx_max_ring; j++) {
  660. rxr->rx_desc_ring[j] =
  661. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  662. &rxr->rx_desc_mapping[j]);
  663. if (rxr->rx_desc_ring[j] == NULL)
  664. return -ENOMEM;
  665. }
  666. if (bp->rx_pg_ring_size) {
  667. rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
  668. bp->rx_max_pg_ring);
  669. if (rxr->rx_pg_ring == NULL)
  670. return -ENOMEM;
  671. memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
  672. bp->rx_max_pg_ring);
  673. }
  674. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  675. rxr->rx_pg_desc_ring[j] =
  676. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  677. &rxr->rx_pg_desc_mapping[j]);
  678. if (rxr->rx_pg_desc_ring[j] == NULL)
  679. return -ENOMEM;
  680. }
  681. }
  682. return 0;
  683. }
  684. static void
  685. bnx2_free_mem(struct bnx2 *bp)
  686. {
  687. int i;
  688. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  689. bnx2_free_tx_mem(bp);
  690. bnx2_free_rx_mem(bp);
  691. for (i = 0; i < bp->ctx_pages; i++) {
  692. if (bp->ctx_blk[i]) {
  693. pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
  694. bp->ctx_blk[i],
  695. bp->ctx_blk_mapping[i]);
  696. bp->ctx_blk[i] = NULL;
  697. }
  698. }
  699. if (bnapi->status_blk.msi) {
  700. pci_free_consistent(bp->pdev, bp->status_stats_size,
  701. bnapi->status_blk.msi,
  702. bp->status_blk_mapping);
  703. bnapi->status_blk.msi = NULL;
  704. bp->stats_blk = NULL;
  705. }
  706. }
  707. static int
  708. bnx2_alloc_mem(struct bnx2 *bp)
  709. {
  710. int i, status_blk_size, err;
  711. struct bnx2_napi *bnapi;
  712. void *status_blk;
  713. /* Combine status and statistics blocks into one allocation. */
  714. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  715. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  716. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  717. BNX2_SBLK_MSIX_ALIGN_SIZE);
  718. bp->status_stats_size = status_blk_size +
  719. sizeof(struct statistics_block);
  720. status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
  721. &bp->status_blk_mapping);
  722. if (status_blk == NULL)
  723. goto alloc_mem_err;
  724. memset(status_blk, 0, bp->status_stats_size);
  725. bnapi = &bp->bnx2_napi[0];
  726. bnapi->status_blk.msi = status_blk;
  727. bnapi->hw_tx_cons_ptr =
  728. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  729. bnapi->hw_rx_cons_ptr =
  730. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  731. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  732. for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
  733. struct status_block_msix *sblk;
  734. bnapi = &bp->bnx2_napi[i];
  735. sblk = (void *) (status_blk +
  736. BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  737. bnapi->status_blk.msix = sblk;
  738. bnapi->hw_tx_cons_ptr =
  739. &sblk->status_tx_quick_consumer_index;
  740. bnapi->hw_rx_cons_ptr =
  741. &sblk->status_rx_quick_consumer_index;
  742. bnapi->int_num = i << 24;
  743. }
  744. }
  745. bp->stats_blk = status_blk + status_blk_size;
  746. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  747. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  748. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  749. if (bp->ctx_pages == 0)
  750. bp->ctx_pages = 1;
  751. for (i = 0; i < bp->ctx_pages; i++) {
  752. bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
  753. BCM_PAGE_SIZE,
  754. &bp->ctx_blk_mapping[i]);
  755. if (bp->ctx_blk[i] == NULL)
  756. goto alloc_mem_err;
  757. }
  758. }
  759. err = bnx2_alloc_rx_mem(bp);
  760. if (err)
  761. goto alloc_mem_err;
  762. err = bnx2_alloc_tx_mem(bp);
  763. if (err)
  764. goto alloc_mem_err;
  765. return 0;
  766. alloc_mem_err:
  767. bnx2_free_mem(bp);
  768. return -ENOMEM;
  769. }
  770. static void
  771. bnx2_report_fw_link(struct bnx2 *bp)
  772. {
  773. u32 fw_link_status = 0;
  774. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  775. return;
  776. if (bp->link_up) {
  777. u32 bmsr;
  778. switch (bp->line_speed) {
  779. case SPEED_10:
  780. if (bp->duplex == DUPLEX_HALF)
  781. fw_link_status = BNX2_LINK_STATUS_10HALF;
  782. else
  783. fw_link_status = BNX2_LINK_STATUS_10FULL;
  784. break;
  785. case SPEED_100:
  786. if (bp->duplex == DUPLEX_HALF)
  787. fw_link_status = BNX2_LINK_STATUS_100HALF;
  788. else
  789. fw_link_status = BNX2_LINK_STATUS_100FULL;
  790. break;
  791. case SPEED_1000:
  792. if (bp->duplex == DUPLEX_HALF)
  793. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  794. else
  795. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  796. break;
  797. case SPEED_2500:
  798. if (bp->duplex == DUPLEX_HALF)
  799. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  800. else
  801. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  802. break;
  803. }
  804. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  805. if (bp->autoneg) {
  806. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  807. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  808. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  809. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  810. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  811. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  812. else
  813. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  814. }
  815. }
  816. else
  817. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  818. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  819. }
  820. static char *
  821. bnx2_xceiver_str(struct bnx2 *bp)
  822. {
  823. return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
  824. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  825. "Copper"));
  826. }
  827. static void
  828. bnx2_report_link(struct bnx2 *bp)
  829. {
  830. if (bp->link_up) {
  831. netif_carrier_on(bp->dev);
  832. printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
  833. bnx2_xceiver_str(bp));
  834. printk("%d Mbps ", bp->line_speed);
  835. if (bp->duplex == DUPLEX_FULL)
  836. printk("full duplex");
  837. else
  838. printk("half duplex");
  839. if (bp->flow_ctrl) {
  840. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  841. printk(", receive ");
  842. if (bp->flow_ctrl & FLOW_CTRL_TX)
  843. printk("& transmit ");
  844. }
  845. else {
  846. printk(", transmit ");
  847. }
  848. printk("flow control ON");
  849. }
  850. printk("\n");
  851. }
  852. else {
  853. netif_carrier_off(bp->dev);
  854. printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
  855. bnx2_xceiver_str(bp));
  856. }
  857. bnx2_report_fw_link(bp);
  858. }
  859. static void
  860. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  861. {
  862. u32 local_adv, remote_adv;
  863. bp->flow_ctrl = 0;
  864. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  865. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  866. if (bp->duplex == DUPLEX_FULL) {
  867. bp->flow_ctrl = bp->req_flow_ctrl;
  868. }
  869. return;
  870. }
  871. if (bp->duplex != DUPLEX_FULL) {
  872. return;
  873. }
  874. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  875. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  876. u32 val;
  877. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  878. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  879. bp->flow_ctrl |= FLOW_CTRL_TX;
  880. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  881. bp->flow_ctrl |= FLOW_CTRL_RX;
  882. return;
  883. }
  884. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  885. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  886. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  887. u32 new_local_adv = 0;
  888. u32 new_remote_adv = 0;
  889. if (local_adv & ADVERTISE_1000XPAUSE)
  890. new_local_adv |= ADVERTISE_PAUSE_CAP;
  891. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  892. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  893. if (remote_adv & ADVERTISE_1000XPAUSE)
  894. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  895. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  896. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  897. local_adv = new_local_adv;
  898. remote_adv = new_remote_adv;
  899. }
  900. /* See Table 28B-3 of 802.3ab-1999 spec. */
  901. if (local_adv & ADVERTISE_PAUSE_CAP) {
  902. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  903. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  904. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  905. }
  906. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  907. bp->flow_ctrl = FLOW_CTRL_RX;
  908. }
  909. }
  910. else {
  911. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  912. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  913. }
  914. }
  915. }
  916. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  917. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  918. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  919. bp->flow_ctrl = FLOW_CTRL_TX;
  920. }
  921. }
  922. }
  923. static int
  924. bnx2_5709s_linkup(struct bnx2 *bp)
  925. {
  926. u32 val, speed;
  927. bp->link_up = 1;
  928. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  929. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  930. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  931. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  932. bp->line_speed = bp->req_line_speed;
  933. bp->duplex = bp->req_duplex;
  934. return 0;
  935. }
  936. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  937. switch (speed) {
  938. case MII_BNX2_GP_TOP_AN_SPEED_10:
  939. bp->line_speed = SPEED_10;
  940. break;
  941. case MII_BNX2_GP_TOP_AN_SPEED_100:
  942. bp->line_speed = SPEED_100;
  943. break;
  944. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  945. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  946. bp->line_speed = SPEED_1000;
  947. break;
  948. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  949. bp->line_speed = SPEED_2500;
  950. break;
  951. }
  952. if (val & MII_BNX2_GP_TOP_AN_FD)
  953. bp->duplex = DUPLEX_FULL;
  954. else
  955. bp->duplex = DUPLEX_HALF;
  956. return 0;
  957. }
  958. static int
  959. bnx2_5708s_linkup(struct bnx2 *bp)
  960. {
  961. u32 val;
  962. bp->link_up = 1;
  963. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  964. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  965. case BCM5708S_1000X_STAT1_SPEED_10:
  966. bp->line_speed = SPEED_10;
  967. break;
  968. case BCM5708S_1000X_STAT1_SPEED_100:
  969. bp->line_speed = SPEED_100;
  970. break;
  971. case BCM5708S_1000X_STAT1_SPEED_1G:
  972. bp->line_speed = SPEED_1000;
  973. break;
  974. case BCM5708S_1000X_STAT1_SPEED_2G5:
  975. bp->line_speed = SPEED_2500;
  976. break;
  977. }
  978. if (val & BCM5708S_1000X_STAT1_FD)
  979. bp->duplex = DUPLEX_FULL;
  980. else
  981. bp->duplex = DUPLEX_HALF;
  982. return 0;
  983. }
  984. static int
  985. bnx2_5706s_linkup(struct bnx2 *bp)
  986. {
  987. u32 bmcr, local_adv, remote_adv, common;
  988. bp->link_up = 1;
  989. bp->line_speed = SPEED_1000;
  990. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  991. if (bmcr & BMCR_FULLDPLX) {
  992. bp->duplex = DUPLEX_FULL;
  993. }
  994. else {
  995. bp->duplex = DUPLEX_HALF;
  996. }
  997. if (!(bmcr & BMCR_ANENABLE)) {
  998. return 0;
  999. }
  1000. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1001. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1002. common = local_adv & remote_adv;
  1003. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1004. if (common & ADVERTISE_1000XFULL) {
  1005. bp->duplex = DUPLEX_FULL;
  1006. }
  1007. else {
  1008. bp->duplex = DUPLEX_HALF;
  1009. }
  1010. }
  1011. return 0;
  1012. }
  1013. static int
  1014. bnx2_copper_linkup(struct bnx2 *bp)
  1015. {
  1016. u32 bmcr;
  1017. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1018. if (bmcr & BMCR_ANENABLE) {
  1019. u32 local_adv, remote_adv, common;
  1020. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1021. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1022. common = local_adv & (remote_adv >> 2);
  1023. if (common & ADVERTISE_1000FULL) {
  1024. bp->line_speed = SPEED_1000;
  1025. bp->duplex = DUPLEX_FULL;
  1026. }
  1027. else if (common & ADVERTISE_1000HALF) {
  1028. bp->line_speed = SPEED_1000;
  1029. bp->duplex = DUPLEX_HALF;
  1030. }
  1031. else {
  1032. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1033. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1034. common = local_adv & remote_adv;
  1035. if (common & ADVERTISE_100FULL) {
  1036. bp->line_speed = SPEED_100;
  1037. bp->duplex = DUPLEX_FULL;
  1038. }
  1039. else if (common & ADVERTISE_100HALF) {
  1040. bp->line_speed = SPEED_100;
  1041. bp->duplex = DUPLEX_HALF;
  1042. }
  1043. else if (common & ADVERTISE_10FULL) {
  1044. bp->line_speed = SPEED_10;
  1045. bp->duplex = DUPLEX_FULL;
  1046. }
  1047. else if (common & ADVERTISE_10HALF) {
  1048. bp->line_speed = SPEED_10;
  1049. bp->duplex = DUPLEX_HALF;
  1050. }
  1051. else {
  1052. bp->line_speed = 0;
  1053. bp->link_up = 0;
  1054. }
  1055. }
  1056. }
  1057. else {
  1058. if (bmcr & BMCR_SPEED100) {
  1059. bp->line_speed = SPEED_100;
  1060. }
  1061. else {
  1062. bp->line_speed = SPEED_10;
  1063. }
  1064. if (bmcr & BMCR_FULLDPLX) {
  1065. bp->duplex = DUPLEX_FULL;
  1066. }
  1067. else {
  1068. bp->duplex = DUPLEX_HALF;
  1069. }
  1070. }
  1071. return 0;
  1072. }
  1073. static void
  1074. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1075. {
  1076. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1077. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1078. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1079. val |= 0x02 << 8;
  1080. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1081. u32 lo_water, hi_water;
  1082. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1083. lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
  1084. else
  1085. lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
  1086. if (lo_water >= bp->rx_ring_size)
  1087. lo_water = 0;
  1088. hi_water = bp->rx_ring_size / 4;
  1089. if (hi_water <= lo_water)
  1090. lo_water = 0;
  1091. hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
  1092. lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
  1093. if (hi_water > 0xf)
  1094. hi_water = 0xf;
  1095. else if (hi_water == 0)
  1096. lo_water = 0;
  1097. val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
  1098. }
  1099. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1100. }
  1101. static void
  1102. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1103. {
  1104. int i;
  1105. u32 cid;
  1106. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1107. if (i == 1)
  1108. cid = RX_RSS_CID;
  1109. bnx2_init_rx_context(bp, cid);
  1110. }
  1111. }
  1112. static void
  1113. bnx2_set_mac_link(struct bnx2 *bp)
  1114. {
  1115. u32 val;
  1116. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1117. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1118. (bp->duplex == DUPLEX_HALF)) {
  1119. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1120. }
  1121. /* Configure the EMAC mode register. */
  1122. val = REG_RD(bp, BNX2_EMAC_MODE);
  1123. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1124. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1125. BNX2_EMAC_MODE_25G_MODE);
  1126. if (bp->link_up) {
  1127. switch (bp->line_speed) {
  1128. case SPEED_10:
  1129. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  1130. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1131. break;
  1132. }
  1133. /* fall through */
  1134. case SPEED_100:
  1135. val |= BNX2_EMAC_MODE_PORT_MII;
  1136. break;
  1137. case SPEED_2500:
  1138. val |= BNX2_EMAC_MODE_25G_MODE;
  1139. /* fall through */
  1140. case SPEED_1000:
  1141. val |= BNX2_EMAC_MODE_PORT_GMII;
  1142. break;
  1143. }
  1144. }
  1145. else {
  1146. val |= BNX2_EMAC_MODE_PORT_GMII;
  1147. }
  1148. /* Set the MAC to operate in the appropriate duplex mode. */
  1149. if (bp->duplex == DUPLEX_HALF)
  1150. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1151. REG_WR(bp, BNX2_EMAC_MODE, val);
  1152. /* Enable/disable rx PAUSE. */
  1153. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1154. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1155. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1156. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1157. /* Enable/disable tx PAUSE. */
  1158. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  1159. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1160. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1161. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1162. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  1163. /* Acknowledge the interrupt. */
  1164. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1165. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1166. bnx2_init_all_rx_contexts(bp);
  1167. }
  1168. static void
  1169. bnx2_enable_bmsr1(struct bnx2 *bp)
  1170. {
  1171. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1172. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1173. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1174. MII_BNX2_BLK_ADDR_GP_STATUS);
  1175. }
  1176. static void
  1177. bnx2_disable_bmsr1(struct bnx2 *bp)
  1178. {
  1179. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1180. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1181. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1182. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1183. }
  1184. static int
  1185. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1186. {
  1187. u32 up1;
  1188. int ret = 1;
  1189. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1190. return 0;
  1191. if (bp->autoneg & AUTONEG_SPEED)
  1192. bp->advertising |= ADVERTISED_2500baseX_Full;
  1193. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1194. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1195. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1196. if (!(up1 & BCM5708S_UP1_2G5)) {
  1197. up1 |= BCM5708S_UP1_2G5;
  1198. bnx2_write_phy(bp, bp->mii_up1, up1);
  1199. ret = 0;
  1200. }
  1201. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1202. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1203. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1204. return ret;
  1205. }
  1206. static int
  1207. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1208. {
  1209. u32 up1;
  1210. int ret = 0;
  1211. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1212. return 0;
  1213. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1214. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1215. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1216. if (up1 & BCM5708S_UP1_2G5) {
  1217. up1 &= ~BCM5708S_UP1_2G5;
  1218. bnx2_write_phy(bp, bp->mii_up1, up1);
  1219. ret = 1;
  1220. }
  1221. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1222. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1223. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1224. return ret;
  1225. }
  1226. static void
  1227. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1228. {
  1229. u32 bmcr;
  1230. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1231. return;
  1232. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1233. u32 val;
  1234. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1235. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1236. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1237. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1238. val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
  1239. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1240. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1241. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1242. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1243. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1244. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1245. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1246. } else {
  1247. return;
  1248. }
  1249. if (bp->autoneg & AUTONEG_SPEED) {
  1250. bmcr &= ~BMCR_ANENABLE;
  1251. if (bp->req_duplex == DUPLEX_FULL)
  1252. bmcr |= BMCR_FULLDPLX;
  1253. }
  1254. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1255. }
  1256. static void
  1257. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1258. {
  1259. u32 bmcr;
  1260. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1261. return;
  1262. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1263. u32 val;
  1264. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1265. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1266. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1267. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1268. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1269. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1270. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1271. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1272. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1273. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1274. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1275. } else {
  1276. return;
  1277. }
  1278. if (bp->autoneg & AUTONEG_SPEED)
  1279. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1280. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1281. }
  1282. static void
  1283. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1284. {
  1285. u32 val;
  1286. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1287. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1288. if (start)
  1289. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1290. else
  1291. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1292. }
  1293. static int
  1294. bnx2_set_link(struct bnx2 *bp)
  1295. {
  1296. u32 bmsr;
  1297. u8 link_up;
  1298. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1299. bp->link_up = 1;
  1300. return 0;
  1301. }
  1302. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1303. return 0;
  1304. link_up = bp->link_up;
  1305. bnx2_enable_bmsr1(bp);
  1306. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1307. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1308. bnx2_disable_bmsr1(bp);
  1309. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1310. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  1311. u32 val, an_dbg;
  1312. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1313. bnx2_5706s_force_link_dn(bp, 0);
  1314. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1315. }
  1316. val = REG_RD(bp, BNX2_EMAC_STATUS);
  1317. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1318. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1319. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1320. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1321. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1322. bmsr |= BMSR_LSTATUS;
  1323. else
  1324. bmsr &= ~BMSR_LSTATUS;
  1325. }
  1326. if (bmsr & BMSR_LSTATUS) {
  1327. bp->link_up = 1;
  1328. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1329. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1330. bnx2_5706s_linkup(bp);
  1331. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1332. bnx2_5708s_linkup(bp);
  1333. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1334. bnx2_5709s_linkup(bp);
  1335. }
  1336. else {
  1337. bnx2_copper_linkup(bp);
  1338. }
  1339. bnx2_resolve_flow_ctrl(bp);
  1340. }
  1341. else {
  1342. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1343. (bp->autoneg & AUTONEG_SPEED))
  1344. bnx2_disable_forced_2g5(bp);
  1345. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1346. u32 bmcr;
  1347. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1348. bmcr |= BMCR_ANENABLE;
  1349. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1350. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1351. }
  1352. bp->link_up = 0;
  1353. }
  1354. if (bp->link_up != link_up) {
  1355. bnx2_report_link(bp);
  1356. }
  1357. bnx2_set_mac_link(bp);
  1358. return 0;
  1359. }
  1360. static int
  1361. bnx2_reset_phy(struct bnx2 *bp)
  1362. {
  1363. int i;
  1364. u32 reg;
  1365. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1366. #define PHY_RESET_MAX_WAIT 100
  1367. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1368. udelay(10);
  1369. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1370. if (!(reg & BMCR_RESET)) {
  1371. udelay(20);
  1372. break;
  1373. }
  1374. }
  1375. if (i == PHY_RESET_MAX_WAIT) {
  1376. return -EBUSY;
  1377. }
  1378. return 0;
  1379. }
  1380. static u32
  1381. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1382. {
  1383. u32 adv = 0;
  1384. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1385. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1386. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1387. adv = ADVERTISE_1000XPAUSE;
  1388. }
  1389. else {
  1390. adv = ADVERTISE_PAUSE_CAP;
  1391. }
  1392. }
  1393. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1394. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1395. adv = ADVERTISE_1000XPSE_ASYM;
  1396. }
  1397. else {
  1398. adv = ADVERTISE_PAUSE_ASYM;
  1399. }
  1400. }
  1401. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1402. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1403. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1404. }
  1405. else {
  1406. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1407. }
  1408. }
  1409. return adv;
  1410. }
  1411. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1412. static int
  1413. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1414. __releases(&bp->phy_lock)
  1415. __acquires(&bp->phy_lock)
  1416. {
  1417. u32 speed_arg = 0, pause_adv;
  1418. pause_adv = bnx2_phy_get_pause_adv(bp);
  1419. if (bp->autoneg & AUTONEG_SPEED) {
  1420. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1421. if (bp->advertising & ADVERTISED_10baseT_Half)
  1422. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1423. if (bp->advertising & ADVERTISED_10baseT_Full)
  1424. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1425. if (bp->advertising & ADVERTISED_100baseT_Half)
  1426. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1427. if (bp->advertising & ADVERTISED_100baseT_Full)
  1428. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1429. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1430. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1431. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1432. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1433. } else {
  1434. if (bp->req_line_speed == SPEED_2500)
  1435. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1436. else if (bp->req_line_speed == SPEED_1000)
  1437. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1438. else if (bp->req_line_speed == SPEED_100) {
  1439. if (bp->req_duplex == DUPLEX_FULL)
  1440. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1441. else
  1442. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1443. } else if (bp->req_line_speed == SPEED_10) {
  1444. if (bp->req_duplex == DUPLEX_FULL)
  1445. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1446. else
  1447. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1448. }
  1449. }
  1450. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1451. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1452. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1453. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1454. if (port == PORT_TP)
  1455. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1456. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1457. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1458. spin_unlock_bh(&bp->phy_lock);
  1459. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1460. spin_lock_bh(&bp->phy_lock);
  1461. return 0;
  1462. }
  1463. static int
  1464. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1465. __releases(&bp->phy_lock)
  1466. __acquires(&bp->phy_lock)
  1467. {
  1468. u32 adv, bmcr;
  1469. u32 new_adv = 0;
  1470. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1471. return (bnx2_setup_remote_phy(bp, port));
  1472. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1473. u32 new_bmcr;
  1474. int force_link_down = 0;
  1475. if (bp->req_line_speed == SPEED_2500) {
  1476. if (!bnx2_test_and_enable_2g5(bp))
  1477. force_link_down = 1;
  1478. } else if (bp->req_line_speed == SPEED_1000) {
  1479. if (bnx2_test_and_disable_2g5(bp))
  1480. force_link_down = 1;
  1481. }
  1482. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1483. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1484. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1485. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1486. new_bmcr |= BMCR_SPEED1000;
  1487. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1488. if (bp->req_line_speed == SPEED_2500)
  1489. bnx2_enable_forced_2g5(bp);
  1490. else if (bp->req_line_speed == SPEED_1000) {
  1491. bnx2_disable_forced_2g5(bp);
  1492. new_bmcr &= ~0x2000;
  1493. }
  1494. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1495. if (bp->req_line_speed == SPEED_2500)
  1496. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1497. else
  1498. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1499. }
  1500. if (bp->req_duplex == DUPLEX_FULL) {
  1501. adv |= ADVERTISE_1000XFULL;
  1502. new_bmcr |= BMCR_FULLDPLX;
  1503. }
  1504. else {
  1505. adv |= ADVERTISE_1000XHALF;
  1506. new_bmcr &= ~BMCR_FULLDPLX;
  1507. }
  1508. if ((new_bmcr != bmcr) || (force_link_down)) {
  1509. /* Force a link down visible on the other side */
  1510. if (bp->link_up) {
  1511. bnx2_write_phy(bp, bp->mii_adv, adv &
  1512. ~(ADVERTISE_1000XFULL |
  1513. ADVERTISE_1000XHALF));
  1514. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1515. BMCR_ANRESTART | BMCR_ANENABLE);
  1516. bp->link_up = 0;
  1517. netif_carrier_off(bp->dev);
  1518. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1519. bnx2_report_link(bp);
  1520. }
  1521. bnx2_write_phy(bp, bp->mii_adv, adv);
  1522. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1523. } else {
  1524. bnx2_resolve_flow_ctrl(bp);
  1525. bnx2_set_mac_link(bp);
  1526. }
  1527. return 0;
  1528. }
  1529. bnx2_test_and_enable_2g5(bp);
  1530. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1531. new_adv |= ADVERTISE_1000XFULL;
  1532. new_adv |= bnx2_phy_get_pause_adv(bp);
  1533. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1534. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1535. bp->serdes_an_pending = 0;
  1536. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1537. /* Force a link down visible on the other side */
  1538. if (bp->link_up) {
  1539. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1540. spin_unlock_bh(&bp->phy_lock);
  1541. msleep(20);
  1542. spin_lock_bh(&bp->phy_lock);
  1543. }
  1544. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1545. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1546. BMCR_ANENABLE);
  1547. /* Speed up link-up time when the link partner
  1548. * does not autonegotiate which is very common
  1549. * in blade servers. Some blade servers use
  1550. * IPMI for kerboard input and it's important
  1551. * to minimize link disruptions. Autoneg. involves
  1552. * exchanging base pages plus 3 next pages and
  1553. * normally completes in about 120 msec.
  1554. */
  1555. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1556. bp->serdes_an_pending = 1;
  1557. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1558. } else {
  1559. bnx2_resolve_flow_ctrl(bp);
  1560. bnx2_set_mac_link(bp);
  1561. }
  1562. return 0;
  1563. }
  1564. #define ETHTOOL_ALL_FIBRE_SPEED \
  1565. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1566. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1567. (ADVERTISED_1000baseT_Full)
  1568. #define ETHTOOL_ALL_COPPER_SPEED \
  1569. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1570. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1571. ADVERTISED_1000baseT_Full)
  1572. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1573. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1574. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1575. static void
  1576. bnx2_set_default_remote_link(struct bnx2 *bp)
  1577. {
  1578. u32 link;
  1579. if (bp->phy_port == PORT_TP)
  1580. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1581. else
  1582. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1583. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1584. bp->req_line_speed = 0;
  1585. bp->autoneg |= AUTONEG_SPEED;
  1586. bp->advertising = ADVERTISED_Autoneg;
  1587. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1588. bp->advertising |= ADVERTISED_10baseT_Half;
  1589. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1590. bp->advertising |= ADVERTISED_10baseT_Full;
  1591. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1592. bp->advertising |= ADVERTISED_100baseT_Half;
  1593. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1594. bp->advertising |= ADVERTISED_100baseT_Full;
  1595. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1596. bp->advertising |= ADVERTISED_1000baseT_Full;
  1597. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1598. bp->advertising |= ADVERTISED_2500baseX_Full;
  1599. } else {
  1600. bp->autoneg = 0;
  1601. bp->advertising = 0;
  1602. bp->req_duplex = DUPLEX_FULL;
  1603. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1604. bp->req_line_speed = SPEED_10;
  1605. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1606. bp->req_duplex = DUPLEX_HALF;
  1607. }
  1608. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1609. bp->req_line_speed = SPEED_100;
  1610. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1611. bp->req_duplex = DUPLEX_HALF;
  1612. }
  1613. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1614. bp->req_line_speed = SPEED_1000;
  1615. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1616. bp->req_line_speed = SPEED_2500;
  1617. }
  1618. }
  1619. static void
  1620. bnx2_set_default_link(struct bnx2 *bp)
  1621. {
  1622. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1623. bnx2_set_default_remote_link(bp);
  1624. return;
  1625. }
  1626. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1627. bp->req_line_speed = 0;
  1628. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1629. u32 reg;
  1630. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1631. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1632. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1633. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1634. bp->autoneg = 0;
  1635. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1636. bp->req_duplex = DUPLEX_FULL;
  1637. }
  1638. } else
  1639. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1640. }
  1641. static void
  1642. bnx2_send_heart_beat(struct bnx2 *bp)
  1643. {
  1644. u32 msg;
  1645. u32 addr;
  1646. spin_lock(&bp->indirect_lock);
  1647. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1648. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1649. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1650. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1651. spin_unlock(&bp->indirect_lock);
  1652. }
  1653. static void
  1654. bnx2_remote_phy_event(struct bnx2 *bp)
  1655. {
  1656. u32 msg;
  1657. u8 link_up = bp->link_up;
  1658. u8 old_port;
  1659. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1660. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1661. bnx2_send_heart_beat(bp);
  1662. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1663. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1664. bp->link_up = 0;
  1665. else {
  1666. u32 speed;
  1667. bp->link_up = 1;
  1668. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1669. bp->duplex = DUPLEX_FULL;
  1670. switch (speed) {
  1671. case BNX2_LINK_STATUS_10HALF:
  1672. bp->duplex = DUPLEX_HALF;
  1673. case BNX2_LINK_STATUS_10FULL:
  1674. bp->line_speed = SPEED_10;
  1675. break;
  1676. case BNX2_LINK_STATUS_100HALF:
  1677. bp->duplex = DUPLEX_HALF;
  1678. case BNX2_LINK_STATUS_100BASE_T4:
  1679. case BNX2_LINK_STATUS_100FULL:
  1680. bp->line_speed = SPEED_100;
  1681. break;
  1682. case BNX2_LINK_STATUS_1000HALF:
  1683. bp->duplex = DUPLEX_HALF;
  1684. case BNX2_LINK_STATUS_1000FULL:
  1685. bp->line_speed = SPEED_1000;
  1686. break;
  1687. case BNX2_LINK_STATUS_2500HALF:
  1688. bp->duplex = DUPLEX_HALF;
  1689. case BNX2_LINK_STATUS_2500FULL:
  1690. bp->line_speed = SPEED_2500;
  1691. break;
  1692. default:
  1693. bp->line_speed = 0;
  1694. break;
  1695. }
  1696. bp->flow_ctrl = 0;
  1697. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1698. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1699. if (bp->duplex == DUPLEX_FULL)
  1700. bp->flow_ctrl = bp->req_flow_ctrl;
  1701. } else {
  1702. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1703. bp->flow_ctrl |= FLOW_CTRL_TX;
  1704. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1705. bp->flow_ctrl |= FLOW_CTRL_RX;
  1706. }
  1707. old_port = bp->phy_port;
  1708. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1709. bp->phy_port = PORT_FIBRE;
  1710. else
  1711. bp->phy_port = PORT_TP;
  1712. if (old_port != bp->phy_port)
  1713. bnx2_set_default_link(bp);
  1714. }
  1715. if (bp->link_up != link_up)
  1716. bnx2_report_link(bp);
  1717. bnx2_set_mac_link(bp);
  1718. }
  1719. static int
  1720. bnx2_set_remote_link(struct bnx2 *bp)
  1721. {
  1722. u32 evt_code;
  1723. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1724. switch (evt_code) {
  1725. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1726. bnx2_remote_phy_event(bp);
  1727. break;
  1728. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1729. default:
  1730. bnx2_send_heart_beat(bp);
  1731. break;
  1732. }
  1733. return 0;
  1734. }
  1735. static int
  1736. bnx2_setup_copper_phy(struct bnx2 *bp)
  1737. __releases(&bp->phy_lock)
  1738. __acquires(&bp->phy_lock)
  1739. {
  1740. u32 bmcr;
  1741. u32 new_bmcr;
  1742. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1743. if (bp->autoneg & AUTONEG_SPEED) {
  1744. u32 adv_reg, adv1000_reg;
  1745. u32 new_adv_reg = 0;
  1746. u32 new_adv1000_reg = 0;
  1747. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1748. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1749. ADVERTISE_PAUSE_ASYM);
  1750. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1751. adv1000_reg &= PHY_ALL_1000_SPEED;
  1752. if (bp->advertising & ADVERTISED_10baseT_Half)
  1753. new_adv_reg |= ADVERTISE_10HALF;
  1754. if (bp->advertising & ADVERTISED_10baseT_Full)
  1755. new_adv_reg |= ADVERTISE_10FULL;
  1756. if (bp->advertising & ADVERTISED_100baseT_Half)
  1757. new_adv_reg |= ADVERTISE_100HALF;
  1758. if (bp->advertising & ADVERTISED_100baseT_Full)
  1759. new_adv_reg |= ADVERTISE_100FULL;
  1760. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1761. new_adv1000_reg |= ADVERTISE_1000FULL;
  1762. new_adv_reg |= ADVERTISE_CSMA;
  1763. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  1764. if ((adv1000_reg != new_adv1000_reg) ||
  1765. (adv_reg != new_adv_reg) ||
  1766. ((bmcr & BMCR_ANENABLE) == 0)) {
  1767. bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
  1768. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1769. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1770. BMCR_ANENABLE);
  1771. }
  1772. else if (bp->link_up) {
  1773. /* Flow ctrl may have changed from auto to forced */
  1774. /* or vice-versa. */
  1775. bnx2_resolve_flow_ctrl(bp);
  1776. bnx2_set_mac_link(bp);
  1777. }
  1778. return 0;
  1779. }
  1780. new_bmcr = 0;
  1781. if (bp->req_line_speed == SPEED_100) {
  1782. new_bmcr |= BMCR_SPEED100;
  1783. }
  1784. if (bp->req_duplex == DUPLEX_FULL) {
  1785. new_bmcr |= BMCR_FULLDPLX;
  1786. }
  1787. if (new_bmcr != bmcr) {
  1788. u32 bmsr;
  1789. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1790. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1791. if (bmsr & BMSR_LSTATUS) {
  1792. /* Force link down */
  1793. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1794. spin_unlock_bh(&bp->phy_lock);
  1795. msleep(50);
  1796. spin_lock_bh(&bp->phy_lock);
  1797. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1798. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1799. }
  1800. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1801. /* Normally, the new speed is setup after the link has
  1802. * gone down and up again. In some cases, link will not go
  1803. * down so we need to set up the new speed here.
  1804. */
  1805. if (bmsr & BMSR_LSTATUS) {
  1806. bp->line_speed = bp->req_line_speed;
  1807. bp->duplex = bp->req_duplex;
  1808. bnx2_resolve_flow_ctrl(bp);
  1809. bnx2_set_mac_link(bp);
  1810. }
  1811. } else {
  1812. bnx2_resolve_flow_ctrl(bp);
  1813. bnx2_set_mac_link(bp);
  1814. }
  1815. return 0;
  1816. }
  1817. static int
  1818. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1819. __releases(&bp->phy_lock)
  1820. __acquires(&bp->phy_lock)
  1821. {
  1822. if (bp->loopback == MAC_LOOPBACK)
  1823. return 0;
  1824. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1825. return (bnx2_setup_serdes_phy(bp, port));
  1826. }
  1827. else {
  1828. return (bnx2_setup_copper_phy(bp));
  1829. }
  1830. }
  1831. static int
  1832. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1833. {
  1834. u32 val;
  1835. bp->mii_bmcr = MII_BMCR + 0x10;
  1836. bp->mii_bmsr = MII_BMSR + 0x10;
  1837. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1838. bp->mii_adv = MII_ADVERTISE + 0x10;
  1839. bp->mii_lpa = MII_LPA + 0x10;
  1840. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1841. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1842. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1843. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1844. if (reset_phy)
  1845. bnx2_reset_phy(bp);
  1846. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1847. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1848. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1849. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1850. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1851. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1852. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1853. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1854. val |= BCM5708S_UP1_2G5;
  1855. else
  1856. val &= ~BCM5708S_UP1_2G5;
  1857. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1858. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1859. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1860. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1861. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1862. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1863. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1864. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1865. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1866. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1867. return 0;
  1868. }
  1869. static int
  1870. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1871. {
  1872. u32 val;
  1873. if (reset_phy)
  1874. bnx2_reset_phy(bp);
  1875. bp->mii_up1 = BCM5708S_UP1;
  1876. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1877. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1878. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1879. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1880. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1881. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1882. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1883. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1884. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1885. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1886. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1887. val |= BCM5708S_UP1_2G5;
  1888. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1889. }
  1890. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1891. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1892. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1893. /* increase tx signal amplitude */
  1894. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1895. BCM5708S_BLK_ADDR_TX_MISC);
  1896. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1897. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1898. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1899. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1900. }
  1901. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1902. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1903. if (val) {
  1904. u32 is_backplane;
  1905. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1906. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1907. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1908. BCM5708S_BLK_ADDR_TX_MISC);
  1909. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1910. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1911. BCM5708S_BLK_ADDR_DIG);
  1912. }
  1913. }
  1914. return 0;
  1915. }
  1916. static int
  1917. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1918. {
  1919. if (reset_phy)
  1920. bnx2_reset_phy(bp);
  1921. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1922. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1923. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1924. if (bp->dev->mtu > 1500) {
  1925. u32 val;
  1926. /* Set extended packet length bit */
  1927. bnx2_write_phy(bp, 0x18, 0x7);
  1928. bnx2_read_phy(bp, 0x18, &val);
  1929. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1930. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1931. bnx2_read_phy(bp, 0x1c, &val);
  1932. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1933. }
  1934. else {
  1935. u32 val;
  1936. bnx2_write_phy(bp, 0x18, 0x7);
  1937. bnx2_read_phy(bp, 0x18, &val);
  1938. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1939. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1940. bnx2_read_phy(bp, 0x1c, &val);
  1941. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1942. }
  1943. return 0;
  1944. }
  1945. static int
  1946. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1947. {
  1948. u32 val;
  1949. if (reset_phy)
  1950. bnx2_reset_phy(bp);
  1951. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1952. bnx2_write_phy(bp, 0x18, 0x0c00);
  1953. bnx2_write_phy(bp, 0x17, 0x000a);
  1954. bnx2_write_phy(bp, 0x15, 0x310b);
  1955. bnx2_write_phy(bp, 0x17, 0x201f);
  1956. bnx2_write_phy(bp, 0x15, 0x9506);
  1957. bnx2_write_phy(bp, 0x17, 0x401f);
  1958. bnx2_write_phy(bp, 0x15, 0x14e2);
  1959. bnx2_write_phy(bp, 0x18, 0x0400);
  1960. }
  1961. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1962. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1963. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1964. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1965. val &= ~(1 << 8);
  1966. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1967. }
  1968. if (bp->dev->mtu > 1500) {
  1969. /* Set extended packet length bit */
  1970. bnx2_write_phy(bp, 0x18, 0x7);
  1971. bnx2_read_phy(bp, 0x18, &val);
  1972. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1973. bnx2_read_phy(bp, 0x10, &val);
  1974. bnx2_write_phy(bp, 0x10, val | 0x1);
  1975. }
  1976. else {
  1977. bnx2_write_phy(bp, 0x18, 0x7);
  1978. bnx2_read_phy(bp, 0x18, &val);
  1979. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1980. bnx2_read_phy(bp, 0x10, &val);
  1981. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1982. }
  1983. /* ethernet@wirespeed */
  1984. bnx2_write_phy(bp, 0x18, 0x7007);
  1985. bnx2_read_phy(bp, 0x18, &val);
  1986. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1987. return 0;
  1988. }
  1989. static int
  1990. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  1991. __releases(&bp->phy_lock)
  1992. __acquires(&bp->phy_lock)
  1993. {
  1994. u32 val;
  1995. int rc = 0;
  1996. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  1997. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  1998. bp->mii_bmcr = MII_BMCR;
  1999. bp->mii_bmsr = MII_BMSR;
  2000. bp->mii_bmsr1 = MII_BMSR;
  2001. bp->mii_adv = MII_ADVERTISE;
  2002. bp->mii_lpa = MII_LPA;
  2003. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2004. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  2005. goto setup_phy;
  2006. bnx2_read_phy(bp, MII_PHYSID1, &val);
  2007. bp->phy_id = val << 16;
  2008. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2009. bp->phy_id |= val & 0xffff;
  2010. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2011. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  2012. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2013. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  2014. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2015. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2016. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2017. }
  2018. else {
  2019. rc = bnx2_init_copper_phy(bp, reset_phy);
  2020. }
  2021. setup_phy:
  2022. if (!rc)
  2023. rc = bnx2_setup_phy(bp, bp->phy_port);
  2024. return rc;
  2025. }
  2026. static int
  2027. bnx2_set_mac_loopback(struct bnx2 *bp)
  2028. {
  2029. u32 mac_mode;
  2030. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2031. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2032. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2033. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2034. bp->link_up = 1;
  2035. return 0;
  2036. }
  2037. static int bnx2_test_link(struct bnx2 *);
  2038. static int
  2039. bnx2_set_phy_loopback(struct bnx2 *bp)
  2040. {
  2041. u32 mac_mode;
  2042. int rc, i;
  2043. spin_lock_bh(&bp->phy_lock);
  2044. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2045. BMCR_SPEED1000);
  2046. spin_unlock_bh(&bp->phy_lock);
  2047. if (rc)
  2048. return rc;
  2049. for (i = 0; i < 10; i++) {
  2050. if (bnx2_test_link(bp) == 0)
  2051. break;
  2052. msleep(100);
  2053. }
  2054. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2055. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2056. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2057. BNX2_EMAC_MODE_25G_MODE);
  2058. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2059. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2060. bp->link_up = 1;
  2061. return 0;
  2062. }
  2063. static int
  2064. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2065. {
  2066. int i;
  2067. u32 val;
  2068. bp->fw_wr_seq++;
  2069. msg_data |= bp->fw_wr_seq;
  2070. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2071. if (!ack)
  2072. return 0;
  2073. /* wait for an acknowledgement. */
  2074. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2075. msleep(10);
  2076. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2077. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2078. break;
  2079. }
  2080. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2081. return 0;
  2082. /* If we timed out, inform the firmware that this is the case. */
  2083. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2084. if (!silent)
  2085. printk(KERN_ERR PFX "fw sync timeout, reset code = "
  2086. "%x\n", msg_data);
  2087. msg_data &= ~BNX2_DRV_MSG_CODE;
  2088. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2089. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2090. return -EBUSY;
  2091. }
  2092. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2093. return -EIO;
  2094. return 0;
  2095. }
  2096. static int
  2097. bnx2_init_5709_context(struct bnx2 *bp)
  2098. {
  2099. int i, ret = 0;
  2100. u32 val;
  2101. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2102. val |= (BCM_PAGE_BITS - 8) << 16;
  2103. REG_WR(bp, BNX2_CTX_COMMAND, val);
  2104. for (i = 0; i < 10; i++) {
  2105. val = REG_RD(bp, BNX2_CTX_COMMAND);
  2106. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2107. break;
  2108. udelay(2);
  2109. }
  2110. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2111. return -EBUSY;
  2112. for (i = 0; i < bp->ctx_pages; i++) {
  2113. int j;
  2114. if (bp->ctx_blk[i])
  2115. memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
  2116. else
  2117. return -ENOMEM;
  2118. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2119. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2120. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2121. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2122. (u64) bp->ctx_blk_mapping[i] >> 32);
  2123. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2124. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2125. for (j = 0; j < 10; j++) {
  2126. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2127. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2128. break;
  2129. udelay(5);
  2130. }
  2131. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2132. ret = -EBUSY;
  2133. break;
  2134. }
  2135. }
  2136. return ret;
  2137. }
  2138. static void
  2139. bnx2_init_context(struct bnx2 *bp)
  2140. {
  2141. u32 vcid;
  2142. vcid = 96;
  2143. while (vcid) {
  2144. u32 vcid_addr, pcid_addr, offset;
  2145. int i;
  2146. vcid--;
  2147. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2148. u32 new_vcid;
  2149. vcid_addr = GET_PCID_ADDR(vcid);
  2150. if (vcid & 0x8) {
  2151. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2152. }
  2153. else {
  2154. new_vcid = vcid;
  2155. }
  2156. pcid_addr = GET_PCID_ADDR(new_vcid);
  2157. }
  2158. else {
  2159. vcid_addr = GET_CID_ADDR(vcid);
  2160. pcid_addr = vcid_addr;
  2161. }
  2162. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2163. vcid_addr += (i << PHY_CTX_SHIFT);
  2164. pcid_addr += (i << PHY_CTX_SHIFT);
  2165. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2166. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2167. /* Zero out the context. */
  2168. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2169. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2170. }
  2171. }
  2172. }
  2173. static int
  2174. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2175. {
  2176. u16 *good_mbuf;
  2177. u32 good_mbuf_cnt;
  2178. u32 val;
  2179. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2180. if (good_mbuf == NULL) {
  2181. printk(KERN_ERR PFX "Failed to allocate memory in "
  2182. "bnx2_alloc_bad_rbuf\n");
  2183. return -ENOMEM;
  2184. }
  2185. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2186. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2187. good_mbuf_cnt = 0;
  2188. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2189. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2190. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2191. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2192. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2193. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2194. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2195. /* The addresses with Bit 9 set are bad memory blocks. */
  2196. if (!(val & (1 << 9))) {
  2197. good_mbuf[good_mbuf_cnt] = (u16) val;
  2198. good_mbuf_cnt++;
  2199. }
  2200. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2201. }
  2202. /* Free the good ones back to the mbuf pool thus discarding
  2203. * all the bad ones. */
  2204. while (good_mbuf_cnt) {
  2205. good_mbuf_cnt--;
  2206. val = good_mbuf[good_mbuf_cnt];
  2207. val = (val << 9) | val | 1;
  2208. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2209. }
  2210. kfree(good_mbuf);
  2211. return 0;
  2212. }
  2213. static void
  2214. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2215. {
  2216. u32 val;
  2217. val = (mac_addr[0] << 8) | mac_addr[1];
  2218. REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2219. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2220. (mac_addr[4] << 8) | mac_addr[5];
  2221. REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2222. }
  2223. static inline int
  2224. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2225. {
  2226. dma_addr_t mapping;
  2227. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2228. struct rx_bd *rxbd =
  2229. &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
  2230. struct page *page = alloc_page(GFP_ATOMIC);
  2231. if (!page)
  2232. return -ENOMEM;
  2233. mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
  2234. PCI_DMA_FROMDEVICE);
  2235. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2236. __free_page(page);
  2237. return -EIO;
  2238. }
  2239. rx_pg->page = page;
  2240. pci_unmap_addr_set(rx_pg, mapping, mapping);
  2241. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2242. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2243. return 0;
  2244. }
  2245. static void
  2246. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2247. {
  2248. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2249. struct page *page = rx_pg->page;
  2250. if (!page)
  2251. return;
  2252. pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
  2253. PCI_DMA_FROMDEVICE);
  2254. __free_page(page);
  2255. rx_pg->page = NULL;
  2256. }
  2257. static inline int
  2258. bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2259. {
  2260. struct sk_buff *skb;
  2261. struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2262. dma_addr_t mapping;
  2263. struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  2264. unsigned long align;
  2265. skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
  2266. if (skb == NULL) {
  2267. return -ENOMEM;
  2268. }
  2269. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  2270. skb_reserve(skb, BNX2_RX_ALIGN - align);
  2271. mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
  2272. PCI_DMA_FROMDEVICE);
  2273. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2274. dev_kfree_skb(skb);
  2275. return -EIO;
  2276. }
  2277. rx_buf->skb = skb;
  2278. pci_unmap_addr_set(rx_buf, mapping, mapping);
  2279. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2280. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2281. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2282. return 0;
  2283. }
  2284. static int
  2285. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2286. {
  2287. struct status_block *sblk = bnapi->status_blk.msi;
  2288. u32 new_link_state, old_link_state;
  2289. int is_set = 1;
  2290. new_link_state = sblk->status_attn_bits & event;
  2291. old_link_state = sblk->status_attn_bits_ack & event;
  2292. if (new_link_state != old_link_state) {
  2293. if (new_link_state)
  2294. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2295. else
  2296. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2297. } else
  2298. is_set = 0;
  2299. return is_set;
  2300. }
  2301. static void
  2302. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2303. {
  2304. spin_lock(&bp->phy_lock);
  2305. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2306. bnx2_set_link(bp);
  2307. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2308. bnx2_set_remote_link(bp);
  2309. spin_unlock(&bp->phy_lock);
  2310. }
  2311. static inline u16
  2312. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2313. {
  2314. u16 cons;
  2315. /* Tell compiler that status block fields can change. */
  2316. barrier();
  2317. cons = *bnapi->hw_tx_cons_ptr;
  2318. barrier();
  2319. if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
  2320. cons++;
  2321. return cons;
  2322. }
  2323. static int
  2324. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2325. {
  2326. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2327. u16 hw_cons, sw_cons, sw_ring_cons;
  2328. int tx_pkt = 0, index;
  2329. struct netdev_queue *txq;
  2330. index = (bnapi - bp->bnx2_napi);
  2331. txq = netdev_get_tx_queue(bp->dev, index);
  2332. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2333. sw_cons = txr->tx_cons;
  2334. while (sw_cons != hw_cons) {
  2335. struct sw_tx_bd *tx_buf;
  2336. struct sk_buff *skb;
  2337. int i, last;
  2338. sw_ring_cons = TX_RING_IDX(sw_cons);
  2339. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2340. skb = tx_buf->skb;
  2341. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2342. prefetch(&skb->end);
  2343. /* partial BD completions possible with TSO packets */
  2344. if (tx_buf->is_gso) {
  2345. u16 last_idx, last_ring_idx;
  2346. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2347. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2348. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  2349. last_idx++;
  2350. }
  2351. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2352. break;
  2353. }
  2354. }
  2355. skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
  2356. tx_buf->skb = NULL;
  2357. last = tx_buf->nr_frags;
  2358. for (i = 0; i < last; i++) {
  2359. sw_cons = NEXT_TX_BD(sw_cons);
  2360. }
  2361. sw_cons = NEXT_TX_BD(sw_cons);
  2362. dev_kfree_skb(skb);
  2363. tx_pkt++;
  2364. if (tx_pkt == budget)
  2365. break;
  2366. if (hw_cons == sw_cons)
  2367. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2368. }
  2369. txr->hw_tx_cons = hw_cons;
  2370. txr->tx_cons = sw_cons;
  2371. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2372. * before checking for netif_tx_queue_stopped(). Without the
  2373. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2374. * will miss it and cause the queue to be stopped forever.
  2375. */
  2376. smp_mb();
  2377. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2378. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2379. __netif_tx_lock(txq, smp_processor_id());
  2380. if ((netif_tx_queue_stopped(txq)) &&
  2381. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2382. netif_tx_wake_queue(txq);
  2383. __netif_tx_unlock(txq);
  2384. }
  2385. return tx_pkt;
  2386. }
  2387. static void
  2388. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2389. struct sk_buff *skb, int count)
  2390. {
  2391. struct sw_pg *cons_rx_pg, *prod_rx_pg;
  2392. struct rx_bd *cons_bd, *prod_bd;
  2393. int i;
  2394. u16 hw_prod, prod;
  2395. u16 cons = rxr->rx_pg_cons;
  2396. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2397. /* The caller was unable to allocate a new page to replace the
  2398. * last one in the frags array, so we need to recycle that page
  2399. * and then free the skb.
  2400. */
  2401. if (skb) {
  2402. struct page *page;
  2403. struct skb_shared_info *shinfo;
  2404. shinfo = skb_shinfo(skb);
  2405. shinfo->nr_frags--;
  2406. page = shinfo->frags[shinfo->nr_frags].page;
  2407. shinfo->frags[shinfo->nr_frags].page = NULL;
  2408. cons_rx_pg->page = page;
  2409. dev_kfree_skb(skb);
  2410. }
  2411. hw_prod = rxr->rx_pg_prod;
  2412. for (i = 0; i < count; i++) {
  2413. prod = RX_PG_RING_IDX(hw_prod);
  2414. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2415. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2416. cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2417. prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2418. if (prod != cons) {
  2419. prod_rx_pg->page = cons_rx_pg->page;
  2420. cons_rx_pg->page = NULL;
  2421. pci_unmap_addr_set(prod_rx_pg, mapping,
  2422. pci_unmap_addr(cons_rx_pg, mapping));
  2423. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2424. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2425. }
  2426. cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
  2427. hw_prod = NEXT_RX_BD(hw_prod);
  2428. }
  2429. rxr->rx_pg_prod = hw_prod;
  2430. rxr->rx_pg_cons = cons;
  2431. }
  2432. static inline void
  2433. bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2434. struct sk_buff *skb, u16 cons, u16 prod)
  2435. {
  2436. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  2437. struct rx_bd *cons_bd, *prod_bd;
  2438. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2439. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2440. pci_dma_sync_single_for_device(bp->pdev,
  2441. pci_unmap_addr(cons_rx_buf, mapping),
  2442. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2443. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2444. prod_rx_buf->skb = skb;
  2445. if (cons == prod)
  2446. return;
  2447. pci_unmap_addr_set(prod_rx_buf, mapping,
  2448. pci_unmap_addr(cons_rx_buf, mapping));
  2449. cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2450. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2451. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2452. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2453. }
  2454. static int
  2455. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
  2456. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2457. u32 ring_idx)
  2458. {
  2459. int err;
  2460. u16 prod = ring_idx & 0xffff;
  2461. err = bnx2_alloc_rx_skb(bp, rxr, prod);
  2462. if (unlikely(err)) {
  2463. bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
  2464. if (hdr_len) {
  2465. unsigned int raw_len = len + 4;
  2466. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2467. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2468. }
  2469. return err;
  2470. }
  2471. skb_reserve(skb, BNX2_RX_OFFSET);
  2472. pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
  2473. PCI_DMA_FROMDEVICE);
  2474. if (hdr_len == 0) {
  2475. skb_put(skb, len);
  2476. return 0;
  2477. } else {
  2478. unsigned int i, frag_len, frag_size, pages;
  2479. struct sw_pg *rx_pg;
  2480. u16 pg_cons = rxr->rx_pg_cons;
  2481. u16 pg_prod = rxr->rx_pg_prod;
  2482. frag_size = len + 4 - hdr_len;
  2483. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2484. skb_put(skb, hdr_len);
  2485. for (i = 0; i < pages; i++) {
  2486. dma_addr_t mapping_old;
  2487. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2488. if (unlikely(frag_len <= 4)) {
  2489. unsigned int tail = 4 - frag_len;
  2490. rxr->rx_pg_cons = pg_cons;
  2491. rxr->rx_pg_prod = pg_prod;
  2492. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2493. pages - i);
  2494. skb->len -= tail;
  2495. if (i == 0) {
  2496. skb->tail -= tail;
  2497. } else {
  2498. skb_frag_t *frag =
  2499. &skb_shinfo(skb)->frags[i - 1];
  2500. frag->size -= tail;
  2501. skb->data_len -= tail;
  2502. skb->truesize -= tail;
  2503. }
  2504. return 0;
  2505. }
  2506. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2507. /* Don't unmap yet. If we're unable to allocate a new
  2508. * page, we need to recycle the page and the DMA addr.
  2509. */
  2510. mapping_old = pci_unmap_addr(rx_pg, mapping);
  2511. if (i == pages - 1)
  2512. frag_len -= 4;
  2513. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2514. rx_pg->page = NULL;
  2515. err = bnx2_alloc_rx_page(bp, rxr,
  2516. RX_PG_RING_IDX(pg_prod));
  2517. if (unlikely(err)) {
  2518. rxr->rx_pg_cons = pg_cons;
  2519. rxr->rx_pg_prod = pg_prod;
  2520. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2521. pages - i);
  2522. return err;
  2523. }
  2524. pci_unmap_page(bp->pdev, mapping_old,
  2525. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2526. frag_size -= frag_len;
  2527. skb->data_len += frag_len;
  2528. skb->truesize += frag_len;
  2529. skb->len += frag_len;
  2530. pg_prod = NEXT_RX_BD(pg_prod);
  2531. pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
  2532. }
  2533. rxr->rx_pg_prod = pg_prod;
  2534. rxr->rx_pg_cons = pg_cons;
  2535. }
  2536. return 0;
  2537. }
  2538. static inline u16
  2539. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2540. {
  2541. u16 cons;
  2542. /* Tell compiler that status block fields can change. */
  2543. barrier();
  2544. cons = *bnapi->hw_rx_cons_ptr;
  2545. barrier();
  2546. if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
  2547. cons++;
  2548. return cons;
  2549. }
  2550. static int
  2551. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2552. {
  2553. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2554. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2555. struct l2_fhdr *rx_hdr;
  2556. int rx_pkt = 0, pg_ring_used = 0;
  2557. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2558. sw_cons = rxr->rx_cons;
  2559. sw_prod = rxr->rx_prod;
  2560. /* Memory barrier necessary as speculative reads of the rx
  2561. * buffer can be ahead of the index in the status block
  2562. */
  2563. rmb();
  2564. while (sw_cons != hw_cons) {
  2565. unsigned int len, hdr_len;
  2566. u32 status;
  2567. struct sw_bd *rx_buf;
  2568. struct sk_buff *skb;
  2569. dma_addr_t dma_addr;
  2570. u16 vtag = 0;
  2571. int hw_vlan __maybe_unused = 0;
  2572. sw_ring_cons = RX_RING_IDX(sw_cons);
  2573. sw_ring_prod = RX_RING_IDX(sw_prod);
  2574. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2575. skb = rx_buf->skb;
  2576. rx_buf->skb = NULL;
  2577. dma_addr = pci_unmap_addr(rx_buf, mapping);
  2578. pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
  2579. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2580. PCI_DMA_FROMDEVICE);
  2581. rx_hdr = (struct l2_fhdr *) skb->data;
  2582. len = rx_hdr->l2_fhdr_pkt_len;
  2583. status = rx_hdr->l2_fhdr_status;
  2584. hdr_len = 0;
  2585. if (status & L2_FHDR_STATUS_SPLIT) {
  2586. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2587. pg_ring_used = 1;
  2588. } else if (len > bp->rx_jumbo_thresh) {
  2589. hdr_len = bp->rx_jumbo_thresh;
  2590. pg_ring_used = 1;
  2591. }
  2592. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2593. L2_FHDR_ERRORS_PHY_DECODE |
  2594. L2_FHDR_ERRORS_ALIGNMENT |
  2595. L2_FHDR_ERRORS_TOO_SHORT |
  2596. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2597. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2598. sw_ring_prod);
  2599. if (pg_ring_used) {
  2600. int pages;
  2601. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2602. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2603. }
  2604. goto next_rx;
  2605. }
  2606. len -= 4;
  2607. if (len <= bp->rx_copy_thresh) {
  2608. struct sk_buff *new_skb;
  2609. new_skb = netdev_alloc_skb(bp->dev, len + 6);
  2610. if (new_skb == NULL) {
  2611. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2612. sw_ring_prod);
  2613. goto next_rx;
  2614. }
  2615. /* aligned copy */
  2616. skb_copy_from_linear_data_offset(skb,
  2617. BNX2_RX_OFFSET - 6,
  2618. new_skb->data, len + 6);
  2619. skb_reserve(new_skb, 6);
  2620. skb_put(new_skb, len);
  2621. bnx2_reuse_rx_skb(bp, rxr, skb,
  2622. sw_ring_cons, sw_ring_prod);
  2623. skb = new_skb;
  2624. } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
  2625. dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
  2626. goto next_rx;
  2627. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2628. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
  2629. vtag = rx_hdr->l2_fhdr_vlan_tag;
  2630. #ifdef BCM_VLAN
  2631. if (bp->vlgrp)
  2632. hw_vlan = 1;
  2633. else
  2634. #endif
  2635. {
  2636. struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
  2637. __skb_push(skb, 4);
  2638. memmove(ve, skb->data + 4, ETH_ALEN * 2);
  2639. ve->h_vlan_proto = htons(ETH_P_8021Q);
  2640. ve->h_vlan_TCI = htons(vtag);
  2641. len += 4;
  2642. }
  2643. }
  2644. skb->protocol = eth_type_trans(skb, bp->dev);
  2645. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2646. (ntohs(skb->protocol) != 0x8100)) {
  2647. dev_kfree_skb(skb);
  2648. goto next_rx;
  2649. }
  2650. skb->ip_summed = CHECKSUM_NONE;
  2651. if (bp->rx_csum &&
  2652. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2653. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2654. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2655. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2656. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2657. }
  2658. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2659. #ifdef BCM_VLAN
  2660. if (hw_vlan)
  2661. vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
  2662. else
  2663. #endif
  2664. netif_receive_skb(skb);
  2665. rx_pkt++;
  2666. next_rx:
  2667. sw_cons = NEXT_RX_BD(sw_cons);
  2668. sw_prod = NEXT_RX_BD(sw_prod);
  2669. if ((rx_pkt == budget))
  2670. break;
  2671. /* Refresh hw_cons to see if there is new work */
  2672. if (sw_cons == hw_cons) {
  2673. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2674. rmb();
  2675. }
  2676. }
  2677. rxr->rx_cons = sw_cons;
  2678. rxr->rx_prod = sw_prod;
  2679. if (pg_ring_used)
  2680. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2681. REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2682. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2683. mmiowb();
  2684. return rx_pkt;
  2685. }
  2686. /* MSI ISR - The only difference between this and the INTx ISR
  2687. * is that the MSI interrupt is always serviced.
  2688. */
  2689. static irqreturn_t
  2690. bnx2_msi(int irq, void *dev_instance)
  2691. {
  2692. struct bnx2_napi *bnapi = dev_instance;
  2693. struct bnx2 *bp = bnapi->bp;
  2694. prefetch(bnapi->status_blk.msi);
  2695. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2696. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2697. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2698. /* Return here if interrupt is disabled. */
  2699. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2700. return IRQ_HANDLED;
  2701. napi_schedule(&bnapi->napi);
  2702. return IRQ_HANDLED;
  2703. }
  2704. static irqreturn_t
  2705. bnx2_msi_1shot(int irq, void *dev_instance)
  2706. {
  2707. struct bnx2_napi *bnapi = dev_instance;
  2708. struct bnx2 *bp = bnapi->bp;
  2709. prefetch(bnapi->status_blk.msi);
  2710. /* Return here if interrupt is disabled. */
  2711. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2712. return IRQ_HANDLED;
  2713. napi_schedule(&bnapi->napi);
  2714. return IRQ_HANDLED;
  2715. }
  2716. static irqreturn_t
  2717. bnx2_interrupt(int irq, void *dev_instance)
  2718. {
  2719. struct bnx2_napi *bnapi = dev_instance;
  2720. struct bnx2 *bp = bnapi->bp;
  2721. struct status_block *sblk = bnapi->status_blk.msi;
  2722. /* When using INTx, it is possible for the interrupt to arrive
  2723. * at the CPU before the status block posted prior to the
  2724. * interrupt. Reading a register will flush the status block.
  2725. * When using MSI, the MSI message will always complete after
  2726. * the status block write.
  2727. */
  2728. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2729. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2730. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2731. return IRQ_NONE;
  2732. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2733. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2734. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2735. /* Read back to deassert IRQ immediately to avoid too many
  2736. * spurious interrupts.
  2737. */
  2738. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2739. /* Return here if interrupt is shared and is disabled. */
  2740. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2741. return IRQ_HANDLED;
  2742. if (napi_schedule_prep(&bnapi->napi)) {
  2743. bnapi->last_status_idx = sblk->status_idx;
  2744. __napi_schedule(&bnapi->napi);
  2745. }
  2746. return IRQ_HANDLED;
  2747. }
  2748. static inline int
  2749. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2750. {
  2751. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2752. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2753. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2754. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2755. return 1;
  2756. return 0;
  2757. }
  2758. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2759. STATUS_ATTN_BITS_TIMER_ABORT)
  2760. static inline int
  2761. bnx2_has_work(struct bnx2_napi *bnapi)
  2762. {
  2763. struct status_block *sblk = bnapi->status_blk.msi;
  2764. if (bnx2_has_fast_work(bnapi))
  2765. return 1;
  2766. #ifdef BCM_CNIC
  2767. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2768. return 1;
  2769. #endif
  2770. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2771. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2772. return 1;
  2773. return 0;
  2774. }
  2775. static void
  2776. bnx2_chk_missed_msi(struct bnx2 *bp)
  2777. {
  2778. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2779. u32 msi_ctrl;
  2780. if (bnx2_has_work(bnapi)) {
  2781. msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2782. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2783. return;
  2784. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2785. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2786. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2787. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2788. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2789. }
  2790. }
  2791. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2792. }
  2793. #ifdef BCM_CNIC
  2794. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2795. {
  2796. struct cnic_ops *c_ops;
  2797. if (!bnapi->cnic_present)
  2798. return;
  2799. rcu_read_lock();
  2800. c_ops = rcu_dereference(bp->cnic_ops);
  2801. if (c_ops)
  2802. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2803. bnapi->status_blk.msi);
  2804. rcu_read_unlock();
  2805. }
  2806. #endif
  2807. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2808. {
  2809. struct status_block *sblk = bnapi->status_blk.msi;
  2810. u32 status_attn_bits = sblk->status_attn_bits;
  2811. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2812. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2813. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2814. bnx2_phy_int(bp, bnapi);
  2815. /* This is needed to take care of transient status
  2816. * during link changes.
  2817. */
  2818. REG_WR(bp, BNX2_HC_COMMAND,
  2819. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2820. REG_RD(bp, BNX2_HC_COMMAND);
  2821. }
  2822. }
  2823. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2824. int work_done, int budget)
  2825. {
  2826. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2827. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2828. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2829. bnx2_tx_int(bp, bnapi, 0);
  2830. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2831. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2832. return work_done;
  2833. }
  2834. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2835. {
  2836. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2837. struct bnx2 *bp = bnapi->bp;
  2838. int work_done = 0;
  2839. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2840. while (1) {
  2841. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2842. if (unlikely(work_done >= budget))
  2843. break;
  2844. bnapi->last_status_idx = sblk->status_idx;
  2845. /* status idx must be read before checking for more work. */
  2846. rmb();
  2847. if (likely(!bnx2_has_fast_work(bnapi))) {
  2848. napi_complete(napi);
  2849. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2850. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2851. bnapi->last_status_idx);
  2852. break;
  2853. }
  2854. }
  2855. return work_done;
  2856. }
  2857. static int bnx2_poll(struct napi_struct *napi, int budget)
  2858. {
  2859. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2860. struct bnx2 *bp = bnapi->bp;
  2861. int work_done = 0;
  2862. struct status_block *sblk = bnapi->status_blk.msi;
  2863. while (1) {
  2864. bnx2_poll_link(bp, bnapi);
  2865. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2866. #ifdef BCM_CNIC
  2867. bnx2_poll_cnic(bp, bnapi);
  2868. #endif
  2869. /* bnapi->last_status_idx is used below to tell the hw how
  2870. * much work has been processed, so we must read it before
  2871. * checking for more work.
  2872. */
  2873. bnapi->last_status_idx = sblk->status_idx;
  2874. if (unlikely(work_done >= budget))
  2875. break;
  2876. rmb();
  2877. if (likely(!bnx2_has_work(bnapi))) {
  2878. napi_complete(napi);
  2879. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2880. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2881. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2882. bnapi->last_status_idx);
  2883. break;
  2884. }
  2885. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2886. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2887. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2888. bnapi->last_status_idx);
  2889. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2890. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2891. bnapi->last_status_idx);
  2892. break;
  2893. }
  2894. }
  2895. return work_done;
  2896. }
  2897. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2898. * from set_multicast.
  2899. */
  2900. static void
  2901. bnx2_set_rx_mode(struct net_device *dev)
  2902. {
  2903. struct bnx2 *bp = netdev_priv(dev);
  2904. u32 rx_mode, sort_mode;
  2905. struct netdev_hw_addr *ha;
  2906. int i;
  2907. if (!netif_running(dev))
  2908. return;
  2909. spin_lock_bh(&bp->phy_lock);
  2910. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2911. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2912. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2913. #ifdef BCM_VLAN
  2914. if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2915. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2916. #else
  2917. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  2918. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2919. #endif
  2920. if (dev->flags & IFF_PROMISC) {
  2921. /* Promiscuous mode. */
  2922. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2923. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2924. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2925. }
  2926. else if (dev->flags & IFF_ALLMULTI) {
  2927. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2928. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2929. 0xffffffff);
  2930. }
  2931. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2932. }
  2933. else {
  2934. /* Accept one or more multicast(s). */
  2935. struct dev_mc_list *mclist;
  2936. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2937. u32 regidx;
  2938. u32 bit;
  2939. u32 crc;
  2940. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2941. for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
  2942. i++, mclist = mclist->next) {
  2943. crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
  2944. bit = crc & 0xff;
  2945. regidx = (bit & 0xe0) >> 5;
  2946. bit &= 0x1f;
  2947. mc_filter[regidx] |= (1 << bit);
  2948. }
  2949. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2950. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2951. mc_filter[i]);
  2952. }
  2953. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2954. }
  2955. if (dev->uc.count > BNX2_MAX_UNICAST_ADDRESSES) {
  2956. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2957. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2958. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2959. } else if (!(dev->flags & IFF_PROMISC)) {
  2960. /* Add all entries into to the match filter list */
  2961. i = 0;
  2962. list_for_each_entry(ha, &dev->uc.list, list) {
  2963. bnx2_set_mac_addr(bp, ha->addr,
  2964. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  2965. sort_mode |= (1 <<
  2966. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  2967. i++;
  2968. }
  2969. }
  2970. if (rx_mode != bp->rx_mode) {
  2971. bp->rx_mode = rx_mode;
  2972. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  2973. }
  2974. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2975. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  2976. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  2977. spin_unlock_bh(&bp->phy_lock);
  2978. }
  2979. static int __devinit
  2980. check_fw_section(const struct firmware *fw,
  2981. const struct bnx2_fw_file_section *section,
  2982. u32 alignment, bool non_empty)
  2983. {
  2984. u32 offset = be32_to_cpu(section->offset);
  2985. u32 len = be32_to_cpu(section->len);
  2986. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  2987. return -EINVAL;
  2988. if ((non_empty && len == 0) || len > fw->size - offset ||
  2989. len & (alignment - 1))
  2990. return -EINVAL;
  2991. return 0;
  2992. }
  2993. static int __devinit
  2994. check_mips_fw_entry(const struct firmware *fw,
  2995. const struct bnx2_mips_fw_file_entry *entry)
  2996. {
  2997. if (check_fw_section(fw, &entry->text, 4, true) ||
  2998. check_fw_section(fw, &entry->data, 4, false) ||
  2999. check_fw_section(fw, &entry->rodata, 4, false))
  3000. return -EINVAL;
  3001. return 0;
  3002. }
  3003. static int __devinit
  3004. bnx2_request_firmware(struct bnx2 *bp)
  3005. {
  3006. const char *mips_fw_file, *rv2p_fw_file;
  3007. const struct bnx2_mips_fw_file *mips_fw;
  3008. const struct bnx2_rv2p_fw_file *rv2p_fw;
  3009. int rc;
  3010. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3011. mips_fw_file = FW_MIPS_FILE_09;
  3012. if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
  3013. (CHIP_ID(bp) == CHIP_ID_5709_A1))
  3014. rv2p_fw_file = FW_RV2P_FILE_09_Ax;
  3015. else
  3016. rv2p_fw_file = FW_RV2P_FILE_09;
  3017. } else {
  3018. mips_fw_file = FW_MIPS_FILE_06;
  3019. rv2p_fw_file = FW_RV2P_FILE_06;
  3020. }
  3021. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3022. if (rc) {
  3023. printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
  3024. mips_fw_file);
  3025. return rc;
  3026. }
  3027. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3028. if (rc) {
  3029. printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
  3030. rv2p_fw_file);
  3031. return rc;
  3032. }
  3033. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3034. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3035. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3036. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3037. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3038. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3039. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3040. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3041. printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
  3042. mips_fw_file);
  3043. return -EINVAL;
  3044. }
  3045. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3046. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3047. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3048. printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
  3049. rv2p_fw_file);
  3050. return -EINVAL;
  3051. }
  3052. return 0;
  3053. }
  3054. static u32
  3055. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3056. {
  3057. switch (idx) {
  3058. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3059. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3060. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3061. break;
  3062. }
  3063. return rv2p_code;
  3064. }
  3065. static int
  3066. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3067. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3068. {
  3069. u32 rv2p_code_len, file_offset;
  3070. __be32 *rv2p_code;
  3071. int i;
  3072. u32 val, cmd, addr;
  3073. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3074. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3075. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3076. if (rv2p_proc == RV2P_PROC1) {
  3077. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3078. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3079. } else {
  3080. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3081. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3082. }
  3083. for (i = 0; i < rv2p_code_len; i += 8) {
  3084. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3085. rv2p_code++;
  3086. REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3087. rv2p_code++;
  3088. val = (i / 8) | cmd;
  3089. REG_WR(bp, addr, val);
  3090. }
  3091. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3092. for (i = 0; i < 8; i++) {
  3093. u32 loc, code;
  3094. loc = be32_to_cpu(fw_entry->fixup[i]);
  3095. if (loc && ((loc * 4) < rv2p_code_len)) {
  3096. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3097. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3098. code = be32_to_cpu(*(rv2p_code + loc));
  3099. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3100. REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3101. val = (loc / 2) | cmd;
  3102. REG_WR(bp, addr, val);
  3103. }
  3104. }
  3105. /* Reset the processor, un-stall is done later. */
  3106. if (rv2p_proc == RV2P_PROC1) {
  3107. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3108. }
  3109. else {
  3110. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3111. }
  3112. return 0;
  3113. }
  3114. static int
  3115. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3116. const struct bnx2_mips_fw_file_entry *fw_entry)
  3117. {
  3118. u32 addr, len, file_offset;
  3119. __be32 *data;
  3120. u32 offset;
  3121. u32 val;
  3122. /* Halt the CPU. */
  3123. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3124. val |= cpu_reg->mode_value_halt;
  3125. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3126. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3127. /* Load the Text area. */
  3128. addr = be32_to_cpu(fw_entry->text.addr);
  3129. len = be32_to_cpu(fw_entry->text.len);
  3130. file_offset = be32_to_cpu(fw_entry->text.offset);
  3131. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3132. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3133. if (len) {
  3134. int j;
  3135. for (j = 0; j < (len / 4); j++, offset += 4)
  3136. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3137. }
  3138. /* Load the Data area. */
  3139. addr = be32_to_cpu(fw_entry->data.addr);
  3140. len = be32_to_cpu(fw_entry->data.len);
  3141. file_offset = be32_to_cpu(fw_entry->data.offset);
  3142. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3143. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3144. if (len) {
  3145. int j;
  3146. for (j = 0; j < (len / 4); j++, offset += 4)
  3147. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3148. }
  3149. /* Load the Read-Only area. */
  3150. addr = be32_to_cpu(fw_entry->rodata.addr);
  3151. len = be32_to_cpu(fw_entry->rodata.len);
  3152. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3153. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3154. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3155. if (len) {
  3156. int j;
  3157. for (j = 0; j < (len / 4); j++, offset += 4)
  3158. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3159. }
  3160. /* Clear the pre-fetch instruction. */
  3161. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3162. val = be32_to_cpu(fw_entry->start_addr);
  3163. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3164. /* Start the CPU. */
  3165. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3166. val &= ~cpu_reg->mode_value_halt;
  3167. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3168. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3169. return 0;
  3170. }
  3171. static int
  3172. bnx2_init_cpus(struct bnx2 *bp)
  3173. {
  3174. const struct bnx2_mips_fw_file *mips_fw =
  3175. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3176. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3177. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3178. int rc;
  3179. /* Initialize the RV2P processor. */
  3180. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3181. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3182. /* Initialize the RX Processor. */
  3183. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3184. if (rc)
  3185. goto init_cpu_err;
  3186. /* Initialize the TX Processor. */
  3187. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3188. if (rc)
  3189. goto init_cpu_err;
  3190. /* Initialize the TX Patch-up Processor. */
  3191. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3192. if (rc)
  3193. goto init_cpu_err;
  3194. /* Initialize the Completion Processor. */
  3195. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3196. if (rc)
  3197. goto init_cpu_err;
  3198. /* Initialize the Command Processor. */
  3199. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3200. init_cpu_err:
  3201. return rc;
  3202. }
  3203. static int
  3204. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3205. {
  3206. u16 pmcsr;
  3207. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  3208. switch (state) {
  3209. case PCI_D0: {
  3210. u32 val;
  3211. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3212. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  3213. PCI_PM_CTRL_PME_STATUS);
  3214. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  3215. /* delay required during transition out of D3hot */
  3216. msleep(20);
  3217. val = REG_RD(bp, BNX2_EMAC_MODE);
  3218. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3219. val &= ~BNX2_EMAC_MODE_MPKT;
  3220. REG_WR(bp, BNX2_EMAC_MODE, val);
  3221. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3222. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3223. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3224. break;
  3225. }
  3226. case PCI_D3hot: {
  3227. int i;
  3228. u32 val, wol_msg;
  3229. if (bp->wol) {
  3230. u32 advertising;
  3231. u8 autoneg;
  3232. autoneg = bp->autoneg;
  3233. advertising = bp->advertising;
  3234. if (bp->phy_port == PORT_TP) {
  3235. bp->autoneg = AUTONEG_SPEED;
  3236. bp->advertising = ADVERTISED_10baseT_Half |
  3237. ADVERTISED_10baseT_Full |
  3238. ADVERTISED_100baseT_Half |
  3239. ADVERTISED_100baseT_Full |
  3240. ADVERTISED_Autoneg;
  3241. }
  3242. spin_lock_bh(&bp->phy_lock);
  3243. bnx2_setup_phy(bp, bp->phy_port);
  3244. spin_unlock_bh(&bp->phy_lock);
  3245. bp->autoneg = autoneg;
  3246. bp->advertising = advertising;
  3247. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3248. val = REG_RD(bp, BNX2_EMAC_MODE);
  3249. /* Enable port mode. */
  3250. val &= ~BNX2_EMAC_MODE_PORT;
  3251. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3252. BNX2_EMAC_MODE_ACPI_RCVD |
  3253. BNX2_EMAC_MODE_MPKT;
  3254. if (bp->phy_port == PORT_TP)
  3255. val |= BNX2_EMAC_MODE_PORT_MII;
  3256. else {
  3257. val |= BNX2_EMAC_MODE_PORT_GMII;
  3258. if (bp->line_speed == SPEED_2500)
  3259. val |= BNX2_EMAC_MODE_25G_MODE;
  3260. }
  3261. REG_WR(bp, BNX2_EMAC_MODE, val);
  3262. /* receive all multicast */
  3263. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3264. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3265. 0xffffffff);
  3266. }
  3267. REG_WR(bp, BNX2_EMAC_RX_MODE,
  3268. BNX2_EMAC_RX_MODE_SORT_MODE);
  3269. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  3270. BNX2_RPM_SORT_USER0_MC_EN;
  3271. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3272. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  3273. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  3274. BNX2_RPM_SORT_USER0_ENA);
  3275. /* Need to enable EMAC and RPM for WOL. */
  3276. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3277. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3278. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3279. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3280. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3281. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3282. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3283. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3284. }
  3285. else {
  3286. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3287. }
  3288. if (!(bp->flags & BNX2_FLAG_NO_WOL))
  3289. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
  3290. 1, 0);
  3291. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3292. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3293. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  3294. if (bp->wol)
  3295. pmcsr |= 3;
  3296. }
  3297. else {
  3298. pmcsr |= 3;
  3299. }
  3300. if (bp->wol) {
  3301. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  3302. }
  3303. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3304. pmcsr);
  3305. /* No more memory access after this point until
  3306. * device is brought back to D0.
  3307. */
  3308. udelay(50);
  3309. break;
  3310. }
  3311. default:
  3312. return -EINVAL;
  3313. }
  3314. return 0;
  3315. }
  3316. static int
  3317. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3318. {
  3319. u32 val;
  3320. int j;
  3321. /* Request access to the flash interface. */
  3322. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3323. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3324. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3325. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3326. break;
  3327. udelay(5);
  3328. }
  3329. if (j >= NVRAM_TIMEOUT_COUNT)
  3330. return -EBUSY;
  3331. return 0;
  3332. }
  3333. static int
  3334. bnx2_release_nvram_lock(struct bnx2 *bp)
  3335. {
  3336. int j;
  3337. u32 val;
  3338. /* Relinquish nvram interface. */
  3339. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3340. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3341. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3342. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3343. break;
  3344. udelay(5);
  3345. }
  3346. if (j >= NVRAM_TIMEOUT_COUNT)
  3347. return -EBUSY;
  3348. return 0;
  3349. }
  3350. static int
  3351. bnx2_enable_nvram_write(struct bnx2 *bp)
  3352. {
  3353. u32 val;
  3354. val = REG_RD(bp, BNX2_MISC_CFG);
  3355. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3356. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3357. int j;
  3358. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3359. REG_WR(bp, BNX2_NVM_COMMAND,
  3360. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3361. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3362. udelay(5);
  3363. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3364. if (val & BNX2_NVM_COMMAND_DONE)
  3365. break;
  3366. }
  3367. if (j >= NVRAM_TIMEOUT_COUNT)
  3368. return -EBUSY;
  3369. }
  3370. return 0;
  3371. }
  3372. static void
  3373. bnx2_disable_nvram_write(struct bnx2 *bp)
  3374. {
  3375. u32 val;
  3376. val = REG_RD(bp, BNX2_MISC_CFG);
  3377. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3378. }
  3379. static void
  3380. bnx2_enable_nvram_access(struct bnx2 *bp)
  3381. {
  3382. u32 val;
  3383. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3384. /* Enable both bits, even on read. */
  3385. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3386. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3387. }
  3388. static void
  3389. bnx2_disable_nvram_access(struct bnx2 *bp)
  3390. {
  3391. u32 val;
  3392. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3393. /* Disable both bits, even after read. */
  3394. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3395. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3396. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3397. }
  3398. static int
  3399. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3400. {
  3401. u32 cmd;
  3402. int j;
  3403. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3404. /* Buffered flash, no erase needed */
  3405. return 0;
  3406. /* Build an erase command */
  3407. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3408. BNX2_NVM_COMMAND_DOIT;
  3409. /* Need to clear DONE bit separately. */
  3410. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3411. /* Address of the NVRAM to read from. */
  3412. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3413. /* Issue an erase command. */
  3414. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3415. /* Wait for completion. */
  3416. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3417. u32 val;
  3418. udelay(5);
  3419. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3420. if (val & BNX2_NVM_COMMAND_DONE)
  3421. break;
  3422. }
  3423. if (j >= NVRAM_TIMEOUT_COUNT)
  3424. return -EBUSY;
  3425. return 0;
  3426. }
  3427. static int
  3428. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3429. {
  3430. u32 cmd;
  3431. int j;
  3432. /* Build the command word. */
  3433. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3434. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3435. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3436. offset = ((offset / bp->flash_info->page_size) <<
  3437. bp->flash_info->page_bits) +
  3438. (offset % bp->flash_info->page_size);
  3439. }
  3440. /* Need to clear DONE bit separately. */
  3441. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3442. /* Address of the NVRAM to read from. */
  3443. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3444. /* Issue a read command. */
  3445. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3446. /* Wait for completion. */
  3447. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3448. u32 val;
  3449. udelay(5);
  3450. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3451. if (val & BNX2_NVM_COMMAND_DONE) {
  3452. __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
  3453. memcpy(ret_val, &v, 4);
  3454. break;
  3455. }
  3456. }
  3457. if (j >= NVRAM_TIMEOUT_COUNT)
  3458. return -EBUSY;
  3459. return 0;
  3460. }
  3461. static int
  3462. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3463. {
  3464. u32 cmd;
  3465. __be32 val32;
  3466. int j;
  3467. /* Build the command word. */
  3468. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3469. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3470. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3471. offset = ((offset / bp->flash_info->page_size) <<
  3472. bp->flash_info->page_bits) +
  3473. (offset % bp->flash_info->page_size);
  3474. }
  3475. /* Need to clear DONE bit separately. */
  3476. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3477. memcpy(&val32, val, 4);
  3478. /* Write the data. */
  3479. REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3480. /* Address of the NVRAM to write to. */
  3481. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3482. /* Issue the write command. */
  3483. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3484. /* Wait for completion. */
  3485. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3486. udelay(5);
  3487. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3488. break;
  3489. }
  3490. if (j >= NVRAM_TIMEOUT_COUNT)
  3491. return -EBUSY;
  3492. return 0;
  3493. }
  3494. static int
  3495. bnx2_init_nvram(struct bnx2 *bp)
  3496. {
  3497. u32 val;
  3498. int j, entry_count, rc = 0;
  3499. const struct flash_spec *flash;
  3500. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3501. bp->flash_info = &flash_5709;
  3502. goto get_flash_size;
  3503. }
  3504. /* Determine the selected interface. */
  3505. val = REG_RD(bp, BNX2_NVM_CFG1);
  3506. entry_count = ARRAY_SIZE(flash_table);
  3507. if (val & 0x40000000) {
  3508. /* Flash interface has been reconfigured */
  3509. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3510. j++, flash++) {
  3511. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3512. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3513. bp->flash_info = flash;
  3514. break;
  3515. }
  3516. }
  3517. }
  3518. else {
  3519. u32 mask;
  3520. /* Not yet been reconfigured */
  3521. if (val & (1 << 23))
  3522. mask = FLASH_BACKUP_STRAP_MASK;
  3523. else
  3524. mask = FLASH_STRAP_MASK;
  3525. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3526. j++, flash++) {
  3527. if ((val & mask) == (flash->strapping & mask)) {
  3528. bp->flash_info = flash;
  3529. /* Request access to the flash interface. */
  3530. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3531. return rc;
  3532. /* Enable access to flash interface */
  3533. bnx2_enable_nvram_access(bp);
  3534. /* Reconfigure the flash interface */
  3535. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3536. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3537. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3538. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3539. /* Disable access to flash interface */
  3540. bnx2_disable_nvram_access(bp);
  3541. bnx2_release_nvram_lock(bp);
  3542. break;
  3543. }
  3544. }
  3545. } /* if (val & 0x40000000) */
  3546. if (j == entry_count) {
  3547. bp->flash_info = NULL;
  3548. printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
  3549. return -ENODEV;
  3550. }
  3551. get_flash_size:
  3552. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3553. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3554. if (val)
  3555. bp->flash_size = val;
  3556. else
  3557. bp->flash_size = bp->flash_info->total_size;
  3558. return rc;
  3559. }
  3560. static int
  3561. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3562. int buf_size)
  3563. {
  3564. int rc = 0;
  3565. u32 cmd_flags, offset32, len32, extra;
  3566. if (buf_size == 0)
  3567. return 0;
  3568. /* Request access to the flash interface. */
  3569. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3570. return rc;
  3571. /* Enable access to flash interface */
  3572. bnx2_enable_nvram_access(bp);
  3573. len32 = buf_size;
  3574. offset32 = offset;
  3575. extra = 0;
  3576. cmd_flags = 0;
  3577. if (offset32 & 3) {
  3578. u8 buf[4];
  3579. u32 pre_len;
  3580. offset32 &= ~3;
  3581. pre_len = 4 - (offset & 3);
  3582. if (pre_len >= len32) {
  3583. pre_len = len32;
  3584. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3585. BNX2_NVM_COMMAND_LAST;
  3586. }
  3587. else {
  3588. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3589. }
  3590. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3591. if (rc)
  3592. return rc;
  3593. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3594. offset32 += 4;
  3595. ret_buf += pre_len;
  3596. len32 -= pre_len;
  3597. }
  3598. if (len32 & 3) {
  3599. extra = 4 - (len32 & 3);
  3600. len32 = (len32 + 4) & ~3;
  3601. }
  3602. if (len32 == 4) {
  3603. u8 buf[4];
  3604. if (cmd_flags)
  3605. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3606. else
  3607. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3608. BNX2_NVM_COMMAND_LAST;
  3609. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3610. memcpy(ret_buf, buf, 4 - extra);
  3611. }
  3612. else if (len32 > 0) {
  3613. u8 buf[4];
  3614. /* Read the first word. */
  3615. if (cmd_flags)
  3616. cmd_flags = 0;
  3617. else
  3618. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3619. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3620. /* Advance to the next dword. */
  3621. offset32 += 4;
  3622. ret_buf += 4;
  3623. len32 -= 4;
  3624. while (len32 > 4 && rc == 0) {
  3625. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3626. /* Advance to the next dword. */
  3627. offset32 += 4;
  3628. ret_buf += 4;
  3629. len32 -= 4;
  3630. }
  3631. if (rc)
  3632. return rc;
  3633. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3634. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3635. memcpy(ret_buf, buf, 4 - extra);
  3636. }
  3637. /* Disable access to flash interface */
  3638. bnx2_disable_nvram_access(bp);
  3639. bnx2_release_nvram_lock(bp);
  3640. return rc;
  3641. }
  3642. static int
  3643. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3644. int buf_size)
  3645. {
  3646. u32 written, offset32, len32;
  3647. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3648. int rc = 0;
  3649. int align_start, align_end;
  3650. buf = data_buf;
  3651. offset32 = offset;
  3652. len32 = buf_size;
  3653. align_start = align_end = 0;
  3654. if ((align_start = (offset32 & 3))) {
  3655. offset32 &= ~3;
  3656. len32 += align_start;
  3657. if (len32 < 4)
  3658. len32 = 4;
  3659. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3660. return rc;
  3661. }
  3662. if (len32 & 3) {
  3663. align_end = 4 - (len32 & 3);
  3664. len32 += align_end;
  3665. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3666. return rc;
  3667. }
  3668. if (align_start || align_end) {
  3669. align_buf = kmalloc(len32, GFP_KERNEL);
  3670. if (align_buf == NULL)
  3671. return -ENOMEM;
  3672. if (align_start) {
  3673. memcpy(align_buf, start, 4);
  3674. }
  3675. if (align_end) {
  3676. memcpy(align_buf + len32 - 4, end, 4);
  3677. }
  3678. memcpy(align_buf + align_start, data_buf, buf_size);
  3679. buf = align_buf;
  3680. }
  3681. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3682. flash_buffer = kmalloc(264, GFP_KERNEL);
  3683. if (flash_buffer == NULL) {
  3684. rc = -ENOMEM;
  3685. goto nvram_write_end;
  3686. }
  3687. }
  3688. written = 0;
  3689. while ((written < len32) && (rc == 0)) {
  3690. u32 page_start, page_end, data_start, data_end;
  3691. u32 addr, cmd_flags;
  3692. int i;
  3693. /* Find the page_start addr */
  3694. page_start = offset32 + written;
  3695. page_start -= (page_start % bp->flash_info->page_size);
  3696. /* Find the page_end addr */
  3697. page_end = page_start + bp->flash_info->page_size;
  3698. /* Find the data_start addr */
  3699. data_start = (written == 0) ? offset32 : page_start;
  3700. /* Find the data_end addr */
  3701. data_end = (page_end > offset32 + len32) ?
  3702. (offset32 + len32) : page_end;
  3703. /* Request access to the flash interface. */
  3704. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3705. goto nvram_write_end;
  3706. /* Enable access to flash interface */
  3707. bnx2_enable_nvram_access(bp);
  3708. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3709. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3710. int j;
  3711. /* Read the whole page into the buffer
  3712. * (non-buffer flash only) */
  3713. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3714. if (j == (bp->flash_info->page_size - 4)) {
  3715. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3716. }
  3717. rc = bnx2_nvram_read_dword(bp,
  3718. page_start + j,
  3719. &flash_buffer[j],
  3720. cmd_flags);
  3721. if (rc)
  3722. goto nvram_write_end;
  3723. cmd_flags = 0;
  3724. }
  3725. }
  3726. /* Enable writes to flash interface (unlock write-protect) */
  3727. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3728. goto nvram_write_end;
  3729. /* Loop to write back the buffer data from page_start to
  3730. * data_start */
  3731. i = 0;
  3732. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3733. /* Erase the page */
  3734. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3735. goto nvram_write_end;
  3736. /* Re-enable the write again for the actual write */
  3737. bnx2_enable_nvram_write(bp);
  3738. for (addr = page_start; addr < data_start;
  3739. addr += 4, i += 4) {
  3740. rc = bnx2_nvram_write_dword(bp, addr,
  3741. &flash_buffer[i], cmd_flags);
  3742. if (rc != 0)
  3743. goto nvram_write_end;
  3744. cmd_flags = 0;
  3745. }
  3746. }
  3747. /* Loop to write the new data from data_start to data_end */
  3748. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3749. if ((addr == page_end - 4) ||
  3750. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3751. (addr == data_end - 4))) {
  3752. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3753. }
  3754. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3755. cmd_flags);
  3756. if (rc != 0)
  3757. goto nvram_write_end;
  3758. cmd_flags = 0;
  3759. buf += 4;
  3760. }
  3761. /* Loop to write back the buffer data from data_end
  3762. * to page_end */
  3763. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3764. for (addr = data_end; addr < page_end;
  3765. addr += 4, i += 4) {
  3766. if (addr == page_end-4) {
  3767. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3768. }
  3769. rc = bnx2_nvram_write_dword(bp, addr,
  3770. &flash_buffer[i], cmd_flags);
  3771. if (rc != 0)
  3772. goto nvram_write_end;
  3773. cmd_flags = 0;
  3774. }
  3775. }
  3776. /* Disable writes to flash interface (lock write-protect) */
  3777. bnx2_disable_nvram_write(bp);
  3778. /* Disable access to flash interface */
  3779. bnx2_disable_nvram_access(bp);
  3780. bnx2_release_nvram_lock(bp);
  3781. /* Increment written */
  3782. written += data_end - data_start;
  3783. }
  3784. nvram_write_end:
  3785. kfree(flash_buffer);
  3786. kfree(align_buf);
  3787. return rc;
  3788. }
  3789. static void
  3790. bnx2_init_fw_cap(struct bnx2 *bp)
  3791. {
  3792. u32 val, sig = 0;
  3793. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3794. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3795. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3796. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3797. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3798. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3799. return;
  3800. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3801. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3802. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3803. }
  3804. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3805. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3806. u32 link;
  3807. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3808. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3809. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3810. bp->phy_port = PORT_FIBRE;
  3811. else
  3812. bp->phy_port = PORT_TP;
  3813. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3814. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3815. }
  3816. if (netif_running(bp->dev) && sig)
  3817. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3818. }
  3819. static void
  3820. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3821. {
  3822. REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3823. REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3824. REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3825. }
  3826. static int
  3827. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3828. {
  3829. u32 val;
  3830. int i, rc = 0;
  3831. u8 old_port;
  3832. /* Wait for the current PCI transaction to complete before
  3833. * issuing a reset. */
  3834. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3835. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3836. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3837. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3838. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3839. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3840. udelay(5);
  3841. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3842. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3843. /* Deposit a driver reset signature so the firmware knows that
  3844. * this is a soft reset. */
  3845. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3846. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3847. /* Do a dummy read to force the chip to complete all current transaction
  3848. * before we issue a reset. */
  3849. val = REG_RD(bp, BNX2_MISC_ID);
  3850. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3851. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3852. REG_RD(bp, BNX2_MISC_COMMAND);
  3853. udelay(5);
  3854. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3855. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3856. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
  3857. } else {
  3858. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3859. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3860. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3861. /* Chip reset. */
  3862. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3863. /* Reading back any register after chip reset will hang the
  3864. * bus on 5706 A0 and A1. The msleep below provides plenty
  3865. * of margin for write posting.
  3866. */
  3867. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3868. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  3869. msleep(20);
  3870. /* Reset takes approximate 30 usec */
  3871. for (i = 0; i < 10; i++) {
  3872. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3873. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3874. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3875. break;
  3876. udelay(10);
  3877. }
  3878. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3879. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3880. printk(KERN_ERR PFX "Chip reset did not complete\n");
  3881. return -EBUSY;
  3882. }
  3883. }
  3884. /* Make sure byte swapping is properly configured. */
  3885. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3886. if (val != 0x01020304) {
  3887. printk(KERN_ERR PFX "Chip not in correct endian mode\n");
  3888. return -ENODEV;
  3889. }
  3890. /* Wait for the firmware to finish its initialization. */
  3891. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3892. if (rc)
  3893. return rc;
  3894. spin_lock_bh(&bp->phy_lock);
  3895. old_port = bp->phy_port;
  3896. bnx2_init_fw_cap(bp);
  3897. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3898. old_port != bp->phy_port)
  3899. bnx2_set_default_remote_link(bp);
  3900. spin_unlock_bh(&bp->phy_lock);
  3901. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3902. /* Adjust the voltage regular to two steps lower. The default
  3903. * of this register is 0x0000000e. */
  3904. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3905. /* Remove bad rbuf memory from the free pool. */
  3906. rc = bnx2_alloc_bad_rbuf(bp);
  3907. }
  3908. if (bp->flags & BNX2_FLAG_USING_MSIX)
  3909. bnx2_setup_msix_tbl(bp);
  3910. return rc;
  3911. }
  3912. static int
  3913. bnx2_init_chip(struct bnx2 *bp)
  3914. {
  3915. u32 val, mtu;
  3916. int rc, i;
  3917. /* Make sure the interrupt is not active. */
  3918. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3919. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3920. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3921. #ifdef __BIG_ENDIAN
  3922. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3923. #endif
  3924. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3925. DMA_READ_CHANS << 12 |
  3926. DMA_WRITE_CHANS << 16;
  3927. val |= (0x2 << 20) | (1 << 11);
  3928. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  3929. val |= (1 << 23);
  3930. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  3931. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
  3932. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  3933. REG_WR(bp, BNX2_DMA_CONFIG, val);
  3934. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3935. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  3936. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  3937. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  3938. }
  3939. if (bp->flags & BNX2_FLAG_PCIX) {
  3940. u16 val16;
  3941. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3942. &val16);
  3943. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3944. val16 & ~PCI_X_CMD_ERO);
  3945. }
  3946. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3947. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  3948. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  3949. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  3950. /* Initialize context mapping and zero out the quick contexts. The
  3951. * context block must have already been enabled. */
  3952. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3953. rc = bnx2_init_5709_context(bp);
  3954. if (rc)
  3955. return rc;
  3956. } else
  3957. bnx2_init_context(bp);
  3958. if ((rc = bnx2_init_cpus(bp)) != 0)
  3959. return rc;
  3960. bnx2_init_nvram(bp);
  3961. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3962. val = REG_RD(bp, BNX2_MQ_CONFIG);
  3963. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  3964. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  3965. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3966. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  3967. if (CHIP_REV(bp) == CHIP_REV_Ax)
  3968. val |= BNX2_MQ_CONFIG_HALT_DIS;
  3969. }
  3970. REG_WR(bp, BNX2_MQ_CONFIG, val);
  3971. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  3972. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  3973. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  3974. val = (BCM_PAGE_BITS - 8) << 24;
  3975. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  3976. /* Configure page size. */
  3977. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  3978. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  3979. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  3980. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  3981. val = bp->mac_addr[0] +
  3982. (bp->mac_addr[1] << 8) +
  3983. (bp->mac_addr[2] << 16) +
  3984. bp->mac_addr[3] +
  3985. (bp->mac_addr[4] << 8) +
  3986. (bp->mac_addr[5] << 16);
  3987. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  3988. /* Program the MTU. Also include 4 bytes for CRC32. */
  3989. mtu = bp->dev->mtu;
  3990. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  3991. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  3992. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  3993. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  3994. if (mtu < 1500)
  3995. mtu = 1500;
  3996. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  3997. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  3998. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  3999. memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
  4000. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  4001. bp->bnx2_napi[i].last_status_idx = 0;
  4002. bp->idle_chk_status_idx = 0xffff;
  4003. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  4004. /* Set up how to generate a link change interrupt. */
  4005. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  4006. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  4007. (u64) bp->status_blk_mapping & 0xffffffff);
  4008. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  4009. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  4010. (u64) bp->stats_blk_mapping & 0xffffffff);
  4011. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  4012. (u64) bp->stats_blk_mapping >> 32);
  4013. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4014. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4015. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4016. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4017. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4018. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4019. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4020. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4021. REG_WR(bp, BNX2_HC_COM_TICKS,
  4022. (bp->com_ticks_int << 16) | bp->com_ticks);
  4023. REG_WR(bp, BNX2_HC_CMD_TICKS,
  4024. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4025. if (bp->flags & BNX2_FLAG_BROKEN_STATS)
  4026. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4027. else
  4028. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4029. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4030. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  4031. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4032. else {
  4033. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4034. BNX2_HC_CONFIG_COLLECT_STATS;
  4035. }
  4036. if (bp->irq_nvecs > 1) {
  4037. REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4038. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4039. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4040. }
  4041. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4042. val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
  4043. REG_WR(bp, BNX2_HC_CONFIG, val);
  4044. for (i = 1; i < bp->irq_nvecs; i++) {
  4045. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4046. BNX2_HC_SB_CONFIG_1;
  4047. REG_WR(bp, base,
  4048. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4049. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4050. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4051. REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4052. (bp->tx_quick_cons_trip_int << 16) |
  4053. bp->tx_quick_cons_trip);
  4054. REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4055. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4056. REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4057. (bp->rx_quick_cons_trip_int << 16) |
  4058. bp->rx_quick_cons_trip);
  4059. REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4060. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4061. }
  4062. /* Clear internal stats counters. */
  4063. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4064. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4065. /* Initialize the receive filter. */
  4066. bnx2_set_rx_mode(bp->dev);
  4067. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4068. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4069. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4070. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4071. }
  4072. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4073. 1, 0);
  4074. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4075. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4076. udelay(20);
  4077. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  4078. return rc;
  4079. }
  4080. static void
  4081. bnx2_clear_ring_states(struct bnx2 *bp)
  4082. {
  4083. struct bnx2_napi *bnapi;
  4084. struct bnx2_tx_ring_info *txr;
  4085. struct bnx2_rx_ring_info *rxr;
  4086. int i;
  4087. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4088. bnapi = &bp->bnx2_napi[i];
  4089. txr = &bnapi->tx_ring;
  4090. rxr = &bnapi->rx_ring;
  4091. txr->tx_cons = 0;
  4092. txr->hw_tx_cons = 0;
  4093. rxr->rx_prod_bseq = 0;
  4094. rxr->rx_prod = 0;
  4095. rxr->rx_cons = 0;
  4096. rxr->rx_pg_prod = 0;
  4097. rxr->rx_pg_cons = 0;
  4098. }
  4099. }
  4100. static void
  4101. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4102. {
  4103. u32 val, offset0, offset1, offset2, offset3;
  4104. u32 cid_addr = GET_CID_ADDR(cid);
  4105. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4106. offset0 = BNX2_L2CTX_TYPE_XI;
  4107. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4108. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4109. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4110. } else {
  4111. offset0 = BNX2_L2CTX_TYPE;
  4112. offset1 = BNX2_L2CTX_CMD_TYPE;
  4113. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4114. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4115. }
  4116. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4117. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4118. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4119. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4120. val = (u64) txr->tx_desc_mapping >> 32;
  4121. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4122. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4123. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4124. }
  4125. static void
  4126. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4127. {
  4128. struct tx_bd *txbd;
  4129. u32 cid = TX_CID;
  4130. struct bnx2_napi *bnapi;
  4131. struct bnx2_tx_ring_info *txr;
  4132. bnapi = &bp->bnx2_napi[ring_num];
  4133. txr = &bnapi->tx_ring;
  4134. if (ring_num == 0)
  4135. cid = TX_CID;
  4136. else
  4137. cid = TX_TSS_CID + ring_num - 1;
  4138. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4139. txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
  4140. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4141. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4142. txr->tx_prod = 0;
  4143. txr->tx_prod_bseq = 0;
  4144. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4145. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4146. bnx2_init_tx_context(bp, cid, txr);
  4147. }
  4148. static void
  4149. bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
  4150. int num_rings)
  4151. {
  4152. int i;
  4153. struct rx_bd *rxbd;
  4154. for (i = 0; i < num_rings; i++) {
  4155. int j;
  4156. rxbd = &rx_ring[i][0];
  4157. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  4158. rxbd->rx_bd_len = buf_size;
  4159. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4160. }
  4161. if (i == (num_rings - 1))
  4162. j = 0;
  4163. else
  4164. j = i + 1;
  4165. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4166. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4167. }
  4168. }
  4169. static void
  4170. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4171. {
  4172. int i;
  4173. u16 prod, ring_prod;
  4174. u32 cid, rx_cid_addr, val;
  4175. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4176. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4177. if (ring_num == 0)
  4178. cid = RX_CID;
  4179. else
  4180. cid = RX_RSS_CID + ring_num - 1;
  4181. rx_cid_addr = GET_CID_ADDR(cid);
  4182. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4183. bp->rx_buf_use_size, bp->rx_max_ring);
  4184. bnx2_init_rx_context(bp, cid);
  4185. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4186. val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
  4187. REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4188. }
  4189. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4190. if (bp->rx_pg_ring_size) {
  4191. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4192. rxr->rx_pg_desc_mapping,
  4193. PAGE_SIZE, bp->rx_max_pg_ring);
  4194. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4195. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4196. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4197. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4198. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4199. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4200. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4201. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4202. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4203. REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4204. }
  4205. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4206. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4207. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4208. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4209. ring_prod = prod = rxr->rx_pg_prod;
  4210. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4211. if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0)
  4212. break;
  4213. prod = NEXT_RX_BD(prod);
  4214. ring_prod = RX_PG_RING_IDX(prod);
  4215. }
  4216. rxr->rx_pg_prod = prod;
  4217. ring_prod = prod = rxr->rx_prod;
  4218. for (i = 0; i < bp->rx_ring_size; i++) {
  4219. if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0)
  4220. break;
  4221. prod = NEXT_RX_BD(prod);
  4222. ring_prod = RX_RING_IDX(prod);
  4223. }
  4224. rxr->rx_prod = prod;
  4225. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4226. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4227. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4228. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4229. REG_WR16(bp, rxr->rx_bidx_addr, prod);
  4230. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4231. }
  4232. static void
  4233. bnx2_init_all_rings(struct bnx2 *bp)
  4234. {
  4235. int i;
  4236. u32 val;
  4237. bnx2_clear_ring_states(bp);
  4238. REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4239. for (i = 0; i < bp->num_tx_rings; i++)
  4240. bnx2_init_tx_ring(bp, i);
  4241. if (bp->num_tx_rings > 1)
  4242. REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4243. (TX_TSS_CID << 7));
  4244. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4245. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4246. for (i = 0; i < bp->num_rx_rings; i++)
  4247. bnx2_init_rx_ring(bp, i);
  4248. if (bp->num_rx_rings > 1) {
  4249. u32 tbl_32;
  4250. u8 *tbl = (u8 *) &tbl_32;
  4251. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
  4252. BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
  4253. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4254. tbl[i % 4] = i % (bp->num_rx_rings - 1);
  4255. if ((i % 4) == 3)
  4256. bnx2_reg_wr_ind(bp,
  4257. BNX2_RXP_SCRATCH_RSS_TBL + i,
  4258. cpu_to_be32(tbl_32));
  4259. }
  4260. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4261. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4262. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4263. }
  4264. }
  4265. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4266. {
  4267. u32 max, num_rings = 1;
  4268. while (ring_size > MAX_RX_DESC_CNT) {
  4269. ring_size -= MAX_RX_DESC_CNT;
  4270. num_rings++;
  4271. }
  4272. /* round to next power of 2 */
  4273. max = max_size;
  4274. while ((max & num_rings) == 0)
  4275. max >>= 1;
  4276. if (num_rings != max)
  4277. max <<= 1;
  4278. return max;
  4279. }
  4280. static void
  4281. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4282. {
  4283. u32 rx_size, rx_space, jumbo_size;
  4284. /* 8 for CRC and VLAN */
  4285. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4286. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4287. sizeof(struct skb_shared_info);
  4288. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4289. bp->rx_pg_ring_size = 0;
  4290. bp->rx_max_pg_ring = 0;
  4291. bp->rx_max_pg_ring_idx = 0;
  4292. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4293. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4294. jumbo_size = size * pages;
  4295. if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
  4296. jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
  4297. bp->rx_pg_ring_size = jumbo_size;
  4298. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4299. MAX_RX_PG_RINGS);
  4300. bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
  4301. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4302. bp->rx_copy_thresh = 0;
  4303. }
  4304. bp->rx_buf_use_size = rx_size;
  4305. /* hw alignment */
  4306. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  4307. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4308. bp->rx_ring_size = size;
  4309. bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
  4310. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  4311. }
  4312. static void
  4313. bnx2_free_tx_skbs(struct bnx2 *bp)
  4314. {
  4315. int i;
  4316. for (i = 0; i < bp->num_tx_rings; i++) {
  4317. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4318. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4319. int j;
  4320. if (txr->tx_buf_ring == NULL)
  4321. continue;
  4322. for (j = 0; j < TX_DESC_CNT; ) {
  4323. struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4324. struct sk_buff *skb = tx_buf->skb;
  4325. if (skb == NULL) {
  4326. j++;
  4327. continue;
  4328. }
  4329. skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
  4330. tx_buf->skb = NULL;
  4331. j += skb_shinfo(skb)->nr_frags + 1;
  4332. dev_kfree_skb(skb);
  4333. }
  4334. }
  4335. }
  4336. static void
  4337. bnx2_free_rx_skbs(struct bnx2 *bp)
  4338. {
  4339. int i;
  4340. for (i = 0; i < bp->num_rx_rings; i++) {
  4341. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4342. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4343. int j;
  4344. if (rxr->rx_buf_ring == NULL)
  4345. return;
  4346. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4347. struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4348. struct sk_buff *skb = rx_buf->skb;
  4349. if (skb == NULL)
  4350. continue;
  4351. pci_unmap_single(bp->pdev,
  4352. pci_unmap_addr(rx_buf, mapping),
  4353. bp->rx_buf_use_size,
  4354. PCI_DMA_FROMDEVICE);
  4355. rx_buf->skb = NULL;
  4356. dev_kfree_skb(skb);
  4357. }
  4358. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4359. bnx2_free_rx_page(bp, rxr, j);
  4360. }
  4361. }
  4362. static void
  4363. bnx2_free_skbs(struct bnx2 *bp)
  4364. {
  4365. bnx2_free_tx_skbs(bp);
  4366. bnx2_free_rx_skbs(bp);
  4367. }
  4368. static int
  4369. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4370. {
  4371. int rc;
  4372. rc = bnx2_reset_chip(bp, reset_code);
  4373. bnx2_free_skbs(bp);
  4374. if (rc)
  4375. return rc;
  4376. if ((rc = bnx2_init_chip(bp)) != 0)
  4377. return rc;
  4378. bnx2_init_all_rings(bp);
  4379. return 0;
  4380. }
  4381. static int
  4382. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4383. {
  4384. int rc;
  4385. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4386. return rc;
  4387. spin_lock_bh(&bp->phy_lock);
  4388. bnx2_init_phy(bp, reset_phy);
  4389. bnx2_set_link(bp);
  4390. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4391. bnx2_remote_phy_event(bp);
  4392. spin_unlock_bh(&bp->phy_lock);
  4393. return 0;
  4394. }
  4395. static int
  4396. bnx2_shutdown_chip(struct bnx2 *bp)
  4397. {
  4398. u32 reset_code;
  4399. if (bp->flags & BNX2_FLAG_NO_WOL)
  4400. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4401. else if (bp->wol)
  4402. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4403. else
  4404. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4405. return bnx2_reset_chip(bp, reset_code);
  4406. }
  4407. static int
  4408. bnx2_test_registers(struct bnx2 *bp)
  4409. {
  4410. int ret;
  4411. int i, is_5709;
  4412. static const struct {
  4413. u16 offset;
  4414. u16 flags;
  4415. #define BNX2_FL_NOT_5709 1
  4416. u32 rw_mask;
  4417. u32 ro_mask;
  4418. } reg_tbl[] = {
  4419. { 0x006c, 0, 0x00000000, 0x0000003f },
  4420. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4421. { 0x0094, 0, 0x00000000, 0x00000000 },
  4422. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4423. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4424. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4425. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4426. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4427. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4428. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4429. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4430. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4431. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4432. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4433. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4434. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4435. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4436. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4437. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4438. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4439. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4440. { 0x1000, 0, 0x00000000, 0x00000001 },
  4441. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4442. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4443. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4444. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4445. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4446. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4447. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4448. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4449. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4450. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4451. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4452. { 0x1800, 0, 0x00000000, 0x00000001 },
  4453. { 0x1804, 0, 0x00000000, 0x00000003 },
  4454. { 0x2800, 0, 0x00000000, 0x00000001 },
  4455. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4456. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4457. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4458. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4459. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4460. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4461. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4462. { 0x2840, 0, 0x00000000, 0xffffffff },
  4463. { 0x2844, 0, 0x00000000, 0xffffffff },
  4464. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4465. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4466. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4467. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4468. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4469. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4470. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4471. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4472. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4473. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4474. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4475. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4476. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4477. { 0x5004, 0, 0x00000000, 0x0000007f },
  4478. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4479. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4480. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4481. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4482. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4483. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4484. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4485. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4486. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4487. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4488. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4489. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4490. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4491. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4492. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4493. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4494. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4495. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4496. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4497. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4498. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4499. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4500. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4501. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4502. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4503. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4504. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4505. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4506. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4507. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4508. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4509. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4510. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4511. { 0xffff, 0, 0x00000000, 0x00000000 },
  4512. };
  4513. ret = 0;
  4514. is_5709 = 0;
  4515. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4516. is_5709 = 1;
  4517. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4518. u32 offset, rw_mask, ro_mask, save_val, val;
  4519. u16 flags = reg_tbl[i].flags;
  4520. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4521. continue;
  4522. offset = (u32) reg_tbl[i].offset;
  4523. rw_mask = reg_tbl[i].rw_mask;
  4524. ro_mask = reg_tbl[i].ro_mask;
  4525. save_val = readl(bp->regview + offset);
  4526. writel(0, bp->regview + offset);
  4527. val = readl(bp->regview + offset);
  4528. if ((val & rw_mask) != 0) {
  4529. goto reg_test_err;
  4530. }
  4531. if ((val & ro_mask) != (save_val & ro_mask)) {
  4532. goto reg_test_err;
  4533. }
  4534. writel(0xffffffff, bp->regview + offset);
  4535. val = readl(bp->regview + offset);
  4536. if ((val & rw_mask) != rw_mask) {
  4537. goto reg_test_err;
  4538. }
  4539. if ((val & ro_mask) != (save_val & ro_mask)) {
  4540. goto reg_test_err;
  4541. }
  4542. writel(save_val, bp->regview + offset);
  4543. continue;
  4544. reg_test_err:
  4545. writel(save_val, bp->regview + offset);
  4546. ret = -ENODEV;
  4547. break;
  4548. }
  4549. return ret;
  4550. }
  4551. static int
  4552. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4553. {
  4554. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4555. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4556. int i;
  4557. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4558. u32 offset;
  4559. for (offset = 0; offset < size; offset += 4) {
  4560. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4561. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4562. test_pattern[i]) {
  4563. return -ENODEV;
  4564. }
  4565. }
  4566. }
  4567. return 0;
  4568. }
  4569. static int
  4570. bnx2_test_memory(struct bnx2 *bp)
  4571. {
  4572. int ret = 0;
  4573. int i;
  4574. static struct mem_entry {
  4575. u32 offset;
  4576. u32 len;
  4577. } mem_tbl_5706[] = {
  4578. { 0x60000, 0x4000 },
  4579. { 0xa0000, 0x3000 },
  4580. { 0xe0000, 0x4000 },
  4581. { 0x120000, 0x4000 },
  4582. { 0x1a0000, 0x4000 },
  4583. { 0x160000, 0x4000 },
  4584. { 0xffffffff, 0 },
  4585. },
  4586. mem_tbl_5709[] = {
  4587. { 0x60000, 0x4000 },
  4588. { 0xa0000, 0x3000 },
  4589. { 0xe0000, 0x4000 },
  4590. { 0x120000, 0x4000 },
  4591. { 0x1a0000, 0x4000 },
  4592. { 0xffffffff, 0 },
  4593. };
  4594. struct mem_entry *mem_tbl;
  4595. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4596. mem_tbl = mem_tbl_5709;
  4597. else
  4598. mem_tbl = mem_tbl_5706;
  4599. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4600. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4601. mem_tbl[i].len)) != 0) {
  4602. return ret;
  4603. }
  4604. }
  4605. return ret;
  4606. }
  4607. #define BNX2_MAC_LOOPBACK 0
  4608. #define BNX2_PHY_LOOPBACK 1
  4609. static int
  4610. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4611. {
  4612. unsigned int pkt_size, num_pkts, i;
  4613. struct sk_buff *skb, *rx_skb;
  4614. unsigned char *packet;
  4615. u16 rx_start_idx, rx_idx;
  4616. dma_addr_t map;
  4617. struct tx_bd *txbd;
  4618. struct sw_bd *rx_buf;
  4619. struct l2_fhdr *rx_hdr;
  4620. int ret = -ENODEV;
  4621. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4622. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4623. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4624. tx_napi = bnapi;
  4625. txr = &tx_napi->tx_ring;
  4626. rxr = &bnapi->rx_ring;
  4627. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4628. bp->loopback = MAC_LOOPBACK;
  4629. bnx2_set_mac_loopback(bp);
  4630. }
  4631. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4632. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4633. return 0;
  4634. bp->loopback = PHY_LOOPBACK;
  4635. bnx2_set_phy_loopback(bp);
  4636. }
  4637. else
  4638. return -EINVAL;
  4639. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4640. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4641. if (!skb)
  4642. return -ENOMEM;
  4643. packet = skb_put(skb, pkt_size);
  4644. memcpy(packet, bp->dev->dev_addr, 6);
  4645. memset(packet + 6, 0x0, 8);
  4646. for (i = 14; i < pkt_size; i++)
  4647. packet[i] = (unsigned char) (i & 0xff);
  4648. if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
  4649. dev_kfree_skb(skb);
  4650. return -EIO;
  4651. }
  4652. map = skb_shinfo(skb)->dma_head;
  4653. REG_WR(bp, BNX2_HC_COMMAND,
  4654. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4655. REG_RD(bp, BNX2_HC_COMMAND);
  4656. udelay(5);
  4657. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4658. num_pkts = 0;
  4659. txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
  4660. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4661. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4662. txbd->tx_bd_mss_nbytes = pkt_size;
  4663. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4664. num_pkts++;
  4665. txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
  4666. txr->tx_prod_bseq += pkt_size;
  4667. REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4668. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4669. udelay(100);
  4670. REG_WR(bp, BNX2_HC_COMMAND,
  4671. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4672. REG_RD(bp, BNX2_HC_COMMAND);
  4673. udelay(5);
  4674. skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
  4675. dev_kfree_skb(skb);
  4676. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4677. goto loopback_test_done;
  4678. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4679. if (rx_idx != rx_start_idx + num_pkts) {
  4680. goto loopback_test_done;
  4681. }
  4682. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4683. rx_skb = rx_buf->skb;
  4684. rx_hdr = (struct l2_fhdr *) rx_skb->data;
  4685. skb_reserve(rx_skb, BNX2_RX_OFFSET);
  4686. pci_dma_sync_single_for_cpu(bp->pdev,
  4687. pci_unmap_addr(rx_buf, mapping),
  4688. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  4689. if (rx_hdr->l2_fhdr_status &
  4690. (L2_FHDR_ERRORS_BAD_CRC |
  4691. L2_FHDR_ERRORS_PHY_DECODE |
  4692. L2_FHDR_ERRORS_ALIGNMENT |
  4693. L2_FHDR_ERRORS_TOO_SHORT |
  4694. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4695. goto loopback_test_done;
  4696. }
  4697. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4698. goto loopback_test_done;
  4699. }
  4700. for (i = 14; i < pkt_size; i++) {
  4701. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  4702. goto loopback_test_done;
  4703. }
  4704. }
  4705. ret = 0;
  4706. loopback_test_done:
  4707. bp->loopback = 0;
  4708. return ret;
  4709. }
  4710. #define BNX2_MAC_LOOPBACK_FAILED 1
  4711. #define BNX2_PHY_LOOPBACK_FAILED 2
  4712. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4713. BNX2_PHY_LOOPBACK_FAILED)
  4714. static int
  4715. bnx2_test_loopback(struct bnx2 *bp)
  4716. {
  4717. int rc = 0;
  4718. if (!netif_running(bp->dev))
  4719. return BNX2_LOOPBACK_FAILED;
  4720. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4721. spin_lock_bh(&bp->phy_lock);
  4722. bnx2_init_phy(bp, 1);
  4723. spin_unlock_bh(&bp->phy_lock);
  4724. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4725. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4726. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4727. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4728. return rc;
  4729. }
  4730. #define NVRAM_SIZE 0x200
  4731. #define CRC32_RESIDUAL 0xdebb20e3
  4732. static int
  4733. bnx2_test_nvram(struct bnx2 *bp)
  4734. {
  4735. __be32 buf[NVRAM_SIZE / 4];
  4736. u8 *data = (u8 *) buf;
  4737. int rc = 0;
  4738. u32 magic, csum;
  4739. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4740. goto test_nvram_done;
  4741. magic = be32_to_cpu(buf[0]);
  4742. if (magic != 0x669955aa) {
  4743. rc = -ENODEV;
  4744. goto test_nvram_done;
  4745. }
  4746. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4747. goto test_nvram_done;
  4748. csum = ether_crc_le(0x100, data);
  4749. if (csum != CRC32_RESIDUAL) {
  4750. rc = -ENODEV;
  4751. goto test_nvram_done;
  4752. }
  4753. csum = ether_crc_le(0x100, data + 0x100);
  4754. if (csum != CRC32_RESIDUAL) {
  4755. rc = -ENODEV;
  4756. }
  4757. test_nvram_done:
  4758. return rc;
  4759. }
  4760. static int
  4761. bnx2_test_link(struct bnx2 *bp)
  4762. {
  4763. u32 bmsr;
  4764. if (!netif_running(bp->dev))
  4765. return -ENODEV;
  4766. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4767. if (bp->link_up)
  4768. return 0;
  4769. return -ENODEV;
  4770. }
  4771. spin_lock_bh(&bp->phy_lock);
  4772. bnx2_enable_bmsr1(bp);
  4773. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4774. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4775. bnx2_disable_bmsr1(bp);
  4776. spin_unlock_bh(&bp->phy_lock);
  4777. if (bmsr & BMSR_LSTATUS) {
  4778. return 0;
  4779. }
  4780. return -ENODEV;
  4781. }
  4782. static int
  4783. bnx2_test_intr(struct bnx2 *bp)
  4784. {
  4785. int i;
  4786. u16 status_idx;
  4787. if (!netif_running(bp->dev))
  4788. return -ENODEV;
  4789. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4790. /* This register is not touched during run-time. */
  4791. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4792. REG_RD(bp, BNX2_HC_COMMAND);
  4793. for (i = 0; i < 10; i++) {
  4794. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4795. status_idx) {
  4796. break;
  4797. }
  4798. msleep_interruptible(10);
  4799. }
  4800. if (i < 10)
  4801. return 0;
  4802. return -ENODEV;
  4803. }
  4804. /* Determining link for parallel detection. */
  4805. static int
  4806. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4807. {
  4808. u32 mode_ctl, an_dbg, exp;
  4809. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4810. return 0;
  4811. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4812. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4813. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4814. return 0;
  4815. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4816. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4817. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4818. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4819. return 0;
  4820. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4821. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4822. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4823. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4824. return 0;
  4825. return 1;
  4826. }
  4827. static void
  4828. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4829. {
  4830. int check_link = 1;
  4831. spin_lock(&bp->phy_lock);
  4832. if (bp->serdes_an_pending) {
  4833. bp->serdes_an_pending--;
  4834. check_link = 0;
  4835. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4836. u32 bmcr;
  4837. bp->current_interval = BNX2_TIMER_INTERVAL;
  4838. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4839. if (bmcr & BMCR_ANENABLE) {
  4840. if (bnx2_5706_serdes_has_link(bp)) {
  4841. bmcr &= ~BMCR_ANENABLE;
  4842. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4843. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4844. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4845. }
  4846. }
  4847. }
  4848. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4849. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4850. u32 phy2;
  4851. bnx2_write_phy(bp, 0x17, 0x0f01);
  4852. bnx2_read_phy(bp, 0x15, &phy2);
  4853. if (phy2 & 0x20) {
  4854. u32 bmcr;
  4855. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4856. bmcr |= BMCR_ANENABLE;
  4857. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4858. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4859. }
  4860. } else
  4861. bp->current_interval = BNX2_TIMER_INTERVAL;
  4862. if (check_link) {
  4863. u32 val;
  4864. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4865. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4866. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4867. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4868. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4869. bnx2_5706s_force_link_dn(bp, 1);
  4870. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  4871. } else
  4872. bnx2_set_link(bp);
  4873. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  4874. bnx2_set_link(bp);
  4875. }
  4876. spin_unlock(&bp->phy_lock);
  4877. }
  4878. static void
  4879. bnx2_5708_serdes_timer(struct bnx2 *bp)
  4880. {
  4881. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4882. return;
  4883. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  4884. bp->serdes_an_pending = 0;
  4885. return;
  4886. }
  4887. spin_lock(&bp->phy_lock);
  4888. if (bp->serdes_an_pending)
  4889. bp->serdes_an_pending--;
  4890. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4891. u32 bmcr;
  4892. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4893. if (bmcr & BMCR_ANENABLE) {
  4894. bnx2_enable_forced_2g5(bp);
  4895. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  4896. } else {
  4897. bnx2_disable_forced_2g5(bp);
  4898. bp->serdes_an_pending = 2;
  4899. bp->current_interval = BNX2_TIMER_INTERVAL;
  4900. }
  4901. } else
  4902. bp->current_interval = BNX2_TIMER_INTERVAL;
  4903. spin_unlock(&bp->phy_lock);
  4904. }
  4905. static void
  4906. bnx2_timer(unsigned long data)
  4907. {
  4908. struct bnx2 *bp = (struct bnx2 *) data;
  4909. if (!netif_running(bp->dev))
  4910. return;
  4911. if (atomic_read(&bp->intr_sem) != 0)
  4912. goto bnx2_restart_timer;
  4913. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  4914. BNX2_FLAG_USING_MSI)
  4915. bnx2_chk_missed_msi(bp);
  4916. bnx2_send_heart_beat(bp);
  4917. bp->stats_blk->stat_FwRxDrop =
  4918. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  4919. /* workaround occasional corrupted counters */
  4920. if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
  4921. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  4922. BNX2_HC_COMMAND_STATS_NOW);
  4923. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  4924. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  4925. bnx2_5706_serdes_timer(bp);
  4926. else
  4927. bnx2_5708_serdes_timer(bp);
  4928. }
  4929. bnx2_restart_timer:
  4930. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4931. }
  4932. static int
  4933. bnx2_request_irq(struct bnx2 *bp)
  4934. {
  4935. unsigned long flags;
  4936. struct bnx2_irq *irq;
  4937. int rc = 0, i;
  4938. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  4939. flags = 0;
  4940. else
  4941. flags = IRQF_SHARED;
  4942. for (i = 0; i < bp->irq_nvecs; i++) {
  4943. irq = &bp->irq_tbl[i];
  4944. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  4945. &bp->bnx2_napi[i]);
  4946. if (rc)
  4947. break;
  4948. irq->requested = 1;
  4949. }
  4950. return rc;
  4951. }
  4952. static void
  4953. bnx2_free_irq(struct bnx2 *bp)
  4954. {
  4955. struct bnx2_irq *irq;
  4956. int i;
  4957. for (i = 0; i < bp->irq_nvecs; i++) {
  4958. irq = &bp->irq_tbl[i];
  4959. if (irq->requested)
  4960. free_irq(irq->vector, &bp->bnx2_napi[i]);
  4961. irq->requested = 0;
  4962. }
  4963. if (bp->flags & BNX2_FLAG_USING_MSI)
  4964. pci_disable_msi(bp->pdev);
  4965. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  4966. pci_disable_msix(bp->pdev);
  4967. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  4968. }
  4969. static void
  4970. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  4971. {
  4972. int i, rc;
  4973. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  4974. struct net_device *dev = bp->dev;
  4975. const int len = sizeof(bp->irq_tbl[0].name);
  4976. bnx2_setup_msix_tbl(bp);
  4977. REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  4978. REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  4979. REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  4980. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4981. msix_ent[i].entry = i;
  4982. msix_ent[i].vector = 0;
  4983. }
  4984. rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
  4985. if (rc != 0)
  4986. return;
  4987. bp->irq_nvecs = msix_vecs;
  4988. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  4989. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4990. bp->irq_tbl[i].vector = msix_ent[i].vector;
  4991. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  4992. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  4993. }
  4994. }
  4995. static void
  4996. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  4997. {
  4998. int cpus = num_online_cpus();
  4999. int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
  5000. bp->irq_tbl[0].handler = bnx2_interrupt;
  5001. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  5002. bp->irq_nvecs = 1;
  5003. bp->irq_tbl[0].vector = bp->pdev->irq;
  5004. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
  5005. bnx2_enable_msix(bp, msix_vecs);
  5006. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  5007. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  5008. if (pci_enable_msi(bp->pdev) == 0) {
  5009. bp->flags |= BNX2_FLAG_USING_MSI;
  5010. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5011. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  5012. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5013. } else
  5014. bp->irq_tbl[0].handler = bnx2_msi;
  5015. bp->irq_tbl[0].vector = bp->pdev->irq;
  5016. }
  5017. }
  5018. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5019. bp->dev->real_num_tx_queues = bp->num_tx_rings;
  5020. bp->num_rx_rings = bp->irq_nvecs;
  5021. }
  5022. /* Called with rtnl_lock */
  5023. static int
  5024. bnx2_open(struct net_device *dev)
  5025. {
  5026. struct bnx2 *bp = netdev_priv(dev);
  5027. int rc;
  5028. netif_carrier_off(dev);
  5029. bnx2_set_power_state(bp, PCI_D0);
  5030. bnx2_disable_int(bp);
  5031. bnx2_setup_int_mode(bp, disable_msi);
  5032. bnx2_napi_enable(bp);
  5033. rc = bnx2_alloc_mem(bp);
  5034. if (rc)
  5035. goto open_err;
  5036. rc = bnx2_request_irq(bp);
  5037. if (rc)
  5038. goto open_err;
  5039. rc = bnx2_init_nic(bp, 1);
  5040. if (rc)
  5041. goto open_err;
  5042. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5043. atomic_set(&bp->intr_sem, 0);
  5044. bnx2_enable_int(bp);
  5045. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5046. /* Test MSI to make sure it is working
  5047. * If MSI test fails, go back to INTx mode
  5048. */
  5049. if (bnx2_test_intr(bp) != 0) {
  5050. printk(KERN_WARNING PFX "%s: No interrupt was generated"
  5051. " using MSI, switching to INTx mode. Please"
  5052. " report this failure to the PCI maintainer"
  5053. " and include system chipset information.\n",
  5054. bp->dev->name);
  5055. bnx2_disable_int(bp);
  5056. bnx2_free_irq(bp);
  5057. bnx2_setup_int_mode(bp, 1);
  5058. rc = bnx2_init_nic(bp, 0);
  5059. if (!rc)
  5060. rc = bnx2_request_irq(bp);
  5061. if (rc) {
  5062. del_timer_sync(&bp->timer);
  5063. goto open_err;
  5064. }
  5065. bnx2_enable_int(bp);
  5066. }
  5067. }
  5068. if (bp->flags & BNX2_FLAG_USING_MSI)
  5069. printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
  5070. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5071. printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
  5072. netif_tx_start_all_queues(dev);
  5073. return 0;
  5074. open_err:
  5075. bnx2_napi_disable(bp);
  5076. bnx2_free_skbs(bp);
  5077. bnx2_free_irq(bp);
  5078. bnx2_free_mem(bp);
  5079. return rc;
  5080. }
  5081. static void
  5082. bnx2_reset_task(struct work_struct *work)
  5083. {
  5084. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5085. if (!netif_running(bp->dev))
  5086. return;
  5087. bnx2_netif_stop(bp);
  5088. bnx2_init_nic(bp, 1);
  5089. atomic_set(&bp->intr_sem, 1);
  5090. bnx2_netif_start(bp);
  5091. }
  5092. static void
  5093. bnx2_tx_timeout(struct net_device *dev)
  5094. {
  5095. struct bnx2 *bp = netdev_priv(dev);
  5096. /* This allows the netif to be shutdown gracefully before resetting */
  5097. schedule_work(&bp->reset_task);
  5098. }
  5099. #ifdef BCM_VLAN
  5100. /* Called with rtnl_lock */
  5101. static void
  5102. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  5103. {
  5104. struct bnx2 *bp = netdev_priv(dev);
  5105. if (netif_running(dev))
  5106. bnx2_netif_stop(bp);
  5107. bp->vlgrp = vlgrp;
  5108. if (!netif_running(dev))
  5109. return;
  5110. bnx2_set_rx_mode(dev);
  5111. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  5112. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  5113. bnx2_netif_start(bp);
  5114. }
  5115. #endif
  5116. /* Called with netif_tx_lock.
  5117. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5118. * netif_wake_queue().
  5119. */
  5120. static netdev_tx_t
  5121. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5122. {
  5123. struct bnx2 *bp = netdev_priv(dev);
  5124. dma_addr_t mapping;
  5125. struct tx_bd *txbd;
  5126. struct sw_tx_bd *tx_buf;
  5127. u32 len, vlan_tag_flags, last_frag, mss;
  5128. u16 prod, ring_prod;
  5129. int i;
  5130. struct bnx2_napi *bnapi;
  5131. struct bnx2_tx_ring_info *txr;
  5132. struct netdev_queue *txq;
  5133. struct skb_shared_info *sp;
  5134. /* Determine which tx ring we will be placed on */
  5135. i = skb_get_queue_mapping(skb);
  5136. bnapi = &bp->bnx2_napi[i];
  5137. txr = &bnapi->tx_ring;
  5138. txq = netdev_get_tx_queue(dev, i);
  5139. if (unlikely(bnx2_tx_avail(bp, txr) <
  5140. (skb_shinfo(skb)->nr_frags + 1))) {
  5141. netif_tx_stop_queue(txq);
  5142. printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
  5143. dev->name);
  5144. return NETDEV_TX_BUSY;
  5145. }
  5146. len = skb_headlen(skb);
  5147. prod = txr->tx_prod;
  5148. ring_prod = TX_RING_IDX(prod);
  5149. vlan_tag_flags = 0;
  5150. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5151. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5152. }
  5153. #ifdef BCM_VLAN
  5154. if (bp->vlgrp && vlan_tx_tag_present(skb)) {
  5155. vlan_tag_flags |=
  5156. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  5157. }
  5158. #endif
  5159. if ((mss = skb_shinfo(skb)->gso_size)) {
  5160. u32 tcp_opt_len;
  5161. struct iphdr *iph;
  5162. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5163. tcp_opt_len = tcp_optlen(skb);
  5164. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5165. u32 tcp_off = skb_transport_offset(skb) -
  5166. sizeof(struct ipv6hdr) - ETH_HLEN;
  5167. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5168. TX_BD_FLAGS_SW_FLAGS;
  5169. if (likely(tcp_off == 0))
  5170. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5171. else {
  5172. tcp_off >>= 3;
  5173. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5174. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5175. ((tcp_off & 0x10) <<
  5176. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5177. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5178. }
  5179. } else {
  5180. iph = ip_hdr(skb);
  5181. if (tcp_opt_len || (iph->ihl > 5)) {
  5182. vlan_tag_flags |= ((iph->ihl - 5) +
  5183. (tcp_opt_len >> 2)) << 8;
  5184. }
  5185. }
  5186. } else
  5187. mss = 0;
  5188. if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
  5189. dev_kfree_skb(skb);
  5190. return NETDEV_TX_OK;
  5191. }
  5192. sp = skb_shinfo(skb);
  5193. mapping = sp->dma_head;
  5194. tx_buf = &txr->tx_buf_ring[ring_prod];
  5195. tx_buf->skb = skb;
  5196. txbd = &txr->tx_desc_ring[ring_prod];
  5197. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5198. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5199. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5200. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5201. last_frag = skb_shinfo(skb)->nr_frags;
  5202. tx_buf->nr_frags = last_frag;
  5203. tx_buf->is_gso = skb_is_gso(skb);
  5204. for (i = 0; i < last_frag; i++) {
  5205. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5206. prod = NEXT_TX_BD(prod);
  5207. ring_prod = TX_RING_IDX(prod);
  5208. txbd = &txr->tx_desc_ring[ring_prod];
  5209. len = frag->size;
  5210. mapping = sp->dma_maps[i];
  5211. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5212. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5213. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5214. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5215. }
  5216. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5217. prod = NEXT_TX_BD(prod);
  5218. txr->tx_prod_bseq += skb->len;
  5219. REG_WR16(bp, txr->tx_bidx_addr, prod);
  5220. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5221. mmiowb();
  5222. txr->tx_prod = prod;
  5223. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5224. netif_tx_stop_queue(txq);
  5225. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5226. netif_tx_wake_queue(txq);
  5227. }
  5228. return NETDEV_TX_OK;
  5229. }
  5230. /* Called with rtnl_lock */
  5231. static int
  5232. bnx2_close(struct net_device *dev)
  5233. {
  5234. struct bnx2 *bp = netdev_priv(dev);
  5235. cancel_work_sync(&bp->reset_task);
  5236. bnx2_disable_int_sync(bp);
  5237. bnx2_napi_disable(bp);
  5238. del_timer_sync(&bp->timer);
  5239. bnx2_shutdown_chip(bp);
  5240. bnx2_free_irq(bp);
  5241. bnx2_free_skbs(bp);
  5242. bnx2_free_mem(bp);
  5243. bp->link_up = 0;
  5244. netif_carrier_off(bp->dev);
  5245. bnx2_set_power_state(bp, PCI_D3hot);
  5246. return 0;
  5247. }
  5248. #define GET_NET_STATS64(ctr) \
  5249. (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
  5250. (unsigned long) (ctr##_lo)
  5251. #define GET_NET_STATS32(ctr) \
  5252. (ctr##_lo)
  5253. #if (BITS_PER_LONG == 64)
  5254. #define GET_NET_STATS GET_NET_STATS64
  5255. #else
  5256. #define GET_NET_STATS GET_NET_STATS32
  5257. #endif
  5258. static struct net_device_stats *
  5259. bnx2_get_stats(struct net_device *dev)
  5260. {
  5261. struct bnx2 *bp = netdev_priv(dev);
  5262. struct statistics_block *stats_blk = bp->stats_blk;
  5263. struct net_device_stats *net_stats = &dev->stats;
  5264. if (bp->stats_blk == NULL) {
  5265. return net_stats;
  5266. }
  5267. net_stats->rx_packets =
  5268. GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
  5269. GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
  5270. GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
  5271. net_stats->tx_packets =
  5272. GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
  5273. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
  5274. GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
  5275. net_stats->rx_bytes =
  5276. GET_NET_STATS(stats_blk->stat_IfHCInOctets);
  5277. net_stats->tx_bytes =
  5278. GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
  5279. net_stats->multicast =
  5280. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
  5281. net_stats->collisions =
  5282. (unsigned long) stats_blk->stat_EtherStatsCollisions;
  5283. net_stats->rx_length_errors =
  5284. (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
  5285. stats_blk->stat_EtherStatsOverrsizePkts);
  5286. net_stats->rx_over_errors =
  5287. (unsigned long) (stats_blk->stat_IfInFTQDiscards +
  5288. stats_blk->stat_IfInMBUFDiscards);
  5289. net_stats->rx_frame_errors =
  5290. (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
  5291. net_stats->rx_crc_errors =
  5292. (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
  5293. net_stats->rx_errors = net_stats->rx_length_errors +
  5294. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5295. net_stats->rx_crc_errors;
  5296. net_stats->tx_aborted_errors =
  5297. (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
  5298. stats_blk->stat_Dot3StatsLateCollisions);
  5299. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  5300. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5301. net_stats->tx_carrier_errors = 0;
  5302. else {
  5303. net_stats->tx_carrier_errors =
  5304. (unsigned long)
  5305. stats_blk->stat_Dot3StatsCarrierSenseErrors;
  5306. }
  5307. net_stats->tx_errors =
  5308. (unsigned long)
  5309. stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
  5310. +
  5311. net_stats->tx_aborted_errors +
  5312. net_stats->tx_carrier_errors;
  5313. net_stats->rx_missed_errors =
  5314. (unsigned long) (stats_blk->stat_IfInFTQDiscards +
  5315. stats_blk->stat_IfInMBUFDiscards + stats_blk->stat_FwRxDrop);
  5316. return net_stats;
  5317. }
  5318. /* All ethtool functions called with rtnl_lock */
  5319. static int
  5320. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5321. {
  5322. struct bnx2 *bp = netdev_priv(dev);
  5323. int support_serdes = 0, support_copper = 0;
  5324. cmd->supported = SUPPORTED_Autoneg;
  5325. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5326. support_serdes = 1;
  5327. support_copper = 1;
  5328. } else if (bp->phy_port == PORT_FIBRE)
  5329. support_serdes = 1;
  5330. else
  5331. support_copper = 1;
  5332. if (support_serdes) {
  5333. cmd->supported |= SUPPORTED_1000baseT_Full |
  5334. SUPPORTED_FIBRE;
  5335. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5336. cmd->supported |= SUPPORTED_2500baseX_Full;
  5337. }
  5338. if (support_copper) {
  5339. cmd->supported |= SUPPORTED_10baseT_Half |
  5340. SUPPORTED_10baseT_Full |
  5341. SUPPORTED_100baseT_Half |
  5342. SUPPORTED_100baseT_Full |
  5343. SUPPORTED_1000baseT_Full |
  5344. SUPPORTED_TP;
  5345. }
  5346. spin_lock_bh(&bp->phy_lock);
  5347. cmd->port = bp->phy_port;
  5348. cmd->advertising = bp->advertising;
  5349. if (bp->autoneg & AUTONEG_SPEED) {
  5350. cmd->autoneg = AUTONEG_ENABLE;
  5351. }
  5352. else {
  5353. cmd->autoneg = AUTONEG_DISABLE;
  5354. }
  5355. if (netif_carrier_ok(dev)) {
  5356. cmd->speed = bp->line_speed;
  5357. cmd->duplex = bp->duplex;
  5358. }
  5359. else {
  5360. cmd->speed = -1;
  5361. cmd->duplex = -1;
  5362. }
  5363. spin_unlock_bh(&bp->phy_lock);
  5364. cmd->transceiver = XCVR_INTERNAL;
  5365. cmd->phy_address = bp->phy_addr;
  5366. return 0;
  5367. }
  5368. static int
  5369. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5370. {
  5371. struct bnx2 *bp = netdev_priv(dev);
  5372. u8 autoneg = bp->autoneg;
  5373. u8 req_duplex = bp->req_duplex;
  5374. u16 req_line_speed = bp->req_line_speed;
  5375. u32 advertising = bp->advertising;
  5376. int err = -EINVAL;
  5377. spin_lock_bh(&bp->phy_lock);
  5378. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5379. goto err_out_unlock;
  5380. if (cmd->port != bp->phy_port &&
  5381. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5382. goto err_out_unlock;
  5383. /* If device is down, we can store the settings only if the user
  5384. * is setting the currently active port.
  5385. */
  5386. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5387. goto err_out_unlock;
  5388. if (cmd->autoneg == AUTONEG_ENABLE) {
  5389. autoneg |= AUTONEG_SPEED;
  5390. cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5391. /* allow advertising 1 speed */
  5392. if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
  5393. (cmd->advertising == ADVERTISED_10baseT_Full) ||
  5394. (cmd->advertising == ADVERTISED_100baseT_Half) ||
  5395. (cmd->advertising == ADVERTISED_100baseT_Full)) {
  5396. if (cmd->port == PORT_FIBRE)
  5397. goto err_out_unlock;
  5398. advertising = cmd->advertising;
  5399. } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
  5400. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
  5401. (cmd->port == PORT_TP))
  5402. goto err_out_unlock;
  5403. } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
  5404. advertising = cmd->advertising;
  5405. else if (cmd->advertising == ADVERTISED_1000baseT_Half)
  5406. goto err_out_unlock;
  5407. else {
  5408. if (cmd->port == PORT_FIBRE)
  5409. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5410. else
  5411. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5412. }
  5413. advertising |= ADVERTISED_Autoneg;
  5414. }
  5415. else {
  5416. if (cmd->port == PORT_FIBRE) {
  5417. if ((cmd->speed != SPEED_1000 &&
  5418. cmd->speed != SPEED_2500) ||
  5419. (cmd->duplex != DUPLEX_FULL))
  5420. goto err_out_unlock;
  5421. if (cmd->speed == SPEED_2500 &&
  5422. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5423. goto err_out_unlock;
  5424. }
  5425. else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
  5426. goto err_out_unlock;
  5427. autoneg &= ~AUTONEG_SPEED;
  5428. req_line_speed = cmd->speed;
  5429. req_duplex = cmd->duplex;
  5430. advertising = 0;
  5431. }
  5432. bp->autoneg = autoneg;
  5433. bp->advertising = advertising;
  5434. bp->req_line_speed = req_line_speed;
  5435. bp->req_duplex = req_duplex;
  5436. err = 0;
  5437. /* If device is down, the new settings will be picked up when it is
  5438. * brought up.
  5439. */
  5440. if (netif_running(dev))
  5441. err = bnx2_setup_phy(bp, cmd->port);
  5442. err_out_unlock:
  5443. spin_unlock_bh(&bp->phy_lock);
  5444. return err;
  5445. }
  5446. static void
  5447. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5448. {
  5449. struct bnx2 *bp = netdev_priv(dev);
  5450. strcpy(info->driver, DRV_MODULE_NAME);
  5451. strcpy(info->version, DRV_MODULE_VERSION);
  5452. strcpy(info->bus_info, pci_name(bp->pdev));
  5453. strcpy(info->fw_version, bp->fw_version);
  5454. }
  5455. #define BNX2_REGDUMP_LEN (32 * 1024)
  5456. static int
  5457. bnx2_get_regs_len(struct net_device *dev)
  5458. {
  5459. return BNX2_REGDUMP_LEN;
  5460. }
  5461. static void
  5462. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5463. {
  5464. u32 *p = _p, i, offset;
  5465. u8 *orig_p = _p;
  5466. struct bnx2 *bp = netdev_priv(dev);
  5467. u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
  5468. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5469. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5470. 0x1040, 0x1048, 0x1080, 0x10a4,
  5471. 0x1400, 0x1490, 0x1498, 0x14f0,
  5472. 0x1500, 0x155c, 0x1580, 0x15dc,
  5473. 0x1600, 0x1658, 0x1680, 0x16d8,
  5474. 0x1800, 0x1820, 0x1840, 0x1854,
  5475. 0x1880, 0x1894, 0x1900, 0x1984,
  5476. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5477. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5478. 0x2000, 0x2030, 0x23c0, 0x2400,
  5479. 0x2800, 0x2820, 0x2830, 0x2850,
  5480. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5481. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5482. 0x4080, 0x4090, 0x43c0, 0x4458,
  5483. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5484. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5485. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5486. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5487. 0x6800, 0x6848, 0x684c, 0x6860,
  5488. 0x6888, 0x6910, 0x8000 };
  5489. regs->version = 0;
  5490. memset(p, 0, BNX2_REGDUMP_LEN);
  5491. if (!netif_running(bp->dev))
  5492. return;
  5493. i = 0;
  5494. offset = reg_boundaries[0];
  5495. p += offset;
  5496. while (offset < BNX2_REGDUMP_LEN) {
  5497. *p++ = REG_RD(bp, offset);
  5498. offset += 4;
  5499. if (offset == reg_boundaries[i + 1]) {
  5500. offset = reg_boundaries[i + 2];
  5501. p = (u32 *) (orig_p + offset);
  5502. i += 2;
  5503. }
  5504. }
  5505. }
  5506. static void
  5507. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5508. {
  5509. struct bnx2 *bp = netdev_priv(dev);
  5510. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5511. wol->supported = 0;
  5512. wol->wolopts = 0;
  5513. }
  5514. else {
  5515. wol->supported = WAKE_MAGIC;
  5516. if (bp->wol)
  5517. wol->wolopts = WAKE_MAGIC;
  5518. else
  5519. wol->wolopts = 0;
  5520. }
  5521. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5522. }
  5523. static int
  5524. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5525. {
  5526. struct bnx2 *bp = netdev_priv(dev);
  5527. if (wol->wolopts & ~WAKE_MAGIC)
  5528. return -EINVAL;
  5529. if (wol->wolopts & WAKE_MAGIC) {
  5530. if (bp->flags & BNX2_FLAG_NO_WOL)
  5531. return -EINVAL;
  5532. bp->wol = 1;
  5533. }
  5534. else {
  5535. bp->wol = 0;
  5536. }
  5537. return 0;
  5538. }
  5539. static int
  5540. bnx2_nway_reset(struct net_device *dev)
  5541. {
  5542. struct bnx2 *bp = netdev_priv(dev);
  5543. u32 bmcr;
  5544. if (!netif_running(dev))
  5545. return -EAGAIN;
  5546. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5547. return -EINVAL;
  5548. }
  5549. spin_lock_bh(&bp->phy_lock);
  5550. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5551. int rc;
  5552. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5553. spin_unlock_bh(&bp->phy_lock);
  5554. return rc;
  5555. }
  5556. /* Force a link down visible on the other side */
  5557. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5558. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5559. spin_unlock_bh(&bp->phy_lock);
  5560. msleep(20);
  5561. spin_lock_bh(&bp->phy_lock);
  5562. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5563. bp->serdes_an_pending = 1;
  5564. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5565. }
  5566. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5567. bmcr &= ~BMCR_LOOPBACK;
  5568. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5569. spin_unlock_bh(&bp->phy_lock);
  5570. return 0;
  5571. }
  5572. static u32
  5573. bnx2_get_link(struct net_device *dev)
  5574. {
  5575. struct bnx2 *bp = netdev_priv(dev);
  5576. return bp->link_up;
  5577. }
  5578. static int
  5579. bnx2_get_eeprom_len(struct net_device *dev)
  5580. {
  5581. struct bnx2 *bp = netdev_priv(dev);
  5582. if (bp->flash_info == NULL)
  5583. return 0;
  5584. return (int) bp->flash_size;
  5585. }
  5586. static int
  5587. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5588. u8 *eebuf)
  5589. {
  5590. struct bnx2 *bp = netdev_priv(dev);
  5591. int rc;
  5592. if (!netif_running(dev))
  5593. return -EAGAIN;
  5594. /* parameters already validated in ethtool_get_eeprom */
  5595. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5596. return rc;
  5597. }
  5598. static int
  5599. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5600. u8 *eebuf)
  5601. {
  5602. struct bnx2 *bp = netdev_priv(dev);
  5603. int rc;
  5604. if (!netif_running(dev))
  5605. return -EAGAIN;
  5606. /* parameters already validated in ethtool_set_eeprom */
  5607. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5608. return rc;
  5609. }
  5610. static int
  5611. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5612. {
  5613. struct bnx2 *bp = netdev_priv(dev);
  5614. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5615. coal->rx_coalesce_usecs = bp->rx_ticks;
  5616. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5617. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5618. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5619. coal->tx_coalesce_usecs = bp->tx_ticks;
  5620. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5621. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5622. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5623. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5624. return 0;
  5625. }
  5626. static int
  5627. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5628. {
  5629. struct bnx2 *bp = netdev_priv(dev);
  5630. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5631. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5632. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5633. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5634. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5635. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5636. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5637. if (bp->rx_quick_cons_trip_int > 0xff)
  5638. bp->rx_quick_cons_trip_int = 0xff;
  5639. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5640. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5641. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5642. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5643. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5644. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5645. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5646. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5647. 0xff;
  5648. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5649. if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
  5650. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5651. bp->stats_ticks = USEC_PER_SEC;
  5652. }
  5653. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5654. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5655. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5656. if (netif_running(bp->dev)) {
  5657. bnx2_netif_stop(bp);
  5658. bnx2_init_nic(bp, 0);
  5659. bnx2_netif_start(bp);
  5660. }
  5661. return 0;
  5662. }
  5663. static void
  5664. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5665. {
  5666. struct bnx2 *bp = netdev_priv(dev);
  5667. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  5668. ering->rx_mini_max_pending = 0;
  5669. ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
  5670. ering->rx_pending = bp->rx_ring_size;
  5671. ering->rx_mini_pending = 0;
  5672. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5673. ering->tx_max_pending = MAX_TX_DESC_CNT;
  5674. ering->tx_pending = bp->tx_ring_size;
  5675. }
  5676. static int
  5677. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
  5678. {
  5679. if (netif_running(bp->dev)) {
  5680. bnx2_netif_stop(bp);
  5681. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5682. bnx2_free_skbs(bp);
  5683. bnx2_free_mem(bp);
  5684. }
  5685. bnx2_set_rx_ring_size(bp, rx);
  5686. bp->tx_ring_size = tx;
  5687. if (netif_running(bp->dev)) {
  5688. int rc;
  5689. rc = bnx2_alloc_mem(bp);
  5690. if (!rc)
  5691. rc = bnx2_init_nic(bp, 0);
  5692. if (rc) {
  5693. bnx2_napi_enable(bp);
  5694. dev_close(bp->dev);
  5695. return rc;
  5696. }
  5697. bnx2_netif_start(bp);
  5698. }
  5699. return 0;
  5700. }
  5701. static int
  5702. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5703. {
  5704. struct bnx2 *bp = netdev_priv(dev);
  5705. int rc;
  5706. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  5707. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  5708. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  5709. return -EINVAL;
  5710. }
  5711. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
  5712. return rc;
  5713. }
  5714. static void
  5715. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5716. {
  5717. struct bnx2 *bp = netdev_priv(dev);
  5718. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  5719. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  5720. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  5721. }
  5722. static int
  5723. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5724. {
  5725. struct bnx2 *bp = netdev_priv(dev);
  5726. bp->req_flow_ctrl = 0;
  5727. if (epause->rx_pause)
  5728. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  5729. if (epause->tx_pause)
  5730. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  5731. if (epause->autoneg) {
  5732. bp->autoneg |= AUTONEG_FLOW_CTRL;
  5733. }
  5734. else {
  5735. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  5736. }
  5737. if (netif_running(dev)) {
  5738. spin_lock_bh(&bp->phy_lock);
  5739. bnx2_setup_phy(bp, bp->phy_port);
  5740. spin_unlock_bh(&bp->phy_lock);
  5741. }
  5742. return 0;
  5743. }
  5744. static u32
  5745. bnx2_get_rx_csum(struct net_device *dev)
  5746. {
  5747. struct bnx2 *bp = netdev_priv(dev);
  5748. return bp->rx_csum;
  5749. }
  5750. static int
  5751. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  5752. {
  5753. struct bnx2 *bp = netdev_priv(dev);
  5754. bp->rx_csum = data;
  5755. return 0;
  5756. }
  5757. static int
  5758. bnx2_set_tso(struct net_device *dev, u32 data)
  5759. {
  5760. struct bnx2 *bp = netdev_priv(dev);
  5761. if (data) {
  5762. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  5763. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5764. dev->features |= NETIF_F_TSO6;
  5765. } else
  5766. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
  5767. NETIF_F_TSO_ECN);
  5768. return 0;
  5769. }
  5770. static struct {
  5771. char string[ETH_GSTRING_LEN];
  5772. } bnx2_stats_str_arr[] = {
  5773. { "rx_bytes" },
  5774. { "rx_error_bytes" },
  5775. { "tx_bytes" },
  5776. { "tx_error_bytes" },
  5777. { "rx_ucast_packets" },
  5778. { "rx_mcast_packets" },
  5779. { "rx_bcast_packets" },
  5780. { "tx_ucast_packets" },
  5781. { "tx_mcast_packets" },
  5782. { "tx_bcast_packets" },
  5783. { "tx_mac_errors" },
  5784. { "tx_carrier_errors" },
  5785. { "rx_crc_errors" },
  5786. { "rx_align_errors" },
  5787. { "tx_single_collisions" },
  5788. { "tx_multi_collisions" },
  5789. { "tx_deferred" },
  5790. { "tx_excess_collisions" },
  5791. { "tx_late_collisions" },
  5792. { "tx_total_collisions" },
  5793. { "rx_fragments" },
  5794. { "rx_jabbers" },
  5795. { "rx_undersize_packets" },
  5796. { "rx_oversize_packets" },
  5797. { "rx_64_byte_packets" },
  5798. { "rx_65_to_127_byte_packets" },
  5799. { "rx_128_to_255_byte_packets" },
  5800. { "rx_256_to_511_byte_packets" },
  5801. { "rx_512_to_1023_byte_packets" },
  5802. { "rx_1024_to_1522_byte_packets" },
  5803. { "rx_1523_to_9022_byte_packets" },
  5804. { "tx_64_byte_packets" },
  5805. { "tx_65_to_127_byte_packets" },
  5806. { "tx_128_to_255_byte_packets" },
  5807. { "tx_256_to_511_byte_packets" },
  5808. { "tx_512_to_1023_byte_packets" },
  5809. { "tx_1024_to_1522_byte_packets" },
  5810. { "tx_1523_to_9022_byte_packets" },
  5811. { "rx_xon_frames" },
  5812. { "rx_xoff_frames" },
  5813. { "tx_xon_frames" },
  5814. { "tx_xoff_frames" },
  5815. { "rx_mac_ctrl_frames" },
  5816. { "rx_filtered_packets" },
  5817. { "rx_ftq_discards" },
  5818. { "rx_discards" },
  5819. { "rx_fw_discards" },
  5820. };
  5821. #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
  5822. sizeof(bnx2_stats_str_arr[0]))
  5823. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  5824. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  5825. STATS_OFFSET32(stat_IfHCInOctets_hi),
  5826. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  5827. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  5828. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  5829. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  5830. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  5831. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  5832. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  5833. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  5834. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  5835. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  5836. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  5837. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  5838. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  5839. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  5840. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  5841. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  5842. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  5843. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  5844. STATS_OFFSET32(stat_EtherStatsCollisions),
  5845. STATS_OFFSET32(stat_EtherStatsFragments),
  5846. STATS_OFFSET32(stat_EtherStatsJabbers),
  5847. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  5848. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  5849. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  5850. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  5851. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  5852. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  5853. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  5854. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  5855. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  5856. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  5857. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  5858. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  5859. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  5860. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  5861. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  5862. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  5863. STATS_OFFSET32(stat_XonPauseFramesReceived),
  5864. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  5865. STATS_OFFSET32(stat_OutXonSent),
  5866. STATS_OFFSET32(stat_OutXoffSent),
  5867. STATS_OFFSET32(stat_MacControlFramesReceived),
  5868. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  5869. STATS_OFFSET32(stat_IfInFTQDiscards),
  5870. STATS_OFFSET32(stat_IfInMBUFDiscards),
  5871. STATS_OFFSET32(stat_FwRxDrop),
  5872. };
  5873. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  5874. * skipped because of errata.
  5875. */
  5876. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  5877. 8,0,8,8,8,8,8,8,8,8,
  5878. 4,0,4,4,4,4,4,4,4,4,
  5879. 4,4,4,4,4,4,4,4,4,4,
  5880. 4,4,4,4,4,4,4,4,4,4,
  5881. 4,4,4,4,4,4,4,
  5882. };
  5883. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  5884. 8,0,8,8,8,8,8,8,8,8,
  5885. 4,4,4,4,4,4,4,4,4,4,
  5886. 4,4,4,4,4,4,4,4,4,4,
  5887. 4,4,4,4,4,4,4,4,4,4,
  5888. 4,4,4,4,4,4,4,
  5889. };
  5890. #define BNX2_NUM_TESTS 6
  5891. static struct {
  5892. char string[ETH_GSTRING_LEN];
  5893. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  5894. { "register_test (offline)" },
  5895. { "memory_test (offline)" },
  5896. { "loopback_test (offline)" },
  5897. { "nvram_test (online)" },
  5898. { "interrupt_test (online)" },
  5899. { "link_test (online)" },
  5900. };
  5901. static int
  5902. bnx2_get_sset_count(struct net_device *dev, int sset)
  5903. {
  5904. switch (sset) {
  5905. case ETH_SS_TEST:
  5906. return BNX2_NUM_TESTS;
  5907. case ETH_SS_STATS:
  5908. return BNX2_NUM_STATS;
  5909. default:
  5910. return -EOPNOTSUPP;
  5911. }
  5912. }
  5913. static void
  5914. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  5915. {
  5916. struct bnx2 *bp = netdev_priv(dev);
  5917. bnx2_set_power_state(bp, PCI_D0);
  5918. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  5919. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  5920. int i;
  5921. bnx2_netif_stop(bp);
  5922. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  5923. bnx2_free_skbs(bp);
  5924. if (bnx2_test_registers(bp) != 0) {
  5925. buf[0] = 1;
  5926. etest->flags |= ETH_TEST_FL_FAILED;
  5927. }
  5928. if (bnx2_test_memory(bp) != 0) {
  5929. buf[1] = 1;
  5930. etest->flags |= ETH_TEST_FL_FAILED;
  5931. }
  5932. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  5933. etest->flags |= ETH_TEST_FL_FAILED;
  5934. if (!netif_running(bp->dev))
  5935. bnx2_shutdown_chip(bp);
  5936. else {
  5937. bnx2_init_nic(bp, 1);
  5938. bnx2_netif_start(bp);
  5939. }
  5940. /* wait for link up */
  5941. for (i = 0; i < 7; i++) {
  5942. if (bp->link_up)
  5943. break;
  5944. msleep_interruptible(1000);
  5945. }
  5946. }
  5947. if (bnx2_test_nvram(bp) != 0) {
  5948. buf[3] = 1;
  5949. etest->flags |= ETH_TEST_FL_FAILED;
  5950. }
  5951. if (bnx2_test_intr(bp) != 0) {
  5952. buf[4] = 1;
  5953. etest->flags |= ETH_TEST_FL_FAILED;
  5954. }
  5955. if (bnx2_test_link(bp) != 0) {
  5956. buf[5] = 1;
  5957. etest->flags |= ETH_TEST_FL_FAILED;
  5958. }
  5959. if (!netif_running(bp->dev))
  5960. bnx2_set_power_state(bp, PCI_D3hot);
  5961. }
  5962. static void
  5963. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  5964. {
  5965. switch (stringset) {
  5966. case ETH_SS_STATS:
  5967. memcpy(buf, bnx2_stats_str_arr,
  5968. sizeof(bnx2_stats_str_arr));
  5969. break;
  5970. case ETH_SS_TEST:
  5971. memcpy(buf, bnx2_tests_str_arr,
  5972. sizeof(bnx2_tests_str_arr));
  5973. break;
  5974. }
  5975. }
  5976. static void
  5977. bnx2_get_ethtool_stats(struct net_device *dev,
  5978. struct ethtool_stats *stats, u64 *buf)
  5979. {
  5980. struct bnx2 *bp = netdev_priv(dev);
  5981. int i;
  5982. u32 *hw_stats = (u32 *) bp->stats_blk;
  5983. u8 *stats_len_arr = NULL;
  5984. if (hw_stats == NULL) {
  5985. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  5986. return;
  5987. }
  5988. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  5989. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  5990. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  5991. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5992. stats_len_arr = bnx2_5706_stats_len_arr;
  5993. else
  5994. stats_len_arr = bnx2_5708_stats_len_arr;
  5995. for (i = 0; i < BNX2_NUM_STATS; i++) {
  5996. if (stats_len_arr[i] == 0) {
  5997. /* skip this counter */
  5998. buf[i] = 0;
  5999. continue;
  6000. }
  6001. if (stats_len_arr[i] == 4) {
  6002. /* 4-byte counter */
  6003. buf[i] = (u64)
  6004. *(hw_stats + bnx2_stats_offset_arr[i]);
  6005. continue;
  6006. }
  6007. /* 8-byte counter */
  6008. buf[i] = (((u64) *(hw_stats +
  6009. bnx2_stats_offset_arr[i])) << 32) +
  6010. *(hw_stats + bnx2_stats_offset_arr[i] + 1);
  6011. }
  6012. }
  6013. static int
  6014. bnx2_phys_id(struct net_device *dev, u32 data)
  6015. {
  6016. struct bnx2 *bp = netdev_priv(dev);
  6017. int i;
  6018. u32 save;
  6019. bnx2_set_power_state(bp, PCI_D0);
  6020. if (data == 0)
  6021. data = 2;
  6022. save = REG_RD(bp, BNX2_MISC_CFG);
  6023. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6024. for (i = 0; i < (data * 2); i++) {
  6025. if ((i % 2) == 0) {
  6026. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6027. }
  6028. else {
  6029. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6030. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6031. BNX2_EMAC_LED_100MB_OVERRIDE |
  6032. BNX2_EMAC_LED_10MB_OVERRIDE |
  6033. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6034. BNX2_EMAC_LED_TRAFFIC);
  6035. }
  6036. msleep_interruptible(500);
  6037. if (signal_pending(current))
  6038. break;
  6039. }
  6040. REG_WR(bp, BNX2_EMAC_LED, 0);
  6041. REG_WR(bp, BNX2_MISC_CFG, save);
  6042. if (!netif_running(dev))
  6043. bnx2_set_power_state(bp, PCI_D3hot);
  6044. return 0;
  6045. }
  6046. static int
  6047. bnx2_set_tx_csum(struct net_device *dev, u32 data)
  6048. {
  6049. struct bnx2 *bp = netdev_priv(dev);
  6050. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6051. return (ethtool_op_set_tx_ipv6_csum(dev, data));
  6052. else
  6053. return (ethtool_op_set_tx_csum(dev, data));
  6054. }
  6055. static const struct ethtool_ops bnx2_ethtool_ops = {
  6056. .get_settings = bnx2_get_settings,
  6057. .set_settings = bnx2_set_settings,
  6058. .get_drvinfo = bnx2_get_drvinfo,
  6059. .get_regs_len = bnx2_get_regs_len,
  6060. .get_regs = bnx2_get_regs,
  6061. .get_wol = bnx2_get_wol,
  6062. .set_wol = bnx2_set_wol,
  6063. .nway_reset = bnx2_nway_reset,
  6064. .get_link = bnx2_get_link,
  6065. .get_eeprom_len = bnx2_get_eeprom_len,
  6066. .get_eeprom = bnx2_get_eeprom,
  6067. .set_eeprom = bnx2_set_eeprom,
  6068. .get_coalesce = bnx2_get_coalesce,
  6069. .set_coalesce = bnx2_set_coalesce,
  6070. .get_ringparam = bnx2_get_ringparam,
  6071. .set_ringparam = bnx2_set_ringparam,
  6072. .get_pauseparam = bnx2_get_pauseparam,
  6073. .set_pauseparam = bnx2_set_pauseparam,
  6074. .get_rx_csum = bnx2_get_rx_csum,
  6075. .set_rx_csum = bnx2_set_rx_csum,
  6076. .set_tx_csum = bnx2_set_tx_csum,
  6077. .set_sg = ethtool_op_set_sg,
  6078. .set_tso = bnx2_set_tso,
  6079. .self_test = bnx2_self_test,
  6080. .get_strings = bnx2_get_strings,
  6081. .phys_id = bnx2_phys_id,
  6082. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6083. .get_sset_count = bnx2_get_sset_count,
  6084. };
  6085. /* Called with rtnl_lock */
  6086. static int
  6087. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6088. {
  6089. struct mii_ioctl_data *data = if_mii(ifr);
  6090. struct bnx2 *bp = netdev_priv(dev);
  6091. int err;
  6092. switch(cmd) {
  6093. case SIOCGMIIPHY:
  6094. data->phy_id = bp->phy_addr;
  6095. /* fallthru */
  6096. case SIOCGMIIREG: {
  6097. u32 mii_regval;
  6098. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6099. return -EOPNOTSUPP;
  6100. if (!netif_running(dev))
  6101. return -EAGAIN;
  6102. spin_lock_bh(&bp->phy_lock);
  6103. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6104. spin_unlock_bh(&bp->phy_lock);
  6105. data->val_out = mii_regval;
  6106. return err;
  6107. }
  6108. case SIOCSMIIREG:
  6109. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6110. return -EOPNOTSUPP;
  6111. if (!netif_running(dev))
  6112. return -EAGAIN;
  6113. spin_lock_bh(&bp->phy_lock);
  6114. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6115. spin_unlock_bh(&bp->phy_lock);
  6116. return err;
  6117. default:
  6118. /* do nothing */
  6119. break;
  6120. }
  6121. return -EOPNOTSUPP;
  6122. }
  6123. /* Called with rtnl_lock */
  6124. static int
  6125. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6126. {
  6127. struct sockaddr *addr = p;
  6128. struct bnx2 *bp = netdev_priv(dev);
  6129. if (!is_valid_ether_addr(addr->sa_data))
  6130. return -EINVAL;
  6131. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6132. if (netif_running(dev))
  6133. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6134. return 0;
  6135. }
  6136. /* Called with rtnl_lock */
  6137. static int
  6138. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6139. {
  6140. struct bnx2 *bp = netdev_priv(dev);
  6141. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6142. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6143. return -EINVAL;
  6144. dev->mtu = new_mtu;
  6145. return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
  6146. }
  6147. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  6148. static void
  6149. poll_bnx2(struct net_device *dev)
  6150. {
  6151. struct bnx2 *bp = netdev_priv(dev);
  6152. int i;
  6153. for (i = 0; i < bp->irq_nvecs; i++) {
  6154. disable_irq(bp->irq_tbl[i].vector);
  6155. bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
  6156. enable_irq(bp->irq_tbl[i].vector);
  6157. }
  6158. }
  6159. #endif
  6160. static void __devinit
  6161. bnx2_get_5709_media(struct bnx2 *bp)
  6162. {
  6163. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6164. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6165. u32 strap;
  6166. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6167. return;
  6168. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6169. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6170. return;
  6171. }
  6172. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6173. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6174. else
  6175. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6176. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  6177. switch (strap) {
  6178. case 0x4:
  6179. case 0x5:
  6180. case 0x6:
  6181. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6182. return;
  6183. }
  6184. } else {
  6185. switch (strap) {
  6186. case 0x1:
  6187. case 0x2:
  6188. case 0x4:
  6189. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6190. return;
  6191. }
  6192. }
  6193. }
  6194. static void __devinit
  6195. bnx2_get_pci_speed(struct bnx2 *bp)
  6196. {
  6197. u32 reg;
  6198. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6199. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6200. u32 clkreg;
  6201. bp->flags |= BNX2_FLAG_PCIX;
  6202. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6203. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6204. switch (clkreg) {
  6205. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6206. bp->bus_speed_mhz = 133;
  6207. break;
  6208. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6209. bp->bus_speed_mhz = 100;
  6210. break;
  6211. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6212. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6213. bp->bus_speed_mhz = 66;
  6214. break;
  6215. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6216. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6217. bp->bus_speed_mhz = 50;
  6218. break;
  6219. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6220. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6221. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6222. bp->bus_speed_mhz = 33;
  6223. break;
  6224. }
  6225. }
  6226. else {
  6227. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6228. bp->bus_speed_mhz = 66;
  6229. else
  6230. bp->bus_speed_mhz = 33;
  6231. }
  6232. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6233. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6234. }
  6235. static int __devinit
  6236. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6237. {
  6238. struct bnx2 *bp;
  6239. unsigned long mem_len;
  6240. int rc, i, j;
  6241. u32 reg;
  6242. u64 dma_mask, persist_dma_mask;
  6243. SET_NETDEV_DEV(dev, &pdev->dev);
  6244. bp = netdev_priv(dev);
  6245. bp->flags = 0;
  6246. bp->phy_flags = 0;
  6247. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6248. rc = pci_enable_device(pdev);
  6249. if (rc) {
  6250. dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
  6251. goto err_out;
  6252. }
  6253. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6254. dev_err(&pdev->dev,
  6255. "Cannot find PCI device base address, aborting.\n");
  6256. rc = -ENODEV;
  6257. goto err_out_disable;
  6258. }
  6259. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6260. if (rc) {
  6261. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
  6262. goto err_out_disable;
  6263. }
  6264. pci_set_master(pdev);
  6265. pci_save_state(pdev);
  6266. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  6267. if (bp->pm_cap == 0) {
  6268. dev_err(&pdev->dev,
  6269. "Cannot find power management capability, aborting.\n");
  6270. rc = -EIO;
  6271. goto err_out_release;
  6272. }
  6273. bp->dev = dev;
  6274. bp->pdev = pdev;
  6275. spin_lock_init(&bp->phy_lock);
  6276. spin_lock_init(&bp->indirect_lock);
  6277. #ifdef BCM_CNIC
  6278. mutex_init(&bp->cnic_lock);
  6279. #endif
  6280. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6281. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  6282. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
  6283. dev->mem_end = dev->mem_start + mem_len;
  6284. dev->irq = pdev->irq;
  6285. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  6286. if (!bp->regview) {
  6287. dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
  6288. rc = -ENOMEM;
  6289. goto err_out_release;
  6290. }
  6291. /* Configure byte swap and enable write to the reg_window registers.
  6292. * Rely on CPU to do target byte swapping on big endian systems
  6293. * The chip's target access swapping will not swap all accesses
  6294. */
  6295. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  6296. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6297. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6298. bnx2_set_power_state(bp, PCI_D0);
  6299. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  6300. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6301. if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
  6302. dev_err(&pdev->dev,
  6303. "Cannot find PCIE capability, aborting.\n");
  6304. rc = -EIO;
  6305. goto err_out_unmap;
  6306. }
  6307. bp->flags |= BNX2_FLAG_PCIE;
  6308. if (CHIP_REV(bp) == CHIP_REV_Ax)
  6309. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6310. } else {
  6311. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6312. if (bp->pcix_cap == 0) {
  6313. dev_err(&pdev->dev,
  6314. "Cannot find PCIX capability, aborting.\n");
  6315. rc = -EIO;
  6316. goto err_out_unmap;
  6317. }
  6318. bp->flags |= BNX2_FLAG_BROKEN_STATS;
  6319. }
  6320. if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
  6321. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
  6322. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6323. }
  6324. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  6325. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  6326. bp->flags |= BNX2_FLAG_MSI_CAP;
  6327. }
  6328. /* 5708 cannot support DMA addresses > 40-bit. */
  6329. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  6330. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6331. else
  6332. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6333. /* Configure DMA attributes. */
  6334. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6335. dev->features |= NETIF_F_HIGHDMA;
  6336. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6337. if (rc) {
  6338. dev_err(&pdev->dev,
  6339. "pci_set_consistent_dma_mask failed, aborting.\n");
  6340. goto err_out_unmap;
  6341. }
  6342. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6343. dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
  6344. goto err_out_unmap;
  6345. }
  6346. if (!(bp->flags & BNX2_FLAG_PCIE))
  6347. bnx2_get_pci_speed(bp);
  6348. /* 5706A0 may falsely detect SERR and PERR. */
  6349. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6350. reg = REG_RD(bp, PCI_COMMAND);
  6351. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6352. REG_WR(bp, PCI_COMMAND, reg);
  6353. }
  6354. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  6355. !(bp->flags & BNX2_FLAG_PCIX)) {
  6356. dev_err(&pdev->dev,
  6357. "5706 A1 can only be used in a PCIX bus, aborting.\n");
  6358. goto err_out_unmap;
  6359. }
  6360. bnx2_init_nvram(bp);
  6361. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6362. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6363. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6364. u32 off = PCI_FUNC(pdev->devfn) << 2;
  6365. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6366. } else
  6367. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6368. /* Get the permanent MAC address. First we need to make sure the
  6369. * firmware is actually running.
  6370. */
  6371. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6372. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6373. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6374. dev_err(&pdev->dev, "Firmware not running, aborting.\n");
  6375. rc = -ENODEV;
  6376. goto err_out_unmap;
  6377. }
  6378. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6379. for (i = 0, j = 0; i < 3; i++) {
  6380. u8 num, k, skip0;
  6381. num = (u8) (reg >> (24 - (i * 8)));
  6382. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6383. if (num >= k || !skip0 || k == 1) {
  6384. bp->fw_version[j++] = (num / k) + '0';
  6385. skip0 = 0;
  6386. }
  6387. }
  6388. if (i != 2)
  6389. bp->fw_version[j++] = '.';
  6390. }
  6391. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6392. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6393. bp->wol = 1;
  6394. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6395. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6396. for (i = 0; i < 30; i++) {
  6397. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6398. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6399. break;
  6400. msleep(10);
  6401. }
  6402. }
  6403. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6404. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6405. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6406. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6407. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6408. bp->fw_version[j++] = ' ';
  6409. for (i = 0; i < 3; i++) {
  6410. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6411. reg = swab32(reg);
  6412. memcpy(&bp->fw_version[j], &reg, 4);
  6413. j += 4;
  6414. }
  6415. }
  6416. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6417. bp->mac_addr[0] = (u8) (reg >> 8);
  6418. bp->mac_addr[1] = (u8) reg;
  6419. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6420. bp->mac_addr[2] = (u8) (reg >> 24);
  6421. bp->mac_addr[3] = (u8) (reg >> 16);
  6422. bp->mac_addr[4] = (u8) (reg >> 8);
  6423. bp->mac_addr[5] = (u8) reg;
  6424. bp->tx_ring_size = MAX_TX_DESC_CNT;
  6425. bnx2_set_rx_ring_size(bp, 255);
  6426. bp->rx_csum = 1;
  6427. bp->tx_quick_cons_trip_int = 2;
  6428. bp->tx_quick_cons_trip = 20;
  6429. bp->tx_ticks_int = 18;
  6430. bp->tx_ticks = 80;
  6431. bp->rx_quick_cons_trip_int = 2;
  6432. bp->rx_quick_cons_trip = 12;
  6433. bp->rx_ticks_int = 18;
  6434. bp->rx_ticks = 18;
  6435. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6436. bp->current_interval = BNX2_TIMER_INTERVAL;
  6437. bp->phy_addr = 1;
  6438. /* Disable WOL support if we are running on a SERDES chip. */
  6439. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6440. bnx2_get_5709_media(bp);
  6441. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  6442. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6443. bp->phy_port = PORT_TP;
  6444. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6445. bp->phy_port = PORT_FIBRE;
  6446. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6447. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6448. bp->flags |= BNX2_FLAG_NO_WOL;
  6449. bp->wol = 0;
  6450. }
  6451. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  6452. /* Don't do parallel detect on this board because of
  6453. * some board problems. The link will not go down
  6454. * if we do parallel detect.
  6455. */
  6456. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6457. pdev->subsystem_device == 0x310c)
  6458. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6459. } else {
  6460. bp->phy_addr = 2;
  6461. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6462. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6463. }
  6464. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  6465. CHIP_NUM(bp) == CHIP_NUM_5708)
  6466. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6467. else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
  6468. (CHIP_REV(bp) == CHIP_REV_Ax ||
  6469. CHIP_REV(bp) == CHIP_REV_Bx))
  6470. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6471. bnx2_init_fw_cap(bp);
  6472. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  6473. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  6474. (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
  6475. !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6476. bp->flags |= BNX2_FLAG_NO_WOL;
  6477. bp->wol = 0;
  6478. }
  6479. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6480. bp->tx_quick_cons_trip_int =
  6481. bp->tx_quick_cons_trip;
  6482. bp->tx_ticks_int = bp->tx_ticks;
  6483. bp->rx_quick_cons_trip_int =
  6484. bp->rx_quick_cons_trip;
  6485. bp->rx_ticks_int = bp->rx_ticks;
  6486. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6487. bp->com_ticks_int = bp->com_ticks;
  6488. bp->cmd_ticks_int = bp->cmd_ticks;
  6489. }
  6490. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6491. *
  6492. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6493. * with byte enables disabled on the unused 32-bit word. This is legal
  6494. * but causes problems on the AMD 8132 which will eventually stop
  6495. * responding after a while.
  6496. *
  6497. * AMD believes this incompatibility is unique to the 5706, and
  6498. * prefers to locally disable MSI rather than globally disabling it.
  6499. */
  6500. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  6501. struct pci_dev *amd_8132 = NULL;
  6502. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6503. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6504. amd_8132))) {
  6505. if (amd_8132->revision >= 0x10 &&
  6506. amd_8132->revision <= 0x13) {
  6507. disable_msi = 1;
  6508. pci_dev_put(amd_8132);
  6509. break;
  6510. }
  6511. }
  6512. }
  6513. bnx2_set_default_link(bp);
  6514. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6515. init_timer(&bp->timer);
  6516. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6517. bp->timer.data = (unsigned long) bp;
  6518. bp->timer.function = bnx2_timer;
  6519. return 0;
  6520. err_out_unmap:
  6521. if (bp->regview) {
  6522. iounmap(bp->regview);
  6523. bp->regview = NULL;
  6524. }
  6525. err_out_release:
  6526. pci_release_regions(pdev);
  6527. err_out_disable:
  6528. pci_disable_device(pdev);
  6529. pci_set_drvdata(pdev, NULL);
  6530. err_out:
  6531. return rc;
  6532. }
  6533. static char * __devinit
  6534. bnx2_bus_string(struct bnx2 *bp, char *str)
  6535. {
  6536. char *s = str;
  6537. if (bp->flags & BNX2_FLAG_PCIE) {
  6538. s += sprintf(s, "PCI Express");
  6539. } else {
  6540. s += sprintf(s, "PCI");
  6541. if (bp->flags & BNX2_FLAG_PCIX)
  6542. s += sprintf(s, "-X");
  6543. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6544. s += sprintf(s, " 32-bit");
  6545. else
  6546. s += sprintf(s, " 64-bit");
  6547. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6548. }
  6549. return str;
  6550. }
  6551. static void __devinit
  6552. bnx2_init_napi(struct bnx2 *bp)
  6553. {
  6554. int i;
  6555. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  6556. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6557. int (*poll)(struct napi_struct *, int);
  6558. if (i == 0)
  6559. poll = bnx2_poll;
  6560. else
  6561. poll = bnx2_poll_msix;
  6562. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6563. bnapi->bp = bp;
  6564. }
  6565. }
  6566. static const struct net_device_ops bnx2_netdev_ops = {
  6567. .ndo_open = bnx2_open,
  6568. .ndo_start_xmit = bnx2_start_xmit,
  6569. .ndo_stop = bnx2_close,
  6570. .ndo_get_stats = bnx2_get_stats,
  6571. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6572. .ndo_do_ioctl = bnx2_ioctl,
  6573. .ndo_validate_addr = eth_validate_addr,
  6574. .ndo_set_mac_address = bnx2_change_mac_addr,
  6575. .ndo_change_mtu = bnx2_change_mtu,
  6576. .ndo_tx_timeout = bnx2_tx_timeout,
  6577. #ifdef BCM_VLAN
  6578. .ndo_vlan_rx_register = bnx2_vlan_rx_register,
  6579. #endif
  6580. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  6581. .ndo_poll_controller = poll_bnx2,
  6582. #endif
  6583. };
  6584. static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
  6585. {
  6586. #ifdef BCM_VLAN
  6587. dev->vlan_features |= flags;
  6588. #endif
  6589. }
  6590. static int __devinit
  6591. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  6592. {
  6593. static int version_printed = 0;
  6594. struct net_device *dev = NULL;
  6595. struct bnx2 *bp;
  6596. int rc;
  6597. char str[40];
  6598. if (version_printed++ == 0)
  6599. printk(KERN_INFO "%s", version);
  6600. /* dev zeroed in init_etherdev */
  6601. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  6602. if (!dev)
  6603. return -ENOMEM;
  6604. rc = bnx2_init_board(pdev, dev);
  6605. if (rc < 0) {
  6606. free_netdev(dev);
  6607. return rc;
  6608. }
  6609. dev->netdev_ops = &bnx2_netdev_ops;
  6610. dev->watchdog_timeo = TX_TIMEOUT;
  6611. dev->ethtool_ops = &bnx2_ethtool_ops;
  6612. bp = netdev_priv(dev);
  6613. bnx2_init_napi(bp);
  6614. pci_set_drvdata(pdev, dev);
  6615. rc = bnx2_request_firmware(bp);
  6616. if (rc)
  6617. goto error;
  6618. memcpy(dev->dev_addr, bp->mac_addr, 6);
  6619. memcpy(dev->perm_addr, bp->mac_addr, 6);
  6620. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  6621. vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
  6622. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6623. dev->features |= NETIF_F_IPV6_CSUM;
  6624. vlan_features_add(dev, NETIF_F_IPV6_CSUM);
  6625. }
  6626. #ifdef BCM_VLAN
  6627. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6628. #endif
  6629. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  6630. vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
  6631. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6632. dev->features |= NETIF_F_TSO6;
  6633. vlan_features_add(dev, NETIF_F_TSO6);
  6634. }
  6635. if ((rc = register_netdev(dev))) {
  6636. dev_err(&pdev->dev, "Cannot register net device\n");
  6637. goto error;
  6638. }
  6639. printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
  6640. "IRQ %d, node addr %pM\n",
  6641. dev->name,
  6642. board_info[ent->driver_data].name,
  6643. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  6644. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  6645. bnx2_bus_string(bp, str),
  6646. dev->base_addr,
  6647. bp->pdev->irq, dev->dev_addr);
  6648. return 0;
  6649. error:
  6650. if (bp->mips_firmware)
  6651. release_firmware(bp->mips_firmware);
  6652. if (bp->rv2p_firmware)
  6653. release_firmware(bp->rv2p_firmware);
  6654. if (bp->regview)
  6655. iounmap(bp->regview);
  6656. pci_release_regions(pdev);
  6657. pci_disable_device(pdev);
  6658. pci_set_drvdata(pdev, NULL);
  6659. free_netdev(dev);
  6660. return rc;
  6661. }
  6662. static void __devexit
  6663. bnx2_remove_one(struct pci_dev *pdev)
  6664. {
  6665. struct net_device *dev = pci_get_drvdata(pdev);
  6666. struct bnx2 *bp = netdev_priv(dev);
  6667. flush_scheduled_work();
  6668. unregister_netdev(dev);
  6669. if (bp->mips_firmware)
  6670. release_firmware(bp->mips_firmware);
  6671. if (bp->rv2p_firmware)
  6672. release_firmware(bp->rv2p_firmware);
  6673. if (bp->regview)
  6674. iounmap(bp->regview);
  6675. free_netdev(dev);
  6676. pci_release_regions(pdev);
  6677. pci_disable_device(pdev);
  6678. pci_set_drvdata(pdev, NULL);
  6679. }
  6680. static int
  6681. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  6682. {
  6683. struct net_device *dev = pci_get_drvdata(pdev);
  6684. struct bnx2 *bp = netdev_priv(dev);
  6685. /* PCI register 4 needs to be saved whether netif_running() or not.
  6686. * MSI address and data need to be saved if using MSI and
  6687. * netif_running().
  6688. */
  6689. pci_save_state(pdev);
  6690. if (!netif_running(dev))
  6691. return 0;
  6692. flush_scheduled_work();
  6693. bnx2_netif_stop(bp);
  6694. netif_device_detach(dev);
  6695. del_timer_sync(&bp->timer);
  6696. bnx2_shutdown_chip(bp);
  6697. bnx2_free_skbs(bp);
  6698. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  6699. return 0;
  6700. }
  6701. static int
  6702. bnx2_resume(struct pci_dev *pdev)
  6703. {
  6704. struct net_device *dev = pci_get_drvdata(pdev);
  6705. struct bnx2 *bp = netdev_priv(dev);
  6706. pci_restore_state(pdev);
  6707. if (!netif_running(dev))
  6708. return 0;
  6709. bnx2_set_power_state(bp, PCI_D0);
  6710. netif_device_attach(dev);
  6711. bnx2_init_nic(bp, 1);
  6712. bnx2_netif_start(bp);
  6713. return 0;
  6714. }
  6715. /**
  6716. * bnx2_io_error_detected - called when PCI error is detected
  6717. * @pdev: Pointer to PCI device
  6718. * @state: The current pci connection state
  6719. *
  6720. * This function is called after a PCI bus error affecting
  6721. * this device has been detected.
  6722. */
  6723. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  6724. pci_channel_state_t state)
  6725. {
  6726. struct net_device *dev = pci_get_drvdata(pdev);
  6727. struct bnx2 *bp = netdev_priv(dev);
  6728. rtnl_lock();
  6729. netif_device_detach(dev);
  6730. if (state == pci_channel_io_perm_failure) {
  6731. rtnl_unlock();
  6732. return PCI_ERS_RESULT_DISCONNECT;
  6733. }
  6734. if (netif_running(dev)) {
  6735. bnx2_netif_stop(bp);
  6736. del_timer_sync(&bp->timer);
  6737. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  6738. }
  6739. pci_disable_device(pdev);
  6740. rtnl_unlock();
  6741. /* Request a slot slot reset. */
  6742. return PCI_ERS_RESULT_NEED_RESET;
  6743. }
  6744. /**
  6745. * bnx2_io_slot_reset - called after the pci bus has been reset.
  6746. * @pdev: Pointer to PCI device
  6747. *
  6748. * Restart the card from scratch, as if from a cold-boot.
  6749. */
  6750. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  6751. {
  6752. struct net_device *dev = pci_get_drvdata(pdev);
  6753. struct bnx2 *bp = netdev_priv(dev);
  6754. rtnl_lock();
  6755. if (pci_enable_device(pdev)) {
  6756. dev_err(&pdev->dev,
  6757. "Cannot re-enable PCI device after reset.\n");
  6758. rtnl_unlock();
  6759. return PCI_ERS_RESULT_DISCONNECT;
  6760. }
  6761. pci_set_master(pdev);
  6762. pci_restore_state(pdev);
  6763. if (netif_running(dev)) {
  6764. bnx2_set_power_state(bp, PCI_D0);
  6765. bnx2_init_nic(bp, 1);
  6766. }
  6767. rtnl_unlock();
  6768. return PCI_ERS_RESULT_RECOVERED;
  6769. }
  6770. /**
  6771. * bnx2_io_resume - called when traffic can start flowing again.
  6772. * @pdev: Pointer to PCI device
  6773. *
  6774. * This callback is called when the error recovery driver tells us that
  6775. * its OK to resume normal operation.
  6776. */
  6777. static void bnx2_io_resume(struct pci_dev *pdev)
  6778. {
  6779. struct net_device *dev = pci_get_drvdata(pdev);
  6780. struct bnx2 *bp = netdev_priv(dev);
  6781. rtnl_lock();
  6782. if (netif_running(dev))
  6783. bnx2_netif_start(bp);
  6784. netif_device_attach(dev);
  6785. rtnl_unlock();
  6786. }
  6787. static struct pci_error_handlers bnx2_err_handler = {
  6788. .error_detected = bnx2_io_error_detected,
  6789. .slot_reset = bnx2_io_slot_reset,
  6790. .resume = bnx2_io_resume,
  6791. };
  6792. static struct pci_driver bnx2_pci_driver = {
  6793. .name = DRV_MODULE_NAME,
  6794. .id_table = bnx2_pci_tbl,
  6795. .probe = bnx2_init_one,
  6796. .remove = __devexit_p(bnx2_remove_one),
  6797. .suspend = bnx2_suspend,
  6798. .resume = bnx2_resume,
  6799. .err_handler = &bnx2_err_handler,
  6800. };
  6801. static int __init bnx2_init(void)
  6802. {
  6803. return pci_register_driver(&bnx2_pci_driver);
  6804. }
  6805. static void __exit bnx2_cleanup(void)
  6806. {
  6807. pci_unregister_driver(&bnx2_pci_driver);
  6808. }
  6809. module_init(bnx2_init);
  6810. module_exit(bnx2_cleanup);