fork.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/nsproxy.h>
  30. #include <linux/capability.h>
  31. #include <linux/cpu.h>
  32. #include <linux/cgroup.h>
  33. #include <linux/security.h>
  34. #include <linux/hugetlb.h>
  35. #include <linux/swap.h>
  36. #include <linux/syscalls.h>
  37. #include <linux/jiffies.h>
  38. #include <linux/futex.h>
  39. #include <linux/compat.h>
  40. #include <linux/kthread.h>
  41. #include <linux/task_io_accounting_ops.h>
  42. #include <linux/rcupdate.h>
  43. #include <linux/ptrace.h>
  44. #include <linux/mount.h>
  45. #include <linux/audit.h>
  46. #include <linux/memcontrol.h>
  47. #include <linux/ftrace.h>
  48. #include <linux/profile.h>
  49. #include <linux/rmap.h>
  50. #include <linux/ksm.h>
  51. #include <linux/acct.h>
  52. #include <linux/tsacct_kern.h>
  53. #include <linux/cn_proc.h>
  54. #include <linux/freezer.h>
  55. #include <linux/delayacct.h>
  56. #include <linux/taskstats_kern.h>
  57. #include <linux/random.h>
  58. #include <linux/tty.h>
  59. #include <linux/blkdev.h>
  60. #include <linux/fs_struct.h>
  61. #include <linux/magic.h>
  62. #include <linux/perf_event.h>
  63. #include <linux/posix-timers.h>
  64. #include <linux/user-return-notifier.h>
  65. #include <linux/oom.h>
  66. #include <linux/khugepaged.h>
  67. #include <linux/signalfd.h>
  68. #include <asm/pgtable.h>
  69. #include <asm/pgalloc.h>
  70. #include <asm/uaccess.h>
  71. #include <asm/mmu_context.h>
  72. #include <asm/cacheflush.h>
  73. #include <asm/tlbflush.h>
  74. #include <trace/events/sched.h>
  75. #define CREATE_TRACE_POINTS
  76. #include <trace/events/task.h>
  77. /*
  78. * Protected counters by write_lock_irq(&tasklist_lock)
  79. */
  80. unsigned long total_forks; /* Handle normal Linux uptimes. */
  81. int nr_threads; /* The idle threads do not count.. */
  82. int max_threads; /* tunable limit on nr_threads */
  83. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  84. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  85. #ifdef CONFIG_PROVE_RCU
  86. int lockdep_tasklist_lock_is_held(void)
  87. {
  88. return lockdep_is_held(&tasklist_lock);
  89. }
  90. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  91. #endif /* #ifdef CONFIG_PROVE_RCU */
  92. int nr_processes(void)
  93. {
  94. int cpu;
  95. int total = 0;
  96. for_each_possible_cpu(cpu)
  97. total += per_cpu(process_counts, cpu);
  98. return total;
  99. }
  100. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  101. static struct kmem_cache *task_struct_cachep;
  102. static inline struct task_struct *alloc_task_struct_node(int node)
  103. {
  104. return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
  105. }
  106. void __weak arch_release_task_struct(struct task_struct *tsk) { }
  107. static inline void free_task_struct(struct task_struct *tsk)
  108. {
  109. arch_release_task_struct(tsk);
  110. kmem_cache_free(task_struct_cachep, tsk);
  111. }
  112. #endif
  113. #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
  114. void __weak arch_release_thread_info(struct thread_info *ti) { }
  115. /*
  116. * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
  117. * kmemcache based allocator.
  118. */
  119. # if THREAD_SIZE >= PAGE_SIZE
  120. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  121. int node)
  122. {
  123. struct page *page = alloc_pages_node(node, THREADINFO_GFP,
  124. THREAD_SIZE_ORDER);
  125. return page ? page_address(page) : NULL;
  126. }
  127. static inline void free_thread_info(struct thread_info *ti)
  128. {
  129. arch_release_thread_info(ti);
  130. free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  131. }
  132. # else
  133. static struct kmem_cache *thread_info_cache;
  134. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  135. int node)
  136. {
  137. return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
  138. }
  139. static void free_thread_info(struct thread_info *ti)
  140. {
  141. arch_release_thread_info(ti);
  142. kmem_cache_free(thread_info_cache, ti);
  143. }
  144. void thread_info_cache_init(void)
  145. {
  146. thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
  147. THREAD_SIZE, 0, NULL);
  148. BUG_ON(thread_info_cache == NULL);
  149. }
  150. # endif
  151. #endif
  152. /* SLAB cache for signal_struct structures (tsk->signal) */
  153. static struct kmem_cache *signal_cachep;
  154. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  155. struct kmem_cache *sighand_cachep;
  156. /* SLAB cache for files_struct structures (tsk->files) */
  157. struct kmem_cache *files_cachep;
  158. /* SLAB cache for fs_struct structures (tsk->fs) */
  159. struct kmem_cache *fs_cachep;
  160. /* SLAB cache for vm_area_struct structures */
  161. struct kmem_cache *vm_area_cachep;
  162. /* SLAB cache for mm_struct structures (tsk->mm) */
  163. static struct kmem_cache *mm_cachep;
  164. static void account_kernel_stack(struct thread_info *ti, int account)
  165. {
  166. struct zone *zone = page_zone(virt_to_page(ti));
  167. mod_zone_page_state(zone, NR_KERNEL_STACK, account);
  168. }
  169. void free_task(struct task_struct *tsk)
  170. {
  171. account_kernel_stack(tsk->stack, -1);
  172. free_thread_info(tsk->stack);
  173. rt_mutex_debug_task_free(tsk);
  174. ftrace_graph_exit_task(tsk);
  175. free_task_struct(tsk);
  176. }
  177. EXPORT_SYMBOL(free_task);
  178. static inline void free_signal_struct(struct signal_struct *sig)
  179. {
  180. taskstats_tgid_free(sig);
  181. sched_autogroup_exit(sig);
  182. kmem_cache_free(signal_cachep, sig);
  183. }
  184. static inline void put_signal_struct(struct signal_struct *sig)
  185. {
  186. if (atomic_dec_and_test(&sig->sigcnt))
  187. free_signal_struct(sig);
  188. }
  189. void __put_task_struct(struct task_struct *tsk)
  190. {
  191. WARN_ON(!tsk->exit_state);
  192. WARN_ON(atomic_read(&tsk->usage));
  193. WARN_ON(tsk == current);
  194. security_task_free(tsk);
  195. exit_creds(tsk);
  196. delayacct_tsk_free(tsk);
  197. put_signal_struct(tsk->signal);
  198. if (!profile_handoff_task(tsk))
  199. free_task(tsk);
  200. }
  201. EXPORT_SYMBOL_GPL(__put_task_struct);
  202. void __init __weak arch_task_cache_init(void) { }
  203. void __init fork_init(unsigned long mempages)
  204. {
  205. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  206. #ifndef ARCH_MIN_TASKALIGN
  207. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  208. #endif
  209. /* create a slab on which task_structs can be allocated */
  210. task_struct_cachep =
  211. kmem_cache_create("task_struct", sizeof(struct task_struct),
  212. ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
  213. #endif
  214. /* do the arch specific task caches init */
  215. arch_task_cache_init();
  216. /*
  217. * The default maximum number of threads is set to a safe
  218. * value: the thread structures can take up at most half
  219. * of memory.
  220. */
  221. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  222. /*
  223. * we need to allow at least 20 threads to boot a system
  224. */
  225. if (max_threads < 20)
  226. max_threads = 20;
  227. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  228. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  229. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  230. init_task.signal->rlim[RLIMIT_NPROC];
  231. }
  232. int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
  233. struct task_struct *src)
  234. {
  235. *dst = *src;
  236. return 0;
  237. }
  238. static struct task_struct *dup_task_struct(struct task_struct *orig)
  239. {
  240. struct task_struct *tsk;
  241. struct thread_info *ti;
  242. unsigned long *stackend;
  243. int node = tsk_fork_get_node(orig);
  244. int err;
  245. prepare_to_copy(orig);
  246. tsk = alloc_task_struct_node(node);
  247. if (!tsk)
  248. return NULL;
  249. ti = alloc_thread_info_node(tsk, node);
  250. if (!ti) {
  251. free_task_struct(tsk);
  252. return NULL;
  253. }
  254. err = arch_dup_task_struct(tsk, orig);
  255. if (err)
  256. goto out;
  257. tsk->stack = ti;
  258. setup_thread_stack(tsk, orig);
  259. clear_user_return_notifier(tsk);
  260. clear_tsk_need_resched(tsk);
  261. stackend = end_of_stack(tsk);
  262. *stackend = STACK_END_MAGIC; /* for overflow detection */
  263. #ifdef CONFIG_CC_STACKPROTECTOR
  264. tsk->stack_canary = get_random_int();
  265. #endif
  266. /*
  267. * One for us, one for whoever does the "release_task()" (usually
  268. * parent)
  269. */
  270. atomic_set(&tsk->usage, 2);
  271. #ifdef CONFIG_BLK_DEV_IO_TRACE
  272. tsk->btrace_seq = 0;
  273. #endif
  274. tsk->splice_pipe = NULL;
  275. account_kernel_stack(ti, 1);
  276. return tsk;
  277. out:
  278. free_thread_info(ti);
  279. free_task_struct(tsk);
  280. return NULL;
  281. }
  282. #ifdef CONFIG_MMU
  283. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  284. {
  285. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  286. struct rb_node **rb_link, *rb_parent;
  287. int retval;
  288. unsigned long charge;
  289. struct mempolicy *pol;
  290. down_write(&oldmm->mmap_sem);
  291. flush_cache_dup_mm(oldmm);
  292. /*
  293. * Not linked in yet - no deadlock potential:
  294. */
  295. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  296. mm->locked_vm = 0;
  297. mm->mmap = NULL;
  298. mm->mmap_cache = NULL;
  299. mm->free_area_cache = oldmm->mmap_base;
  300. mm->cached_hole_size = ~0UL;
  301. mm->map_count = 0;
  302. cpumask_clear(mm_cpumask(mm));
  303. mm->mm_rb = RB_ROOT;
  304. rb_link = &mm->mm_rb.rb_node;
  305. rb_parent = NULL;
  306. pprev = &mm->mmap;
  307. retval = ksm_fork(mm, oldmm);
  308. if (retval)
  309. goto out;
  310. retval = khugepaged_fork(mm, oldmm);
  311. if (retval)
  312. goto out;
  313. prev = NULL;
  314. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  315. struct file *file;
  316. if (mpnt->vm_flags & VM_DONTCOPY) {
  317. long pages = vma_pages(mpnt);
  318. mm->total_vm -= pages;
  319. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  320. -pages);
  321. continue;
  322. }
  323. charge = 0;
  324. if (mpnt->vm_flags & VM_ACCOUNT) {
  325. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  326. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  327. goto fail_nomem;
  328. charge = len;
  329. }
  330. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  331. if (!tmp)
  332. goto fail_nomem;
  333. *tmp = *mpnt;
  334. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  335. pol = mpol_dup(vma_policy(mpnt));
  336. retval = PTR_ERR(pol);
  337. if (IS_ERR(pol))
  338. goto fail_nomem_policy;
  339. vma_set_policy(tmp, pol);
  340. tmp->vm_mm = mm;
  341. if (anon_vma_fork(tmp, mpnt))
  342. goto fail_nomem_anon_vma_fork;
  343. tmp->vm_flags &= ~VM_LOCKED;
  344. tmp->vm_next = tmp->vm_prev = NULL;
  345. file = tmp->vm_file;
  346. if (file) {
  347. struct inode *inode = file->f_path.dentry->d_inode;
  348. struct address_space *mapping = file->f_mapping;
  349. get_file(file);
  350. if (tmp->vm_flags & VM_DENYWRITE)
  351. atomic_dec(&inode->i_writecount);
  352. mutex_lock(&mapping->i_mmap_mutex);
  353. if (tmp->vm_flags & VM_SHARED)
  354. mapping->i_mmap_writable++;
  355. flush_dcache_mmap_lock(mapping);
  356. /* insert tmp into the share list, just after mpnt */
  357. vma_prio_tree_add(tmp, mpnt);
  358. flush_dcache_mmap_unlock(mapping);
  359. mutex_unlock(&mapping->i_mmap_mutex);
  360. }
  361. /*
  362. * Clear hugetlb-related page reserves for children. This only
  363. * affects MAP_PRIVATE mappings. Faults generated by the child
  364. * are not guaranteed to succeed, even if read-only
  365. */
  366. if (is_vm_hugetlb_page(tmp))
  367. reset_vma_resv_huge_pages(tmp);
  368. /*
  369. * Link in the new vma and copy the page table entries.
  370. */
  371. *pprev = tmp;
  372. pprev = &tmp->vm_next;
  373. tmp->vm_prev = prev;
  374. prev = tmp;
  375. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  376. rb_link = &tmp->vm_rb.rb_right;
  377. rb_parent = &tmp->vm_rb;
  378. mm->map_count++;
  379. retval = copy_page_range(mm, oldmm, mpnt);
  380. if (tmp->vm_ops && tmp->vm_ops->open)
  381. tmp->vm_ops->open(tmp);
  382. if (retval)
  383. goto out;
  384. }
  385. /* a new mm has just been created */
  386. arch_dup_mmap(oldmm, mm);
  387. retval = 0;
  388. out:
  389. up_write(&mm->mmap_sem);
  390. flush_tlb_mm(oldmm);
  391. up_write(&oldmm->mmap_sem);
  392. return retval;
  393. fail_nomem_anon_vma_fork:
  394. mpol_put(pol);
  395. fail_nomem_policy:
  396. kmem_cache_free(vm_area_cachep, tmp);
  397. fail_nomem:
  398. retval = -ENOMEM;
  399. vm_unacct_memory(charge);
  400. goto out;
  401. }
  402. static inline int mm_alloc_pgd(struct mm_struct *mm)
  403. {
  404. mm->pgd = pgd_alloc(mm);
  405. if (unlikely(!mm->pgd))
  406. return -ENOMEM;
  407. return 0;
  408. }
  409. static inline void mm_free_pgd(struct mm_struct *mm)
  410. {
  411. pgd_free(mm, mm->pgd);
  412. }
  413. #else
  414. #define dup_mmap(mm, oldmm) (0)
  415. #define mm_alloc_pgd(mm) (0)
  416. #define mm_free_pgd(mm)
  417. #endif /* CONFIG_MMU */
  418. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  419. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  420. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  421. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  422. static int __init coredump_filter_setup(char *s)
  423. {
  424. default_dump_filter =
  425. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  426. MMF_DUMP_FILTER_MASK;
  427. return 1;
  428. }
  429. __setup("coredump_filter=", coredump_filter_setup);
  430. #include <linux/init_task.h>
  431. static void mm_init_aio(struct mm_struct *mm)
  432. {
  433. #ifdef CONFIG_AIO
  434. spin_lock_init(&mm->ioctx_lock);
  435. INIT_HLIST_HEAD(&mm->ioctx_list);
  436. #endif
  437. }
  438. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  439. {
  440. atomic_set(&mm->mm_users, 1);
  441. atomic_set(&mm->mm_count, 1);
  442. init_rwsem(&mm->mmap_sem);
  443. INIT_LIST_HEAD(&mm->mmlist);
  444. mm->flags = (current->mm) ?
  445. (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
  446. mm->core_state = NULL;
  447. mm->nr_ptes = 0;
  448. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  449. spin_lock_init(&mm->page_table_lock);
  450. mm->free_area_cache = TASK_UNMAPPED_BASE;
  451. mm->cached_hole_size = ~0UL;
  452. mm_init_aio(mm);
  453. mm_init_owner(mm, p);
  454. if (likely(!mm_alloc_pgd(mm))) {
  455. mm->def_flags = 0;
  456. mmu_notifier_mm_init(mm);
  457. return mm;
  458. }
  459. free_mm(mm);
  460. return NULL;
  461. }
  462. static void check_mm(struct mm_struct *mm)
  463. {
  464. int i;
  465. for (i = 0; i < NR_MM_COUNTERS; i++) {
  466. long x = atomic_long_read(&mm->rss_stat.count[i]);
  467. if (unlikely(x))
  468. printk(KERN_ALERT "BUG: Bad rss-counter state "
  469. "mm:%p idx:%d val:%ld\n", mm, i, x);
  470. }
  471. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  472. VM_BUG_ON(mm->pmd_huge_pte);
  473. #endif
  474. }
  475. /*
  476. * Allocate and initialize an mm_struct.
  477. */
  478. struct mm_struct *mm_alloc(void)
  479. {
  480. struct mm_struct *mm;
  481. mm = allocate_mm();
  482. if (!mm)
  483. return NULL;
  484. memset(mm, 0, sizeof(*mm));
  485. mm_init_cpumask(mm);
  486. return mm_init(mm, current);
  487. }
  488. /*
  489. * Called when the last reference to the mm
  490. * is dropped: either by a lazy thread or by
  491. * mmput. Free the page directory and the mm.
  492. */
  493. void __mmdrop(struct mm_struct *mm)
  494. {
  495. BUG_ON(mm == &init_mm);
  496. mm_free_pgd(mm);
  497. destroy_context(mm);
  498. mmu_notifier_mm_destroy(mm);
  499. check_mm(mm);
  500. free_mm(mm);
  501. }
  502. EXPORT_SYMBOL_GPL(__mmdrop);
  503. /*
  504. * Decrement the use count and release all resources for an mm.
  505. */
  506. void mmput(struct mm_struct *mm)
  507. {
  508. might_sleep();
  509. if (atomic_dec_and_test(&mm->mm_users)) {
  510. exit_aio(mm);
  511. ksm_exit(mm);
  512. khugepaged_exit(mm); /* must run before exit_mmap */
  513. exit_mmap(mm);
  514. set_mm_exe_file(mm, NULL);
  515. if (!list_empty(&mm->mmlist)) {
  516. spin_lock(&mmlist_lock);
  517. list_del(&mm->mmlist);
  518. spin_unlock(&mmlist_lock);
  519. }
  520. put_swap_token(mm);
  521. if (mm->binfmt)
  522. module_put(mm->binfmt->module);
  523. mmdrop(mm);
  524. }
  525. }
  526. EXPORT_SYMBOL_GPL(mmput);
  527. /*
  528. * We added or removed a vma mapping the executable. The vmas are only mapped
  529. * during exec and are not mapped with the mmap system call.
  530. * Callers must hold down_write() on the mm's mmap_sem for these
  531. */
  532. void added_exe_file_vma(struct mm_struct *mm)
  533. {
  534. mm->num_exe_file_vmas++;
  535. }
  536. void removed_exe_file_vma(struct mm_struct *mm)
  537. {
  538. mm->num_exe_file_vmas--;
  539. if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
  540. fput(mm->exe_file);
  541. mm->exe_file = NULL;
  542. }
  543. }
  544. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  545. {
  546. if (new_exe_file)
  547. get_file(new_exe_file);
  548. if (mm->exe_file)
  549. fput(mm->exe_file);
  550. mm->exe_file = new_exe_file;
  551. mm->num_exe_file_vmas = 0;
  552. }
  553. struct file *get_mm_exe_file(struct mm_struct *mm)
  554. {
  555. struct file *exe_file;
  556. /* We need mmap_sem to protect against races with removal of
  557. * VM_EXECUTABLE vmas */
  558. down_read(&mm->mmap_sem);
  559. exe_file = mm->exe_file;
  560. if (exe_file)
  561. get_file(exe_file);
  562. up_read(&mm->mmap_sem);
  563. return exe_file;
  564. }
  565. static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
  566. {
  567. /* It's safe to write the exe_file pointer without exe_file_lock because
  568. * this is called during fork when the task is not yet in /proc */
  569. newmm->exe_file = get_mm_exe_file(oldmm);
  570. }
  571. /**
  572. * get_task_mm - acquire a reference to the task's mm
  573. *
  574. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  575. * this kernel workthread has transiently adopted a user mm with use_mm,
  576. * to do its AIO) is not set and if so returns a reference to it, after
  577. * bumping up the use count. User must release the mm via mmput()
  578. * after use. Typically used by /proc and ptrace.
  579. */
  580. struct mm_struct *get_task_mm(struct task_struct *task)
  581. {
  582. struct mm_struct *mm;
  583. task_lock(task);
  584. mm = task->mm;
  585. if (mm) {
  586. if (task->flags & PF_KTHREAD)
  587. mm = NULL;
  588. else
  589. atomic_inc(&mm->mm_users);
  590. }
  591. task_unlock(task);
  592. return mm;
  593. }
  594. EXPORT_SYMBOL_GPL(get_task_mm);
  595. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  596. {
  597. struct mm_struct *mm;
  598. int err;
  599. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  600. if (err)
  601. return ERR_PTR(err);
  602. mm = get_task_mm(task);
  603. if (mm && mm != current->mm &&
  604. !ptrace_may_access(task, mode)) {
  605. mmput(mm);
  606. mm = ERR_PTR(-EACCES);
  607. }
  608. mutex_unlock(&task->signal->cred_guard_mutex);
  609. return mm;
  610. }
  611. static void complete_vfork_done(struct task_struct *tsk)
  612. {
  613. struct completion *vfork;
  614. task_lock(tsk);
  615. vfork = tsk->vfork_done;
  616. if (likely(vfork)) {
  617. tsk->vfork_done = NULL;
  618. complete(vfork);
  619. }
  620. task_unlock(tsk);
  621. }
  622. static int wait_for_vfork_done(struct task_struct *child,
  623. struct completion *vfork)
  624. {
  625. int killed;
  626. freezer_do_not_count();
  627. killed = wait_for_completion_killable(vfork);
  628. freezer_count();
  629. if (killed) {
  630. task_lock(child);
  631. child->vfork_done = NULL;
  632. task_unlock(child);
  633. }
  634. put_task_struct(child);
  635. return killed;
  636. }
  637. /* Please note the differences between mmput and mm_release.
  638. * mmput is called whenever we stop holding onto a mm_struct,
  639. * error success whatever.
  640. *
  641. * mm_release is called after a mm_struct has been removed
  642. * from the current process.
  643. *
  644. * This difference is important for error handling, when we
  645. * only half set up a mm_struct for a new process and need to restore
  646. * the old one. Because we mmput the new mm_struct before
  647. * restoring the old one. . .
  648. * Eric Biederman 10 January 1998
  649. */
  650. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  651. {
  652. /* Get rid of any futexes when releasing the mm */
  653. #ifdef CONFIG_FUTEX
  654. if (unlikely(tsk->robust_list)) {
  655. exit_robust_list(tsk);
  656. tsk->robust_list = NULL;
  657. }
  658. #ifdef CONFIG_COMPAT
  659. if (unlikely(tsk->compat_robust_list)) {
  660. compat_exit_robust_list(tsk);
  661. tsk->compat_robust_list = NULL;
  662. }
  663. #endif
  664. if (unlikely(!list_empty(&tsk->pi_state_list)))
  665. exit_pi_state_list(tsk);
  666. #endif
  667. /* Get rid of any cached register state */
  668. deactivate_mm(tsk, mm);
  669. if (tsk->vfork_done)
  670. complete_vfork_done(tsk);
  671. /*
  672. * If we're exiting normally, clear a user-space tid field if
  673. * requested. We leave this alone when dying by signal, to leave
  674. * the value intact in a core dump, and to save the unnecessary
  675. * trouble, say, a killed vfork parent shouldn't touch this mm.
  676. * Userland only wants this done for a sys_exit.
  677. */
  678. if (tsk->clear_child_tid) {
  679. if (!(tsk->flags & PF_SIGNALED) &&
  680. atomic_read(&mm->mm_users) > 1) {
  681. /*
  682. * We don't check the error code - if userspace has
  683. * not set up a proper pointer then tough luck.
  684. */
  685. put_user(0, tsk->clear_child_tid);
  686. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  687. 1, NULL, NULL, 0);
  688. }
  689. tsk->clear_child_tid = NULL;
  690. }
  691. }
  692. /*
  693. * Allocate a new mm structure and copy contents from the
  694. * mm structure of the passed in task structure.
  695. */
  696. struct mm_struct *dup_mm(struct task_struct *tsk)
  697. {
  698. struct mm_struct *mm, *oldmm = current->mm;
  699. int err;
  700. if (!oldmm)
  701. return NULL;
  702. mm = allocate_mm();
  703. if (!mm)
  704. goto fail_nomem;
  705. memcpy(mm, oldmm, sizeof(*mm));
  706. mm_init_cpumask(mm);
  707. /* Initializing for Swap token stuff */
  708. mm->token_priority = 0;
  709. mm->last_interval = 0;
  710. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  711. mm->pmd_huge_pte = NULL;
  712. #endif
  713. if (!mm_init(mm, tsk))
  714. goto fail_nomem;
  715. if (init_new_context(tsk, mm))
  716. goto fail_nocontext;
  717. dup_mm_exe_file(oldmm, mm);
  718. err = dup_mmap(mm, oldmm);
  719. if (err)
  720. goto free_pt;
  721. mm->hiwater_rss = get_mm_rss(mm);
  722. mm->hiwater_vm = mm->total_vm;
  723. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  724. goto free_pt;
  725. return mm;
  726. free_pt:
  727. /* don't put binfmt in mmput, we haven't got module yet */
  728. mm->binfmt = NULL;
  729. mmput(mm);
  730. fail_nomem:
  731. return NULL;
  732. fail_nocontext:
  733. /*
  734. * If init_new_context() failed, we cannot use mmput() to free the mm
  735. * because it calls destroy_context()
  736. */
  737. mm_free_pgd(mm);
  738. free_mm(mm);
  739. return NULL;
  740. }
  741. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  742. {
  743. struct mm_struct *mm, *oldmm;
  744. int retval;
  745. tsk->min_flt = tsk->maj_flt = 0;
  746. tsk->nvcsw = tsk->nivcsw = 0;
  747. #ifdef CONFIG_DETECT_HUNG_TASK
  748. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  749. #endif
  750. tsk->mm = NULL;
  751. tsk->active_mm = NULL;
  752. /*
  753. * Are we cloning a kernel thread?
  754. *
  755. * We need to steal a active VM for that..
  756. */
  757. oldmm = current->mm;
  758. if (!oldmm)
  759. return 0;
  760. if (clone_flags & CLONE_VM) {
  761. atomic_inc(&oldmm->mm_users);
  762. mm = oldmm;
  763. goto good_mm;
  764. }
  765. retval = -ENOMEM;
  766. mm = dup_mm(tsk);
  767. if (!mm)
  768. goto fail_nomem;
  769. good_mm:
  770. /* Initializing for Swap token stuff */
  771. mm->token_priority = 0;
  772. mm->last_interval = 0;
  773. tsk->mm = mm;
  774. tsk->active_mm = mm;
  775. return 0;
  776. fail_nomem:
  777. return retval;
  778. }
  779. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  780. {
  781. struct fs_struct *fs = current->fs;
  782. if (clone_flags & CLONE_FS) {
  783. /* tsk->fs is already what we want */
  784. spin_lock(&fs->lock);
  785. if (fs->in_exec) {
  786. spin_unlock(&fs->lock);
  787. return -EAGAIN;
  788. }
  789. fs->users++;
  790. spin_unlock(&fs->lock);
  791. return 0;
  792. }
  793. tsk->fs = copy_fs_struct(fs);
  794. if (!tsk->fs)
  795. return -ENOMEM;
  796. return 0;
  797. }
  798. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  799. {
  800. struct files_struct *oldf, *newf;
  801. int error = 0;
  802. /*
  803. * A background process may not have any files ...
  804. */
  805. oldf = current->files;
  806. if (!oldf)
  807. goto out;
  808. if (clone_flags & CLONE_FILES) {
  809. atomic_inc(&oldf->count);
  810. goto out;
  811. }
  812. newf = dup_fd(oldf, &error);
  813. if (!newf)
  814. goto out;
  815. tsk->files = newf;
  816. error = 0;
  817. out:
  818. return error;
  819. }
  820. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  821. {
  822. #ifdef CONFIG_BLOCK
  823. struct io_context *ioc = current->io_context;
  824. struct io_context *new_ioc;
  825. if (!ioc)
  826. return 0;
  827. /*
  828. * Share io context with parent, if CLONE_IO is set
  829. */
  830. if (clone_flags & CLONE_IO) {
  831. tsk->io_context = ioc_task_link(ioc);
  832. if (unlikely(!tsk->io_context))
  833. return -ENOMEM;
  834. } else if (ioprio_valid(ioc->ioprio)) {
  835. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  836. if (unlikely(!new_ioc))
  837. return -ENOMEM;
  838. new_ioc->ioprio = ioc->ioprio;
  839. put_io_context(new_ioc);
  840. }
  841. #endif
  842. return 0;
  843. }
  844. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  845. {
  846. struct sighand_struct *sig;
  847. if (clone_flags & CLONE_SIGHAND) {
  848. atomic_inc(&current->sighand->count);
  849. return 0;
  850. }
  851. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  852. rcu_assign_pointer(tsk->sighand, sig);
  853. if (!sig)
  854. return -ENOMEM;
  855. atomic_set(&sig->count, 1);
  856. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  857. return 0;
  858. }
  859. void __cleanup_sighand(struct sighand_struct *sighand)
  860. {
  861. if (atomic_dec_and_test(&sighand->count)) {
  862. signalfd_cleanup(sighand);
  863. kmem_cache_free(sighand_cachep, sighand);
  864. }
  865. }
  866. /*
  867. * Initialize POSIX timer handling for a thread group.
  868. */
  869. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  870. {
  871. unsigned long cpu_limit;
  872. /* Thread group counters. */
  873. thread_group_cputime_init(sig);
  874. cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  875. if (cpu_limit != RLIM_INFINITY) {
  876. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  877. sig->cputimer.running = 1;
  878. }
  879. /* The timer lists. */
  880. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  881. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  882. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  883. }
  884. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  885. {
  886. struct signal_struct *sig;
  887. if (clone_flags & CLONE_THREAD)
  888. return 0;
  889. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  890. tsk->signal = sig;
  891. if (!sig)
  892. return -ENOMEM;
  893. sig->nr_threads = 1;
  894. atomic_set(&sig->live, 1);
  895. atomic_set(&sig->sigcnt, 1);
  896. init_waitqueue_head(&sig->wait_chldexit);
  897. if (clone_flags & CLONE_NEWPID)
  898. sig->flags |= SIGNAL_UNKILLABLE;
  899. sig->curr_target = tsk;
  900. init_sigpending(&sig->shared_pending);
  901. INIT_LIST_HEAD(&sig->posix_timers);
  902. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  903. sig->real_timer.function = it_real_fn;
  904. task_lock(current->group_leader);
  905. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  906. task_unlock(current->group_leader);
  907. posix_cpu_timers_init_group(sig);
  908. tty_audit_fork(sig);
  909. sched_autogroup_fork(sig);
  910. #ifdef CONFIG_CGROUPS
  911. init_rwsem(&sig->group_rwsem);
  912. #endif
  913. sig->oom_adj = current->signal->oom_adj;
  914. sig->oom_score_adj = current->signal->oom_score_adj;
  915. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  916. sig->has_child_subreaper = current->signal->has_child_subreaper ||
  917. current->signal->is_child_subreaper;
  918. mutex_init(&sig->cred_guard_mutex);
  919. return 0;
  920. }
  921. static void copy_flags(unsigned long clone_flags, struct task_struct *p)
  922. {
  923. unsigned long new_flags = p->flags;
  924. new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  925. new_flags |= PF_FORKNOEXEC;
  926. p->flags = new_flags;
  927. }
  928. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  929. {
  930. current->clear_child_tid = tidptr;
  931. return task_pid_vnr(current);
  932. }
  933. static void rt_mutex_init_task(struct task_struct *p)
  934. {
  935. raw_spin_lock_init(&p->pi_lock);
  936. #ifdef CONFIG_RT_MUTEXES
  937. plist_head_init(&p->pi_waiters);
  938. p->pi_blocked_on = NULL;
  939. #endif
  940. }
  941. #ifdef CONFIG_MM_OWNER
  942. void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  943. {
  944. mm->owner = p;
  945. }
  946. #endif /* CONFIG_MM_OWNER */
  947. /*
  948. * Initialize POSIX timer handling for a single task.
  949. */
  950. static void posix_cpu_timers_init(struct task_struct *tsk)
  951. {
  952. tsk->cputime_expires.prof_exp = 0;
  953. tsk->cputime_expires.virt_exp = 0;
  954. tsk->cputime_expires.sched_exp = 0;
  955. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  956. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  957. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  958. }
  959. /*
  960. * This creates a new process as a copy of the old one,
  961. * but does not actually start it yet.
  962. *
  963. * It copies the registers, and all the appropriate
  964. * parts of the process environment (as per the clone
  965. * flags). The actual kick-off is left to the caller.
  966. */
  967. static struct task_struct *copy_process(unsigned long clone_flags,
  968. unsigned long stack_start,
  969. struct pt_regs *regs,
  970. unsigned long stack_size,
  971. int __user *child_tidptr,
  972. struct pid *pid,
  973. int trace)
  974. {
  975. int retval;
  976. struct task_struct *p;
  977. int cgroup_callbacks_done = 0;
  978. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  979. return ERR_PTR(-EINVAL);
  980. /*
  981. * Thread groups must share signals as well, and detached threads
  982. * can only be started up within the thread group.
  983. */
  984. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  985. return ERR_PTR(-EINVAL);
  986. /*
  987. * Shared signal handlers imply shared VM. By way of the above,
  988. * thread groups also imply shared VM. Blocking this case allows
  989. * for various simplifications in other code.
  990. */
  991. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  992. return ERR_PTR(-EINVAL);
  993. /*
  994. * Siblings of global init remain as zombies on exit since they are
  995. * not reaped by their parent (swapper). To solve this and to avoid
  996. * multi-rooted process trees, prevent global and container-inits
  997. * from creating siblings.
  998. */
  999. if ((clone_flags & CLONE_PARENT) &&
  1000. current->signal->flags & SIGNAL_UNKILLABLE)
  1001. return ERR_PTR(-EINVAL);
  1002. retval = security_task_create(clone_flags);
  1003. if (retval)
  1004. goto fork_out;
  1005. retval = -ENOMEM;
  1006. p = dup_task_struct(current);
  1007. if (!p)
  1008. goto fork_out;
  1009. ftrace_graph_init_task(p);
  1010. rt_mutex_init_task(p);
  1011. #ifdef CONFIG_PROVE_LOCKING
  1012. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1013. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1014. #endif
  1015. retval = -EAGAIN;
  1016. if (atomic_read(&p->real_cred->user->processes) >=
  1017. task_rlimit(p, RLIMIT_NPROC)) {
  1018. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  1019. p->real_cred->user != INIT_USER)
  1020. goto bad_fork_free;
  1021. }
  1022. current->flags &= ~PF_NPROC_EXCEEDED;
  1023. retval = copy_creds(p, clone_flags);
  1024. if (retval < 0)
  1025. goto bad_fork_free;
  1026. /*
  1027. * If multiple threads are within copy_process(), then this check
  1028. * triggers too late. This doesn't hurt, the check is only there
  1029. * to stop root fork bombs.
  1030. */
  1031. retval = -EAGAIN;
  1032. if (nr_threads >= max_threads)
  1033. goto bad_fork_cleanup_count;
  1034. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  1035. goto bad_fork_cleanup_count;
  1036. p->did_exec = 0;
  1037. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1038. copy_flags(clone_flags, p);
  1039. INIT_LIST_HEAD(&p->children);
  1040. INIT_LIST_HEAD(&p->sibling);
  1041. rcu_copy_process(p);
  1042. p->vfork_done = NULL;
  1043. spin_lock_init(&p->alloc_lock);
  1044. init_sigpending(&p->pending);
  1045. p->utime = p->stime = p->gtime = 0;
  1046. p->utimescaled = p->stimescaled = 0;
  1047. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  1048. p->prev_utime = p->prev_stime = 0;
  1049. #endif
  1050. #if defined(SPLIT_RSS_COUNTING)
  1051. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1052. #endif
  1053. p->default_timer_slack_ns = current->timer_slack_ns;
  1054. task_io_accounting_init(&p->ioac);
  1055. acct_clear_integrals(p);
  1056. posix_cpu_timers_init(p);
  1057. do_posix_clock_monotonic_gettime(&p->start_time);
  1058. p->real_start_time = p->start_time;
  1059. monotonic_to_bootbased(&p->real_start_time);
  1060. p->io_context = NULL;
  1061. p->audit_context = NULL;
  1062. if (clone_flags & CLONE_THREAD)
  1063. threadgroup_change_begin(current);
  1064. cgroup_fork(p);
  1065. #ifdef CONFIG_NUMA
  1066. p->mempolicy = mpol_dup(p->mempolicy);
  1067. if (IS_ERR(p->mempolicy)) {
  1068. retval = PTR_ERR(p->mempolicy);
  1069. p->mempolicy = NULL;
  1070. goto bad_fork_cleanup_cgroup;
  1071. }
  1072. mpol_fix_fork_child_flag(p);
  1073. #endif
  1074. #ifdef CONFIG_CPUSETS
  1075. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1076. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1077. seqcount_init(&p->mems_allowed_seq);
  1078. #endif
  1079. #ifdef CONFIG_TRACE_IRQFLAGS
  1080. p->irq_events = 0;
  1081. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1082. p->hardirqs_enabled = 1;
  1083. #else
  1084. p->hardirqs_enabled = 0;
  1085. #endif
  1086. p->hardirq_enable_ip = 0;
  1087. p->hardirq_enable_event = 0;
  1088. p->hardirq_disable_ip = _THIS_IP_;
  1089. p->hardirq_disable_event = 0;
  1090. p->softirqs_enabled = 1;
  1091. p->softirq_enable_ip = _THIS_IP_;
  1092. p->softirq_enable_event = 0;
  1093. p->softirq_disable_ip = 0;
  1094. p->softirq_disable_event = 0;
  1095. p->hardirq_context = 0;
  1096. p->softirq_context = 0;
  1097. #endif
  1098. #ifdef CONFIG_LOCKDEP
  1099. p->lockdep_depth = 0; /* no locks held yet */
  1100. p->curr_chain_key = 0;
  1101. p->lockdep_recursion = 0;
  1102. #endif
  1103. #ifdef CONFIG_DEBUG_MUTEXES
  1104. p->blocked_on = NULL; /* not blocked yet */
  1105. #endif
  1106. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  1107. p->memcg_batch.do_batch = 0;
  1108. p->memcg_batch.memcg = NULL;
  1109. #endif
  1110. /* Perform scheduler related setup. Assign this task to a CPU. */
  1111. sched_fork(p);
  1112. retval = perf_event_init_task(p);
  1113. if (retval)
  1114. goto bad_fork_cleanup_policy;
  1115. retval = audit_alloc(p);
  1116. if (retval)
  1117. goto bad_fork_cleanup_policy;
  1118. /* copy all the process information */
  1119. retval = copy_semundo(clone_flags, p);
  1120. if (retval)
  1121. goto bad_fork_cleanup_audit;
  1122. retval = copy_files(clone_flags, p);
  1123. if (retval)
  1124. goto bad_fork_cleanup_semundo;
  1125. retval = copy_fs(clone_flags, p);
  1126. if (retval)
  1127. goto bad_fork_cleanup_files;
  1128. retval = copy_sighand(clone_flags, p);
  1129. if (retval)
  1130. goto bad_fork_cleanup_fs;
  1131. retval = copy_signal(clone_flags, p);
  1132. if (retval)
  1133. goto bad_fork_cleanup_sighand;
  1134. retval = copy_mm(clone_flags, p);
  1135. if (retval)
  1136. goto bad_fork_cleanup_signal;
  1137. retval = copy_namespaces(clone_flags, p);
  1138. if (retval)
  1139. goto bad_fork_cleanup_mm;
  1140. retval = copy_io(clone_flags, p);
  1141. if (retval)
  1142. goto bad_fork_cleanup_namespaces;
  1143. retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
  1144. if (retval)
  1145. goto bad_fork_cleanup_io;
  1146. if (pid != &init_struct_pid) {
  1147. retval = -ENOMEM;
  1148. pid = alloc_pid(p->nsproxy->pid_ns);
  1149. if (!pid)
  1150. goto bad_fork_cleanup_io;
  1151. }
  1152. p->pid = pid_nr(pid);
  1153. p->tgid = p->pid;
  1154. if (clone_flags & CLONE_THREAD)
  1155. p->tgid = current->tgid;
  1156. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1157. /*
  1158. * Clear TID on mm_release()?
  1159. */
  1160. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1161. #ifdef CONFIG_BLOCK
  1162. p->plug = NULL;
  1163. #endif
  1164. #ifdef CONFIG_FUTEX
  1165. p->robust_list = NULL;
  1166. #ifdef CONFIG_COMPAT
  1167. p->compat_robust_list = NULL;
  1168. #endif
  1169. INIT_LIST_HEAD(&p->pi_state_list);
  1170. p->pi_state_cache = NULL;
  1171. #endif
  1172. /*
  1173. * sigaltstack should be cleared when sharing the same VM
  1174. */
  1175. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1176. p->sas_ss_sp = p->sas_ss_size = 0;
  1177. /*
  1178. * Syscall tracing and stepping should be turned off in the
  1179. * child regardless of CLONE_PTRACE.
  1180. */
  1181. user_disable_single_step(p);
  1182. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1183. #ifdef TIF_SYSCALL_EMU
  1184. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1185. #endif
  1186. clear_all_latency_tracing(p);
  1187. /* ok, now we should be set up.. */
  1188. if (clone_flags & CLONE_THREAD)
  1189. p->exit_signal = -1;
  1190. else if (clone_flags & CLONE_PARENT)
  1191. p->exit_signal = current->group_leader->exit_signal;
  1192. else
  1193. p->exit_signal = (clone_flags & CSIGNAL);
  1194. p->pdeath_signal = 0;
  1195. p->exit_state = 0;
  1196. p->nr_dirtied = 0;
  1197. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1198. p->dirty_paused_when = 0;
  1199. /*
  1200. * Ok, make it visible to the rest of the system.
  1201. * We dont wake it up yet.
  1202. */
  1203. p->group_leader = p;
  1204. INIT_LIST_HEAD(&p->thread_group);
  1205. /* Now that the task is set up, run cgroup callbacks if
  1206. * necessary. We need to run them before the task is visible
  1207. * on the tasklist. */
  1208. cgroup_fork_callbacks(p);
  1209. cgroup_callbacks_done = 1;
  1210. /* Need tasklist lock for parent etc handling! */
  1211. write_lock_irq(&tasklist_lock);
  1212. /* CLONE_PARENT re-uses the old parent */
  1213. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1214. p->real_parent = current->real_parent;
  1215. p->parent_exec_id = current->parent_exec_id;
  1216. } else {
  1217. p->real_parent = current;
  1218. p->parent_exec_id = current->self_exec_id;
  1219. }
  1220. spin_lock(&current->sighand->siglock);
  1221. /*
  1222. * Process group and session signals need to be delivered to just the
  1223. * parent before the fork or both the parent and the child after the
  1224. * fork. Restart if a signal comes in before we add the new process to
  1225. * it's process group.
  1226. * A fatal signal pending means that current will exit, so the new
  1227. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1228. */
  1229. recalc_sigpending();
  1230. if (signal_pending(current)) {
  1231. spin_unlock(&current->sighand->siglock);
  1232. write_unlock_irq(&tasklist_lock);
  1233. retval = -ERESTARTNOINTR;
  1234. goto bad_fork_free_pid;
  1235. }
  1236. if (clone_flags & CLONE_THREAD) {
  1237. current->signal->nr_threads++;
  1238. atomic_inc(&current->signal->live);
  1239. atomic_inc(&current->signal->sigcnt);
  1240. p->group_leader = current->group_leader;
  1241. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1242. }
  1243. if (likely(p->pid)) {
  1244. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1245. if (thread_group_leader(p)) {
  1246. if (is_child_reaper(pid))
  1247. p->nsproxy->pid_ns->child_reaper = p;
  1248. p->signal->leader_pid = pid;
  1249. p->signal->tty = tty_kref_get(current->signal->tty);
  1250. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1251. attach_pid(p, PIDTYPE_SID, task_session(current));
  1252. list_add_tail(&p->sibling, &p->real_parent->children);
  1253. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1254. __this_cpu_inc(process_counts);
  1255. }
  1256. attach_pid(p, PIDTYPE_PID, pid);
  1257. nr_threads++;
  1258. }
  1259. total_forks++;
  1260. spin_unlock(&current->sighand->siglock);
  1261. write_unlock_irq(&tasklist_lock);
  1262. proc_fork_connector(p);
  1263. cgroup_post_fork(p);
  1264. if (clone_flags & CLONE_THREAD)
  1265. threadgroup_change_end(current);
  1266. perf_event_fork(p);
  1267. trace_task_newtask(p, clone_flags);
  1268. return p;
  1269. bad_fork_free_pid:
  1270. if (pid != &init_struct_pid)
  1271. free_pid(pid);
  1272. bad_fork_cleanup_io:
  1273. if (p->io_context)
  1274. exit_io_context(p);
  1275. bad_fork_cleanup_namespaces:
  1276. exit_task_namespaces(p);
  1277. bad_fork_cleanup_mm:
  1278. if (p->mm)
  1279. mmput(p->mm);
  1280. bad_fork_cleanup_signal:
  1281. if (!(clone_flags & CLONE_THREAD))
  1282. free_signal_struct(p->signal);
  1283. bad_fork_cleanup_sighand:
  1284. __cleanup_sighand(p->sighand);
  1285. bad_fork_cleanup_fs:
  1286. exit_fs(p); /* blocking */
  1287. bad_fork_cleanup_files:
  1288. exit_files(p); /* blocking */
  1289. bad_fork_cleanup_semundo:
  1290. exit_sem(p);
  1291. bad_fork_cleanup_audit:
  1292. audit_free(p);
  1293. bad_fork_cleanup_policy:
  1294. perf_event_free_task(p);
  1295. #ifdef CONFIG_NUMA
  1296. mpol_put(p->mempolicy);
  1297. bad_fork_cleanup_cgroup:
  1298. #endif
  1299. if (clone_flags & CLONE_THREAD)
  1300. threadgroup_change_end(current);
  1301. cgroup_exit(p, cgroup_callbacks_done);
  1302. delayacct_tsk_free(p);
  1303. module_put(task_thread_info(p)->exec_domain->module);
  1304. bad_fork_cleanup_count:
  1305. atomic_dec(&p->cred->user->processes);
  1306. exit_creds(p);
  1307. bad_fork_free:
  1308. free_task(p);
  1309. fork_out:
  1310. return ERR_PTR(retval);
  1311. }
  1312. noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1313. {
  1314. memset(regs, 0, sizeof(struct pt_regs));
  1315. return regs;
  1316. }
  1317. static inline void init_idle_pids(struct pid_link *links)
  1318. {
  1319. enum pid_type type;
  1320. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1321. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1322. links[type].pid = &init_struct_pid;
  1323. }
  1324. }
  1325. struct task_struct * __cpuinit fork_idle(int cpu)
  1326. {
  1327. struct task_struct *task;
  1328. struct pt_regs regs;
  1329. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
  1330. &init_struct_pid, 0);
  1331. if (!IS_ERR(task)) {
  1332. init_idle_pids(task->pids);
  1333. init_idle(task, cpu);
  1334. }
  1335. return task;
  1336. }
  1337. /*
  1338. * Ok, this is the main fork-routine.
  1339. *
  1340. * It copies the process, and if successful kick-starts
  1341. * it and waits for it to finish using the VM if required.
  1342. */
  1343. long do_fork(unsigned long clone_flags,
  1344. unsigned long stack_start,
  1345. struct pt_regs *regs,
  1346. unsigned long stack_size,
  1347. int __user *parent_tidptr,
  1348. int __user *child_tidptr)
  1349. {
  1350. struct task_struct *p;
  1351. int trace = 0;
  1352. long nr;
  1353. /*
  1354. * Do some preliminary argument and permissions checking before we
  1355. * actually start allocating stuff
  1356. */
  1357. if (clone_flags & CLONE_NEWUSER) {
  1358. if (clone_flags & CLONE_THREAD)
  1359. return -EINVAL;
  1360. /* hopefully this check will go away when userns support is
  1361. * complete
  1362. */
  1363. if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
  1364. !capable(CAP_SETGID))
  1365. return -EPERM;
  1366. }
  1367. /*
  1368. * Determine whether and which event to report to ptracer. When
  1369. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1370. * requested, no event is reported; otherwise, report if the event
  1371. * for the type of forking is enabled.
  1372. */
  1373. if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
  1374. if (clone_flags & CLONE_VFORK)
  1375. trace = PTRACE_EVENT_VFORK;
  1376. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1377. trace = PTRACE_EVENT_CLONE;
  1378. else
  1379. trace = PTRACE_EVENT_FORK;
  1380. if (likely(!ptrace_event_enabled(current, trace)))
  1381. trace = 0;
  1382. }
  1383. p = copy_process(clone_flags, stack_start, regs, stack_size,
  1384. child_tidptr, NULL, trace);
  1385. /*
  1386. * Do this prior waking up the new thread - the thread pointer
  1387. * might get invalid after that point, if the thread exits quickly.
  1388. */
  1389. if (!IS_ERR(p)) {
  1390. struct completion vfork;
  1391. trace_sched_process_fork(current, p);
  1392. nr = task_pid_vnr(p);
  1393. if (clone_flags & CLONE_PARENT_SETTID)
  1394. put_user(nr, parent_tidptr);
  1395. if (clone_flags & CLONE_VFORK) {
  1396. p->vfork_done = &vfork;
  1397. init_completion(&vfork);
  1398. get_task_struct(p);
  1399. }
  1400. wake_up_new_task(p);
  1401. /* forking complete and child started to run, tell ptracer */
  1402. if (unlikely(trace))
  1403. ptrace_event(trace, nr);
  1404. if (clone_flags & CLONE_VFORK) {
  1405. if (!wait_for_vfork_done(p, &vfork))
  1406. ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
  1407. }
  1408. } else {
  1409. nr = PTR_ERR(p);
  1410. }
  1411. return nr;
  1412. }
  1413. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1414. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1415. #endif
  1416. static void sighand_ctor(void *data)
  1417. {
  1418. struct sighand_struct *sighand = data;
  1419. spin_lock_init(&sighand->siglock);
  1420. init_waitqueue_head(&sighand->signalfd_wqh);
  1421. }
  1422. void __init proc_caches_init(void)
  1423. {
  1424. sighand_cachep = kmem_cache_create("sighand_cache",
  1425. sizeof(struct sighand_struct), 0,
  1426. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1427. SLAB_NOTRACK, sighand_ctor);
  1428. signal_cachep = kmem_cache_create("signal_cache",
  1429. sizeof(struct signal_struct), 0,
  1430. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1431. files_cachep = kmem_cache_create("files_cache",
  1432. sizeof(struct files_struct), 0,
  1433. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1434. fs_cachep = kmem_cache_create("fs_cache",
  1435. sizeof(struct fs_struct), 0,
  1436. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1437. /*
  1438. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1439. * whole struct cpumask for the OFFSTACK case. We could change
  1440. * this to *only* allocate as much of it as required by the
  1441. * maximum number of CPU's we can ever have. The cpumask_allocation
  1442. * is at the end of the structure, exactly for that reason.
  1443. */
  1444. mm_cachep = kmem_cache_create("mm_struct",
  1445. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1446. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1447. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
  1448. mmap_init();
  1449. nsproxy_cache_init();
  1450. }
  1451. /*
  1452. * Check constraints on flags passed to the unshare system call.
  1453. */
  1454. static int check_unshare_flags(unsigned long unshare_flags)
  1455. {
  1456. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1457. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1458. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
  1459. return -EINVAL;
  1460. /*
  1461. * Not implemented, but pretend it works if there is nothing to
  1462. * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
  1463. * needs to unshare vm.
  1464. */
  1465. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1466. /* FIXME: get_task_mm() increments ->mm_users */
  1467. if (atomic_read(&current->mm->mm_users) > 1)
  1468. return -EINVAL;
  1469. }
  1470. return 0;
  1471. }
  1472. /*
  1473. * Unshare the filesystem structure if it is being shared
  1474. */
  1475. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1476. {
  1477. struct fs_struct *fs = current->fs;
  1478. if (!(unshare_flags & CLONE_FS) || !fs)
  1479. return 0;
  1480. /* don't need lock here; in the worst case we'll do useless copy */
  1481. if (fs->users == 1)
  1482. return 0;
  1483. *new_fsp = copy_fs_struct(fs);
  1484. if (!*new_fsp)
  1485. return -ENOMEM;
  1486. return 0;
  1487. }
  1488. /*
  1489. * Unshare file descriptor table if it is being shared
  1490. */
  1491. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1492. {
  1493. struct files_struct *fd = current->files;
  1494. int error = 0;
  1495. if ((unshare_flags & CLONE_FILES) &&
  1496. (fd && atomic_read(&fd->count) > 1)) {
  1497. *new_fdp = dup_fd(fd, &error);
  1498. if (!*new_fdp)
  1499. return error;
  1500. }
  1501. return 0;
  1502. }
  1503. /*
  1504. * unshare allows a process to 'unshare' part of the process
  1505. * context which was originally shared using clone. copy_*
  1506. * functions used by do_fork() cannot be used here directly
  1507. * because they modify an inactive task_struct that is being
  1508. * constructed. Here we are modifying the current, active,
  1509. * task_struct.
  1510. */
  1511. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1512. {
  1513. struct fs_struct *fs, *new_fs = NULL;
  1514. struct files_struct *fd, *new_fd = NULL;
  1515. struct nsproxy *new_nsproxy = NULL;
  1516. int do_sysvsem = 0;
  1517. int err;
  1518. err = check_unshare_flags(unshare_flags);
  1519. if (err)
  1520. goto bad_unshare_out;
  1521. /*
  1522. * If unsharing namespace, must also unshare filesystem information.
  1523. */
  1524. if (unshare_flags & CLONE_NEWNS)
  1525. unshare_flags |= CLONE_FS;
  1526. /*
  1527. * CLONE_NEWIPC must also detach from the undolist: after switching
  1528. * to a new ipc namespace, the semaphore arrays from the old
  1529. * namespace are unreachable.
  1530. */
  1531. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1532. do_sysvsem = 1;
  1533. err = unshare_fs(unshare_flags, &new_fs);
  1534. if (err)
  1535. goto bad_unshare_out;
  1536. err = unshare_fd(unshare_flags, &new_fd);
  1537. if (err)
  1538. goto bad_unshare_cleanup_fs;
  1539. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
  1540. if (err)
  1541. goto bad_unshare_cleanup_fd;
  1542. if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
  1543. if (do_sysvsem) {
  1544. /*
  1545. * CLONE_SYSVSEM is equivalent to sys_exit().
  1546. */
  1547. exit_sem(current);
  1548. }
  1549. if (new_nsproxy) {
  1550. switch_task_namespaces(current, new_nsproxy);
  1551. new_nsproxy = NULL;
  1552. }
  1553. task_lock(current);
  1554. if (new_fs) {
  1555. fs = current->fs;
  1556. spin_lock(&fs->lock);
  1557. current->fs = new_fs;
  1558. if (--fs->users)
  1559. new_fs = NULL;
  1560. else
  1561. new_fs = fs;
  1562. spin_unlock(&fs->lock);
  1563. }
  1564. if (new_fd) {
  1565. fd = current->files;
  1566. current->files = new_fd;
  1567. new_fd = fd;
  1568. }
  1569. task_unlock(current);
  1570. }
  1571. if (new_nsproxy)
  1572. put_nsproxy(new_nsproxy);
  1573. bad_unshare_cleanup_fd:
  1574. if (new_fd)
  1575. put_files_struct(new_fd);
  1576. bad_unshare_cleanup_fs:
  1577. if (new_fs)
  1578. free_fs_struct(new_fs);
  1579. bad_unshare_out:
  1580. return err;
  1581. }
  1582. /*
  1583. * Helper to unshare the files of the current task.
  1584. * We don't want to expose copy_files internals to
  1585. * the exec layer of the kernel.
  1586. */
  1587. int unshare_files(struct files_struct **displaced)
  1588. {
  1589. struct task_struct *task = current;
  1590. struct files_struct *copy = NULL;
  1591. int error;
  1592. error = unshare_fd(CLONE_FILES, &copy);
  1593. if (error || !copy) {
  1594. *displaced = NULL;
  1595. return error;
  1596. }
  1597. *displaced = task->files;
  1598. task_lock(task);
  1599. task->files = copy;
  1600. task_unlock(task);
  1601. return 0;
  1602. }