sched_fair.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. /*
  24. * Targeted preemption latency for CPU-bound tasks:
  25. * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
  26. *
  27. * NOTE: this latency value is not the same as the concept of
  28. * 'timeslice length' - timeslices in CFS are of variable length
  29. * and have no persistent notion like in traditional, time-slice
  30. * based scheduling concepts.
  31. *
  32. * (to see the precise effective timeslice length of your workload,
  33. * run vmstat and monitor the context-switches (cs) field)
  34. */
  35. unsigned int sysctl_sched_latency = 20000000ULL;
  36. /*
  37. * Minimal preemption granularity for CPU-bound tasks:
  38. * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
  39. */
  40. unsigned int sysctl_sched_min_granularity = 4000000ULL;
  41. /*
  42. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  43. */
  44. static unsigned int sched_nr_latency = 5;
  45. /*
  46. * After fork, child runs first. (default) If set to 0 then
  47. * parent will (try to) run first.
  48. */
  49. const_debug unsigned int sysctl_sched_child_runs_first = 1;
  50. /*
  51. * sys_sched_yield() compat mode
  52. *
  53. * This option switches the agressive yield implementation of the
  54. * old scheduler back on.
  55. */
  56. unsigned int __read_mostly sysctl_sched_compat_yield;
  57. /*
  58. * SCHED_OTHER wake-up granularity.
  59. * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
  60. *
  61. * This option delays the preemption effects of decoupled workloads
  62. * and reduces their over-scheduling. Synchronous workloads will still
  63. * have immediate wakeup/sleep latencies.
  64. */
  65. unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
  66. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  67. /**************************************************************
  68. * CFS operations on generic schedulable entities:
  69. */
  70. static inline struct task_struct *task_of(struct sched_entity *se)
  71. {
  72. return container_of(se, struct task_struct, se);
  73. }
  74. #ifdef CONFIG_FAIR_GROUP_SCHED
  75. /* cpu runqueue to which this cfs_rq is attached */
  76. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  77. {
  78. return cfs_rq->rq;
  79. }
  80. /* An entity is a task if it doesn't "own" a runqueue */
  81. #define entity_is_task(se) (!se->my_q)
  82. /* Walk up scheduling entities hierarchy */
  83. #define for_each_sched_entity(se) \
  84. for (; se; se = se->parent)
  85. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  86. {
  87. return p->se.cfs_rq;
  88. }
  89. /* runqueue on which this entity is (to be) queued */
  90. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  91. {
  92. return se->cfs_rq;
  93. }
  94. /* runqueue "owned" by this group */
  95. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  96. {
  97. return grp->my_q;
  98. }
  99. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  100. * another cpu ('this_cpu')
  101. */
  102. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  103. {
  104. return cfs_rq->tg->cfs_rq[this_cpu];
  105. }
  106. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  107. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  108. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  109. /* Do the two (enqueued) entities belong to the same group ? */
  110. static inline int
  111. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  112. {
  113. if (se->cfs_rq == pse->cfs_rq)
  114. return 1;
  115. return 0;
  116. }
  117. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  118. {
  119. return se->parent;
  120. }
  121. #else /* CONFIG_FAIR_GROUP_SCHED */
  122. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  123. {
  124. return container_of(cfs_rq, struct rq, cfs);
  125. }
  126. #define entity_is_task(se) 1
  127. #define for_each_sched_entity(se) \
  128. for (; se; se = NULL)
  129. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  130. {
  131. return &task_rq(p)->cfs;
  132. }
  133. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  134. {
  135. struct task_struct *p = task_of(se);
  136. struct rq *rq = task_rq(p);
  137. return &rq->cfs;
  138. }
  139. /* runqueue "owned" by this group */
  140. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  141. {
  142. return NULL;
  143. }
  144. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  145. {
  146. return &cpu_rq(this_cpu)->cfs;
  147. }
  148. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  149. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  150. static inline int
  151. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  152. {
  153. return 1;
  154. }
  155. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  156. {
  157. return NULL;
  158. }
  159. #endif /* CONFIG_FAIR_GROUP_SCHED */
  160. /**************************************************************
  161. * Scheduling class tree data structure manipulation methods:
  162. */
  163. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  164. {
  165. s64 delta = (s64)(vruntime - min_vruntime);
  166. if (delta > 0)
  167. min_vruntime = vruntime;
  168. return min_vruntime;
  169. }
  170. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  171. {
  172. s64 delta = (s64)(vruntime - min_vruntime);
  173. if (delta < 0)
  174. min_vruntime = vruntime;
  175. return min_vruntime;
  176. }
  177. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  178. {
  179. return se->vruntime - cfs_rq->min_vruntime;
  180. }
  181. /*
  182. * Enqueue an entity into the rb-tree:
  183. */
  184. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  185. {
  186. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  187. struct rb_node *parent = NULL;
  188. struct sched_entity *entry;
  189. s64 key = entity_key(cfs_rq, se);
  190. int leftmost = 1;
  191. /*
  192. * Find the right place in the rbtree:
  193. */
  194. while (*link) {
  195. parent = *link;
  196. entry = rb_entry(parent, struct sched_entity, run_node);
  197. /*
  198. * We dont care about collisions. Nodes with
  199. * the same key stay together.
  200. */
  201. if (key < entity_key(cfs_rq, entry)) {
  202. link = &parent->rb_left;
  203. } else {
  204. link = &parent->rb_right;
  205. leftmost = 0;
  206. }
  207. }
  208. /*
  209. * Maintain a cache of leftmost tree entries (it is frequently
  210. * used):
  211. */
  212. if (leftmost) {
  213. cfs_rq->rb_leftmost = &se->run_node;
  214. /*
  215. * maintain cfs_rq->min_vruntime to be a monotonic increasing
  216. * value tracking the leftmost vruntime in the tree.
  217. */
  218. cfs_rq->min_vruntime =
  219. max_vruntime(cfs_rq->min_vruntime, se->vruntime);
  220. }
  221. rb_link_node(&se->run_node, parent, link);
  222. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  223. }
  224. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  225. {
  226. if (cfs_rq->rb_leftmost == &se->run_node) {
  227. struct rb_node *next_node;
  228. struct sched_entity *next;
  229. next_node = rb_next(&se->run_node);
  230. cfs_rq->rb_leftmost = next_node;
  231. if (next_node) {
  232. next = rb_entry(next_node,
  233. struct sched_entity, run_node);
  234. cfs_rq->min_vruntime =
  235. max_vruntime(cfs_rq->min_vruntime,
  236. next->vruntime);
  237. }
  238. }
  239. if (cfs_rq->next == se)
  240. cfs_rq->next = NULL;
  241. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  242. }
  243. static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
  244. {
  245. return cfs_rq->rb_leftmost;
  246. }
  247. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  248. {
  249. return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
  250. }
  251. static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  252. {
  253. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  254. if (!last)
  255. return NULL;
  256. return rb_entry(last, struct sched_entity, run_node);
  257. }
  258. /**************************************************************
  259. * Scheduling class statistics methods:
  260. */
  261. #ifdef CONFIG_SCHED_DEBUG
  262. int sched_nr_latency_handler(struct ctl_table *table, int write,
  263. struct file *filp, void __user *buffer, size_t *lenp,
  264. loff_t *ppos)
  265. {
  266. int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
  267. if (ret || !write)
  268. return ret;
  269. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  270. sysctl_sched_min_granularity);
  271. return 0;
  272. }
  273. #endif
  274. /*
  275. * delta *= w / rw
  276. */
  277. static inline unsigned long
  278. calc_delta_weight(unsigned long delta, struct sched_entity *se)
  279. {
  280. for_each_sched_entity(se) {
  281. delta = calc_delta_mine(delta,
  282. se->load.weight, &cfs_rq_of(se)->load);
  283. }
  284. return delta;
  285. }
  286. /*
  287. * delta *= rw / w
  288. */
  289. static inline unsigned long
  290. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  291. {
  292. for_each_sched_entity(se) {
  293. delta = calc_delta_mine(delta,
  294. cfs_rq_of(se)->load.weight, &se->load);
  295. }
  296. return delta;
  297. }
  298. /*
  299. * The idea is to set a period in which each task runs once.
  300. *
  301. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  302. * this period because otherwise the slices get too small.
  303. *
  304. * p = (nr <= nl) ? l : l*nr/nl
  305. */
  306. static u64 __sched_period(unsigned long nr_running)
  307. {
  308. u64 period = sysctl_sched_latency;
  309. unsigned long nr_latency = sched_nr_latency;
  310. if (unlikely(nr_running > nr_latency)) {
  311. period = sysctl_sched_min_granularity;
  312. period *= nr_running;
  313. }
  314. return period;
  315. }
  316. /*
  317. * We calculate the wall-time slice from the period by taking a part
  318. * proportional to the weight.
  319. *
  320. * s = p*w/rw
  321. */
  322. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  323. {
  324. return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
  325. }
  326. /*
  327. * We calculate the vruntime slice of a to be inserted task
  328. *
  329. * vs = s*rw/w = p
  330. */
  331. static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
  332. {
  333. unsigned long nr_running = cfs_rq->nr_running;
  334. if (!se->on_rq)
  335. nr_running++;
  336. return __sched_period(nr_running);
  337. }
  338. /*
  339. * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
  340. * that it favours >=0 over <0.
  341. *
  342. * -20 |
  343. * |
  344. * 0 --------+-------
  345. * .'
  346. * 19 .'
  347. *
  348. */
  349. static unsigned long
  350. calc_delta_asym(unsigned long delta, struct sched_entity *se)
  351. {
  352. struct load_weight lw = {
  353. .weight = NICE_0_LOAD,
  354. .inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT)
  355. };
  356. for_each_sched_entity(se) {
  357. struct load_weight *se_lw = &se->load;
  358. unsigned long rw = cfs_rq_of(se)->load.weight;
  359. #ifdef CONFIG_FAIR_SCHED_GROUP
  360. struct cfs_rq *cfs_rq = se->my_q;
  361. struct task_group *tg = NULL
  362. if (cfs_rq)
  363. tg = cfs_rq->tg;
  364. if (tg && tg->shares < NICE_0_LOAD) {
  365. /*
  366. * scale shares to what it would have been had
  367. * tg->weight been NICE_0_LOAD:
  368. *
  369. * weight = 1024 * shares / tg->weight
  370. */
  371. lw.weight *= se->load.weight;
  372. lw.weight /= tg->shares;
  373. lw.inv_weight = 0;
  374. se_lw = &lw;
  375. rw += lw.weight - se->load.weight;
  376. } else
  377. #endif
  378. if (se->load.weight < NICE_0_LOAD) {
  379. se_lw = &lw;
  380. rw += NICE_0_LOAD - se->load.weight;
  381. }
  382. delta = calc_delta_mine(delta, rw, se_lw);
  383. }
  384. return delta;
  385. }
  386. /*
  387. * Update the current task's runtime statistics. Skip current tasks that
  388. * are not in our scheduling class.
  389. */
  390. static inline void
  391. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  392. unsigned long delta_exec)
  393. {
  394. unsigned long delta_exec_weighted;
  395. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  396. curr->sum_exec_runtime += delta_exec;
  397. schedstat_add(cfs_rq, exec_clock, delta_exec);
  398. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  399. curr->vruntime += delta_exec_weighted;
  400. }
  401. static void update_curr(struct cfs_rq *cfs_rq)
  402. {
  403. struct sched_entity *curr = cfs_rq->curr;
  404. u64 now = rq_of(cfs_rq)->clock;
  405. unsigned long delta_exec;
  406. if (unlikely(!curr))
  407. return;
  408. /*
  409. * Get the amount of time the current task was running
  410. * since the last time we changed load (this cannot
  411. * overflow on 32 bits):
  412. */
  413. delta_exec = (unsigned long)(now - curr->exec_start);
  414. __update_curr(cfs_rq, curr, delta_exec);
  415. curr->exec_start = now;
  416. if (entity_is_task(curr)) {
  417. struct task_struct *curtask = task_of(curr);
  418. cpuacct_charge(curtask, delta_exec);
  419. }
  420. }
  421. static inline void
  422. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  423. {
  424. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  425. }
  426. /*
  427. * Task is being enqueued - update stats:
  428. */
  429. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  430. {
  431. /*
  432. * Are we enqueueing a waiting task? (for current tasks
  433. * a dequeue/enqueue event is a NOP)
  434. */
  435. if (se != cfs_rq->curr)
  436. update_stats_wait_start(cfs_rq, se);
  437. }
  438. static void
  439. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  440. {
  441. schedstat_set(se->wait_max, max(se->wait_max,
  442. rq_of(cfs_rq)->clock - se->wait_start));
  443. schedstat_set(se->wait_count, se->wait_count + 1);
  444. schedstat_set(se->wait_sum, se->wait_sum +
  445. rq_of(cfs_rq)->clock - se->wait_start);
  446. schedstat_set(se->wait_start, 0);
  447. }
  448. static inline void
  449. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  450. {
  451. /*
  452. * Mark the end of the wait period if dequeueing a
  453. * waiting task:
  454. */
  455. if (se != cfs_rq->curr)
  456. update_stats_wait_end(cfs_rq, se);
  457. }
  458. /*
  459. * We are picking a new current task - update its stats:
  460. */
  461. static inline void
  462. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  463. {
  464. /*
  465. * We are starting a new run period:
  466. */
  467. se->exec_start = rq_of(cfs_rq)->clock;
  468. }
  469. /**************************************************
  470. * Scheduling class queueing methods:
  471. */
  472. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  473. static void
  474. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  475. {
  476. cfs_rq->task_weight += weight;
  477. }
  478. #else
  479. static inline void
  480. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  481. {
  482. }
  483. #endif
  484. static void
  485. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  486. {
  487. update_load_add(&cfs_rq->load, se->load.weight);
  488. if (!parent_entity(se))
  489. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  490. if (entity_is_task(se))
  491. add_cfs_task_weight(cfs_rq, se->load.weight);
  492. cfs_rq->nr_running++;
  493. se->on_rq = 1;
  494. list_add(&se->group_node, &cfs_rq->tasks);
  495. }
  496. static void
  497. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  498. {
  499. update_load_sub(&cfs_rq->load, se->load.weight);
  500. if (!parent_entity(se))
  501. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  502. if (entity_is_task(se))
  503. add_cfs_task_weight(cfs_rq, -se->load.weight);
  504. cfs_rq->nr_running--;
  505. se->on_rq = 0;
  506. list_del_init(&se->group_node);
  507. }
  508. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  509. {
  510. #ifdef CONFIG_SCHEDSTATS
  511. if (se->sleep_start) {
  512. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  513. struct task_struct *tsk = task_of(se);
  514. if ((s64)delta < 0)
  515. delta = 0;
  516. if (unlikely(delta > se->sleep_max))
  517. se->sleep_max = delta;
  518. se->sleep_start = 0;
  519. se->sum_sleep_runtime += delta;
  520. account_scheduler_latency(tsk, delta >> 10, 1);
  521. }
  522. if (se->block_start) {
  523. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  524. struct task_struct *tsk = task_of(se);
  525. if ((s64)delta < 0)
  526. delta = 0;
  527. if (unlikely(delta > se->block_max))
  528. se->block_max = delta;
  529. se->block_start = 0;
  530. se->sum_sleep_runtime += delta;
  531. /*
  532. * Blocking time is in units of nanosecs, so shift by 20 to
  533. * get a milliseconds-range estimation of the amount of
  534. * time that the task spent sleeping:
  535. */
  536. if (unlikely(prof_on == SLEEP_PROFILING)) {
  537. profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
  538. delta >> 20);
  539. }
  540. account_scheduler_latency(tsk, delta >> 10, 0);
  541. }
  542. #endif
  543. }
  544. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  545. {
  546. #ifdef CONFIG_SCHED_DEBUG
  547. s64 d = se->vruntime - cfs_rq->min_vruntime;
  548. if (d < 0)
  549. d = -d;
  550. if (d > 3*sysctl_sched_latency)
  551. schedstat_inc(cfs_rq, nr_spread_over);
  552. #endif
  553. }
  554. static void
  555. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  556. {
  557. u64 vruntime;
  558. if (first_fair(cfs_rq)) {
  559. vruntime = min_vruntime(cfs_rq->min_vruntime,
  560. __pick_next_entity(cfs_rq)->vruntime);
  561. } else
  562. vruntime = cfs_rq->min_vruntime;
  563. /*
  564. * The 'current' period is already promised to the current tasks,
  565. * however the extra weight of the new task will slow them down a
  566. * little, place the new task so that it fits in the slot that
  567. * stays open at the end.
  568. */
  569. if (initial && sched_feat(START_DEBIT))
  570. vruntime += sched_vslice_add(cfs_rq, se);
  571. if (!initial) {
  572. /* sleeps upto a single latency don't count. */
  573. if (sched_feat(NEW_FAIR_SLEEPERS)) {
  574. unsigned long thresh = sysctl_sched_latency;
  575. /*
  576. * convert the sleeper threshold into virtual time
  577. */
  578. if (sched_feat(NORMALIZED_SLEEPER))
  579. thresh = calc_delta_fair(thresh, se);
  580. vruntime -= thresh;
  581. }
  582. /* ensure we never gain time by being placed backwards. */
  583. vruntime = max_vruntime(se->vruntime, vruntime);
  584. }
  585. se->vruntime = vruntime;
  586. }
  587. static void
  588. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  589. {
  590. /*
  591. * Update run-time statistics of the 'current'.
  592. */
  593. update_curr(cfs_rq);
  594. account_entity_enqueue(cfs_rq, se);
  595. if (wakeup) {
  596. place_entity(cfs_rq, se, 0);
  597. enqueue_sleeper(cfs_rq, se);
  598. }
  599. update_stats_enqueue(cfs_rq, se);
  600. check_spread(cfs_rq, se);
  601. if (se != cfs_rq->curr)
  602. __enqueue_entity(cfs_rq, se);
  603. }
  604. static void update_avg(u64 *avg, u64 sample)
  605. {
  606. s64 diff = sample - *avg;
  607. *avg += diff >> 3;
  608. }
  609. static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
  610. {
  611. if (!se->last_wakeup)
  612. return;
  613. update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
  614. se->last_wakeup = 0;
  615. }
  616. static void
  617. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  618. {
  619. /*
  620. * Update run-time statistics of the 'current'.
  621. */
  622. update_curr(cfs_rq);
  623. update_stats_dequeue(cfs_rq, se);
  624. if (sleep) {
  625. update_avg_stats(cfs_rq, se);
  626. #ifdef CONFIG_SCHEDSTATS
  627. if (entity_is_task(se)) {
  628. struct task_struct *tsk = task_of(se);
  629. if (tsk->state & TASK_INTERRUPTIBLE)
  630. se->sleep_start = rq_of(cfs_rq)->clock;
  631. if (tsk->state & TASK_UNINTERRUPTIBLE)
  632. se->block_start = rq_of(cfs_rq)->clock;
  633. }
  634. #endif
  635. }
  636. if (se != cfs_rq->curr)
  637. __dequeue_entity(cfs_rq, se);
  638. account_entity_dequeue(cfs_rq, se);
  639. }
  640. /*
  641. * Preempt the current task with a newly woken task if needed:
  642. */
  643. static void
  644. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  645. {
  646. unsigned long ideal_runtime, delta_exec;
  647. ideal_runtime = sched_slice(cfs_rq, curr);
  648. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  649. if (delta_exec > ideal_runtime)
  650. resched_task(rq_of(cfs_rq)->curr);
  651. }
  652. static void
  653. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  654. {
  655. /* 'current' is not kept within the tree. */
  656. if (se->on_rq) {
  657. /*
  658. * Any task has to be enqueued before it get to execute on
  659. * a CPU. So account for the time it spent waiting on the
  660. * runqueue.
  661. */
  662. update_stats_wait_end(cfs_rq, se);
  663. __dequeue_entity(cfs_rq, se);
  664. }
  665. update_stats_curr_start(cfs_rq, se);
  666. cfs_rq->curr = se;
  667. #ifdef CONFIG_SCHEDSTATS
  668. /*
  669. * Track our maximum slice length, if the CPU's load is at
  670. * least twice that of our own weight (i.e. dont track it
  671. * when there are only lesser-weight tasks around):
  672. */
  673. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  674. se->slice_max = max(se->slice_max,
  675. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  676. }
  677. #endif
  678. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  679. }
  680. static struct sched_entity *
  681. pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
  682. {
  683. struct rq *rq = rq_of(cfs_rq);
  684. u64 pair_slice = rq->clock - cfs_rq->pair_start;
  685. if (!cfs_rq->next || pair_slice > sched_slice(cfs_rq, cfs_rq->next)) {
  686. cfs_rq->pair_start = rq->clock;
  687. return se;
  688. }
  689. return cfs_rq->next;
  690. }
  691. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  692. {
  693. struct sched_entity *se = NULL;
  694. if (first_fair(cfs_rq)) {
  695. se = __pick_next_entity(cfs_rq);
  696. se = pick_next(cfs_rq, se);
  697. set_next_entity(cfs_rq, se);
  698. }
  699. return se;
  700. }
  701. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  702. {
  703. /*
  704. * If still on the runqueue then deactivate_task()
  705. * was not called and update_curr() has to be done:
  706. */
  707. if (prev->on_rq)
  708. update_curr(cfs_rq);
  709. check_spread(cfs_rq, prev);
  710. if (prev->on_rq) {
  711. update_stats_wait_start(cfs_rq, prev);
  712. /* Put 'current' back into the tree. */
  713. __enqueue_entity(cfs_rq, prev);
  714. }
  715. cfs_rq->curr = NULL;
  716. }
  717. static void
  718. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  719. {
  720. /*
  721. * Update run-time statistics of the 'current'.
  722. */
  723. update_curr(cfs_rq);
  724. #ifdef CONFIG_SCHED_HRTICK
  725. /*
  726. * queued ticks are scheduled to match the slice, so don't bother
  727. * validating it and just reschedule.
  728. */
  729. if (queued) {
  730. resched_task(rq_of(cfs_rq)->curr);
  731. return;
  732. }
  733. /*
  734. * don't let the period tick interfere with the hrtick preemption
  735. */
  736. if (!sched_feat(DOUBLE_TICK) &&
  737. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  738. return;
  739. #endif
  740. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  741. check_preempt_tick(cfs_rq, curr);
  742. }
  743. /**************************************************
  744. * CFS operations on tasks:
  745. */
  746. #ifdef CONFIG_SCHED_HRTICK
  747. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  748. {
  749. int requeue = rq->curr == p;
  750. struct sched_entity *se = &p->se;
  751. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  752. WARN_ON(task_rq(p) != rq);
  753. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  754. u64 slice = sched_slice(cfs_rq, se);
  755. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  756. s64 delta = slice - ran;
  757. if (delta < 0) {
  758. if (rq->curr == p)
  759. resched_task(p);
  760. return;
  761. }
  762. /*
  763. * Don't schedule slices shorter than 10000ns, that just
  764. * doesn't make sense. Rely on vruntime for fairness.
  765. */
  766. if (!requeue)
  767. delta = max(10000LL, delta);
  768. hrtick_start(rq, delta, requeue);
  769. }
  770. }
  771. #else
  772. static inline void
  773. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  774. {
  775. }
  776. #endif
  777. /*
  778. * The enqueue_task method is called before nr_running is
  779. * increased. Here we update the fair scheduling stats and
  780. * then put the task into the rbtree:
  781. */
  782. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  783. {
  784. struct cfs_rq *cfs_rq;
  785. struct sched_entity *se = &p->se;
  786. for_each_sched_entity(se) {
  787. if (se->on_rq)
  788. break;
  789. cfs_rq = cfs_rq_of(se);
  790. enqueue_entity(cfs_rq, se, wakeup);
  791. wakeup = 1;
  792. }
  793. hrtick_start_fair(rq, rq->curr);
  794. }
  795. /*
  796. * The dequeue_task method is called before nr_running is
  797. * decreased. We remove the task from the rbtree and
  798. * update the fair scheduling stats:
  799. */
  800. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  801. {
  802. struct cfs_rq *cfs_rq;
  803. struct sched_entity *se = &p->se;
  804. for_each_sched_entity(se) {
  805. cfs_rq = cfs_rq_of(se);
  806. dequeue_entity(cfs_rq, se, sleep);
  807. /* Don't dequeue parent if it has other entities besides us */
  808. if (cfs_rq->load.weight)
  809. break;
  810. sleep = 1;
  811. }
  812. hrtick_start_fair(rq, rq->curr);
  813. }
  814. /*
  815. * sched_yield() support is very simple - we dequeue and enqueue.
  816. *
  817. * If compat_yield is turned on then we requeue to the end of the tree.
  818. */
  819. static void yield_task_fair(struct rq *rq)
  820. {
  821. struct task_struct *curr = rq->curr;
  822. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  823. struct sched_entity *rightmost, *se = &curr->se;
  824. /*
  825. * Are we the only task in the tree?
  826. */
  827. if (unlikely(cfs_rq->nr_running == 1))
  828. return;
  829. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  830. update_rq_clock(rq);
  831. /*
  832. * Update run-time statistics of the 'current'.
  833. */
  834. update_curr(cfs_rq);
  835. return;
  836. }
  837. /*
  838. * Find the rightmost entry in the rbtree:
  839. */
  840. rightmost = __pick_last_entity(cfs_rq);
  841. /*
  842. * Already in the rightmost position?
  843. */
  844. if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
  845. return;
  846. /*
  847. * Minimally necessary key value to be last in the tree:
  848. * Upon rescheduling, sched_class::put_prev_task() will place
  849. * 'current' within the tree based on its new key value.
  850. */
  851. se->vruntime = rightmost->vruntime + 1;
  852. }
  853. /*
  854. * wake_idle() will wake a task on an idle cpu if task->cpu is
  855. * not idle and an idle cpu is available. The span of cpus to
  856. * search starts with cpus closest then further out as needed,
  857. * so we always favor a closer, idle cpu.
  858. *
  859. * Returns the CPU we should wake onto.
  860. */
  861. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  862. static int wake_idle(int cpu, struct task_struct *p)
  863. {
  864. cpumask_t tmp;
  865. struct sched_domain *sd;
  866. int i;
  867. /*
  868. * If it is idle, then it is the best cpu to run this task.
  869. *
  870. * This cpu is also the best, if it has more than one task already.
  871. * Siblings must be also busy(in most cases) as they didn't already
  872. * pickup the extra load from this cpu and hence we need not check
  873. * sibling runqueue info. This will avoid the checks and cache miss
  874. * penalities associated with that.
  875. */
  876. if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
  877. return cpu;
  878. for_each_domain(cpu, sd) {
  879. if ((sd->flags & SD_WAKE_IDLE)
  880. || ((sd->flags & SD_WAKE_IDLE_FAR)
  881. && !task_hot(p, task_rq(p)->clock, sd))) {
  882. cpus_and(tmp, sd->span, p->cpus_allowed);
  883. for_each_cpu_mask(i, tmp) {
  884. if (idle_cpu(i)) {
  885. if (i != task_cpu(p)) {
  886. schedstat_inc(p,
  887. se.nr_wakeups_idle);
  888. }
  889. return i;
  890. }
  891. }
  892. } else {
  893. break;
  894. }
  895. }
  896. return cpu;
  897. }
  898. #else
  899. static inline int wake_idle(int cpu, struct task_struct *p)
  900. {
  901. return cpu;
  902. }
  903. #endif
  904. #ifdef CONFIG_SMP
  905. static const struct sched_class fair_sched_class;
  906. #ifdef CONFIG_FAIR_GROUP_SCHED
  907. /*
  908. * effective_load() calculates the load change as seen from the root_task_group
  909. *
  910. * Adding load to a group doesn't make a group heavier, but can cause movement
  911. * of group shares between cpus. Assuming the shares were perfectly aligned one
  912. * can calculate the shift in shares.
  913. *
  914. * The problem is that perfectly aligning the shares is rather expensive, hence
  915. * we try to avoid doing that too often - see update_shares(), which ratelimits
  916. * this change.
  917. *
  918. * We compensate this by not only taking the current delta into account, but
  919. * also considering the delta between when the shares were last adjusted and
  920. * now.
  921. *
  922. * We still saw a performance dip, some tracing learned us that between
  923. * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
  924. * significantly. Therefore try to bias the error in direction of failing
  925. * the affine wakeup.
  926. *
  927. */
  928. static long effective_load(struct task_group *tg, int cpu,
  929. long wl, long wg)
  930. {
  931. struct sched_entity *se = tg->se[cpu];
  932. long more_w;
  933. if (!tg->parent)
  934. return wl;
  935. /*
  936. * By not taking the decrease of shares on the other cpu into
  937. * account our error leans towards reducing the affine wakeups.
  938. */
  939. if (!wl && sched_feat(ASYM_EFF_LOAD))
  940. return wl;
  941. /*
  942. * Instead of using this increment, also add the difference
  943. * between when the shares were last updated and now.
  944. */
  945. more_w = se->my_q->load.weight - se->my_q->rq_weight;
  946. wl += more_w;
  947. wg += more_w;
  948. for_each_sched_entity(se) {
  949. #define D(n) (likely(n) ? (n) : 1)
  950. long S, rw, s, a, b;
  951. S = se->my_q->tg->shares;
  952. s = se->my_q->shares;
  953. rw = se->my_q->rq_weight;
  954. a = S*(rw + wl);
  955. b = S*rw + s*wg;
  956. wl = s*(a-b)/D(b);
  957. /*
  958. * Assume the group is already running and will
  959. * thus already be accounted for in the weight.
  960. *
  961. * That is, moving shares between CPUs, does not
  962. * alter the group weight.
  963. */
  964. wg = 0;
  965. #undef D
  966. }
  967. return wl;
  968. }
  969. #else
  970. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  971. unsigned long wl, unsigned long wg)
  972. {
  973. return wl;
  974. }
  975. #endif
  976. static int
  977. wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
  978. struct task_struct *p, int prev_cpu, int this_cpu, int sync,
  979. int idx, unsigned long load, unsigned long this_load,
  980. unsigned int imbalance)
  981. {
  982. struct task_struct *curr = this_rq->curr;
  983. struct task_group *tg;
  984. unsigned long tl = this_load;
  985. unsigned long tl_per_task;
  986. unsigned long weight;
  987. int balanced;
  988. if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
  989. return 0;
  990. /*
  991. * If sync wakeup then subtract the (maximum possible)
  992. * effect of the currently running task from the load
  993. * of the current CPU:
  994. */
  995. if (sync) {
  996. tg = task_group(current);
  997. weight = current->se.load.weight;
  998. tl += effective_load(tg, this_cpu, -weight, -weight);
  999. load += effective_load(tg, prev_cpu, 0, -weight);
  1000. }
  1001. tg = task_group(p);
  1002. weight = p->se.load.weight;
  1003. balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
  1004. imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
  1005. /*
  1006. * If the currently running task will sleep within
  1007. * a reasonable amount of time then attract this newly
  1008. * woken task:
  1009. */
  1010. if (sync && balanced && curr->sched_class == &fair_sched_class) {
  1011. if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
  1012. p->se.avg_overlap < sysctl_sched_migration_cost)
  1013. return 1;
  1014. }
  1015. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1016. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1017. if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
  1018. balanced) {
  1019. /*
  1020. * This domain has SD_WAKE_AFFINE and
  1021. * p is cache cold in this domain, and
  1022. * there is no bad imbalance.
  1023. */
  1024. schedstat_inc(this_sd, ttwu_move_affine);
  1025. schedstat_inc(p, se.nr_wakeups_affine);
  1026. return 1;
  1027. }
  1028. return 0;
  1029. }
  1030. static int select_task_rq_fair(struct task_struct *p, int sync)
  1031. {
  1032. struct sched_domain *sd, *this_sd = NULL;
  1033. int prev_cpu, this_cpu, new_cpu;
  1034. unsigned long load, this_load;
  1035. struct rq *rq, *this_rq;
  1036. unsigned int imbalance;
  1037. int idx;
  1038. prev_cpu = task_cpu(p);
  1039. rq = task_rq(p);
  1040. this_cpu = smp_processor_id();
  1041. this_rq = cpu_rq(this_cpu);
  1042. new_cpu = prev_cpu;
  1043. /*
  1044. * 'this_sd' is the first domain that both
  1045. * this_cpu and prev_cpu are present in:
  1046. */
  1047. for_each_domain(this_cpu, sd) {
  1048. if (cpu_isset(prev_cpu, sd->span)) {
  1049. this_sd = sd;
  1050. break;
  1051. }
  1052. }
  1053. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1054. goto out;
  1055. /*
  1056. * Check for affine wakeup and passive balancing possibilities.
  1057. */
  1058. if (!this_sd)
  1059. goto out;
  1060. idx = this_sd->wake_idx;
  1061. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1062. load = source_load(prev_cpu, idx);
  1063. this_load = target_load(this_cpu, idx);
  1064. if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
  1065. load, this_load, imbalance))
  1066. return this_cpu;
  1067. if (prev_cpu == this_cpu)
  1068. goto out;
  1069. /*
  1070. * Start passive balancing when half the imbalance_pct
  1071. * limit is reached.
  1072. */
  1073. if (this_sd->flags & SD_WAKE_BALANCE) {
  1074. if (imbalance*this_load <= 100*load) {
  1075. schedstat_inc(this_sd, ttwu_move_balance);
  1076. schedstat_inc(p, se.nr_wakeups_passive);
  1077. return this_cpu;
  1078. }
  1079. }
  1080. out:
  1081. return wake_idle(new_cpu, p);
  1082. }
  1083. #endif /* CONFIG_SMP */
  1084. static unsigned long wakeup_gran(struct sched_entity *se)
  1085. {
  1086. unsigned long gran = sysctl_sched_wakeup_granularity;
  1087. /*
  1088. * More easily preempt - nice tasks, while not making it harder for
  1089. * + nice tasks.
  1090. */
  1091. if (sched_feat(ASYM_GRAN))
  1092. gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se);
  1093. else
  1094. gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
  1095. return gran;
  1096. }
  1097. /*
  1098. * Should 'se' preempt 'curr'.
  1099. *
  1100. * |s1
  1101. * |s2
  1102. * |s3
  1103. * g
  1104. * |<--->|c
  1105. *
  1106. * w(c, s1) = -1
  1107. * w(c, s2) = 0
  1108. * w(c, s3) = 1
  1109. *
  1110. */
  1111. static int
  1112. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1113. {
  1114. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1115. if (vdiff < 0)
  1116. return -1;
  1117. gran = wakeup_gran(curr);
  1118. if (vdiff > gran)
  1119. return 1;
  1120. return 0;
  1121. }
  1122. /* return depth at which a sched entity is present in the hierarchy */
  1123. static inline int depth_se(struct sched_entity *se)
  1124. {
  1125. int depth = 0;
  1126. for_each_sched_entity(se)
  1127. depth++;
  1128. return depth;
  1129. }
  1130. /*
  1131. * Preempt the current task with a newly woken task if needed:
  1132. */
  1133. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
  1134. {
  1135. struct task_struct *curr = rq->curr;
  1136. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1137. struct sched_entity *se = &curr->se, *pse = &p->se;
  1138. int se_depth, pse_depth;
  1139. if (unlikely(rt_prio(p->prio))) {
  1140. update_rq_clock(rq);
  1141. update_curr(cfs_rq);
  1142. resched_task(curr);
  1143. return;
  1144. }
  1145. se->last_wakeup = se->sum_exec_runtime;
  1146. if (unlikely(se == pse))
  1147. return;
  1148. cfs_rq_of(pse)->next = pse;
  1149. /*
  1150. * Batch tasks do not preempt (their preemption is driven by
  1151. * the tick):
  1152. */
  1153. if (unlikely(p->policy == SCHED_BATCH))
  1154. return;
  1155. if (!sched_feat(WAKEUP_PREEMPT))
  1156. return;
  1157. /*
  1158. * preemption test can be made between sibling entities who are in the
  1159. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  1160. * both tasks until we find their ancestors who are siblings of common
  1161. * parent.
  1162. */
  1163. /* First walk up until both entities are at same depth */
  1164. se_depth = depth_se(se);
  1165. pse_depth = depth_se(pse);
  1166. while (se_depth > pse_depth) {
  1167. se_depth--;
  1168. se = parent_entity(se);
  1169. }
  1170. while (pse_depth > se_depth) {
  1171. pse_depth--;
  1172. pse = parent_entity(pse);
  1173. }
  1174. while (!is_same_group(se, pse)) {
  1175. se = parent_entity(se);
  1176. pse = parent_entity(pse);
  1177. }
  1178. if (wakeup_preempt_entity(se, pse) == 1)
  1179. resched_task(curr);
  1180. }
  1181. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1182. {
  1183. struct task_struct *p;
  1184. struct cfs_rq *cfs_rq = &rq->cfs;
  1185. struct sched_entity *se;
  1186. if (unlikely(!cfs_rq->nr_running))
  1187. return NULL;
  1188. do {
  1189. se = pick_next_entity(cfs_rq);
  1190. cfs_rq = group_cfs_rq(se);
  1191. } while (cfs_rq);
  1192. p = task_of(se);
  1193. hrtick_start_fair(rq, p);
  1194. return p;
  1195. }
  1196. /*
  1197. * Account for a descheduled task:
  1198. */
  1199. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1200. {
  1201. struct sched_entity *se = &prev->se;
  1202. struct cfs_rq *cfs_rq;
  1203. for_each_sched_entity(se) {
  1204. cfs_rq = cfs_rq_of(se);
  1205. put_prev_entity(cfs_rq, se);
  1206. }
  1207. }
  1208. #ifdef CONFIG_SMP
  1209. /**************************************************
  1210. * Fair scheduling class load-balancing methods:
  1211. */
  1212. /*
  1213. * Load-balancing iterator. Note: while the runqueue stays locked
  1214. * during the whole iteration, the current task might be
  1215. * dequeued so the iterator has to be dequeue-safe. Here we
  1216. * achieve that by always pre-iterating before returning
  1217. * the current task:
  1218. */
  1219. static struct task_struct *
  1220. __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
  1221. {
  1222. struct task_struct *p = NULL;
  1223. struct sched_entity *se;
  1224. while (next != &cfs_rq->tasks) {
  1225. se = list_entry(next, struct sched_entity, group_node);
  1226. next = next->next;
  1227. /* Skip over entities that are not tasks */
  1228. if (entity_is_task(se)) {
  1229. p = task_of(se);
  1230. break;
  1231. }
  1232. }
  1233. cfs_rq->balance_iterator = next;
  1234. return p;
  1235. }
  1236. static struct task_struct *load_balance_start_fair(void *arg)
  1237. {
  1238. struct cfs_rq *cfs_rq = arg;
  1239. return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
  1240. }
  1241. static struct task_struct *load_balance_next_fair(void *arg)
  1242. {
  1243. struct cfs_rq *cfs_rq = arg;
  1244. return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
  1245. }
  1246. static unsigned long
  1247. __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1248. unsigned long max_load_move, struct sched_domain *sd,
  1249. enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
  1250. struct cfs_rq *cfs_rq)
  1251. {
  1252. struct rq_iterator cfs_rq_iterator;
  1253. cfs_rq_iterator.start = load_balance_start_fair;
  1254. cfs_rq_iterator.next = load_balance_next_fair;
  1255. cfs_rq_iterator.arg = cfs_rq;
  1256. return balance_tasks(this_rq, this_cpu, busiest,
  1257. max_load_move, sd, idle, all_pinned,
  1258. this_best_prio, &cfs_rq_iterator);
  1259. }
  1260. #ifdef CONFIG_FAIR_GROUP_SCHED
  1261. static unsigned long
  1262. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1263. unsigned long max_load_move,
  1264. struct sched_domain *sd, enum cpu_idle_type idle,
  1265. int *all_pinned, int *this_best_prio)
  1266. {
  1267. long rem_load_move = max_load_move;
  1268. int busiest_cpu = cpu_of(busiest);
  1269. struct task_group *tg;
  1270. rcu_read_lock();
  1271. update_h_load(busiest_cpu);
  1272. list_for_each_entry(tg, &task_groups, list) {
  1273. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1274. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1275. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1276. u64 rem_load, moved_load;
  1277. /*
  1278. * empty group
  1279. */
  1280. if (!busiest_cfs_rq->task_weight)
  1281. continue;
  1282. rem_load = (u64)rem_load_move * busiest_weight;
  1283. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1284. moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
  1285. rem_load, sd, idle, all_pinned, this_best_prio,
  1286. tg->cfs_rq[busiest_cpu]);
  1287. if (!moved_load)
  1288. continue;
  1289. moved_load *= busiest_h_load;
  1290. moved_load = div_u64(moved_load, busiest_weight + 1);
  1291. rem_load_move -= moved_load;
  1292. if (rem_load_move < 0)
  1293. break;
  1294. }
  1295. rcu_read_unlock();
  1296. return max_load_move - rem_load_move;
  1297. }
  1298. #else
  1299. static unsigned long
  1300. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1301. unsigned long max_load_move,
  1302. struct sched_domain *sd, enum cpu_idle_type idle,
  1303. int *all_pinned, int *this_best_prio)
  1304. {
  1305. return __load_balance_fair(this_rq, this_cpu, busiest,
  1306. max_load_move, sd, idle, all_pinned,
  1307. this_best_prio, &busiest->cfs);
  1308. }
  1309. #endif
  1310. static int
  1311. move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1312. struct sched_domain *sd, enum cpu_idle_type idle)
  1313. {
  1314. struct cfs_rq *busy_cfs_rq;
  1315. struct rq_iterator cfs_rq_iterator;
  1316. cfs_rq_iterator.start = load_balance_start_fair;
  1317. cfs_rq_iterator.next = load_balance_next_fair;
  1318. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  1319. /*
  1320. * pass busy_cfs_rq argument into
  1321. * load_balance_[start|next]_fair iterators
  1322. */
  1323. cfs_rq_iterator.arg = busy_cfs_rq;
  1324. if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
  1325. &cfs_rq_iterator))
  1326. return 1;
  1327. }
  1328. return 0;
  1329. }
  1330. #endif
  1331. /*
  1332. * scheduler tick hitting a task of our scheduling class:
  1333. */
  1334. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  1335. {
  1336. struct cfs_rq *cfs_rq;
  1337. struct sched_entity *se = &curr->se;
  1338. for_each_sched_entity(se) {
  1339. cfs_rq = cfs_rq_of(se);
  1340. entity_tick(cfs_rq, se, queued);
  1341. }
  1342. }
  1343. #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
  1344. /*
  1345. * Share the fairness runtime between parent and child, thus the
  1346. * total amount of pressure for CPU stays equal - new tasks
  1347. * get a chance to run but frequent forkers are not allowed to
  1348. * monopolize the CPU. Note: the parent runqueue is locked,
  1349. * the child is not running yet.
  1350. */
  1351. static void task_new_fair(struct rq *rq, struct task_struct *p)
  1352. {
  1353. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1354. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  1355. int this_cpu = smp_processor_id();
  1356. sched_info_queued(p);
  1357. update_curr(cfs_rq);
  1358. place_entity(cfs_rq, se, 1);
  1359. /* 'curr' will be NULL if the child belongs to a different group */
  1360. if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
  1361. curr && curr->vruntime < se->vruntime) {
  1362. /*
  1363. * Upon rescheduling, sched_class::put_prev_task() will place
  1364. * 'current' within the tree based on its new key value.
  1365. */
  1366. swap(curr->vruntime, se->vruntime);
  1367. }
  1368. enqueue_task_fair(rq, p, 0);
  1369. resched_task(rq->curr);
  1370. }
  1371. /*
  1372. * Priority of the task has changed. Check to see if we preempt
  1373. * the current task.
  1374. */
  1375. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  1376. int oldprio, int running)
  1377. {
  1378. /*
  1379. * Reschedule if we are currently running on this runqueue and
  1380. * our priority decreased, or if we are not currently running on
  1381. * this runqueue and our priority is higher than the current's
  1382. */
  1383. if (running) {
  1384. if (p->prio > oldprio)
  1385. resched_task(rq->curr);
  1386. } else
  1387. check_preempt_curr(rq, p);
  1388. }
  1389. /*
  1390. * We switched to the sched_fair class.
  1391. */
  1392. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  1393. int running)
  1394. {
  1395. /*
  1396. * We were most likely switched from sched_rt, so
  1397. * kick off the schedule if running, otherwise just see
  1398. * if we can still preempt the current task.
  1399. */
  1400. if (running)
  1401. resched_task(rq->curr);
  1402. else
  1403. check_preempt_curr(rq, p);
  1404. }
  1405. /* Account for a task changing its policy or group.
  1406. *
  1407. * This routine is mostly called to set cfs_rq->curr field when a task
  1408. * migrates between groups/classes.
  1409. */
  1410. static void set_curr_task_fair(struct rq *rq)
  1411. {
  1412. struct sched_entity *se = &rq->curr->se;
  1413. for_each_sched_entity(se)
  1414. set_next_entity(cfs_rq_of(se), se);
  1415. }
  1416. #ifdef CONFIG_FAIR_GROUP_SCHED
  1417. static void moved_group_fair(struct task_struct *p)
  1418. {
  1419. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1420. update_curr(cfs_rq);
  1421. place_entity(cfs_rq, &p->se, 1);
  1422. }
  1423. #endif
  1424. /*
  1425. * All the scheduling class methods:
  1426. */
  1427. static const struct sched_class fair_sched_class = {
  1428. .next = &idle_sched_class,
  1429. .enqueue_task = enqueue_task_fair,
  1430. .dequeue_task = dequeue_task_fair,
  1431. .yield_task = yield_task_fair,
  1432. #ifdef CONFIG_SMP
  1433. .select_task_rq = select_task_rq_fair,
  1434. #endif /* CONFIG_SMP */
  1435. .check_preempt_curr = check_preempt_wakeup,
  1436. .pick_next_task = pick_next_task_fair,
  1437. .put_prev_task = put_prev_task_fair,
  1438. #ifdef CONFIG_SMP
  1439. .load_balance = load_balance_fair,
  1440. .move_one_task = move_one_task_fair,
  1441. #endif
  1442. .set_curr_task = set_curr_task_fair,
  1443. .task_tick = task_tick_fair,
  1444. .task_new = task_new_fair,
  1445. .prio_changed = prio_changed_fair,
  1446. .switched_to = switched_to_fair,
  1447. #ifdef CONFIG_FAIR_GROUP_SCHED
  1448. .moved_group = moved_group_fair,
  1449. #endif
  1450. };
  1451. #ifdef CONFIG_SCHED_DEBUG
  1452. static void print_cfs_stats(struct seq_file *m, int cpu)
  1453. {
  1454. struct cfs_rq *cfs_rq;
  1455. rcu_read_lock();
  1456. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  1457. print_cfs_rq(m, cpu, cfs_rq);
  1458. rcu_read_unlock();
  1459. }
  1460. #endif