spi-mxs.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606
  1. /*
  2. * Freescale MXS SPI master driver
  3. *
  4. * Copyright 2012 DENX Software Engineering, GmbH.
  5. * Copyright 2012 Freescale Semiconductor, Inc.
  6. * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
  7. *
  8. * Rework and transition to new API by:
  9. * Marek Vasut <marex@denx.de>
  10. *
  11. * Based on previous attempt by:
  12. * Fabio Estevam <fabio.estevam@freescale.com>
  13. *
  14. * Based on code from U-Boot bootloader by:
  15. * Marek Vasut <marex@denx.de>
  16. *
  17. * Based on spi-stmp.c, which is:
  18. * Author: Dmitry Pervushin <dimka@embeddedalley.com>
  19. *
  20. * This program is free software; you can redistribute it and/or modify
  21. * it under the terms of the GNU General Public License as published by
  22. * the Free Software Foundation; either version 2 of the License, or
  23. * (at your option) any later version.
  24. *
  25. * This program is distributed in the hope that it will be useful,
  26. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28. * GNU General Public License for more details.
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/init.h>
  32. #include <linux/ioport.h>
  33. #include <linux/of.h>
  34. #include <linux/of_device.h>
  35. #include <linux/of_gpio.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/delay.h>
  38. #include <linux/interrupt.h>
  39. #include <linux/dma-mapping.h>
  40. #include <linux/dmaengine.h>
  41. #include <linux/highmem.h>
  42. #include <linux/clk.h>
  43. #include <linux/err.h>
  44. #include <linux/completion.h>
  45. #include <linux/gpio.h>
  46. #include <linux/regulator/consumer.h>
  47. #include <linux/module.h>
  48. #include <linux/stmp_device.h>
  49. #include <linux/spi/spi.h>
  50. #include <linux/spi/mxs-spi.h>
  51. #define DRIVER_NAME "mxs-spi"
  52. /* Use 10S timeout for very long transfers, it should suffice. */
  53. #define SSP_TIMEOUT 10000
  54. #define SG_MAXLEN 0xff00
  55. struct mxs_spi {
  56. struct mxs_ssp ssp;
  57. struct completion c;
  58. };
  59. static int mxs_spi_setup_transfer(struct spi_device *dev,
  60. struct spi_transfer *t)
  61. {
  62. struct mxs_spi *spi = spi_master_get_devdata(dev->master);
  63. struct mxs_ssp *ssp = &spi->ssp;
  64. uint32_t hz = 0;
  65. hz = dev->max_speed_hz;
  66. if (t && t->speed_hz)
  67. hz = min(hz, t->speed_hz);
  68. if (hz == 0) {
  69. dev_err(&dev->dev, "Cannot continue with zero clock\n");
  70. return -EINVAL;
  71. }
  72. mxs_ssp_set_clk_rate(ssp, hz);
  73. writel(BM_SSP_CTRL0_LOCK_CS,
  74. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  75. writel(BF_SSP_CTRL1_SSP_MODE(BV_SSP_CTRL1_SSP_MODE__SPI) |
  76. BF_SSP_CTRL1_WORD_LENGTH
  77. (BV_SSP_CTRL1_WORD_LENGTH__EIGHT_BITS) |
  78. ((dev->mode & SPI_CPOL) ? BM_SSP_CTRL1_POLARITY : 0) |
  79. ((dev->mode & SPI_CPHA) ? BM_SSP_CTRL1_PHASE : 0),
  80. ssp->base + HW_SSP_CTRL1(ssp));
  81. writel(0x0, ssp->base + HW_SSP_CMD0);
  82. writel(0x0, ssp->base + HW_SSP_CMD1);
  83. return 0;
  84. }
  85. static int mxs_spi_setup(struct spi_device *dev)
  86. {
  87. int err = 0;
  88. if (!dev->bits_per_word)
  89. dev->bits_per_word = 8;
  90. if (dev->mode & ~(SPI_CPOL | SPI_CPHA))
  91. return -EINVAL;
  92. err = mxs_spi_setup_transfer(dev, NULL);
  93. if (err) {
  94. dev_err(&dev->dev,
  95. "Failed to setup transfer, error = %d\n", err);
  96. }
  97. return err;
  98. }
  99. static uint32_t mxs_spi_cs_to_reg(unsigned cs)
  100. {
  101. uint32_t select = 0;
  102. /*
  103. * i.MX28 Datasheet: 17.10.1: HW_SSP_CTRL0
  104. *
  105. * The bits BM_SSP_CTRL0_WAIT_FOR_CMD and BM_SSP_CTRL0_WAIT_FOR_IRQ
  106. * in HW_SSP_CTRL0 register do have multiple usage, please refer to
  107. * the datasheet for further details. In SPI mode, they are used to
  108. * toggle the chip-select lines (nCS pins).
  109. */
  110. if (cs & 1)
  111. select |= BM_SSP_CTRL0_WAIT_FOR_CMD;
  112. if (cs & 2)
  113. select |= BM_SSP_CTRL0_WAIT_FOR_IRQ;
  114. return select;
  115. }
  116. static void mxs_spi_set_cs(struct mxs_spi *spi, unsigned cs)
  117. {
  118. const uint32_t mask =
  119. BM_SSP_CTRL0_WAIT_FOR_CMD | BM_SSP_CTRL0_WAIT_FOR_IRQ;
  120. uint32_t select;
  121. struct mxs_ssp *ssp = &spi->ssp;
  122. writel(mask, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  123. select = mxs_spi_cs_to_reg(cs);
  124. writel(select, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  125. }
  126. static int mxs_ssp_wait(struct mxs_spi *spi, int offset, int mask, bool set)
  127. {
  128. const unsigned long timeout = jiffies + msecs_to_jiffies(SSP_TIMEOUT);
  129. struct mxs_ssp *ssp = &spi->ssp;
  130. uint32_t reg;
  131. do {
  132. reg = readl_relaxed(ssp->base + offset);
  133. if (!set)
  134. reg = ~reg;
  135. reg &= mask;
  136. if (reg == mask)
  137. return 0;
  138. } while (time_before(jiffies, timeout));
  139. return -ETIMEDOUT;
  140. }
  141. static void mxs_ssp_dma_irq_callback(void *param)
  142. {
  143. struct mxs_spi *spi = param;
  144. complete(&spi->c);
  145. }
  146. static irqreturn_t mxs_ssp_irq_handler(int irq, void *dev_id)
  147. {
  148. struct mxs_ssp *ssp = dev_id;
  149. dev_err(ssp->dev, "%s[%i] CTRL1=%08x STATUS=%08x\n",
  150. __func__, __LINE__,
  151. readl(ssp->base + HW_SSP_CTRL1(ssp)),
  152. readl(ssp->base + HW_SSP_STATUS(ssp)));
  153. return IRQ_HANDLED;
  154. }
  155. static int mxs_spi_txrx_dma(struct mxs_spi *spi, int cs,
  156. unsigned char *buf, int len,
  157. int *first, int *last, int write)
  158. {
  159. struct mxs_ssp *ssp = &spi->ssp;
  160. struct dma_async_tx_descriptor *desc = NULL;
  161. const bool vmalloced_buf = is_vmalloc_addr(buf);
  162. const int desc_len = vmalloced_buf ? PAGE_SIZE : SG_MAXLEN;
  163. const int sgs = DIV_ROUND_UP(len, desc_len);
  164. int sg_count;
  165. int min, ret;
  166. uint32_t ctrl0;
  167. struct page *vm_page;
  168. void *sg_buf;
  169. struct {
  170. uint32_t pio[4];
  171. struct scatterlist sg;
  172. } *dma_xfer;
  173. if (!len)
  174. return -EINVAL;
  175. dma_xfer = kzalloc(sizeof(*dma_xfer) * sgs, GFP_KERNEL);
  176. if (!dma_xfer)
  177. return -ENOMEM;
  178. INIT_COMPLETION(spi->c);
  179. ctrl0 = readl(ssp->base + HW_SSP_CTRL0);
  180. ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
  181. ctrl0 |= BM_SSP_CTRL0_DATA_XFER | mxs_spi_cs_to_reg(cs);
  182. if (!write)
  183. ctrl0 |= BM_SSP_CTRL0_READ;
  184. /* Queue the DMA data transfer. */
  185. for (sg_count = 0; sg_count < sgs; sg_count++) {
  186. min = min(len, desc_len);
  187. /* Prepare the transfer descriptor. */
  188. if ((sg_count + 1 == sgs) && *last)
  189. ctrl0 |= BM_SSP_CTRL0_IGNORE_CRC;
  190. if (ssp->devid == IMX23_SSP) {
  191. ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
  192. ctrl0 |= min;
  193. }
  194. dma_xfer[sg_count].pio[0] = ctrl0;
  195. dma_xfer[sg_count].pio[3] = min;
  196. if (vmalloced_buf) {
  197. vm_page = vmalloc_to_page(buf);
  198. if (!vm_page) {
  199. ret = -ENOMEM;
  200. goto err_vmalloc;
  201. }
  202. sg_buf = page_address(vm_page) +
  203. ((size_t)buf & ~PAGE_MASK);
  204. } else {
  205. sg_buf = buf;
  206. }
  207. sg_init_one(&dma_xfer[sg_count].sg, sg_buf, min);
  208. ret = dma_map_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
  209. write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  210. len -= min;
  211. buf += min;
  212. /* Queue the PIO register write transfer. */
  213. desc = dmaengine_prep_slave_sg(ssp->dmach,
  214. (struct scatterlist *)dma_xfer[sg_count].pio,
  215. (ssp->devid == IMX23_SSP) ? 1 : 4,
  216. DMA_TRANS_NONE,
  217. sg_count ? DMA_PREP_INTERRUPT : 0);
  218. if (!desc) {
  219. dev_err(ssp->dev,
  220. "Failed to get PIO reg. write descriptor.\n");
  221. ret = -EINVAL;
  222. goto err_mapped;
  223. }
  224. desc = dmaengine_prep_slave_sg(ssp->dmach,
  225. &dma_xfer[sg_count].sg, 1,
  226. write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
  227. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  228. if (!desc) {
  229. dev_err(ssp->dev,
  230. "Failed to get DMA data write descriptor.\n");
  231. ret = -EINVAL;
  232. goto err_mapped;
  233. }
  234. }
  235. /*
  236. * The last descriptor must have this callback,
  237. * to finish the DMA transaction.
  238. */
  239. desc->callback = mxs_ssp_dma_irq_callback;
  240. desc->callback_param = spi;
  241. /* Start the transfer. */
  242. dmaengine_submit(desc);
  243. dma_async_issue_pending(ssp->dmach);
  244. ret = wait_for_completion_timeout(&spi->c,
  245. msecs_to_jiffies(SSP_TIMEOUT));
  246. if (!ret) {
  247. dev_err(ssp->dev, "DMA transfer timeout\n");
  248. ret = -ETIMEDOUT;
  249. dmaengine_terminate_all(ssp->dmach);
  250. goto err_vmalloc;
  251. }
  252. ret = 0;
  253. err_vmalloc:
  254. while (--sg_count >= 0) {
  255. err_mapped:
  256. dma_unmap_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
  257. write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  258. }
  259. kfree(dma_xfer);
  260. return ret;
  261. }
  262. static int mxs_spi_txrx_pio(struct mxs_spi *spi, int cs,
  263. unsigned char *buf, int len,
  264. int *first, int *last, int write)
  265. {
  266. struct mxs_ssp *ssp = &spi->ssp;
  267. if (*first)
  268. writel(BM_SSP_CTRL0_IGNORE_CRC,
  269. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  270. mxs_spi_set_cs(spi, cs);
  271. while (len--) {
  272. if (*last && len == 0)
  273. writel(BM_SSP_CTRL0_IGNORE_CRC,
  274. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  275. if (ssp->devid == IMX23_SSP) {
  276. writel(BM_SSP_CTRL0_XFER_COUNT,
  277. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  278. writel(1,
  279. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  280. } else {
  281. writel(1, ssp->base + HW_SSP_XFER_SIZE);
  282. }
  283. if (write)
  284. writel(BM_SSP_CTRL0_READ,
  285. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  286. else
  287. writel(BM_SSP_CTRL0_READ,
  288. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  289. writel(BM_SSP_CTRL0_RUN,
  290. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  291. if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 1))
  292. return -ETIMEDOUT;
  293. if (write)
  294. writel(*buf, ssp->base + HW_SSP_DATA(ssp));
  295. writel(BM_SSP_CTRL0_DATA_XFER,
  296. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  297. if (!write) {
  298. if (mxs_ssp_wait(spi, HW_SSP_STATUS(ssp),
  299. BM_SSP_STATUS_FIFO_EMPTY, 0))
  300. return -ETIMEDOUT;
  301. *buf = (readl(ssp->base + HW_SSP_DATA(ssp)) & 0xff);
  302. }
  303. if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 0))
  304. return -ETIMEDOUT;
  305. buf++;
  306. }
  307. if (len <= 0)
  308. return 0;
  309. return -ETIMEDOUT;
  310. }
  311. static int mxs_spi_transfer_one(struct spi_master *master,
  312. struct spi_message *m)
  313. {
  314. struct mxs_spi *spi = spi_master_get_devdata(master);
  315. struct mxs_ssp *ssp = &spi->ssp;
  316. int first, last;
  317. struct spi_transfer *t, *tmp_t;
  318. int status = 0;
  319. int cs;
  320. first = last = 0;
  321. cs = m->spi->chip_select;
  322. list_for_each_entry_safe(t, tmp_t, &m->transfers, transfer_list) {
  323. status = mxs_spi_setup_transfer(m->spi, t);
  324. if (status)
  325. break;
  326. if (&t->transfer_list == m->transfers.next)
  327. first = 1;
  328. if (&t->transfer_list == m->transfers.prev)
  329. last = 1;
  330. if ((t->rx_buf && t->tx_buf) || (t->rx_dma && t->tx_dma)) {
  331. dev_err(ssp->dev,
  332. "Cannot send and receive simultaneously\n");
  333. status = -EINVAL;
  334. break;
  335. }
  336. /*
  337. * Small blocks can be transfered via PIO.
  338. * Measured by empiric means:
  339. *
  340. * dd if=/dev/mtdblock0 of=/dev/null bs=1024k count=1
  341. *
  342. * DMA only: 2.164808 seconds, 473.0KB/s
  343. * Combined: 1.676276 seconds, 610.9KB/s
  344. */
  345. if (t->len < 32) {
  346. writel(BM_SSP_CTRL1_DMA_ENABLE,
  347. ssp->base + HW_SSP_CTRL1(ssp) +
  348. STMP_OFFSET_REG_CLR);
  349. if (t->tx_buf)
  350. status = mxs_spi_txrx_pio(spi, cs,
  351. (void *)t->tx_buf,
  352. t->len, &first, &last, 1);
  353. if (t->rx_buf)
  354. status = mxs_spi_txrx_pio(spi, cs,
  355. t->rx_buf, t->len,
  356. &first, &last, 0);
  357. } else {
  358. writel(BM_SSP_CTRL1_DMA_ENABLE,
  359. ssp->base + HW_SSP_CTRL1(ssp) +
  360. STMP_OFFSET_REG_SET);
  361. if (t->tx_buf)
  362. status = mxs_spi_txrx_dma(spi, cs,
  363. (void *)t->tx_buf, t->len,
  364. &first, &last, 1);
  365. if (t->rx_buf)
  366. status = mxs_spi_txrx_dma(spi, cs,
  367. t->rx_buf, t->len,
  368. &first, &last, 0);
  369. }
  370. if (status) {
  371. stmp_reset_block(ssp->base);
  372. break;
  373. }
  374. m->actual_length += t->len;
  375. first = last = 0;
  376. }
  377. m->status = status;
  378. spi_finalize_current_message(master);
  379. return status;
  380. }
  381. static const struct of_device_id mxs_spi_dt_ids[] = {
  382. { .compatible = "fsl,imx23-spi", .data = (void *) IMX23_SSP, },
  383. { .compatible = "fsl,imx28-spi", .data = (void *) IMX28_SSP, },
  384. { /* sentinel */ }
  385. };
  386. MODULE_DEVICE_TABLE(of, mxs_spi_dt_ids);
  387. static int mxs_spi_probe(struct platform_device *pdev)
  388. {
  389. const struct of_device_id *of_id =
  390. of_match_device(mxs_spi_dt_ids, &pdev->dev);
  391. struct device_node *np = pdev->dev.of_node;
  392. struct spi_master *master;
  393. struct mxs_spi *spi;
  394. struct mxs_ssp *ssp;
  395. struct resource *iores;
  396. struct clk *clk;
  397. void __iomem *base;
  398. int devid, clk_freq;
  399. int ret = 0, irq_err;
  400. /*
  401. * Default clock speed for the SPI core. 160MHz seems to
  402. * work reasonably well with most SPI flashes, so use this
  403. * as a default. Override with "clock-frequency" DT prop.
  404. */
  405. const int clk_freq_default = 160000000;
  406. iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  407. irq_err = platform_get_irq(pdev, 0);
  408. if (irq_err < 0)
  409. return -EINVAL;
  410. base = devm_ioremap_resource(&pdev->dev, iores);
  411. if (IS_ERR(base))
  412. return PTR_ERR(base);
  413. clk = devm_clk_get(&pdev->dev, NULL);
  414. if (IS_ERR(clk))
  415. return PTR_ERR(clk);
  416. devid = (enum mxs_ssp_id) of_id->data;
  417. ret = of_property_read_u32(np, "clock-frequency",
  418. &clk_freq);
  419. if (ret)
  420. clk_freq = clk_freq_default;
  421. master = spi_alloc_master(&pdev->dev, sizeof(*spi));
  422. if (!master)
  423. return -ENOMEM;
  424. master->transfer_one_message = mxs_spi_transfer_one;
  425. master->setup = mxs_spi_setup;
  426. master->bits_per_word_mask = SPI_BPW_MASK(8);
  427. master->mode_bits = SPI_CPOL | SPI_CPHA;
  428. master->num_chipselect = 3;
  429. master->dev.of_node = np;
  430. master->flags = SPI_MASTER_HALF_DUPLEX;
  431. spi = spi_master_get_devdata(master);
  432. ssp = &spi->ssp;
  433. ssp->dev = &pdev->dev;
  434. ssp->clk = clk;
  435. ssp->base = base;
  436. ssp->devid = devid;
  437. init_completion(&spi->c);
  438. ret = devm_request_irq(&pdev->dev, irq_err, mxs_ssp_irq_handler, 0,
  439. DRIVER_NAME, ssp);
  440. if (ret)
  441. goto out_master_free;
  442. ssp->dmach = dma_request_slave_channel(&pdev->dev, "rx-tx");
  443. if (!ssp->dmach) {
  444. dev_err(ssp->dev, "Failed to request DMA\n");
  445. ret = -ENODEV;
  446. goto out_master_free;
  447. }
  448. ret = clk_prepare_enable(ssp->clk);
  449. if (ret)
  450. goto out_dma_release;
  451. clk_set_rate(ssp->clk, clk_freq);
  452. ssp->clk_rate = clk_get_rate(ssp->clk) / 1000;
  453. ret = stmp_reset_block(ssp->base);
  454. if (ret)
  455. goto out_disable_clk;
  456. platform_set_drvdata(pdev, master);
  457. ret = spi_register_master(master);
  458. if (ret) {
  459. dev_err(&pdev->dev, "Cannot register SPI master, %d\n", ret);
  460. goto out_disable_clk;
  461. }
  462. return 0;
  463. out_disable_clk:
  464. clk_disable_unprepare(ssp->clk);
  465. out_dma_release:
  466. dma_release_channel(ssp->dmach);
  467. out_master_free:
  468. spi_master_put(master);
  469. return ret;
  470. }
  471. static int mxs_spi_remove(struct platform_device *pdev)
  472. {
  473. struct spi_master *master;
  474. struct mxs_spi *spi;
  475. struct mxs_ssp *ssp;
  476. master = spi_master_get(platform_get_drvdata(pdev));
  477. spi = spi_master_get_devdata(master);
  478. ssp = &spi->ssp;
  479. spi_unregister_master(master);
  480. clk_disable_unprepare(ssp->clk);
  481. dma_release_channel(ssp->dmach);
  482. spi_master_put(master);
  483. return 0;
  484. }
  485. static struct platform_driver mxs_spi_driver = {
  486. .probe = mxs_spi_probe,
  487. .remove = mxs_spi_remove,
  488. .driver = {
  489. .name = DRIVER_NAME,
  490. .owner = THIS_MODULE,
  491. .of_match_table = mxs_spi_dt_ids,
  492. },
  493. };
  494. module_platform_driver(mxs_spi_driver);
  495. MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
  496. MODULE_DESCRIPTION("MXS SPI master driver");
  497. MODULE_LICENSE("GPL");
  498. MODULE_ALIAS("platform:mxs-spi");