sys.c 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242
  1. /*
  2. * linux/kernel/sys.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. #include <linux/export.h>
  7. #include <linux/mm.h>
  8. #include <linux/utsname.h>
  9. #include <linux/mman.h>
  10. #include <linux/reboot.h>
  11. #include <linux/prctl.h>
  12. #include <linux/highuid.h>
  13. #include <linux/fs.h>
  14. #include <linux/kmod.h>
  15. #include <linux/perf_event.h>
  16. #include <linux/resource.h>
  17. #include <linux/kernel.h>
  18. #include <linux/kexec.h>
  19. #include <linux/workqueue.h>
  20. #include <linux/capability.h>
  21. #include <linux/device.h>
  22. #include <linux/key.h>
  23. #include <linux/times.h>
  24. #include <linux/posix-timers.h>
  25. #include <linux/security.h>
  26. #include <linux/dcookies.h>
  27. #include <linux/suspend.h>
  28. #include <linux/tty.h>
  29. #include <linux/signal.h>
  30. #include <linux/cn_proc.h>
  31. #include <linux/getcpu.h>
  32. #include <linux/task_io_accounting_ops.h>
  33. #include <linux/seccomp.h>
  34. #include <linux/cpu.h>
  35. #include <linux/personality.h>
  36. #include <linux/ptrace.h>
  37. #include <linux/fs_struct.h>
  38. #include <linux/file.h>
  39. #include <linux/mount.h>
  40. #include <linux/gfp.h>
  41. #include <linux/syscore_ops.h>
  42. #include <linux/version.h>
  43. #include <linux/ctype.h>
  44. #include <linux/compat.h>
  45. #include <linux/syscalls.h>
  46. #include <linux/kprobes.h>
  47. #include <linux/user_namespace.h>
  48. #include <linux/kmsg_dump.h>
  49. /* Move somewhere else to avoid recompiling? */
  50. #include <generated/utsrelease.h>
  51. #include <asm/uaccess.h>
  52. #include <asm/io.h>
  53. #include <asm/unistd.h>
  54. #ifndef SET_UNALIGN_CTL
  55. # define SET_UNALIGN_CTL(a,b) (-EINVAL)
  56. #endif
  57. #ifndef GET_UNALIGN_CTL
  58. # define GET_UNALIGN_CTL(a,b) (-EINVAL)
  59. #endif
  60. #ifndef SET_FPEMU_CTL
  61. # define SET_FPEMU_CTL(a,b) (-EINVAL)
  62. #endif
  63. #ifndef GET_FPEMU_CTL
  64. # define GET_FPEMU_CTL(a,b) (-EINVAL)
  65. #endif
  66. #ifndef SET_FPEXC_CTL
  67. # define SET_FPEXC_CTL(a,b) (-EINVAL)
  68. #endif
  69. #ifndef GET_FPEXC_CTL
  70. # define GET_FPEXC_CTL(a,b) (-EINVAL)
  71. #endif
  72. #ifndef GET_ENDIAN
  73. # define GET_ENDIAN(a,b) (-EINVAL)
  74. #endif
  75. #ifndef SET_ENDIAN
  76. # define SET_ENDIAN(a,b) (-EINVAL)
  77. #endif
  78. #ifndef GET_TSC_CTL
  79. # define GET_TSC_CTL(a) (-EINVAL)
  80. #endif
  81. #ifndef SET_TSC_CTL
  82. # define SET_TSC_CTL(a) (-EINVAL)
  83. #endif
  84. /*
  85. * this is where the system-wide overflow UID and GID are defined, for
  86. * architectures that now have 32-bit UID/GID but didn't in the past
  87. */
  88. int overflowuid = DEFAULT_OVERFLOWUID;
  89. int overflowgid = DEFAULT_OVERFLOWGID;
  90. EXPORT_SYMBOL(overflowuid);
  91. EXPORT_SYMBOL(overflowgid);
  92. /*
  93. * the same as above, but for filesystems which can only store a 16-bit
  94. * UID and GID. as such, this is needed on all architectures
  95. */
  96. int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
  97. int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
  98. EXPORT_SYMBOL(fs_overflowuid);
  99. EXPORT_SYMBOL(fs_overflowgid);
  100. /*
  101. * this indicates whether you can reboot with ctrl-alt-del: the default is yes
  102. */
  103. int C_A_D = 1;
  104. struct pid *cad_pid;
  105. EXPORT_SYMBOL(cad_pid);
  106. /*
  107. * If set, this is used for preparing the system to power off.
  108. */
  109. void (*pm_power_off_prepare)(void);
  110. /*
  111. * Returns true if current's euid is same as p's uid or euid,
  112. * or has CAP_SYS_NICE to p's user_ns.
  113. *
  114. * Called with rcu_read_lock, creds are safe
  115. */
  116. static bool set_one_prio_perm(struct task_struct *p)
  117. {
  118. const struct cred *cred = current_cred(), *pcred = __task_cred(p);
  119. if (uid_eq(pcred->uid, cred->euid) ||
  120. uid_eq(pcred->euid, cred->euid))
  121. return true;
  122. if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
  123. return true;
  124. return false;
  125. }
  126. /*
  127. * set the priority of a task
  128. * - the caller must hold the RCU read lock
  129. */
  130. static int set_one_prio(struct task_struct *p, int niceval, int error)
  131. {
  132. int no_nice;
  133. if (!set_one_prio_perm(p)) {
  134. error = -EPERM;
  135. goto out;
  136. }
  137. if (niceval < task_nice(p) && !can_nice(p, niceval)) {
  138. error = -EACCES;
  139. goto out;
  140. }
  141. no_nice = security_task_setnice(p, niceval);
  142. if (no_nice) {
  143. error = no_nice;
  144. goto out;
  145. }
  146. if (error == -ESRCH)
  147. error = 0;
  148. set_user_nice(p, niceval);
  149. out:
  150. return error;
  151. }
  152. SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
  153. {
  154. struct task_struct *g, *p;
  155. struct user_struct *user;
  156. const struct cred *cred = current_cred();
  157. int error = -EINVAL;
  158. struct pid *pgrp;
  159. kuid_t uid;
  160. if (which > PRIO_USER || which < PRIO_PROCESS)
  161. goto out;
  162. /* normalize: avoid signed division (rounding problems) */
  163. error = -ESRCH;
  164. if (niceval < -20)
  165. niceval = -20;
  166. if (niceval > 19)
  167. niceval = 19;
  168. rcu_read_lock();
  169. read_lock(&tasklist_lock);
  170. switch (which) {
  171. case PRIO_PROCESS:
  172. if (who)
  173. p = find_task_by_vpid(who);
  174. else
  175. p = current;
  176. if (p)
  177. error = set_one_prio(p, niceval, error);
  178. break;
  179. case PRIO_PGRP:
  180. if (who)
  181. pgrp = find_vpid(who);
  182. else
  183. pgrp = task_pgrp(current);
  184. do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
  185. error = set_one_prio(p, niceval, error);
  186. } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
  187. break;
  188. case PRIO_USER:
  189. uid = make_kuid(cred->user_ns, who);
  190. user = cred->user;
  191. if (!who)
  192. uid = cred->uid;
  193. else if (!uid_eq(uid, cred->uid) &&
  194. !(user = find_user(uid)))
  195. goto out_unlock; /* No processes for this user */
  196. do_each_thread(g, p) {
  197. if (uid_eq(task_uid(p), uid))
  198. error = set_one_prio(p, niceval, error);
  199. } while_each_thread(g, p);
  200. if (!uid_eq(uid, cred->uid))
  201. free_uid(user); /* For find_user() */
  202. break;
  203. }
  204. out_unlock:
  205. read_unlock(&tasklist_lock);
  206. rcu_read_unlock();
  207. out:
  208. return error;
  209. }
  210. /*
  211. * Ugh. To avoid negative return values, "getpriority()" will
  212. * not return the normal nice-value, but a negated value that
  213. * has been offset by 20 (ie it returns 40..1 instead of -20..19)
  214. * to stay compatible.
  215. */
  216. SYSCALL_DEFINE2(getpriority, int, which, int, who)
  217. {
  218. struct task_struct *g, *p;
  219. struct user_struct *user;
  220. const struct cred *cred = current_cred();
  221. long niceval, retval = -ESRCH;
  222. struct pid *pgrp;
  223. kuid_t uid;
  224. if (which > PRIO_USER || which < PRIO_PROCESS)
  225. return -EINVAL;
  226. rcu_read_lock();
  227. read_lock(&tasklist_lock);
  228. switch (which) {
  229. case PRIO_PROCESS:
  230. if (who)
  231. p = find_task_by_vpid(who);
  232. else
  233. p = current;
  234. if (p) {
  235. niceval = 20 - task_nice(p);
  236. if (niceval > retval)
  237. retval = niceval;
  238. }
  239. break;
  240. case PRIO_PGRP:
  241. if (who)
  242. pgrp = find_vpid(who);
  243. else
  244. pgrp = task_pgrp(current);
  245. do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
  246. niceval = 20 - task_nice(p);
  247. if (niceval > retval)
  248. retval = niceval;
  249. } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
  250. break;
  251. case PRIO_USER:
  252. uid = make_kuid(cred->user_ns, who);
  253. user = cred->user;
  254. if (!who)
  255. uid = cred->uid;
  256. else if (!uid_eq(uid, cred->uid) &&
  257. !(user = find_user(uid)))
  258. goto out_unlock; /* No processes for this user */
  259. do_each_thread(g, p) {
  260. if (uid_eq(task_uid(p), uid)) {
  261. niceval = 20 - task_nice(p);
  262. if (niceval > retval)
  263. retval = niceval;
  264. }
  265. } while_each_thread(g, p);
  266. if (!uid_eq(uid, cred->uid))
  267. free_uid(user); /* for find_user() */
  268. break;
  269. }
  270. out_unlock:
  271. read_unlock(&tasklist_lock);
  272. rcu_read_unlock();
  273. return retval;
  274. }
  275. /**
  276. * emergency_restart - reboot the system
  277. *
  278. * Without shutting down any hardware or taking any locks
  279. * reboot the system. This is called when we know we are in
  280. * trouble so this is our best effort to reboot. This is
  281. * safe to call in interrupt context.
  282. */
  283. void emergency_restart(void)
  284. {
  285. kmsg_dump(KMSG_DUMP_EMERG);
  286. machine_emergency_restart();
  287. }
  288. EXPORT_SYMBOL_GPL(emergency_restart);
  289. void kernel_restart_prepare(char *cmd)
  290. {
  291. blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
  292. system_state = SYSTEM_RESTART;
  293. usermodehelper_disable();
  294. device_shutdown();
  295. syscore_shutdown();
  296. }
  297. /**
  298. * register_reboot_notifier - Register function to be called at reboot time
  299. * @nb: Info about notifier function to be called
  300. *
  301. * Registers a function with the list of functions
  302. * to be called at reboot time.
  303. *
  304. * Currently always returns zero, as blocking_notifier_chain_register()
  305. * always returns zero.
  306. */
  307. int register_reboot_notifier(struct notifier_block *nb)
  308. {
  309. return blocking_notifier_chain_register(&reboot_notifier_list, nb);
  310. }
  311. EXPORT_SYMBOL(register_reboot_notifier);
  312. /**
  313. * unregister_reboot_notifier - Unregister previously registered reboot notifier
  314. * @nb: Hook to be unregistered
  315. *
  316. * Unregisters a previously registered reboot
  317. * notifier function.
  318. *
  319. * Returns zero on success, or %-ENOENT on failure.
  320. */
  321. int unregister_reboot_notifier(struct notifier_block *nb)
  322. {
  323. return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
  324. }
  325. EXPORT_SYMBOL(unregister_reboot_notifier);
  326. /**
  327. * kernel_restart - reboot the system
  328. * @cmd: pointer to buffer containing command to execute for restart
  329. * or %NULL
  330. *
  331. * Shutdown everything and perform a clean reboot.
  332. * This is not safe to call in interrupt context.
  333. */
  334. void kernel_restart(char *cmd)
  335. {
  336. kernel_restart_prepare(cmd);
  337. disable_nonboot_cpus();
  338. if (!cmd)
  339. printk(KERN_EMERG "Restarting system.\n");
  340. else
  341. printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
  342. kmsg_dump(KMSG_DUMP_RESTART);
  343. machine_restart(cmd);
  344. }
  345. EXPORT_SYMBOL_GPL(kernel_restart);
  346. static void kernel_shutdown_prepare(enum system_states state)
  347. {
  348. blocking_notifier_call_chain(&reboot_notifier_list,
  349. (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
  350. system_state = state;
  351. usermodehelper_disable();
  352. device_shutdown();
  353. }
  354. /**
  355. * kernel_halt - halt the system
  356. *
  357. * Shutdown everything and perform a clean system halt.
  358. */
  359. void kernel_halt(void)
  360. {
  361. kernel_shutdown_prepare(SYSTEM_HALT);
  362. syscore_shutdown();
  363. printk(KERN_EMERG "System halted.\n");
  364. kmsg_dump(KMSG_DUMP_HALT);
  365. machine_halt();
  366. }
  367. EXPORT_SYMBOL_GPL(kernel_halt);
  368. /**
  369. * kernel_power_off - power_off the system
  370. *
  371. * Shutdown everything and perform a clean system power_off.
  372. */
  373. void kernel_power_off(void)
  374. {
  375. kernel_shutdown_prepare(SYSTEM_POWER_OFF);
  376. if (pm_power_off_prepare)
  377. pm_power_off_prepare();
  378. disable_nonboot_cpus();
  379. syscore_shutdown();
  380. printk(KERN_EMERG "Power down.\n");
  381. kmsg_dump(KMSG_DUMP_POWEROFF);
  382. machine_power_off();
  383. }
  384. EXPORT_SYMBOL_GPL(kernel_power_off);
  385. static DEFINE_MUTEX(reboot_mutex);
  386. /*
  387. * Reboot system call: for obvious reasons only root may call it,
  388. * and even root needs to set up some magic numbers in the registers
  389. * so that some mistake won't make this reboot the whole machine.
  390. * You can also set the meaning of the ctrl-alt-del-key here.
  391. *
  392. * reboot doesn't sync: do that yourself before calling this.
  393. */
  394. SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
  395. void __user *, arg)
  396. {
  397. char buffer[256];
  398. int ret = 0;
  399. /* We only trust the superuser with rebooting the system. */
  400. if (!capable(CAP_SYS_BOOT))
  401. return -EPERM;
  402. /* For safety, we require "magic" arguments. */
  403. if (magic1 != LINUX_REBOOT_MAGIC1 ||
  404. (magic2 != LINUX_REBOOT_MAGIC2 &&
  405. magic2 != LINUX_REBOOT_MAGIC2A &&
  406. magic2 != LINUX_REBOOT_MAGIC2B &&
  407. magic2 != LINUX_REBOOT_MAGIC2C))
  408. return -EINVAL;
  409. /*
  410. * If pid namespaces are enabled and the current task is in a child
  411. * pid_namespace, the command is handled by reboot_pid_ns() which will
  412. * call do_exit().
  413. */
  414. ret = reboot_pid_ns(task_active_pid_ns(current), cmd);
  415. if (ret)
  416. return ret;
  417. /* Instead of trying to make the power_off code look like
  418. * halt when pm_power_off is not set do it the easy way.
  419. */
  420. if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
  421. cmd = LINUX_REBOOT_CMD_HALT;
  422. mutex_lock(&reboot_mutex);
  423. switch (cmd) {
  424. case LINUX_REBOOT_CMD_RESTART:
  425. kernel_restart(NULL);
  426. break;
  427. case LINUX_REBOOT_CMD_CAD_ON:
  428. C_A_D = 1;
  429. break;
  430. case LINUX_REBOOT_CMD_CAD_OFF:
  431. C_A_D = 0;
  432. break;
  433. case LINUX_REBOOT_CMD_HALT:
  434. kernel_halt();
  435. do_exit(0);
  436. panic("cannot halt");
  437. case LINUX_REBOOT_CMD_POWER_OFF:
  438. kernel_power_off();
  439. do_exit(0);
  440. break;
  441. case LINUX_REBOOT_CMD_RESTART2:
  442. if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
  443. ret = -EFAULT;
  444. break;
  445. }
  446. buffer[sizeof(buffer) - 1] = '\0';
  447. kernel_restart(buffer);
  448. break;
  449. #ifdef CONFIG_KEXEC
  450. case LINUX_REBOOT_CMD_KEXEC:
  451. ret = kernel_kexec();
  452. break;
  453. #endif
  454. #ifdef CONFIG_HIBERNATION
  455. case LINUX_REBOOT_CMD_SW_SUSPEND:
  456. ret = hibernate();
  457. break;
  458. #endif
  459. default:
  460. ret = -EINVAL;
  461. break;
  462. }
  463. mutex_unlock(&reboot_mutex);
  464. return ret;
  465. }
  466. static void deferred_cad(struct work_struct *dummy)
  467. {
  468. kernel_restart(NULL);
  469. }
  470. /*
  471. * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
  472. * As it's called within an interrupt, it may NOT sync: the only choice
  473. * is whether to reboot at once, or just ignore the ctrl-alt-del.
  474. */
  475. void ctrl_alt_del(void)
  476. {
  477. static DECLARE_WORK(cad_work, deferred_cad);
  478. if (C_A_D)
  479. schedule_work(&cad_work);
  480. else
  481. kill_cad_pid(SIGINT, 1);
  482. }
  483. /*
  484. * Unprivileged users may change the real gid to the effective gid
  485. * or vice versa. (BSD-style)
  486. *
  487. * If you set the real gid at all, or set the effective gid to a value not
  488. * equal to the real gid, then the saved gid is set to the new effective gid.
  489. *
  490. * This makes it possible for a setgid program to completely drop its
  491. * privileges, which is often a useful assertion to make when you are doing
  492. * a security audit over a program.
  493. *
  494. * The general idea is that a program which uses just setregid() will be
  495. * 100% compatible with BSD. A program which uses just setgid() will be
  496. * 100% compatible with POSIX with saved IDs.
  497. *
  498. * SMP: There are not races, the GIDs are checked only by filesystem
  499. * operations (as far as semantic preservation is concerned).
  500. */
  501. SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
  502. {
  503. struct user_namespace *ns = current_user_ns();
  504. const struct cred *old;
  505. struct cred *new;
  506. int retval;
  507. kgid_t krgid, kegid;
  508. krgid = make_kgid(ns, rgid);
  509. kegid = make_kgid(ns, egid);
  510. if ((rgid != (gid_t) -1) && !gid_valid(krgid))
  511. return -EINVAL;
  512. if ((egid != (gid_t) -1) && !gid_valid(kegid))
  513. return -EINVAL;
  514. new = prepare_creds();
  515. if (!new)
  516. return -ENOMEM;
  517. old = current_cred();
  518. retval = -EPERM;
  519. if (rgid != (gid_t) -1) {
  520. if (gid_eq(old->gid, krgid) ||
  521. gid_eq(old->egid, krgid) ||
  522. nsown_capable(CAP_SETGID))
  523. new->gid = krgid;
  524. else
  525. goto error;
  526. }
  527. if (egid != (gid_t) -1) {
  528. if (gid_eq(old->gid, kegid) ||
  529. gid_eq(old->egid, kegid) ||
  530. gid_eq(old->sgid, kegid) ||
  531. nsown_capable(CAP_SETGID))
  532. new->egid = kegid;
  533. else
  534. goto error;
  535. }
  536. if (rgid != (gid_t) -1 ||
  537. (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
  538. new->sgid = new->egid;
  539. new->fsgid = new->egid;
  540. return commit_creds(new);
  541. error:
  542. abort_creds(new);
  543. return retval;
  544. }
  545. /*
  546. * setgid() is implemented like SysV w/ SAVED_IDS
  547. *
  548. * SMP: Same implicit races as above.
  549. */
  550. SYSCALL_DEFINE1(setgid, gid_t, gid)
  551. {
  552. struct user_namespace *ns = current_user_ns();
  553. const struct cred *old;
  554. struct cred *new;
  555. int retval;
  556. kgid_t kgid;
  557. kgid = make_kgid(ns, gid);
  558. if (!gid_valid(kgid))
  559. return -EINVAL;
  560. new = prepare_creds();
  561. if (!new)
  562. return -ENOMEM;
  563. old = current_cred();
  564. retval = -EPERM;
  565. if (nsown_capable(CAP_SETGID))
  566. new->gid = new->egid = new->sgid = new->fsgid = kgid;
  567. else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
  568. new->egid = new->fsgid = kgid;
  569. else
  570. goto error;
  571. return commit_creds(new);
  572. error:
  573. abort_creds(new);
  574. return retval;
  575. }
  576. /*
  577. * change the user struct in a credentials set to match the new UID
  578. */
  579. static int set_user(struct cred *new)
  580. {
  581. struct user_struct *new_user;
  582. new_user = alloc_uid(new->uid);
  583. if (!new_user)
  584. return -EAGAIN;
  585. /*
  586. * We don't fail in case of NPROC limit excess here because too many
  587. * poorly written programs don't check set*uid() return code, assuming
  588. * it never fails if called by root. We may still enforce NPROC limit
  589. * for programs doing set*uid()+execve() by harmlessly deferring the
  590. * failure to the execve() stage.
  591. */
  592. if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
  593. new_user != INIT_USER)
  594. current->flags |= PF_NPROC_EXCEEDED;
  595. else
  596. current->flags &= ~PF_NPROC_EXCEEDED;
  597. free_uid(new->user);
  598. new->user = new_user;
  599. return 0;
  600. }
  601. /*
  602. * Unprivileged users may change the real uid to the effective uid
  603. * or vice versa. (BSD-style)
  604. *
  605. * If you set the real uid at all, or set the effective uid to a value not
  606. * equal to the real uid, then the saved uid is set to the new effective uid.
  607. *
  608. * This makes it possible for a setuid program to completely drop its
  609. * privileges, which is often a useful assertion to make when you are doing
  610. * a security audit over a program.
  611. *
  612. * The general idea is that a program which uses just setreuid() will be
  613. * 100% compatible with BSD. A program which uses just setuid() will be
  614. * 100% compatible with POSIX with saved IDs.
  615. */
  616. SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
  617. {
  618. struct user_namespace *ns = current_user_ns();
  619. const struct cred *old;
  620. struct cred *new;
  621. int retval;
  622. kuid_t kruid, keuid;
  623. kruid = make_kuid(ns, ruid);
  624. keuid = make_kuid(ns, euid);
  625. if ((ruid != (uid_t) -1) && !uid_valid(kruid))
  626. return -EINVAL;
  627. if ((euid != (uid_t) -1) && !uid_valid(keuid))
  628. return -EINVAL;
  629. new = prepare_creds();
  630. if (!new)
  631. return -ENOMEM;
  632. old = current_cred();
  633. retval = -EPERM;
  634. if (ruid != (uid_t) -1) {
  635. new->uid = kruid;
  636. if (!uid_eq(old->uid, kruid) &&
  637. !uid_eq(old->euid, kruid) &&
  638. !nsown_capable(CAP_SETUID))
  639. goto error;
  640. }
  641. if (euid != (uid_t) -1) {
  642. new->euid = keuid;
  643. if (!uid_eq(old->uid, keuid) &&
  644. !uid_eq(old->euid, keuid) &&
  645. !uid_eq(old->suid, keuid) &&
  646. !nsown_capable(CAP_SETUID))
  647. goto error;
  648. }
  649. if (!uid_eq(new->uid, old->uid)) {
  650. retval = set_user(new);
  651. if (retval < 0)
  652. goto error;
  653. }
  654. if (ruid != (uid_t) -1 ||
  655. (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
  656. new->suid = new->euid;
  657. new->fsuid = new->euid;
  658. retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
  659. if (retval < 0)
  660. goto error;
  661. return commit_creds(new);
  662. error:
  663. abort_creds(new);
  664. return retval;
  665. }
  666. /*
  667. * setuid() is implemented like SysV with SAVED_IDS
  668. *
  669. * Note that SAVED_ID's is deficient in that a setuid root program
  670. * like sendmail, for example, cannot set its uid to be a normal
  671. * user and then switch back, because if you're root, setuid() sets
  672. * the saved uid too. If you don't like this, blame the bright people
  673. * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
  674. * will allow a root program to temporarily drop privileges and be able to
  675. * regain them by swapping the real and effective uid.
  676. */
  677. SYSCALL_DEFINE1(setuid, uid_t, uid)
  678. {
  679. struct user_namespace *ns = current_user_ns();
  680. const struct cred *old;
  681. struct cred *new;
  682. int retval;
  683. kuid_t kuid;
  684. kuid = make_kuid(ns, uid);
  685. if (!uid_valid(kuid))
  686. return -EINVAL;
  687. new = prepare_creds();
  688. if (!new)
  689. return -ENOMEM;
  690. old = current_cred();
  691. retval = -EPERM;
  692. if (nsown_capable(CAP_SETUID)) {
  693. new->suid = new->uid = kuid;
  694. if (!uid_eq(kuid, old->uid)) {
  695. retval = set_user(new);
  696. if (retval < 0)
  697. goto error;
  698. }
  699. } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
  700. goto error;
  701. }
  702. new->fsuid = new->euid = kuid;
  703. retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
  704. if (retval < 0)
  705. goto error;
  706. return commit_creds(new);
  707. error:
  708. abort_creds(new);
  709. return retval;
  710. }
  711. /*
  712. * This function implements a generic ability to update ruid, euid,
  713. * and suid. This allows you to implement the 4.4 compatible seteuid().
  714. */
  715. SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
  716. {
  717. struct user_namespace *ns = current_user_ns();
  718. const struct cred *old;
  719. struct cred *new;
  720. int retval;
  721. kuid_t kruid, keuid, ksuid;
  722. kruid = make_kuid(ns, ruid);
  723. keuid = make_kuid(ns, euid);
  724. ksuid = make_kuid(ns, suid);
  725. if ((ruid != (uid_t) -1) && !uid_valid(kruid))
  726. return -EINVAL;
  727. if ((euid != (uid_t) -1) && !uid_valid(keuid))
  728. return -EINVAL;
  729. if ((suid != (uid_t) -1) && !uid_valid(ksuid))
  730. return -EINVAL;
  731. new = prepare_creds();
  732. if (!new)
  733. return -ENOMEM;
  734. old = current_cred();
  735. retval = -EPERM;
  736. if (!nsown_capable(CAP_SETUID)) {
  737. if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
  738. !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
  739. goto error;
  740. if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
  741. !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
  742. goto error;
  743. if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
  744. !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
  745. goto error;
  746. }
  747. if (ruid != (uid_t) -1) {
  748. new->uid = kruid;
  749. if (!uid_eq(kruid, old->uid)) {
  750. retval = set_user(new);
  751. if (retval < 0)
  752. goto error;
  753. }
  754. }
  755. if (euid != (uid_t) -1)
  756. new->euid = keuid;
  757. if (suid != (uid_t) -1)
  758. new->suid = ksuid;
  759. new->fsuid = new->euid;
  760. retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
  761. if (retval < 0)
  762. goto error;
  763. return commit_creds(new);
  764. error:
  765. abort_creds(new);
  766. return retval;
  767. }
  768. SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
  769. {
  770. const struct cred *cred = current_cred();
  771. int retval;
  772. uid_t ruid, euid, suid;
  773. ruid = from_kuid_munged(cred->user_ns, cred->uid);
  774. euid = from_kuid_munged(cred->user_ns, cred->euid);
  775. suid = from_kuid_munged(cred->user_ns, cred->suid);
  776. if (!(retval = put_user(ruid, ruidp)) &&
  777. !(retval = put_user(euid, euidp)))
  778. retval = put_user(suid, suidp);
  779. return retval;
  780. }
  781. /*
  782. * Same as above, but for rgid, egid, sgid.
  783. */
  784. SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
  785. {
  786. struct user_namespace *ns = current_user_ns();
  787. const struct cred *old;
  788. struct cred *new;
  789. int retval;
  790. kgid_t krgid, kegid, ksgid;
  791. krgid = make_kgid(ns, rgid);
  792. kegid = make_kgid(ns, egid);
  793. ksgid = make_kgid(ns, sgid);
  794. if ((rgid != (gid_t) -1) && !gid_valid(krgid))
  795. return -EINVAL;
  796. if ((egid != (gid_t) -1) && !gid_valid(kegid))
  797. return -EINVAL;
  798. if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
  799. return -EINVAL;
  800. new = prepare_creds();
  801. if (!new)
  802. return -ENOMEM;
  803. old = current_cred();
  804. retval = -EPERM;
  805. if (!nsown_capable(CAP_SETGID)) {
  806. if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
  807. !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
  808. goto error;
  809. if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
  810. !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
  811. goto error;
  812. if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
  813. !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
  814. goto error;
  815. }
  816. if (rgid != (gid_t) -1)
  817. new->gid = krgid;
  818. if (egid != (gid_t) -1)
  819. new->egid = kegid;
  820. if (sgid != (gid_t) -1)
  821. new->sgid = ksgid;
  822. new->fsgid = new->egid;
  823. return commit_creds(new);
  824. error:
  825. abort_creds(new);
  826. return retval;
  827. }
  828. SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
  829. {
  830. const struct cred *cred = current_cred();
  831. int retval;
  832. gid_t rgid, egid, sgid;
  833. rgid = from_kgid_munged(cred->user_ns, cred->gid);
  834. egid = from_kgid_munged(cred->user_ns, cred->egid);
  835. sgid = from_kgid_munged(cred->user_ns, cred->sgid);
  836. if (!(retval = put_user(rgid, rgidp)) &&
  837. !(retval = put_user(egid, egidp)))
  838. retval = put_user(sgid, sgidp);
  839. return retval;
  840. }
  841. /*
  842. * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
  843. * is used for "access()" and for the NFS daemon (letting nfsd stay at
  844. * whatever uid it wants to). It normally shadows "euid", except when
  845. * explicitly set by setfsuid() or for access..
  846. */
  847. SYSCALL_DEFINE1(setfsuid, uid_t, uid)
  848. {
  849. const struct cred *old;
  850. struct cred *new;
  851. uid_t old_fsuid;
  852. kuid_t kuid;
  853. old = current_cred();
  854. old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
  855. kuid = make_kuid(old->user_ns, uid);
  856. if (!uid_valid(kuid))
  857. return old_fsuid;
  858. new = prepare_creds();
  859. if (!new)
  860. return old_fsuid;
  861. if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
  862. uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
  863. nsown_capable(CAP_SETUID)) {
  864. if (!uid_eq(kuid, old->fsuid)) {
  865. new->fsuid = kuid;
  866. if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
  867. goto change_okay;
  868. }
  869. }
  870. abort_creds(new);
  871. return old_fsuid;
  872. change_okay:
  873. commit_creds(new);
  874. return old_fsuid;
  875. }
  876. /*
  877. * Samma på svenska..
  878. */
  879. SYSCALL_DEFINE1(setfsgid, gid_t, gid)
  880. {
  881. const struct cred *old;
  882. struct cred *new;
  883. gid_t old_fsgid;
  884. kgid_t kgid;
  885. old = current_cred();
  886. old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
  887. kgid = make_kgid(old->user_ns, gid);
  888. if (!gid_valid(kgid))
  889. return old_fsgid;
  890. new = prepare_creds();
  891. if (!new)
  892. return old_fsgid;
  893. if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
  894. gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
  895. nsown_capable(CAP_SETGID)) {
  896. if (!gid_eq(kgid, old->fsgid)) {
  897. new->fsgid = kgid;
  898. goto change_okay;
  899. }
  900. }
  901. abort_creds(new);
  902. return old_fsgid;
  903. change_okay:
  904. commit_creds(new);
  905. return old_fsgid;
  906. }
  907. void do_sys_times(struct tms *tms)
  908. {
  909. cputime_t tgutime, tgstime, cutime, cstime;
  910. spin_lock_irq(&current->sighand->siglock);
  911. thread_group_times(current, &tgutime, &tgstime);
  912. cutime = current->signal->cutime;
  913. cstime = current->signal->cstime;
  914. spin_unlock_irq(&current->sighand->siglock);
  915. tms->tms_utime = cputime_to_clock_t(tgutime);
  916. tms->tms_stime = cputime_to_clock_t(tgstime);
  917. tms->tms_cutime = cputime_to_clock_t(cutime);
  918. tms->tms_cstime = cputime_to_clock_t(cstime);
  919. }
  920. SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
  921. {
  922. if (tbuf) {
  923. struct tms tmp;
  924. do_sys_times(&tmp);
  925. if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
  926. return -EFAULT;
  927. }
  928. force_successful_syscall_return();
  929. return (long) jiffies_64_to_clock_t(get_jiffies_64());
  930. }
  931. /*
  932. * This needs some heavy checking ...
  933. * I just haven't the stomach for it. I also don't fully
  934. * understand sessions/pgrp etc. Let somebody who does explain it.
  935. *
  936. * OK, I think I have the protection semantics right.... this is really
  937. * only important on a multi-user system anyway, to make sure one user
  938. * can't send a signal to a process owned by another. -TYT, 12/12/91
  939. *
  940. * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
  941. * LBT 04.03.94
  942. */
  943. SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
  944. {
  945. struct task_struct *p;
  946. struct task_struct *group_leader = current->group_leader;
  947. struct pid *pgrp;
  948. int err;
  949. if (!pid)
  950. pid = task_pid_vnr(group_leader);
  951. if (!pgid)
  952. pgid = pid;
  953. if (pgid < 0)
  954. return -EINVAL;
  955. rcu_read_lock();
  956. /* From this point forward we keep holding onto the tasklist lock
  957. * so that our parent does not change from under us. -DaveM
  958. */
  959. write_lock_irq(&tasklist_lock);
  960. err = -ESRCH;
  961. p = find_task_by_vpid(pid);
  962. if (!p)
  963. goto out;
  964. err = -EINVAL;
  965. if (!thread_group_leader(p))
  966. goto out;
  967. if (same_thread_group(p->real_parent, group_leader)) {
  968. err = -EPERM;
  969. if (task_session(p) != task_session(group_leader))
  970. goto out;
  971. err = -EACCES;
  972. if (p->did_exec)
  973. goto out;
  974. } else {
  975. err = -ESRCH;
  976. if (p != group_leader)
  977. goto out;
  978. }
  979. err = -EPERM;
  980. if (p->signal->leader)
  981. goto out;
  982. pgrp = task_pid(p);
  983. if (pgid != pid) {
  984. struct task_struct *g;
  985. pgrp = find_vpid(pgid);
  986. g = pid_task(pgrp, PIDTYPE_PGID);
  987. if (!g || task_session(g) != task_session(group_leader))
  988. goto out;
  989. }
  990. err = security_task_setpgid(p, pgid);
  991. if (err)
  992. goto out;
  993. if (task_pgrp(p) != pgrp)
  994. change_pid(p, PIDTYPE_PGID, pgrp);
  995. err = 0;
  996. out:
  997. /* All paths lead to here, thus we are safe. -DaveM */
  998. write_unlock_irq(&tasklist_lock);
  999. rcu_read_unlock();
  1000. return err;
  1001. }
  1002. SYSCALL_DEFINE1(getpgid, pid_t, pid)
  1003. {
  1004. struct task_struct *p;
  1005. struct pid *grp;
  1006. int retval;
  1007. rcu_read_lock();
  1008. if (!pid)
  1009. grp = task_pgrp(current);
  1010. else {
  1011. retval = -ESRCH;
  1012. p = find_task_by_vpid(pid);
  1013. if (!p)
  1014. goto out;
  1015. grp = task_pgrp(p);
  1016. if (!grp)
  1017. goto out;
  1018. retval = security_task_getpgid(p);
  1019. if (retval)
  1020. goto out;
  1021. }
  1022. retval = pid_vnr(grp);
  1023. out:
  1024. rcu_read_unlock();
  1025. return retval;
  1026. }
  1027. #ifdef __ARCH_WANT_SYS_GETPGRP
  1028. SYSCALL_DEFINE0(getpgrp)
  1029. {
  1030. return sys_getpgid(0);
  1031. }
  1032. #endif
  1033. SYSCALL_DEFINE1(getsid, pid_t, pid)
  1034. {
  1035. struct task_struct *p;
  1036. struct pid *sid;
  1037. int retval;
  1038. rcu_read_lock();
  1039. if (!pid)
  1040. sid = task_session(current);
  1041. else {
  1042. retval = -ESRCH;
  1043. p = find_task_by_vpid(pid);
  1044. if (!p)
  1045. goto out;
  1046. sid = task_session(p);
  1047. if (!sid)
  1048. goto out;
  1049. retval = security_task_getsid(p);
  1050. if (retval)
  1051. goto out;
  1052. }
  1053. retval = pid_vnr(sid);
  1054. out:
  1055. rcu_read_unlock();
  1056. return retval;
  1057. }
  1058. SYSCALL_DEFINE0(setsid)
  1059. {
  1060. struct task_struct *group_leader = current->group_leader;
  1061. struct pid *sid = task_pid(group_leader);
  1062. pid_t session = pid_vnr(sid);
  1063. int err = -EPERM;
  1064. write_lock_irq(&tasklist_lock);
  1065. /* Fail if I am already a session leader */
  1066. if (group_leader->signal->leader)
  1067. goto out;
  1068. /* Fail if a process group id already exists that equals the
  1069. * proposed session id.
  1070. */
  1071. if (pid_task(sid, PIDTYPE_PGID))
  1072. goto out;
  1073. group_leader->signal->leader = 1;
  1074. __set_special_pids(sid);
  1075. proc_clear_tty(group_leader);
  1076. err = session;
  1077. out:
  1078. write_unlock_irq(&tasklist_lock);
  1079. if (err > 0) {
  1080. proc_sid_connector(group_leader);
  1081. sched_autogroup_create_attach(group_leader);
  1082. }
  1083. return err;
  1084. }
  1085. DECLARE_RWSEM(uts_sem);
  1086. #ifdef COMPAT_UTS_MACHINE
  1087. #define override_architecture(name) \
  1088. (personality(current->personality) == PER_LINUX32 && \
  1089. copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
  1090. sizeof(COMPAT_UTS_MACHINE)))
  1091. #else
  1092. #define override_architecture(name) 0
  1093. #endif
  1094. /*
  1095. * Work around broken programs that cannot handle "Linux 3.0".
  1096. * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
  1097. */
  1098. static int override_release(char __user *release, int len)
  1099. {
  1100. int ret = 0;
  1101. char buf[65];
  1102. if (current->personality & UNAME26) {
  1103. char *rest = UTS_RELEASE;
  1104. int ndots = 0;
  1105. unsigned v;
  1106. while (*rest) {
  1107. if (*rest == '.' && ++ndots >= 3)
  1108. break;
  1109. if (!isdigit(*rest) && *rest != '.')
  1110. break;
  1111. rest++;
  1112. }
  1113. v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
  1114. snprintf(buf, len, "2.6.%u%s", v, rest);
  1115. ret = copy_to_user(release, buf, len);
  1116. }
  1117. return ret;
  1118. }
  1119. SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
  1120. {
  1121. int errno = 0;
  1122. down_read(&uts_sem);
  1123. if (copy_to_user(name, utsname(), sizeof *name))
  1124. errno = -EFAULT;
  1125. up_read(&uts_sem);
  1126. if (!errno && override_release(name->release, sizeof(name->release)))
  1127. errno = -EFAULT;
  1128. if (!errno && override_architecture(name))
  1129. errno = -EFAULT;
  1130. return errno;
  1131. }
  1132. #ifdef __ARCH_WANT_SYS_OLD_UNAME
  1133. /*
  1134. * Old cruft
  1135. */
  1136. SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
  1137. {
  1138. int error = 0;
  1139. if (!name)
  1140. return -EFAULT;
  1141. down_read(&uts_sem);
  1142. if (copy_to_user(name, utsname(), sizeof(*name)))
  1143. error = -EFAULT;
  1144. up_read(&uts_sem);
  1145. if (!error && override_release(name->release, sizeof(name->release)))
  1146. error = -EFAULT;
  1147. if (!error && override_architecture(name))
  1148. error = -EFAULT;
  1149. return error;
  1150. }
  1151. SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
  1152. {
  1153. int error;
  1154. if (!name)
  1155. return -EFAULT;
  1156. if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
  1157. return -EFAULT;
  1158. down_read(&uts_sem);
  1159. error = __copy_to_user(&name->sysname, &utsname()->sysname,
  1160. __OLD_UTS_LEN);
  1161. error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
  1162. error |= __copy_to_user(&name->nodename, &utsname()->nodename,
  1163. __OLD_UTS_LEN);
  1164. error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
  1165. error |= __copy_to_user(&name->release, &utsname()->release,
  1166. __OLD_UTS_LEN);
  1167. error |= __put_user(0, name->release + __OLD_UTS_LEN);
  1168. error |= __copy_to_user(&name->version, &utsname()->version,
  1169. __OLD_UTS_LEN);
  1170. error |= __put_user(0, name->version + __OLD_UTS_LEN);
  1171. error |= __copy_to_user(&name->machine, &utsname()->machine,
  1172. __OLD_UTS_LEN);
  1173. error |= __put_user(0, name->machine + __OLD_UTS_LEN);
  1174. up_read(&uts_sem);
  1175. if (!error && override_architecture(name))
  1176. error = -EFAULT;
  1177. if (!error && override_release(name->release, sizeof(name->release)))
  1178. error = -EFAULT;
  1179. return error ? -EFAULT : 0;
  1180. }
  1181. #endif
  1182. SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
  1183. {
  1184. int errno;
  1185. char tmp[__NEW_UTS_LEN];
  1186. if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
  1187. return -EPERM;
  1188. if (len < 0 || len > __NEW_UTS_LEN)
  1189. return -EINVAL;
  1190. down_write(&uts_sem);
  1191. errno = -EFAULT;
  1192. if (!copy_from_user(tmp, name, len)) {
  1193. struct new_utsname *u = utsname();
  1194. memcpy(u->nodename, tmp, len);
  1195. memset(u->nodename + len, 0, sizeof(u->nodename) - len);
  1196. errno = 0;
  1197. uts_proc_notify(UTS_PROC_HOSTNAME);
  1198. }
  1199. up_write(&uts_sem);
  1200. return errno;
  1201. }
  1202. #ifdef __ARCH_WANT_SYS_GETHOSTNAME
  1203. SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
  1204. {
  1205. int i, errno;
  1206. struct new_utsname *u;
  1207. if (len < 0)
  1208. return -EINVAL;
  1209. down_read(&uts_sem);
  1210. u = utsname();
  1211. i = 1 + strlen(u->nodename);
  1212. if (i > len)
  1213. i = len;
  1214. errno = 0;
  1215. if (copy_to_user(name, u->nodename, i))
  1216. errno = -EFAULT;
  1217. up_read(&uts_sem);
  1218. return errno;
  1219. }
  1220. #endif
  1221. /*
  1222. * Only setdomainname; getdomainname can be implemented by calling
  1223. * uname()
  1224. */
  1225. SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
  1226. {
  1227. int errno;
  1228. char tmp[__NEW_UTS_LEN];
  1229. if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
  1230. return -EPERM;
  1231. if (len < 0 || len > __NEW_UTS_LEN)
  1232. return -EINVAL;
  1233. down_write(&uts_sem);
  1234. errno = -EFAULT;
  1235. if (!copy_from_user(tmp, name, len)) {
  1236. struct new_utsname *u = utsname();
  1237. memcpy(u->domainname, tmp, len);
  1238. memset(u->domainname + len, 0, sizeof(u->domainname) - len);
  1239. errno = 0;
  1240. uts_proc_notify(UTS_PROC_DOMAINNAME);
  1241. }
  1242. up_write(&uts_sem);
  1243. return errno;
  1244. }
  1245. SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
  1246. {
  1247. struct rlimit value;
  1248. int ret;
  1249. ret = do_prlimit(current, resource, NULL, &value);
  1250. if (!ret)
  1251. ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
  1252. return ret;
  1253. }
  1254. #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
  1255. /*
  1256. * Back compatibility for getrlimit. Needed for some apps.
  1257. */
  1258. SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
  1259. struct rlimit __user *, rlim)
  1260. {
  1261. struct rlimit x;
  1262. if (resource >= RLIM_NLIMITS)
  1263. return -EINVAL;
  1264. task_lock(current->group_leader);
  1265. x = current->signal->rlim[resource];
  1266. task_unlock(current->group_leader);
  1267. if (x.rlim_cur > 0x7FFFFFFF)
  1268. x.rlim_cur = 0x7FFFFFFF;
  1269. if (x.rlim_max > 0x7FFFFFFF)
  1270. x.rlim_max = 0x7FFFFFFF;
  1271. return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
  1272. }
  1273. #endif
  1274. static inline bool rlim64_is_infinity(__u64 rlim64)
  1275. {
  1276. #if BITS_PER_LONG < 64
  1277. return rlim64 >= ULONG_MAX;
  1278. #else
  1279. return rlim64 == RLIM64_INFINITY;
  1280. #endif
  1281. }
  1282. static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
  1283. {
  1284. if (rlim->rlim_cur == RLIM_INFINITY)
  1285. rlim64->rlim_cur = RLIM64_INFINITY;
  1286. else
  1287. rlim64->rlim_cur = rlim->rlim_cur;
  1288. if (rlim->rlim_max == RLIM_INFINITY)
  1289. rlim64->rlim_max = RLIM64_INFINITY;
  1290. else
  1291. rlim64->rlim_max = rlim->rlim_max;
  1292. }
  1293. static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
  1294. {
  1295. if (rlim64_is_infinity(rlim64->rlim_cur))
  1296. rlim->rlim_cur = RLIM_INFINITY;
  1297. else
  1298. rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
  1299. if (rlim64_is_infinity(rlim64->rlim_max))
  1300. rlim->rlim_max = RLIM_INFINITY;
  1301. else
  1302. rlim->rlim_max = (unsigned long)rlim64->rlim_max;
  1303. }
  1304. /* make sure you are allowed to change @tsk limits before calling this */
  1305. int do_prlimit(struct task_struct *tsk, unsigned int resource,
  1306. struct rlimit *new_rlim, struct rlimit *old_rlim)
  1307. {
  1308. struct rlimit *rlim;
  1309. int retval = 0;
  1310. if (resource >= RLIM_NLIMITS)
  1311. return -EINVAL;
  1312. if (new_rlim) {
  1313. if (new_rlim->rlim_cur > new_rlim->rlim_max)
  1314. return -EINVAL;
  1315. if (resource == RLIMIT_NOFILE &&
  1316. new_rlim->rlim_max > sysctl_nr_open)
  1317. return -EPERM;
  1318. }
  1319. /* protect tsk->signal and tsk->sighand from disappearing */
  1320. read_lock(&tasklist_lock);
  1321. if (!tsk->sighand) {
  1322. retval = -ESRCH;
  1323. goto out;
  1324. }
  1325. rlim = tsk->signal->rlim + resource;
  1326. task_lock(tsk->group_leader);
  1327. if (new_rlim) {
  1328. /* Keep the capable check against init_user_ns until
  1329. cgroups can contain all limits */
  1330. if (new_rlim->rlim_max > rlim->rlim_max &&
  1331. !capable(CAP_SYS_RESOURCE))
  1332. retval = -EPERM;
  1333. if (!retval)
  1334. retval = security_task_setrlimit(tsk->group_leader,
  1335. resource, new_rlim);
  1336. if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
  1337. /*
  1338. * The caller is asking for an immediate RLIMIT_CPU
  1339. * expiry. But we use the zero value to mean "it was
  1340. * never set". So let's cheat and make it one second
  1341. * instead
  1342. */
  1343. new_rlim->rlim_cur = 1;
  1344. }
  1345. }
  1346. if (!retval) {
  1347. if (old_rlim)
  1348. *old_rlim = *rlim;
  1349. if (new_rlim)
  1350. *rlim = *new_rlim;
  1351. }
  1352. task_unlock(tsk->group_leader);
  1353. /*
  1354. * RLIMIT_CPU handling. Note that the kernel fails to return an error
  1355. * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
  1356. * very long-standing error, and fixing it now risks breakage of
  1357. * applications, so we live with it
  1358. */
  1359. if (!retval && new_rlim && resource == RLIMIT_CPU &&
  1360. new_rlim->rlim_cur != RLIM_INFINITY)
  1361. update_rlimit_cpu(tsk, new_rlim->rlim_cur);
  1362. out:
  1363. read_unlock(&tasklist_lock);
  1364. return retval;
  1365. }
  1366. /* rcu lock must be held */
  1367. static int check_prlimit_permission(struct task_struct *task)
  1368. {
  1369. const struct cred *cred = current_cred(), *tcred;
  1370. if (current == task)
  1371. return 0;
  1372. tcred = __task_cred(task);
  1373. if (uid_eq(cred->uid, tcred->euid) &&
  1374. uid_eq(cred->uid, tcred->suid) &&
  1375. uid_eq(cred->uid, tcred->uid) &&
  1376. gid_eq(cred->gid, tcred->egid) &&
  1377. gid_eq(cred->gid, tcred->sgid) &&
  1378. gid_eq(cred->gid, tcred->gid))
  1379. return 0;
  1380. if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
  1381. return 0;
  1382. return -EPERM;
  1383. }
  1384. SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
  1385. const struct rlimit64 __user *, new_rlim,
  1386. struct rlimit64 __user *, old_rlim)
  1387. {
  1388. struct rlimit64 old64, new64;
  1389. struct rlimit old, new;
  1390. struct task_struct *tsk;
  1391. int ret;
  1392. if (new_rlim) {
  1393. if (copy_from_user(&new64, new_rlim, sizeof(new64)))
  1394. return -EFAULT;
  1395. rlim64_to_rlim(&new64, &new);
  1396. }
  1397. rcu_read_lock();
  1398. tsk = pid ? find_task_by_vpid(pid) : current;
  1399. if (!tsk) {
  1400. rcu_read_unlock();
  1401. return -ESRCH;
  1402. }
  1403. ret = check_prlimit_permission(tsk);
  1404. if (ret) {
  1405. rcu_read_unlock();
  1406. return ret;
  1407. }
  1408. get_task_struct(tsk);
  1409. rcu_read_unlock();
  1410. ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
  1411. old_rlim ? &old : NULL);
  1412. if (!ret && old_rlim) {
  1413. rlim_to_rlim64(&old, &old64);
  1414. if (copy_to_user(old_rlim, &old64, sizeof(old64)))
  1415. ret = -EFAULT;
  1416. }
  1417. put_task_struct(tsk);
  1418. return ret;
  1419. }
  1420. SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
  1421. {
  1422. struct rlimit new_rlim;
  1423. if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
  1424. return -EFAULT;
  1425. return do_prlimit(current, resource, &new_rlim, NULL);
  1426. }
  1427. /*
  1428. * It would make sense to put struct rusage in the task_struct,
  1429. * except that would make the task_struct be *really big*. After
  1430. * task_struct gets moved into malloc'ed memory, it would
  1431. * make sense to do this. It will make moving the rest of the information
  1432. * a lot simpler! (Which we're not doing right now because we're not
  1433. * measuring them yet).
  1434. *
  1435. * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
  1436. * races with threads incrementing their own counters. But since word
  1437. * reads are atomic, we either get new values or old values and we don't
  1438. * care which for the sums. We always take the siglock to protect reading
  1439. * the c* fields from p->signal from races with exit.c updating those
  1440. * fields when reaping, so a sample either gets all the additions of a
  1441. * given child after it's reaped, or none so this sample is before reaping.
  1442. *
  1443. * Locking:
  1444. * We need to take the siglock for CHILDEREN, SELF and BOTH
  1445. * for the cases current multithreaded, non-current single threaded
  1446. * non-current multithreaded. Thread traversal is now safe with
  1447. * the siglock held.
  1448. * Strictly speaking, we donot need to take the siglock if we are current and
  1449. * single threaded, as no one else can take our signal_struct away, no one
  1450. * else can reap the children to update signal->c* counters, and no one else
  1451. * can race with the signal-> fields. If we do not take any lock, the
  1452. * signal-> fields could be read out of order while another thread was just
  1453. * exiting. So we should place a read memory barrier when we avoid the lock.
  1454. * On the writer side, write memory barrier is implied in __exit_signal
  1455. * as __exit_signal releases the siglock spinlock after updating the signal->
  1456. * fields. But we don't do this yet to keep things simple.
  1457. *
  1458. */
  1459. static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
  1460. {
  1461. r->ru_nvcsw += t->nvcsw;
  1462. r->ru_nivcsw += t->nivcsw;
  1463. r->ru_minflt += t->min_flt;
  1464. r->ru_majflt += t->maj_flt;
  1465. r->ru_inblock += task_io_get_inblock(t);
  1466. r->ru_oublock += task_io_get_oublock(t);
  1467. }
  1468. static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
  1469. {
  1470. struct task_struct *t;
  1471. unsigned long flags;
  1472. cputime_t tgutime, tgstime, utime, stime;
  1473. unsigned long maxrss = 0;
  1474. memset((char *) r, 0, sizeof *r);
  1475. utime = stime = 0;
  1476. if (who == RUSAGE_THREAD) {
  1477. task_times(current, &utime, &stime);
  1478. accumulate_thread_rusage(p, r);
  1479. maxrss = p->signal->maxrss;
  1480. goto out;
  1481. }
  1482. if (!lock_task_sighand(p, &flags))
  1483. return;
  1484. switch (who) {
  1485. case RUSAGE_BOTH:
  1486. case RUSAGE_CHILDREN:
  1487. utime = p->signal->cutime;
  1488. stime = p->signal->cstime;
  1489. r->ru_nvcsw = p->signal->cnvcsw;
  1490. r->ru_nivcsw = p->signal->cnivcsw;
  1491. r->ru_minflt = p->signal->cmin_flt;
  1492. r->ru_majflt = p->signal->cmaj_flt;
  1493. r->ru_inblock = p->signal->cinblock;
  1494. r->ru_oublock = p->signal->coublock;
  1495. maxrss = p->signal->cmaxrss;
  1496. if (who == RUSAGE_CHILDREN)
  1497. break;
  1498. case RUSAGE_SELF:
  1499. thread_group_times(p, &tgutime, &tgstime);
  1500. utime += tgutime;
  1501. stime += tgstime;
  1502. r->ru_nvcsw += p->signal->nvcsw;
  1503. r->ru_nivcsw += p->signal->nivcsw;
  1504. r->ru_minflt += p->signal->min_flt;
  1505. r->ru_majflt += p->signal->maj_flt;
  1506. r->ru_inblock += p->signal->inblock;
  1507. r->ru_oublock += p->signal->oublock;
  1508. if (maxrss < p->signal->maxrss)
  1509. maxrss = p->signal->maxrss;
  1510. t = p;
  1511. do {
  1512. accumulate_thread_rusage(t, r);
  1513. t = next_thread(t);
  1514. } while (t != p);
  1515. break;
  1516. default:
  1517. BUG();
  1518. }
  1519. unlock_task_sighand(p, &flags);
  1520. out:
  1521. cputime_to_timeval(utime, &r->ru_utime);
  1522. cputime_to_timeval(stime, &r->ru_stime);
  1523. if (who != RUSAGE_CHILDREN) {
  1524. struct mm_struct *mm = get_task_mm(p);
  1525. if (mm) {
  1526. setmax_mm_hiwater_rss(&maxrss, mm);
  1527. mmput(mm);
  1528. }
  1529. }
  1530. r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
  1531. }
  1532. int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
  1533. {
  1534. struct rusage r;
  1535. k_getrusage(p, who, &r);
  1536. return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
  1537. }
  1538. SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
  1539. {
  1540. if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
  1541. who != RUSAGE_THREAD)
  1542. return -EINVAL;
  1543. return getrusage(current, who, ru);
  1544. }
  1545. SYSCALL_DEFINE1(umask, int, mask)
  1546. {
  1547. mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
  1548. return mask;
  1549. }
  1550. #ifdef CONFIG_CHECKPOINT_RESTORE
  1551. static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
  1552. {
  1553. struct fd exe;
  1554. struct dentry *dentry;
  1555. int err;
  1556. exe = fdget(fd);
  1557. if (!exe.file)
  1558. return -EBADF;
  1559. dentry = exe.file->f_path.dentry;
  1560. /*
  1561. * Because the original mm->exe_file points to executable file, make
  1562. * sure that this one is executable as well, to avoid breaking an
  1563. * overall picture.
  1564. */
  1565. err = -EACCES;
  1566. if (!S_ISREG(dentry->d_inode->i_mode) ||
  1567. exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
  1568. goto exit;
  1569. err = inode_permission(dentry->d_inode, MAY_EXEC);
  1570. if (err)
  1571. goto exit;
  1572. down_write(&mm->mmap_sem);
  1573. /*
  1574. * Forbid mm->exe_file change if old file still mapped.
  1575. */
  1576. err = -EBUSY;
  1577. if (mm->exe_file) {
  1578. struct vm_area_struct *vma;
  1579. for (vma = mm->mmap; vma; vma = vma->vm_next)
  1580. if (vma->vm_file &&
  1581. path_equal(&vma->vm_file->f_path,
  1582. &mm->exe_file->f_path))
  1583. goto exit_unlock;
  1584. }
  1585. /*
  1586. * The symlink can be changed only once, just to disallow arbitrary
  1587. * transitions malicious software might bring in. This means one
  1588. * could make a snapshot over all processes running and monitor
  1589. * /proc/pid/exe changes to notice unusual activity if needed.
  1590. */
  1591. err = -EPERM;
  1592. if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
  1593. goto exit_unlock;
  1594. err = 0;
  1595. set_mm_exe_file(mm, exe.file); /* this grabs a reference to exe.file */
  1596. exit_unlock:
  1597. up_write(&mm->mmap_sem);
  1598. exit:
  1599. fdput(exe);
  1600. return err;
  1601. }
  1602. static int prctl_set_mm(int opt, unsigned long addr,
  1603. unsigned long arg4, unsigned long arg5)
  1604. {
  1605. unsigned long rlim = rlimit(RLIMIT_DATA);
  1606. struct mm_struct *mm = current->mm;
  1607. struct vm_area_struct *vma;
  1608. int error;
  1609. if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
  1610. return -EINVAL;
  1611. if (!capable(CAP_SYS_RESOURCE))
  1612. return -EPERM;
  1613. if (opt == PR_SET_MM_EXE_FILE)
  1614. return prctl_set_mm_exe_file(mm, (unsigned int)addr);
  1615. if (addr >= TASK_SIZE || addr < mmap_min_addr)
  1616. return -EINVAL;
  1617. error = -EINVAL;
  1618. down_read(&mm->mmap_sem);
  1619. vma = find_vma(mm, addr);
  1620. switch (opt) {
  1621. case PR_SET_MM_START_CODE:
  1622. mm->start_code = addr;
  1623. break;
  1624. case PR_SET_MM_END_CODE:
  1625. mm->end_code = addr;
  1626. break;
  1627. case PR_SET_MM_START_DATA:
  1628. mm->start_data = addr;
  1629. break;
  1630. case PR_SET_MM_END_DATA:
  1631. mm->end_data = addr;
  1632. break;
  1633. case PR_SET_MM_START_BRK:
  1634. if (addr <= mm->end_data)
  1635. goto out;
  1636. if (rlim < RLIM_INFINITY &&
  1637. (mm->brk - addr) +
  1638. (mm->end_data - mm->start_data) > rlim)
  1639. goto out;
  1640. mm->start_brk = addr;
  1641. break;
  1642. case PR_SET_MM_BRK:
  1643. if (addr <= mm->end_data)
  1644. goto out;
  1645. if (rlim < RLIM_INFINITY &&
  1646. (addr - mm->start_brk) +
  1647. (mm->end_data - mm->start_data) > rlim)
  1648. goto out;
  1649. mm->brk = addr;
  1650. break;
  1651. /*
  1652. * If command line arguments and environment
  1653. * are placed somewhere else on stack, we can
  1654. * set them up here, ARG_START/END to setup
  1655. * command line argumets and ENV_START/END
  1656. * for environment.
  1657. */
  1658. case PR_SET_MM_START_STACK:
  1659. case PR_SET_MM_ARG_START:
  1660. case PR_SET_MM_ARG_END:
  1661. case PR_SET_MM_ENV_START:
  1662. case PR_SET_MM_ENV_END:
  1663. if (!vma) {
  1664. error = -EFAULT;
  1665. goto out;
  1666. }
  1667. if (opt == PR_SET_MM_START_STACK)
  1668. mm->start_stack = addr;
  1669. else if (opt == PR_SET_MM_ARG_START)
  1670. mm->arg_start = addr;
  1671. else if (opt == PR_SET_MM_ARG_END)
  1672. mm->arg_end = addr;
  1673. else if (opt == PR_SET_MM_ENV_START)
  1674. mm->env_start = addr;
  1675. else if (opt == PR_SET_MM_ENV_END)
  1676. mm->env_end = addr;
  1677. break;
  1678. /*
  1679. * This doesn't move auxiliary vector itself
  1680. * since it's pinned to mm_struct, but allow
  1681. * to fill vector with new values. It's up
  1682. * to a caller to provide sane values here
  1683. * otherwise user space tools which use this
  1684. * vector might be unhappy.
  1685. */
  1686. case PR_SET_MM_AUXV: {
  1687. unsigned long user_auxv[AT_VECTOR_SIZE];
  1688. if (arg4 > sizeof(user_auxv))
  1689. goto out;
  1690. up_read(&mm->mmap_sem);
  1691. if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
  1692. return -EFAULT;
  1693. /* Make sure the last entry is always AT_NULL */
  1694. user_auxv[AT_VECTOR_SIZE - 2] = 0;
  1695. user_auxv[AT_VECTOR_SIZE - 1] = 0;
  1696. BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
  1697. task_lock(current);
  1698. memcpy(mm->saved_auxv, user_auxv, arg4);
  1699. task_unlock(current);
  1700. return 0;
  1701. }
  1702. default:
  1703. goto out;
  1704. }
  1705. error = 0;
  1706. out:
  1707. up_read(&mm->mmap_sem);
  1708. return error;
  1709. }
  1710. static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
  1711. {
  1712. return put_user(me->clear_child_tid, tid_addr);
  1713. }
  1714. #else /* CONFIG_CHECKPOINT_RESTORE */
  1715. static int prctl_set_mm(int opt, unsigned long addr,
  1716. unsigned long arg4, unsigned long arg5)
  1717. {
  1718. return -EINVAL;
  1719. }
  1720. static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
  1721. {
  1722. return -EINVAL;
  1723. }
  1724. #endif
  1725. SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
  1726. unsigned long, arg4, unsigned long, arg5)
  1727. {
  1728. struct task_struct *me = current;
  1729. unsigned char comm[sizeof(me->comm)];
  1730. long error;
  1731. error = security_task_prctl(option, arg2, arg3, arg4, arg5);
  1732. if (error != -ENOSYS)
  1733. return error;
  1734. error = 0;
  1735. switch (option) {
  1736. case PR_SET_PDEATHSIG:
  1737. if (!valid_signal(arg2)) {
  1738. error = -EINVAL;
  1739. break;
  1740. }
  1741. me->pdeath_signal = arg2;
  1742. break;
  1743. case PR_GET_PDEATHSIG:
  1744. error = put_user(me->pdeath_signal, (int __user *)arg2);
  1745. break;
  1746. case PR_GET_DUMPABLE:
  1747. error = get_dumpable(me->mm);
  1748. break;
  1749. case PR_SET_DUMPABLE:
  1750. if (arg2 < 0 || arg2 > 1) {
  1751. error = -EINVAL;
  1752. break;
  1753. }
  1754. set_dumpable(me->mm, arg2);
  1755. break;
  1756. case PR_SET_UNALIGN:
  1757. error = SET_UNALIGN_CTL(me, arg2);
  1758. break;
  1759. case PR_GET_UNALIGN:
  1760. error = GET_UNALIGN_CTL(me, arg2);
  1761. break;
  1762. case PR_SET_FPEMU:
  1763. error = SET_FPEMU_CTL(me, arg2);
  1764. break;
  1765. case PR_GET_FPEMU:
  1766. error = GET_FPEMU_CTL(me, arg2);
  1767. break;
  1768. case PR_SET_FPEXC:
  1769. error = SET_FPEXC_CTL(me, arg2);
  1770. break;
  1771. case PR_GET_FPEXC:
  1772. error = GET_FPEXC_CTL(me, arg2);
  1773. break;
  1774. case PR_GET_TIMING:
  1775. error = PR_TIMING_STATISTICAL;
  1776. break;
  1777. case PR_SET_TIMING:
  1778. if (arg2 != PR_TIMING_STATISTICAL)
  1779. error = -EINVAL;
  1780. break;
  1781. case PR_SET_NAME:
  1782. comm[sizeof(me->comm)-1] = 0;
  1783. if (strncpy_from_user(comm, (char __user *)arg2,
  1784. sizeof(me->comm) - 1) < 0)
  1785. return -EFAULT;
  1786. set_task_comm(me, comm);
  1787. proc_comm_connector(me);
  1788. break;
  1789. case PR_GET_NAME:
  1790. get_task_comm(comm, me);
  1791. if (copy_to_user((char __user *)arg2, comm,
  1792. sizeof(comm)))
  1793. return -EFAULT;
  1794. break;
  1795. case PR_GET_ENDIAN:
  1796. error = GET_ENDIAN(me, arg2);
  1797. break;
  1798. case PR_SET_ENDIAN:
  1799. error = SET_ENDIAN(me, arg2);
  1800. break;
  1801. case PR_GET_SECCOMP:
  1802. error = prctl_get_seccomp();
  1803. break;
  1804. case PR_SET_SECCOMP:
  1805. error = prctl_set_seccomp(arg2, (char __user *)arg3);
  1806. break;
  1807. case PR_GET_TSC:
  1808. error = GET_TSC_CTL(arg2);
  1809. break;
  1810. case PR_SET_TSC:
  1811. error = SET_TSC_CTL(arg2);
  1812. break;
  1813. case PR_TASK_PERF_EVENTS_DISABLE:
  1814. error = perf_event_task_disable();
  1815. break;
  1816. case PR_TASK_PERF_EVENTS_ENABLE:
  1817. error = perf_event_task_enable();
  1818. break;
  1819. case PR_GET_TIMERSLACK:
  1820. error = current->timer_slack_ns;
  1821. break;
  1822. case PR_SET_TIMERSLACK:
  1823. if (arg2 <= 0)
  1824. current->timer_slack_ns =
  1825. current->default_timer_slack_ns;
  1826. else
  1827. current->timer_slack_ns = arg2;
  1828. break;
  1829. case PR_MCE_KILL:
  1830. if (arg4 | arg5)
  1831. return -EINVAL;
  1832. switch (arg2) {
  1833. case PR_MCE_KILL_CLEAR:
  1834. if (arg3 != 0)
  1835. return -EINVAL;
  1836. current->flags &= ~PF_MCE_PROCESS;
  1837. break;
  1838. case PR_MCE_KILL_SET:
  1839. current->flags |= PF_MCE_PROCESS;
  1840. if (arg3 == PR_MCE_KILL_EARLY)
  1841. current->flags |= PF_MCE_EARLY;
  1842. else if (arg3 == PR_MCE_KILL_LATE)
  1843. current->flags &= ~PF_MCE_EARLY;
  1844. else if (arg3 == PR_MCE_KILL_DEFAULT)
  1845. current->flags &=
  1846. ~(PF_MCE_EARLY|PF_MCE_PROCESS);
  1847. else
  1848. return -EINVAL;
  1849. break;
  1850. default:
  1851. return -EINVAL;
  1852. }
  1853. break;
  1854. case PR_MCE_KILL_GET:
  1855. if (arg2 | arg3 | arg4 | arg5)
  1856. return -EINVAL;
  1857. if (current->flags & PF_MCE_PROCESS)
  1858. error = (current->flags & PF_MCE_EARLY) ?
  1859. PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
  1860. else
  1861. error = PR_MCE_KILL_DEFAULT;
  1862. break;
  1863. case PR_SET_MM:
  1864. error = prctl_set_mm(arg2, arg3, arg4, arg5);
  1865. break;
  1866. case PR_GET_TID_ADDRESS:
  1867. error = prctl_get_tid_address(me, (int __user **)arg2);
  1868. break;
  1869. case PR_SET_CHILD_SUBREAPER:
  1870. me->signal->is_child_subreaper = !!arg2;
  1871. break;
  1872. case PR_GET_CHILD_SUBREAPER:
  1873. error = put_user(me->signal->is_child_subreaper,
  1874. (int __user *) arg2);
  1875. break;
  1876. case PR_SET_NO_NEW_PRIVS:
  1877. if (arg2 != 1 || arg3 || arg4 || arg5)
  1878. return -EINVAL;
  1879. current->no_new_privs = 1;
  1880. break;
  1881. case PR_GET_NO_NEW_PRIVS:
  1882. if (arg2 || arg3 || arg4 || arg5)
  1883. return -EINVAL;
  1884. return current->no_new_privs ? 1 : 0;
  1885. default:
  1886. error = -EINVAL;
  1887. break;
  1888. }
  1889. return error;
  1890. }
  1891. SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
  1892. struct getcpu_cache __user *, unused)
  1893. {
  1894. int err = 0;
  1895. int cpu = raw_smp_processor_id();
  1896. if (cpup)
  1897. err |= put_user(cpu, cpup);
  1898. if (nodep)
  1899. err |= put_user(cpu_to_node(cpu), nodep);
  1900. return err ? -EFAULT : 0;
  1901. }
  1902. char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
  1903. static void argv_cleanup(struct subprocess_info *info)
  1904. {
  1905. argv_free(info->argv);
  1906. }
  1907. static int __orderly_poweroff(void)
  1908. {
  1909. int argc;
  1910. char **argv;
  1911. static char *envp[] = {
  1912. "HOME=/",
  1913. "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
  1914. NULL
  1915. };
  1916. int ret;
  1917. argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
  1918. if (argv == NULL) {
  1919. printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
  1920. __func__, poweroff_cmd);
  1921. return -ENOMEM;
  1922. }
  1923. ret = call_usermodehelper_fns(argv[0], argv, envp, UMH_WAIT_EXEC,
  1924. NULL, argv_cleanup, NULL);
  1925. if (ret == -ENOMEM)
  1926. argv_free(argv);
  1927. return ret;
  1928. }
  1929. /**
  1930. * orderly_poweroff - Trigger an orderly system poweroff
  1931. * @force: force poweroff if command execution fails
  1932. *
  1933. * This may be called from any context to trigger a system shutdown.
  1934. * If the orderly shutdown fails, it will force an immediate shutdown.
  1935. */
  1936. int orderly_poweroff(bool force)
  1937. {
  1938. int ret = __orderly_poweroff();
  1939. if (ret && force) {
  1940. printk(KERN_WARNING "Failed to start orderly shutdown: "
  1941. "forcing the issue\n");
  1942. /*
  1943. * I guess this should try to kick off some daemon to sync and
  1944. * poweroff asap. Or not even bother syncing if we're doing an
  1945. * emergency shutdown?
  1946. */
  1947. emergency_sync();
  1948. kernel_power_off();
  1949. }
  1950. return ret;
  1951. }
  1952. EXPORT_SYMBOL_GPL(orderly_poweroff);