tsc.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/init.h>
  5. #include <linux/module.h>
  6. #include <linux/timer.h>
  7. #include <linux/acpi_pmtmr.h>
  8. #include <linux/cpufreq.h>
  9. #include <linux/delay.h>
  10. #include <linux/clocksource.h>
  11. #include <linux/percpu.h>
  12. #include <linux/timex.h>
  13. #include <asm/hpet.h>
  14. #include <asm/timer.h>
  15. #include <asm/vgtod.h>
  16. #include <asm/time.h>
  17. #include <asm/delay.h>
  18. #include <asm/hypervisor.h>
  19. #include <asm/nmi.h>
  20. #include <asm/x86_init.h>
  21. unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
  22. EXPORT_SYMBOL(cpu_khz);
  23. unsigned int __read_mostly tsc_khz;
  24. EXPORT_SYMBOL(tsc_khz);
  25. /*
  26. * TSC can be unstable due to cpufreq or due to unsynced TSCs
  27. */
  28. static int __read_mostly tsc_unstable;
  29. /* native_sched_clock() is called before tsc_init(), so
  30. we must start with the TSC soft disabled to prevent
  31. erroneous rdtsc usage on !cpu_has_tsc processors */
  32. static int __read_mostly tsc_disabled = -1;
  33. int tsc_clocksource_reliable;
  34. /*
  35. * Scheduler clock - returns current time in nanosec units.
  36. */
  37. u64 native_sched_clock(void)
  38. {
  39. u64 this_offset;
  40. /*
  41. * Fall back to jiffies if there's no TSC available:
  42. * ( But note that we still use it if the TSC is marked
  43. * unstable. We do this because unlike Time Of Day,
  44. * the scheduler clock tolerates small errors and it's
  45. * very important for it to be as fast as the platform
  46. * can achieve it. )
  47. */
  48. if (unlikely(tsc_disabled)) {
  49. /* No locking but a rare wrong value is not a big deal: */
  50. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  51. }
  52. /* read the Time Stamp Counter: */
  53. rdtscll(this_offset);
  54. /* return the value in ns */
  55. return __cycles_2_ns(this_offset);
  56. }
  57. /* We need to define a real function for sched_clock, to override the
  58. weak default version */
  59. #ifdef CONFIG_PARAVIRT
  60. unsigned long long sched_clock(void)
  61. {
  62. return paravirt_sched_clock();
  63. }
  64. #else
  65. unsigned long long
  66. sched_clock(void) __attribute__((alias("native_sched_clock")));
  67. #endif
  68. int check_tsc_unstable(void)
  69. {
  70. return tsc_unstable;
  71. }
  72. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  73. #ifdef CONFIG_X86_TSC
  74. int __init notsc_setup(char *str)
  75. {
  76. pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
  77. tsc_disabled = 1;
  78. return 1;
  79. }
  80. #else
  81. /*
  82. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  83. * in cpu/common.c
  84. */
  85. int __init notsc_setup(char *str)
  86. {
  87. setup_clear_cpu_cap(X86_FEATURE_TSC);
  88. return 1;
  89. }
  90. #endif
  91. __setup("notsc", notsc_setup);
  92. static int no_sched_irq_time;
  93. static int __init tsc_setup(char *str)
  94. {
  95. if (!strcmp(str, "reliable"))
  96. tsc_clocksource_reliable = 1;
  97. if (!strncmp(str, "noirqtime", 9))
  98. no_sched_irq_time = 1;
  99. return 1;
  100. }
  101. __setup("tsc=", tsc_setup);
  102. #define MAX_RETRIES 5
  103. #define SMI_TRESHOLD 50000
  104. /*
  105. * Read TSC and the reference counters. Take care of SMI disturbance
  106. */
  107. static u64 tsc_read_refs(u64 *p, int hpet)
  108. {
  109. u64 t1, t2;
  110. int i;
  111. for (i = 0; i < MAX_RETRIES; i++) {
  112. t1 = get_cycles();
  113. if (hpet)
  114. *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
  115. else
  116. *p = acpi_pm_read_early();
  117. t2 = get_cycles();
  118. if ((t2 - t1) < SMI_TRESHOLD)
  119. return t2;
  120. }
  121. return ULLONG_MAX;
  122. }
  123. /*
  124. * Calculate the TSC frequency from HPET reference
  125. */
  126. static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
  127. {
  128. u64 tmp;
  129. if (hpet2 < hpet1)
  130. hpet2 += 0x100000000ULL;
  131. hpet2 -= hpet1;
  132. tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
  133. do_div(tmp, 1000000);
  134. do_div(deltatsc, tmp);
  135. return (unsigned long) deltatsc;
  136. }
  137. /*
  138. * Calculate the TSC frequency from PMTimer reference
  139. */
  140. static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
  141. {
  142. u64 tmp;
  143. if (!pm1 && !pm2)
  144. return ULONG_MAX;
  145. if (pm2 < pm1)
  146. pm2 += (u64)ACPI_PM_OVRRUN;
  147. pm2 -= pm1;
  148. tmp = pm2 * 1000000000LL;
  149. do_div(tmp, PMTMR_TICKS_PER_SEC);
  150. do_div(deltatsc, tmp);
  151. return (unsigned long) deltatsc;
  152. }
  153. #define CAL_MS 10
  154. #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
  155. #define CAL_PIT_LOOPS 1000
  156. #define CAL2_MS 50
  157. #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
  158. #define CAL2_PIT_LOOPS 5000
  159. /*
  160. * Try to calibrate the TSC against the Programmable
  161. * Interrupt Timer and return the frequency of the TSC
  162. * in kHz.
  163. *
  164. * Return ULONG_MAX on failure to calibrate.
  165. */
  166. static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
  167. {
  168. u64 tsc, t1, t2, delta;
  169. unsigned long tscmin, tscmax;
  170. int pitcnt;
  171. /* Set the Gate high, disable speaker */
  172. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  173. /*
  174. * Setup CTC channel 2* for mode 0, (interrupt on terminal
  175. * count mode), binary count. Set the latch register to 50ms
  176. * (LSB then MSB) to begin countdown.
  177. */
  178. outb(0xb0, 0x43);
  179. outb(latch & 0xff, 0x42);
  180. outb(latch >> 8, 0x42);
  181. tsc = t1 = t2 = get_cycles();
  182. pitcnt = 0;
  183. tscmax = 0;
  184. tscmin = ULONG_MAX;
  185. while ((inb(0x61) & 0x20) == 0) {
  186. t2 = get_cycles();
  187. delta = t2 - tsc;
  188. tsc = t2;
  189. if ((unsigned long) delta < tscmin)
  190. tscmin = (unsigned int) delta;
  191. if ((unsigned long) delta > tscmax)
  192. tscmax = (unsigned int) delta;
  193. pitcnt++;
  194. }
  195. /*
  196. * Sanity checks:
  197. *
  198. * If we were not able to read the PIT more than loopmin
  199. * times, then we have been hit by a massive SMI
  200. *
  201. * If the maximum is 10 times larger than the minimum,
  202. * then we got hit by an SMI as well.
  203. */
  204. if (pitcnt < loopmin || tscmax > 10 * tscmin)
  205. return ULONG_MAX;
  206. /* Calculate the PIT value */
  207. delta = t2 - t1;
  208. do_div(delta, ms);
  209. return delta;
  210. }
  211. /*
  212. * This reads the current MSB of the PIT counter, and
  213. * checks if we are running on sufficiently fast and
  214. * non-virtualized hardware.
  215. *
  216. * Our expectations are:
  217. *
  218. * - the PIT is running at roughly 1.19MHz
  219. *
  220. * - each IO is going to take about 1us on real hardware,
  221. * but we allow it to be much faster (by a factor of 10) or
  222. * _slightly_ slower (ie we allow up to a 2us read+counter
  223. * update - anything else implies a unacceptably slow CPU
  224. * or PIT for the fast calibration to work.
  225. *
  226. * - with 256 PIT ticks to read the value, we have 214us to
  227. * see the same MSB (and overhead like doing a single TSC
  228. * read per MSB value etc).
  229. *
  230. * - We're doing 2 reads per loop (LSB, MSB), and we expect
  231. * them each to take about a microsecond on real hardware.
  232. * So we expect a count value of around 100. But we'll be
  233. * generous, and accept anything over 50.
  234. *
  235. * - if the PIT is stuck, and we see *many* more reads, we
  236. * return early (and the next caller of pit_expect_msb()
  237. * then consider it a failure when they don't see the
  238. * next expected value).
  239. *
  240. * These expectations mean that we know that we have seen the
  241. * transition from one expected value to another with a fairly
  242. * high accuracy, and we didn't miss any events. We can thus
  243. * use the TSC value at the transitions to calculate a pretty
  244. * good value for the TSC frequencty.
  245. */
  246. static inline int pit_verify_msb(unsigned char val)
  247. {
  248. /* Ignore LSB */
  249. inb(0x42);
  250. return inb(0x42) == val;
  251. }
  252. static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
  253. {
  254. int count;
  255. u64 tsc = 0, prev_tsc = 0;
  256. for (count = 0; count < 50000; count++) {
  257. if (!pit_verify_msb(val))
  258. break;
  259. prev_tsc = tsc;
  260. tsc = get_cycles();
  261. }
  262. *deltap = get_cycles() - prev_tsc;
  263. *tscp = tsc;
  264. /*
  265. * We require _some_ success, but the quality control
  266. * will be based on the error terms on the TSC values.
  267. */
  268. return count > 5;
  269. }
  270. /*
  271. * How many MSB values do we want to see? We aim for
  272. * a maximum error rate of 500ppm (in practice the
  273. * real error is much smaller), but refuse to spend
  274. * more than 50ms on it.
  275. */
  276. #define MAX_QUICK_PIT_MS 50
  277. #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
  278. static unsigned long quick_pit_calibrate(void)
  279. {
  280. int i;
  281. u64 tsc, delta;
  282. unsigned long d1, d2;
  283. /* Set the Gate high, disable speaker */
  284. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  285. /*
  286. * Counter 2, mode 0 (one-shot), binary count
  287. *
  288. * NOTE! Mode 2 decrements by two (and then the
  289. * output is flipped each time, giving the same
  290. * final output frequency as a decrement-by-one),
  291. * so mode 0 is much better when looking at the
  292. * individual counts.
  293. */
  294. outb(0xb0, 0x43);
  295. /* Start at 0xffff */
  296. outb(0xff, 0x42);
  297. outb(0xff, 0x42);
  298. /*
  299. * The PIT starts counting at the next edge, so we
  300. * need to delay for a microsecond. The easiest way
  301. * to do that is to just read back the 16-bit counter
  302. * once from the PIT.
  303. */
  304. pit_verify_msb(0);
  305. if (pit_expect_msb(0xff, &tsc, &d1)) {
  306. for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
  307. if (!pit_expect_msb(0xff-i, &delta, &d2))
  308. break;
  309. /*
  310. * Iterate until the error is less than 500 ppm
  311. */
  312. delta -= tsc;
  313. if (d1+d2 >= delta >> 11)
  314. continue;
  315. /*
  316. * Check the PIT one more time to verify that
  317. * all TSC reads were stable wrt the PIT.
  318. *
  319. * This also guarantees serialization of the
  320. * last cycle read ('d2') in pit_expect_msb.
  321. */
  322. if (!pit_verify_msb(0xfe - i))
  323. break;
  324. goto success;
  325. }
  326. }
  327. pr_err("Fast TSC calibration failed\n");
  328. return 0;
  329. success:
  330. /*
  331. * Ok, if we get here, then we've seen the
  332. * MSB of the PIT decrement 'i' times, and the
  333. * error has shrunk to less than 500 ppm.
  334. *
  335. * As a result, we can depend on there not being
  336. * any odd delays anywhere, and the TSC reads are
  337. * reliable (within the error).
  338. *
  339. * kHz = ticks / time-in-seconds / 1000;
  340. * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
  341. * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
  342. */
  343. delta *= PIT_TICK_RATE;
  344. do_div(delta, i*256*1000);
  345. pr_info("Fast TSC calibration using PIT\n");
  346. return delta;
  347. }
  348. /**
  349. * native_calibrate_tsc - calibrate the tsc on boot
  350. */
  351. unsigned long native_calibrate_tsc(void)
  352. {
  353. u64 tsc1, tsc2, delta, ref1, ref2;
  354. unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
  355. unsigned long flags, latch, ms, fast_calibrate;
  356. int hpet = is_hpet_enabled(), i, loopmin;
  357. local_irq_save(flags);
  358. fast_calibrate = quick_pit_calibrate();
  359. local_irq_restore(flags);
  360. if (fast_calibrate)
  361. return fast_calibrate;
  362. /*
  363. * Run 5 calibration loops to get the lowest frequency value
  364. * (the best estimate). We use two different calibration modes
  365. * here:
  366. *
  367. * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
  368. * load a timeout of 50ms. We read the time right after we
  369. * started the timer and wait until the PIT count down reaches
  370. * zero. In each wait loop iteration we read the TSC and check
  371. * the delta to the previous read. We keep track of the min
  372. * and max values of that delta. The delta is mostly defined
  373. * by the IO time of the PIT access, so we can detect when a
  374. * SMI/SMM disturbance happened between the two reads. If the
  375. * maximum time is significantly larger than the minimum time,
  376. * then we discard the result and have another try.
  377. *
  378. * 2) Reference counter. If available we use the HPET or the
  379. * PMTIMER as a reference to check the sanity of that value.
  380. * We use separate TSC readouts and check inside of the
  381. * reference read for a SMI/SMM disturbance. We dicard
  382. * disturbed values here as well. We do that around the PIT
  383. * calibration delay loop as we have to wait for a certain
  384. * amount of time anyway.
  385. */
  386. /* Preset PIT loop values */
  387. latch = CAL_LATCH;
  388. ms = CAL_MS;
  389. loopmin = CAL_PIT_LOOPS;
  390. for (i = 0; i < 3; i++) {
  391. unsigned long tsc_pit_khz;
  392. /*
  393. * Read the start value and the reference count of
  394. * hpet/pmtimer when available. Then do the PIT
  395. * calibration, which will take at least 50ms, and
  396. * read the end value.
  397. */
  398. local_irq_save(flags);
  399. tsc1 = tsc_read_refs(&ref1, hpet);
  400. tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
  401. tsc2 = tsc_read_refs(&ref2, hpet);
  402. local_irq_restore(flags);
  403. /* Pick the lowest PIT TSC calibration so far */
  404. tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
  405. /* hpet or pmtimer available ? */
  406. if (ref1 == ref2)
  407. continue;
  408. /* Check, whether the sampling was disturbed by an SMI */
  409. if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
  410. continue;
  411. tsc2 = (tsc2 - tsc1) * 1000000LL;
  412. if (hpet)
  413. tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
  414. else
  415. tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
  416. tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
  417. /* Check the reference deviation */
  418. delta = ((u64) tsc_pit_min) * 100;
  419. do_div(delta, tsc_ref_min);
  420. /*
  421. * If both calibration results are inside a 10% window
  422. * then we can be sure, that the calibration
  423. * succeeded. We break out of the loop right away. We
  424. * use the reference value, as it is more precise.
  425. */
  426. if (delta >= 90 && delta <= 110) {
  427. pr_info("PIT calibration matches %s. %d loops\n",
  428. hpet ? "HPET" : "PMTIMER", i + 1);
  429. return tsc_ref_min;
  430. }
  431. /*
  432. * Check whether PIT failed more than once. This
  433. * happens in virtualized environments. We need to
  434. * give the virtual PC a slightly longer timeframe for
  435. * the HPET/PMTIMER to make the result precise.
  436. */
  437. if (i == 1 && tsc_pit_min == ULONG_MAX) {
  438. latch = CAL2_LATCH;
  439. ms = CAL2_MS;
  440. loopmin = CAL2_PIT_LOOPS;
  441. }
  442. }
  443. /*
  444. * Now check the results.
  445. */
  446. if (tsc_pit_min == ULONG_MAX) {
  447. /* PIT gave no useful value */
  448. pr_warn("Unable to calibrate against PIT\n");
  449. /* We don't have an alternative source, disable TSC */
  450. if (!hpet && !ref1 && !ref2) {
  451. pr_notice("No reference (HPET/PMTIMER) available\n");
  452. return 0;
  453. }
  454. /* The alternative source failed as well, disable TSC */
  455. if (tsc_ref_min == ULONG_MAX) {
  456. pr_warn("HPET/PMTIMER calibration failed\n");
  457. return 0;
  458. }
  459. /* Use the alternative source */
  460. pr_info("using %s reference calibration\n",
  461. hpet ? "HPET" : "PMTIMER");
  462. return tsc_ref_min;
  463. }
  464. /* We don't have an alternative source, use the PIT calibration value */
  465. if (!hpet && !ref1 && !ref2) {
  466. pr_info("Using PIT calibration value\n");
  467. return tsc_pit_min;
  468. }
  469. /* The alternative source failed, use the PIT calibration value */
  470. if (tsc_ref_min == ULONG_MAX) {
  471. pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
  472. return tsc_pit_min;
  473. }
  474. /*
  475. * The calibration values differ too much. In doubt, we use
  476. * the PIT value as we know that there are PMTIMERs around
  477. * running at double speed. At least we let the user know:
  478. */
  479. pr_warn("PIT calibration deviates from %s: %lu %lu\n",
  480. hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
  481. pr_info("Using PIT calibration value\n");
  482. return tsc_pit_min;
  483. }
  484. int recalibrate_cpu_khz(void)
  485. {
  486. #ifndef CONFIG_SMP
  487. unsigned long cpu_khz_old = cpu_khz;
  488. if (cpu_has_tsc) {
  489. tsc_khz = x86_platform.calibrate_tsc();
  490. cpu_khz = tsc_khz;
  491. cpu_data(0).loops_per_jiffy =
  492. cpufreq_scale(cpu_data(0).loops_per_jiffy,
  493. cpu_khz_old, cpu_khz);
  494. return 0;
  495. } else
  496. return -ENODEV;
  497. #else
  498. return -ENODEV;
  499. #endif
  500. }
  501. EXPORT_SYMBOL(recalibrate_cpu_khz);
  502. /* Accelerators for sched_clock()
  503. * convert from cycles(64bits) => nanoseconds (64bits)
  504. * basic equation:
  505. * ns = cycles / (freq / ns_per_sec)
  506. * ns = cycles * (ns_per_sec / freq)
  507. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  508. * ns = cycles * (10^6 / cpu_khz)
  509. *
  510. * Then we use scaling math (suggested by george@mvista.com) to get:
  511. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  512. * ns = cycles * cyc2ns_scale / SC
  513. *
  514. * And since SC is a constant power of two, we can convert the div
  515. * into a shift.
  516. *
  517. * We can use khz divisor instead of mhz to keep a better precision, since
  518. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  519. * (mathieu.desnoyers@polymtl.ca)
  520. *
  521. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  522. */
  523. DEFINE_PER_CPU(unsigned long, cyc2ns);
  524. DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
  525. static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
  526. {
  527. unsigned long long tsc_now, ns_now, *offset;
  528. unsigned long flags, *scale;
  529. local_irq_save(flags);
  530. sched_clock_idle_sleep_event();
  531. scale = &per_cpu(cyc2ns, cpu);
  532. offset = &per_cpu(cyc2ns_offset, cpu);
  533. rdtscll(tsc_now);
  534. ns_now = __cycles_2_ns(tsc_now);
  535. if (cpu_khz) {
  536. *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
  537. *offset = ns_now - mult_frac(tsc_now, *scale,
  538. (1UL << CYC2NS_SCALE_FACTOR));
  539. }
  540. sched_clock_idle_wakeup_event(0);
  541. local_irq_restore(flags);
  542. }
  543. static unsigned long long cyc2ns_suspend;
  544. void tsc_save_sched_clock_state(void)
  545. {
  546. if (!sched_clock_stable)
  547. return;
  548. cyc2ns_suspend = sched_clock();
  549. }
  550. /*
  551. * Even on processors with invariant TSC, TSC gets reset in some the
  552. * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
  553. * arbitrary value (still sync'd across cpu's) during resume from such sleep
  554. * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
  555. * that sched_clock() continues from the point where it was left off during
  556. * suspend.
  557. */
  558. void tsc_restore_sched_clock_state(void)
  559. {
  560. unsigned long long offset;
  561. unsigned long flags;
  562. int cpu;
  563. if (!sched_clock_stable)
  564. return;
  565. local_irq_save(flags);
  566. __this_cpu_write(cyc2ns_offset, 0);
  567. offset = cyc2ns_suspend - sched_clock();
  568. for_each_possible_cpu(cpu)
  569. per_cpu(cyc2ns_offset, cpu) = offset;
  570. local_irq_restore(flags);
  571. }
  572. #ifdef CONFIG_CPU_FREQ
  573. /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
  574. * changes.
  575. *
  576. * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
  577. * not that important because current Opteron setups do not support
  578. * scaling on SMP anyroads.
  579. *
  580. * Should fix up last_tsc too. Currently gettimeofday in the
  581. * first tick after the change will be slightly wrong.
  582. */
  583. static unsigned int ref_freq;
  584. static unsigned long loops_per_jiffy_ref;
  585. static unsigned long tsc_khz_ref;
  586. static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  587. void *data)
  588. {
  589. struct cpufreq_freqs *freq = data;
  590. unsigned long *lpj;
  591. if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
  592. return 0;
  593. lpj = &boot_cpu_data.loops_per_jiffy;
  594. #ifdef CONFIG_SMP
  595. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  596. lpj = &cpu_data(freq->cpu).loops_per_jiffy;
  597. #endif
  598. if (!ref_freq) {
  599. ref_freq = freq->old;
  600. loops_per_jiffy_ref = *lpj;
  601. tsc_khz_ref = tsc_khz;
  602. }
  603. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  604. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  605. (val == CPUFREQ_RESUMECHANGE)) {
  606. *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
  607. tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  608. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  609. mark_tsc_unstable("cpufreq changes");
  610. }
  611. set_cyc2ns_scale(tsc_khz, freq->cpu);
  612. return 0;
  613. }
  614. static struct notifier_block time_cpufreq_notifier_block = {
  615. .notifier_call = time_cpufreq_notifier
  616. };
  617. static int __init cpufreq_tsc(void)
  618. {
  619. if (!cpu_has_tsc)
  620. return 0;
  621. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  622. return 0;
  623. cpufreq_register_notifier(&time_cpufreq_notifier_block,
  624. CPUFREQ_TRANSITION_NOTIFIER);
  625. return 0;
  626. }
  627. core_initcall(cpufreq_tsc);
  628. #endif /* CONFIG_CPU_FREQ */
  629. /* clocksource code */
  630. static struct clocksource clocksource_tsc;
  631. /*
  632. * We compare the TSC to the cycle_last value in the clocksource
  633. * structure to avoid a nasty time-warp. This can be observed in a
  634. * very small window right after one CPU updated cycle_last under
  635. * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
  636. * is smaller than the cycle_last reference value due to a TSC which
  637. * is slighty behind. This delta is nowhere else observable, but in
  638. * that case it results in a forward time jump in the range of hours
  639. * due to the unsigned delta calculation of the time keeping core
  640. * code, which is necessary to support wrapping clocksources like pm
  641. * timer.
  642. */
  643. static cycle_t read_tsc(struct clocksource *cs)
  644. {
  645. cycle_t ret = (cycle_t)get_cycles();
  646. return ret >= clocksource_tsc.cycle_last ?
  647. ret : clocksource_tsc.cycle_last;
  648. }
  649. static void resume_tsc(struct clocksource *cs)
  650. {
  651. clocksource_tsc.cycle_last = 0;
  652. }
  653. static struct clocksource clocksource_tsc = {
  654. .name = "tsc",
  655. .rating = 300,
  656. .read = read_tsc,
  657. .resume = resume_tsc,
  658. .mask = CLOCKSOURCE_MASK(64),
  659. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  660. CLOCK_SOURCE_MUST_VERIFY,
  661. #ifdef CONFIG_X86_64
  662. .archdata = { .vclock_mode = VCLOCK_TSC },
  663. #endif
  664. };
  665. void mark_tsc_unstable(char *reason)
  666. {
  667. if (!tsc_unstable) {
  668. tsc_unstable = 1;
  669. sched_clock_stable = 0;
  670. disable_sched_clock_irqtime();
  671. pr_info("Marking TSC unstable due to %s\n", reason);
  672. /* Change only the rating, when not registered */
  673. if (clocksource_tsc.mult)
  674. clocksource_mark_unstable(&clocksource_tsc);
  675. else {
  676. clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
  677. clocksource_tsc.rating = 0;
  678. }
  679. }
  680. }
  681. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  682. static void __init check_system_tsc_reliable(void)
  683. {
  684. #ifdef CONFIG_MGEODE_LX
  685. /* RTSC counts during suspend */
  686. #define RTSC_SUSP 0x100
  687. unsigned long res_low, res_high;
  688. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  689. /* Geode_LX - the OLPC CPU has a very reliable TSC */
  690. if (res_low & RTSC_SUSP)
  691. tsc_clocksource_reliable = 1;
  692. #endif
  693. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
  694. tsc_clocksource_reliable = 1;
  695. }
  696. /*
  697. * Make an educated guess if the TSC is trustworthy and synchronized
  698. * over all CPUs.
  699. */
  700. __cpuinit int unsynchronized_tsc(void)
  701. {
  702. if (!cpu_has_tsc || tsc_unstable)
  703. return 1;
  704. #ifdef CONFIG_SMP
  705. if (apic_is_clustered_box())
  706. return 1;
  707. #endif
  708. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  709. return 0;
  710. if (tsc_clocksource_reliable)
  711. return 0;
  712. /*
  713. * Intel systems are normally all synchronized.
  714. * Exceptions must mark TSC as unstable:
  715. */
  716. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  717. /* assume multi socket systems are not synchronized: */
  718. if (num_possible_cpus() > 1)
  719. return 1;
  720. }
  721. return 0;
  722. }
  723. static void tsc_refine_calibration_work(struct work_struct *work);
  724. static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
  725. /**
  726. * tsc_refine_calibration_work - Further refine tsc freq calibration
  727. * @work - ignored.
  728. *
  729. * This functions uses delayed work over a period of a
  730. * second to further refine the TSC freq value. Since this is
  731. * timer based, instead of loop based, we don't block the boot
  732. * process while this longer calibration is done.
  733. *
  734. * If there are any calibration anomalies (too many SMIs, etc),
  735. * or the refined calibration is off by 1% of the fast early
  736. * calibration, we throw out the new calibration and use the
  737. * early calibration.
  738. */
  739. static void tsc_refine_calibration_work(struct work_struct *work)
  740. {
  741. static u64 tsc_start = -1, ref_start;
  742. static int hpet;
  743. u64 tsc_stop, ref_stop, delta;
  744. unsigned long freq;
  745. /* Don't bother refining TSC on unstable systems */
  746. if (check_tsc_unstable())
  747. goto out;
  748. /*
  749. * Since the work is started early in boot, we may be
  750. * delayed the first time we expire. So set the workqueue
  751. * again once we know timers are working.
  752. */
  753. if (tsc_start == -1) {
  754. /*
  755. * Only set hpet once, to avoid mixing hardware
  756. * if the hpet becomes enabled later.
  757. */
  758. hpet = is_hpet_enabled();
  759. schedule_delayed_work(&tsc_irqwork, HZ);
  760. tsc_start = tsc_read_refs(&ref_start, hpet);
  761. return;
  762. }
  763. tsc_stop = tsc_read_refs(&ref_stop, hpet);
  764. /* hpet or pmtimer available ? */
  765. if (ref_start == ref_stop)
  766. goto out;
  767. /* Check, whether the sampling was disturbed by an SMI */
  768. if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
  769. goto out;
  770. delta = tsc_stop - tsc_start;
  771. delta *= 1000000LL;
  772. if (hpet)
  773. freq = calc_hpet_ref(delta, ref_start, ref_stop);
  774. else
  775. freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
  776. /* Make sure we're within 1% */
  777. if (abs(tsc_khz - freq) > tsc_khz/100)
  778. goto out;
  779. tsc_khz = freq;
  780. pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
  781. (unsigned long)tsc_khz / 1000,
  782. (unsigned long)tsc_khz % 1000);
  783. out:
  784. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  785. }
  786. static int __init init_tsc_clocksource(void)
  787. {
  788. if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
  789. return 0;
  790. if (tsc_clocksource_reliable)
  791. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  792. /* lower the rating if we already know its unstable: */
  793. if (check_tsc_unstable()) {
  794. clocksource_tsc.rating = 0;
  795. clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
  796. }
  797. /*
  798. * Trust the results of the earlier calibration on systems
  799. * exporting a reliable TSC.
  800. */
  801. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
  802. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  803. return 0;
  804. }
  805. schedule_delayed_work(&tsc_irqwork, 0);
  806. return 0;
  807. }
  808. /*
  809. * We use device_initcall here, to ensure we run after the hpet
  810. * is fully initialized, which may occur at fs_initcall time.
  811. */
  812. device_initcall(init_tsc_clocksource);
  813. void __init tsc_init(void)
  814. {
  815. u64 lpj;
  816. int cpu;
  817. x86_init.timers.tsc_pre_init();
  818. if (!cpu_has_tsc)
  819. return;
  820. tsc_khz = x86_platform.calibrate_tsc();
  821. cpu_khz = tsc_khz;
  822. if (!tsc_khz) {
  823. mark_tsc_unstable("could not calculate TSC khz");
  824. return;
  825. }
  826. pr_info("Detected %lu.%03lu MHz processor\n",
  827. (unsigned long)cpu_khz / 1000,
  828. (unsigned long)cpu_khz % 1000);
  829. /*
  830. * Secondary CPUs do not run through tsc_init(), so set up
  831. * all the scale factors for all CPUs, assuming the same
  832. * speed as the bootup CPU. (cpufreq notifiers will fix this
  833. * up if their speed diverges)
  834. */
  835. for_each_possible_cpu(cpu)
  836. set_cyc2ns_scale(cpu_khz, cpu);
  837. if (tsc_disabled > 0)
  838. return;
  839. /* now allow native_sched_clock() to use rdtsc */
  840. tsc_disabled = 0;
  841. if (!no_sched_irq_time)
  842. enable_sched_clock_irqtime();
  843. lpj = ((u64)tsc_khz * 1000);
  844. do_div(lpj, HZ);
  845. lpj_fine = lpj;
  846. use_tsc_delay();
  847. if (unsynchronized_tsc())
  848. mark_tsc_unstable("TSCs unsynchronized");
  849. check_system_tsc_reliable();
  850. }
  851. #ifdef CONFIG_SMP
  852. /*
  853. * If we have a constant TSC and are using the TSC for the delay loop,
  854. * we can skip clock calibration if another cpu in the same socket has already
  855. * been calibrated. This assumes that CONSTANT_TSC applies to all
  856. * cpus in the socket - this should be a safe assumption.
  857. */
  858. unsigned long __cpuinit calibrate_delay_is_known(void)
  859. {
  860. int i, cpu = smp_processor_id();
  861. if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
  862. return 0;
  863. for_each_online_cpu(i)
  864. if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
  865. return cpu_data(i).loops_per_jiffy;
  866. return 0;
  867. }
  868. #endif