process.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/errno.h>
  3. #include <linux/kernel.h>
  4. #include <linux/mm.h>
  5. #include <linux/smp.h>
  6. #include <linux/prctl.h>
  7. #include <linux/slab.h>
  8. #include <linux/sched.h>
  9. #include <linux/module.h>
  10. #include <linux/pm.h>
  11. #include <linux/clockchips.h>
  12. #include <linux/random.h>
  13. #include <linux/user-return-notifier.h>
  14. #include <linux/dmi.h>
  15. #include <linux/utsname.h>
  16. #include <linux/stackprotector.h>
  17. #include <linux/tick.h>
  18. #include <linux/cpuidle.h>
  19. #include <trace/events/power.h>
  20. #include <linux/hw_breakpoint.h>
  21. #include <asm/cpu.h>
  22. #include <asm/apic.h>
  23. #include <asm/syscalls.h>
  24. #include <asm/idle.h>
  25. #include <asm/uaccess.h>
  26. #include <asm/i387.h>
  27. #include <asm/fpu-internal.h>
  28. #include <asm/debugreg.h>
  29. #include <asm/nmi.h>
  30. /*
  31. * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  32. * no more per-task TSS's. The TSS size is kept cacheline-aligned
  33. * so they are allowed to end up in the .data..cacheline_aligned
  34. * section. Since TSS's are completely CPU-local, we want them
  35. * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  36. */
  37. DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
  38. #ifdef CONFIG_X86_64
  39. static DEFINE_PER_CPU(unsigned char, is_idle);
  40. static ATOMIC_NOTIFIER_HEAD(idle_notifier);
  41. void idle_notifier_register(struct notifier_block *n)
  42. {
  43. atomic_notifier_chain_register(&idle_notifier, n);
  44. }
  45. EXPORT_SYMBOL_GPL(idle_notifier_register);
  46. void idle_notifier_unregister(struct notifier_block *n)
  47. {
  48. atomic_notifier_chain_unregister(&idle_notifier, n);
  49. }
  50. EXPORT_SYMBOL_GPL(idle_notifier_unregister);
  51. #endif
  52. struct kmem_cache *task_xstate_cachep;
  53. EXPORT_SYMBOL_GPL(task_xstate_cachep);
  54. /*
  55. * this gets called so that we can store lazy state into memory and copy the
  56. * current task into the new thread.
  57. */
  58. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  59. {
  60. int ret;
  61. *dst = *src;
  62. if (fpu_allocated(&src->thread.fpu)) {
  63. memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
  64. ret = fpu_alloc(&dst->thread.fpu);
  65. if (ret)
  66. return ret;
  67. fpu_copy(dst, src);
  68. }
  69. return 0;
  70. }
  71. void free_thread_xstate(struct task_struct *tsk)
  72. {
  73. fpu_free(&tsk->thread.fpu);
  74. }
  75. void arch_release_task_struct(struct task_struct *tsk)
  76. {
  77. free_thread_xstate(tsk);
  78. }
  79. void arch_task_cache_init(void)
  80. {
  81. task_xstate_cachep =
  82. kmem_cache_create("task_xstate", xstate_size,
  83. __alignof__(union thread_xstate),
  84. SLAB_PANIC | SLAB_NOTRACK, NULL);
  85. }
  86. /*
  87. * Free current thread data structures etc..
  88. */
  89. void exit_thread(void)
  90. {
  91. struct task_struct *me = current;
  92. struct thread_struct *t = &me->thread;
  93. unsigned long *bp = t->io_bitmap_ptr;
  94. if (bp) {
  95. struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
  96. t->io_bitmap_ptr = NULL;
  97. clear_thread_flag(TIF_IO_BITMAP);
  98. /*
  99. * Careful, clear this in the TSS too:
  100. */
  101. memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  102. t->io_bitmap_max = 0;
  103. put_cpu();
  104. kfree(bp);
  105. }
  106. drop_fpu(me);
  107. }
  108. void show_regs_common(void)
  109. {
  110. const char *vendor, *product, *board;
  111. vendor = dmi_get_system_info(DMI_SYS_VENDOR);
  112. if (!vendor)
  113. vendor = "";
  114. product = dmi_get_system_info(DMI_PRODUCT_NAME);
  115. if (!product)
  116. product = "";
  117. /* Board Name is optional */
  118. board = dmi_get_system_info(DMI_BOARD_NAME);
  119. printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s %s%s%s\n",
  120. current->pid, current->comm, print_tainted(),
  121. init_utsname()->release,
  122. (int)strcspn(init_utsname()->version, " "),
  123. init_utsname()->version,
  124. vendor, product,
  125. board ? "/" : "",
  126. board ? board : "");
  127. }
  128. void flush_thread(void)
  129. {
  130. struct task_struct *tsk = current;
  131. flush_ptrace_hw_breakpoint(tsk);
  132. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  133. drop_init_fpu(tsk);
  134. /*
  135. * Free the FPU state for non xsave platforms. They get reallocated
  136. * lazily at the first use.
  137. */
  138. if (!use_eager_fpu())
  139. free_thread_xstate(tsk);
  140. }
  141. static void hard_disable_TSC(void)
  142. {
  143. write_cr4(read_cr4() | X86_CR4_TSD);
  144. }
  145. void disable_TSC(void)
  146. {
  147. preempt_disable();
  148. if (!test_and_set_thread_flag(TIF_NOTSC))
  149. /*
  150. * Must flip the CPU state synchronously with
  151. * TIF_NOTSC in the current running context.
  152. */
  153. hard_disable_TSC();
  154. preempt_enable();
  155. }
  156. static void hard_enable_TSC(void)
  157. {
  158. write_cr4(read_cr4() & ~X86_CR4_TSD);
  159. }
  160. static void enable_TSC(void)
  161. {
  162. preempt_disable();
  163. if (test_and_clear_thread_flag(TIF_NOTSC))
  164. /*
  165. * Must flip the CPU state synchronously with
  166. * TIF_NOTSC in the current running context.
  167. */
  168. hard_enable_TSC();
  169. preempt_enable();
  170. }
  171. int get_tsc_mode(unsigned long adr)
  172. {
  173. unsigned int val;
  174. if (test_thread_flag(TIF_NOTSC))
  175. val = PR_TSC_SIGSEGV;
  176. else
  177. val = PR_TSC_ENABLE;
  178. return put_user(val, (unsigned int __user *)adr);
  179. }
  180. int set_tsc_mode(unsigned int val)
  181. {
  182. if (val == PR_TSC_SIGSEGV)
  183. disable_TSC();
  184. else if (val == PR_TSC_ENABLE)
  185. enable_TSC();
  186. else
  187. return -EINVAL;
  188. return 0;
  189. }
  190. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  191. struct tss_struct *tss)
  192. {
  193. struct thread_struct *prev, *next;
  194. prev = &prev_p->thread;
  195. next = &next_p->thread;
  196. if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
  197. test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
  198. unsigned long debugctl = get_debugctlmsr();
  199. debugctl &= ~DEBUGCTLMSR_BTF;
  200. if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
  201. debugctl |= DEBUGCTLMSR_BTF;
  202. update_debugctlmsr(debugctl);
  203. }
  204. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  205. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  206. /* prev and next are different */
  207. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  208. hard_disable_TSC();
  209. else
  210. hard_enable_TSC();
  211. }
  212. if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  213. /*
  214. * Copy the relevant range of the IO bitmap.
  215. * Normally this is 128 bytes or less:
  216. */
  217. memcpy(tss->io_bitmap, next->io_bitmap_ptr,
  218. max(prev->io_bitmap_max, next->io_bitmap_max));
  219. } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
  220. /*
  221. * Clear any possible leftover bits:
  222. */
  223. memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
  224. }
  225. propagate_user_return_notify(prev_p, next_p);
  226. }
  227. int sys_fork(struct pt_regs *regs)
  228. {
  229. return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
  230. }
  231. /*
  232. * This is trivial, and on the face of it looks like it
  233. * could equally well be done in user mode.
  234. *
  235. * Not so, for quite unobvious reasons - register pressure.
  236. * In user mode vfork() cannot have a stack frame, and if
  237. * done by calling the "clone()" system call directly, you
  238. * do not have enough call-clobbered registers to hold all
  239. * the information you need.
  240. */
  241. int sys_vfork(struct pt_regs *regs)
  242. {
  243. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
  244. NULL, NULL);
  245. }
  246. long
  247. sys_clone(unsigned long clone_flags, unsigned long newsp,
  248. void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
  249. {
  250. if (!newsp)
  251. newsp = regs->sp;
  252. return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
  253. }
  254. /*
  255. * This gets run with %si containing the
  256. * function to call, and %di containing
  257. * the "args".
  258. */
  259. extern void kernel_thread_helper(void);
  260. /*
  261. * Create a kernel thread
  262. */
  263. int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  264. {
  265. struct pt_regs regs;
  266. memset(&regs, 0, sizeof(regs));
  267. regs.si = (unsigned long) fn;
  268. regs.di = (unsigned long) arg;
  269. #ifdef CONFIG_X86_32
  270. regs.ds = __USER_DS;
  271. regs.es = __USER_DS;
  272. regs.fs = __KERNEL_PERCPU;
  273. regs.gs = __KERNEL_STACK_CANARY;
  274. #else
  275. regs.ss = __KERNEL_DS;
  276. #endif
  277. regs.orig_ax = -1;
  278. regs.ip = (unsigned long) kernel_thread_helper;
  279. regs.cs = __KERNEL_CS | get_kernel_rpl();
  280. regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
  281. /* Ok, create the new process.. */
  282. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  283. }
  284. EXPORT_SYMBOL(kernel_thread);
  285. /*
  286. * sys_execve() executes a new program.
  287. */
  288. long sys_execve(const char __user *name,
  289. const char __user *const __user *argv,
  290. const char __user *const __user *envp, struct pt_regs *regs)
  291. {
  292. long error;
  293. char *filename;
  294. filename = getname(name);
  295. error = PTR_ERR(filename);
  296. if (IS_ERR(filename))
  297. return error;
  298. error = do_execve(filename, argv, envp, regs);
  299. #ifdef CONFIG_X86_32
  300. if (error == 0) {
  301. /* Make sure we don't return using sysenter.. */
  302. set_thread_flag(TIF_IRET);
  303. }
  304. #endif
  305. putname(filename);
  306. return error;
  307. }
  308. /*
  309. * Idle related variables and functions
  310. */
  311. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  312. EXPORT_SYMBOL(boot_option_idle_override);
  313. /*
  314. * Powermanagement idle function, if any..
  315. */
  316. void (*pm_idle)(void);
  317. #ifdef CONFIG_APM_MODULE
  318. EXPORT_SYMBOL(pm_idle);
  319. #endif
  320. static inline int hlt_use_halt(void)
  321. {
  322. return 1;
  323. }
  324. #ifndef CONFIG_SMP
  325. static inline void play_dead(void)
  326. {
  327. BUG();
  328. }
  329. #endif
  330. #ifdef CONFIG_X86_64
  331. void enter_idle(void)
  332. {
  333. this_cpu_write(is_idle, 1);
  334. atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
  335. }
  336. static void __exit_idle(void)
  337. {
  338. if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
  339. return;
  340. atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
  341. }
  342. /* Called from interrupts to signify idle end */
  343. void exit_idle(void)
  344. {
  345. /* idle loop has pid 0 */
  346. if (current->pid)
  347. return;
  348. __exit_idle();
  349. }
  350. #endif
  351. /*
  352. * The idle thread. There's no useful work to be
  353. * done, so just try to conserve power and have a
  354. * low exit latency (ie sit in a loop waiting for
  355. * somebody to say that they'd like to reschedule)
  356. */
  357. void cpu_idle(void)
  358. {
  359. /*
  360. * If we're the non-boot CPU, nothing set the stack canary up
  361. * for us. CPU0 already has it initialized but no harm in
  362. * doing it again. This is a good place for updating it, as
  363. * we wont ever return from this function (so the invalid
  364. * canaries already on the stack wont ever trigger).
  365. */
  366. boot_init_stack_canary();
  367. current_thread_info()->status |= TS_POLLING;
  368. while (1) {
  369. tick_nohz_idle_enter();
  370. while (!need_resched()) {
  371. rmb();
  372. if (cpu_is_offline(smp_processor_id()))
  373. play_dead();
  374. /*
  375. * Idle routines should keep interrupts disabled
  376. * from here on, until they go to idle.
  377. * Otherwise, idle callbacks can misfire.
  378. */
  379. local_touch_nmi();
  380. local_irq_disable();
  381. enter_idle();
  382. /* Don't trace irqs off for idle */
  383. stop_critical_timings();
  384. /* enter_idle() needs rcu for notifiers */
  385. rcu_idle_enter();
  386. if (cpuidle_idle_call())
  387. pm_idle();
  388. rcu_idle_exit();
  389. start_critical_timings();
  390. /* In many cases the interrupt that ended idle
  391. has already called exit_idle. But some idle
  392. loops can be woken up without interrupt. */
  393. __exit_idle();
  394. }
  395. tick_nohz_idle_exit();
  396. preempt_enable_no_resched();
  397. schedule();
  398. preempt_disable();
  399. }
  400. }
  401. /*
  402. * We use this if we don't have any better
  403. * idle routine..
  404. */
  405. void default_idle(void)
  406. {
  407. if (hlt_use_halt()) {
  408. trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
  409. trace_cpu_idle_rcuidle(1, smp_processor_id());
  410. current_thread_info()->status &= ~TS_POLLING;
  411. /*
  412. * TS_POLLING-cleared state must be visible before we
  413. * test NEED_RESCHED:
  414. */
  415. smp_mb();
  416. if (!need_resched())
  417. safe_halt(); /* enables interrupts racelessly */
  418. else
  419. local_irq_enable();
  420. current_thread_info()->status |= TS_POLLING;
  421. trace_power_end_rcuidle(smp_processor_id());
  422. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  423. } else {
  424. local_irq_enable();
  425. /* loop is done by the caller */
  426. cpu_relax();
  427. }
  428. }
  429. #ifdef CONFIG_APM_MODULE
  430. EXPORT_SYMBOL(default_idle);
  431. #endif
  432. bool set_pm_idle_to_default(void)
  433. {
  434. bool ret = !!pm_idle;
  435. pm_idle = default_idle;
  436. return ret;
  437. }
  438. void stop_this_cpu(void *dummy)
  439. {
  440. local_irq_disable();
  441. /*
  442. * Remove this CPU:
  443. */
  444. set_cpu_online(smp_processor_id(), false);
  445. disable_local_APIC();
  446. for (;;) {
  447. if (hlt_works(smp_processor_id()))
  448. halt();
  449. }
  450. }
  451. /* Default MONITOR/MWAIT with no hints, used for default C1 state */
  452. static void mwait_idle(void)
  453. {
  454. if (!need_resched()) {
  455. trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
  456. trace_cpu_idle_rcuidle(1, smp_processor_id());
  457. if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
  458. clflush((void *)&current_thread_info()->flags);
  459. __monitor((void *)&current_thread_info()->flags, 0, 0);
  460. smp_mb();
  461. if (!need_resched())
  462. __sti_mwait(0, 0);
  463. else
  464. local_irq_enable();
  465. trace_power_end_rcuidle(smp_processor_id());
  466. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  467. } else
  468. local_irq_enable();
  469. }
  470. /*
  471. * On SMP it's slightly faster (but much more power-consuming!)
  472. * to poll the ->work.need_resched flag instead of waiting for the
  473. * cross-CPU IPI to arrive. Use this option with caution.
  474. */
  475. static void poll_idle(void)
  476. {
  477. trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
  478. trace_cpu_idle_rcuidle(0, smp_processor_id());
  479. local_irq_enable();
  480. while (!need_resched())
  481. cpu_relax();
  482. trace_power_end_rcuidle(smp_processor_id());
  483. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  484. }
  485. /*
  486. * mwait selection logic:
  487. *
  488. * It depends on the CPU. For AMD CPUs that support MWAIT this is
  489. * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
  490. * then depend on a clock divisor and current Pstate of the core. If
  491. * all cores of a processor are in halt state (C1) the processor can
  492. * enter the C1E (C1 enhanced) state. If mwait is used this will never
  493. * happen.
  494. *
  495. * idle=mwait overrides this decision and forces the usage of mwait.
  496. */
  497. #define MWAIT_INFO 0x05
  498. #define MWAIT_ECX_EXTENDED_INFO 0x01
  499. #define MWAIT_EDX_C1 0xf0
  500. int mwait_usable(const struct cpuinfo_x86 *c)
  501. {
  502. u32 eax, ebx, ecx, edx;
  503. /* Use mwait if idle=mwait boot option is given */
  504. if (boot_option_idle_override == IDLE_FORCE_MWAIT)
  505. return 1;
  506. /*
  507. * Any idle= boot option other than idle=mwait means that we must not
  508. * use mwait. Eg: idle=halt or idle=poll or idle=nomwait
  509. */
  510. if (boot_option_idle_override != IDLE_NO_OVERRIDE)
  511. return 0;
  512. if (c->cpuid_level < MWAIT_INFO)
  513. return 0;
  514. cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
  515. /* Check, whether EDX has extended info about MWAIT */
  516. if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
  517. return 1;
  518. /*
  519. * edx enumeratios MONITOR/MWAIT extensions. Check, whether
  520. * C1 supports MWAIT
  521. */
  522. return (edx & MWAIT_EDX_C1);
  523. }
  524. bool amd_e400_c1e_detected;
  525. EXPORT_SYMBOL(amd_e400_c1e_detected);
  526. static cpumask_var_t amd_e400_c1e_mask;
  527. void amd_e400_remove_cpu(int cpu)
  528. {
  529. if (amd_e400_c1e_mask != NULL)
  530. cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
  531. }
  532. /*
  533. * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
  534. * pending message MSR. If we detect C1E, then we handle it the same
  535. * way as C3 power states (local apic timer and TSC stop)
  536. */
  537. static void amd_e400_idle(void)
  538. {
  539. if (need_resched())
  540. return;
  541. if (!amd_e400_c1e_detected) {
  542. u32 lo, hi;
  543. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  544. if (lo & K8_INTP_C1E_ACTIVE_MASK) {
  545. amd_e400_c1e_detected = true;
  546. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  547. mark_tsc_unstable("TSC halt in AMD C1E");
  548. pr_info("System has AMD C1E enabled\n");
  549. }
  550. }
  551. if (amd_e400_c1e_detected) {
  552. int cpu = smp_processor_id();
  553. if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
  554. cpumask_set_cpu(cpu, amd_e400_c1e_mask);
  555. /*
  556. * Force broadcast so ACPI can not interfere.
  557. */
  558. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
  559. &cpu);
  560. pr_info("Switch to broadcast mode on CPU%d\n", cpu);
  561. }
  562. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
  563. default_idle();
  564. /*
  565. * The switch back from broadcast mode needs to be
  566. * called with interrupts disabled.
  567. */
  568. local_irq_disable();
  569. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
  570. local_irq_enable();
  571. } else
  572. default_idle();
  573. }
  574. void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
  575. {
  576. #ifdef CONFIG_SMP
  577. if (pm_idle == poll_idle && smp_num_siblings > 1) {
  578. pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
  579. }
  580. #endif
  581. if (pm_idle)
  582. return;
  583. if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
  584. /*
  585. * One CPU supports mwait => All CPUs supports mwait
  586. */
  587. pr_info("using mwait in idle threads\n");
  588. pm_idle = mwait_idle;
  589. } else if (cpu_has_amd_erratum(amd_erratum_400)) {
  590. /* E400: APIC timer interrupt does not wake up CPU from C1e */
  591. pr_info("using AMD E400 aware idle routine\n");
  592. pm_idle = amd_e400_idle;
  593. } else
  594. pm_idle = default_idle;
  595. }
  596. void __init init_amd_e400_c1e_mask(void)
  597. {
  598. /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
  599. if (pm_idle == amd_e400_idle)
  600. zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
  601. }
  602. static int __init idle_setup(char *str)
  603. {
  604. if (!str)
  605. return -EINVAL;
  606. if (!strcmp(str, "poll")) {
  607. pr_info("using polling idle threads\n");
  608. pm_idle = poll_idle;
  609. boot_option_idle_override = IDLE_POLL;
  610. } else if (!strcmp(str, "mwait")) {
  611. boot_option_idle_override = IDLE_FORCE_MWAIT;
  612. WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
  613. } else if (!strcmp(str, "halt")) {
  614. /*
  615. * When the boot option of idle=halt is added, halt is
  616. * forced to be used for CPU idle. In such case CPU C2/C3
  617. * won't be used again.
  618. * To continue to load the CPU idle driver, don't touch
  619. * the boot_option_idle_override.
  620. */
  621. pm_idle = default_idle;
  622. boot_option_idle_override = IDLE_HALT;
  623. } else if (!strcmp(str, "nomwait")) {
  624. /*
  625. * If the boot option of "idle=nomwait" is added,
  626. * it means that mwait will be disabled for CPU C2/C3
  627. * states. In such case it won't touch the variable
  628. * of boot_option_idle_override.
  629. */
  630. boot_option_idle_override = IDLE_NOMWAIT;
  631. } else
  632. return -1;
  633. return 0;
  634. }
  635. early_param("idle", idle_setup);
  636. unsigned long arch_align_stack(unsigned long sp)
  637. {
  638. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  639. sp -= get_random_int() % 8192;
  640. return sp & ~0xf;
  641. }
  642. unsigned long arch_randomize_brk(struct mm_struct *mm)
  643. {
  644. unsigned long range_end = mm->brk + 0x02000000;
  645. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  646. }