nmi.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4. * Copyright (C) 2011 Don Zickus Red Hat, Inc.
  5. *
  6. * Pentium III FXSR, SSE support
  7. * Gareth Hughes <gareth@valinux.com>, May 2000
  8. */
  9. /*
  10. * Handle hardware traps and faults.
  11. */
  12. #include <linux/spinlock.h>
  13. #include <linux/kprobes.h>
  14. #include <linux/kdebug.h>
  15. #include <linux/nmi.h>
  16. #include <linux/delay.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/slab.h>
  19. #include <linux/export.h>
  20. #if defined(CONFIG_EDAC)
  21. #include <linux/edac.h>
  22. #endif
  23. #include <linux/atomic.h>
  24. #include <asm/traps.h>
  25. #include <asm/mach_traps.h>
  26. #include <asm/nmi.h>
  27. #include <asm/x86_init.h>
  28. struct nmi_desc {
  29. spinlock_t lock;
  30. struct list_head head;
  31. };
  32. static struct nmi_desc nmi_desc[NMI_MAX] =
  33. {
  34. {
  35. .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
  36. .head = LIST_HEAD_INIT(nmi_desc[0].head),
  37. },
  38. {
  39. .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
  40. .head = LIST_HEAD_INIT(nmi_desc[1].head),
  41. },
  42. {
  43. .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
  44. .head = LIST_HEAD_INIT(nmi_desc[2].head),
  45. },
  46. {
  47. .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
  48. .head = LIST_HEAD_INIT(nmi_desc[3].head),
  49. },
  50. };
  51. struct nmi_stats {
  52. unsigned int normal;
  53. unsigned int unknown;
  54. unsigned int external;
  55. unsigned int swallow;
  56. };
  57. static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
  58. static int ignore_nmis;
  59. int unknown_nmi_panic;
  60. /*
  61. * Prevent NMI reason port (0x61) being accessed simultaneously, can
  62. * only be used in NMI handler.
  63. */
  64. static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
  65. static int __init setup_unknown_nmi_panic(char *str)
  66. {
  67. unknown_nmi_panic = 1;
  68. return 1;
  69. }
  70. __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
  71. #define nmi_to_desc(type) (&nmi_desc[type])
  72. static int __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
  73. {
  74. struct nmi_desc *desc = nmi_to_desc(type);
  75. struct nmiaction *a;
  76. int handled=0;
  77. rcu_read_lock();
  78. /*
  79. * NMIs are edge-triggered, which means if you have enough
  80. * of them concurrently, you can lose some because only one
  81. * can be latched at any given time. Walk the whole list
  82. * to handle those situations.
  83. */
  84. list_for_each_entry_rcu(a, &desc->head, list)
  85. handled += a->handler(type, regs);
  86. rcu_read_unlock();
  87. /* return total number of NMI events handled */
  88. return handled;
  89. }
  90. int __register_nmi_handler(unsigned int type, struct nmiaction *action)
  91. {
  92. struct nmi_desc *desc = nmi_to_desc(type);
  93. unsigned long flags;
  94. if (!action->handler)
  95. return -EINVAL;
  96. spin_lock_irqsave(&desc->lock, flags);
  97. /*
  98. * most handlers of type NMI_UNKNOWN never return because
  99. * they just assume the NMI is theirs. Just a sanity check
  100. * to manage expectations
  101. */
  102. WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
  103. WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
  104. WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
  105. /*
  106. * some handlers need to be executed first otherwise a fake
  107. * event confuses some handlers (kdump uses this flag)
  108. */
  109. if (action->flags & NMI_FLAG_FIRST)
  110. list_add_rcu(&action->list, &desc->head);
  111. else
  112. list_add_tail_rcu(&action->list, &desc->head);
  113. spin_unlock_irqrestore(&desc->lock, flags);
  114. return 0;
  115. }
  116. EXPORT_SYMBOL(__register_nmi_handler);
  117. void unregister_nmi_handler(unsigned int type, const char *name)
  118. {
  119. struct nmi_desc *desc = nmi_to_desc(type);
  120. struct nmiaction *n;
  121. unsigned long flags;
  122. spin_lock_irqsave(&desc->lock, flags);
  123. list_for_each_entry_rcu(n, &desc->head, list) {
  124. /*
  125. * the name passed in to describe the nmi handler
  126. * is used as the lookup key
  127. */
  128. if (!strcmp(n->name, name)) {
  129. WARN(in_nmi(),
  130. "Trying to free NMI (%s) from NMI context!\n", n->name);
  131. list_del_rcu(&n->list);
  132. break;
  133. }
  134. }
  135. spin_unlock_irqrestore(&desc->lock, flags);
  136. synchronize_rcu();
  137. }
  138. EXPORT_SYMBOL_GPL(unregister_nmi_handler);
  139. static __kprobes void
  140. pci_serr_error(unsigned char reason, struct pt_regs *regs)
  141. {
  142. /* check to see if anyone registered against these types of errors */
  143. if (nmi_handle(NMI_SERR, regs, false))
  144. return;
  145. pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
  146. reason, smp_processor_id());
  147. /*
  148. * On some machines, PCI SERR line is used to report memory
  149. * errors. EDAC makes use of it.
  150. */
  151. #if defined(CONFIG_EDAC)
  152. if (edac_handler_set()) {
  153. edac_atomic_assert_error();
  154. return;
  155. }
  156. #endif
  157. if (panic_on_unrecovered_nmi)
  158. panic("NMI: Not continuing");
  159. pr_emerg("Dazed and confused, but trying to continue\n");
  160. /* Clear and disable the PCI SERR error line. */
  161. reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
  162. outb(reason, NMI_REASON_PORT);
  163. }
  164. static __kprobes void
  165. io_check_error(unsigned char reason, struct pt_regs *regs)
  166. {
  167. unsigned long i;
  168. /* check to see if anyone registered against these types of errors */
  169. if (nmi_handle(NMI_IO_CHECK, regs, false))
  170. return;
  171. pr_emerg(
  172. "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
  173. reason, smp_processor_id());
  174. show_regs(regs);
  175. if (panic_on_io_nmi)
  176. panic("NMI IOCK error: Not continuing");
  177. /* Re-enable the IOCK line, wait for a few seconds */
  178. reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
  179. outb(reason, NMI_REASON_PORT);
  180. i = 20000;
  181. while (--i) {
  182. touch_nmi_watchdog();
  183. udelay(100);
  184. }
  185. reason &= ~NMI_REASON_CLEAR_IOCHK;
  186. outb(reason, NMI_REASON_PORT);
  187. }
  188. static __kprobes void
  189. unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
  190. {
  191. int handled;
  192. /*
  193. * Use 'false' as back-to-back NMIs are dealt with one level up.
  194. * Of course this makes having multiple 'unknown' handlers useless
  195. * as only the first one is ever run (unless it can actually determine
  196. * if it caused the NMI)
  197. */
  198. handled = nmi_handle(NMI_UNKNOWN, regs, false);
  199. if (handled) {
  200. __this_cpu_add(nmi_stats.unknown, handled);
  201. return;
  202. }
  203. __this_cpu_add(nmi_stats.unknown, 1);
  204. pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
  205. reason, smp_processor_id());
  206. pr_emerg("Do you have a strange power saving mode enabled?\n");
  207. if (unknown_nmi_panic || panic_on_unrecovered_nmi)
  208. panic("NMI: Not continuing");
  209. pr_emerg("Dazed and confused, but trying to continue\n");
  210. }
  211. static DEFINE_PER_CPU(bool, swallow_nmi);
  212. static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
  213. static __kprobes void default_do_nmi(struct pt_regs *regs)
  214. {
  215. unsigned char reason = 0;
  216. int handled;
  217. bool b2b = false;
  218. /*
  219. * CPU-specific NMI must be processed before non-CPU-specific
  220. * NMI, otherwise we may lose it, because the CPU-specific
  221. * NMI can not be detected/processed on other CPUs.
  222. */
  223. /*
  224. * Back-to-back NMIs are interesting because they can either
  225. * be two NMI or more than two NMIs (any thing over two is dropped
  226. * due to NMI being edge-triggered). If this is the second half
  227. * of the back-to-back NMI, assume we dropped things and process
  228. * more handlers. Otherwise reset the 'swallow' NMI behaviour
  229. */
  230. if (regs->ip == __this_cpu_read(last_nmi_rip))
  231. b2b = true;
  232. else
  233. __this_cpu_write(swallow_nmi, false);
  234. __this_cpu_write(last_nmi_rip, regs->ip);
  235. handled = nmi_handle(NMI_LOCAL, regs, b2b);
  236. __this_cpu_add(nmi_stats.normal, handled);
  237. if (handled) {
  238. /*
  239. * There are cases when a NMI handler handles multiple
  240. * events in the current NMI. One of these events may
  241. * be queued for in the next NMI. Because the event is
  242. * already handled, the next NMI will result in an unknown
  243. * NMI. Instead lets flag this for a potential NMI to
  244. * swallow.
  245. */
  246. if (handled > 1)
  247. __this_cpu_write(swallow_nmi, true);
  248. return;
  249. }
  250. /* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
  251. raw_spin_lock(&nmi_reason_lock);
  252. reason = x86_platform.get_nmi_reason();
  253. if (reason & NMI_REASON_MASK) {
  254. if (reason & NMI_REASON_SERR)
  255. pci_serr_error(reason, regs);
  256. else if (reason & NMI_REASON_IOCHK)
  257. io_check_error(reason, regs);
  258. #ifdef CONFIG_X86_32
  259. /*
  260. * Reassert NMI in case it became active
  261. * meanwhile as it's edge-triggered:
  262. */
  263. reassert_nmi();
  264. #endif
  265. __this_cpu_add(nmi_stats.external, 1);
  266. raw_spin_unlock(&nmi_reason_lock);
  267. return;
  268. }
  269. raw_spin_unlock(&nmi_reason_lock);
  270. /*
  271. * Only one NMI can be latched at a time. To handle
  272. * this we may process multiple nmi handlers at once to
  273. * cover the case where an NMI is dropped. The downside
  274. * to this approach is we may process an NMI prematurely,
  275. * while its real NMI is sitting latched. This will cause
  276. * an unknown NMI on the next run of the NMI processing.
  277. *
  278. * We tried to flag that condition above, by setting the
  279. * swallow_nmi flag when we process more than one event.
  280. * This condition is also only present on the second half
  281. * of a back-to-back NMI, so we flag that condition too.
  282. *
  283. * If both are true, we assume we already processed this
  284. * NMI previously and we swallow it. Otherwise we reset
  285. * the logic.
  286. *
  287. * There are scenarios where we may accidentally swallow
  288. * a 'real' unknown NMI. For example, while processing
  289. * a perf NMI another perf NMI comes in along with a
  290. * 'real' unknown NMI. These two NMIs get combined into
  291. * one (as descibed above). When the next NMI gets
  292. * processed, it will be flagged by perf as handled, but
  293. * noone will know that there was a 'real' unknown NMI sent
  294. * also. As a result it gets swallowed. Or if the first
  295. * perf NMI returns two events handled then the second
  296. * NMI will get eaten by the logic below, again losing a
  297. * 'real' unknown NMI. But this is the best we can do
  298. * for now.
  299. */
  300. if (b2b && __this_cpu_read(swallow_nmi))
  301. __this_cpu_add(nmi_stats.swallow, 1);
  302. else
  303. unknown_nmi_error(reason, regs);
  304. }
  305. /*
  306. * NMIs can hit breakpoints which will cause it to lose its
  307. * NMI context with the CPU when the breakpoint does an iret.
  308. */
  309. #ifdef CONFIG_X86_32
  310. /*
  311. * For i386, NMIs use the same stack as the kernel, and we can
  312. * add a workaround to the iret problem in C (preventing nested
  313. * NMIs if an NMI takes a trap). Simply have 3 states the NMI
  314. * can be in:
  315. *
  316. * 1) not running
  317. * 2) executing
  318. * 3) latched
  319. *
  320. * When no NMI is in progress, it is in the "not running" state.
  321. * When an NMI comes in, it goes into the "executing" state.
  322. * Normally, if another NMI is triggered, it does not interrupt
  323. * the running NMI and the HW will simply latch it so that when
  324. * the first NMI finishes, it will restart the second NMI.
  325. * (Note, the latch is binary, thus multiple NMIs triggering,
  326. * when one is running, are ignored. Only one NMI is restarted.)
  327. *
  328. * If an NMI hits a breakpoint that executes an iret, another
  329. * NMI can preempt it. We do not want to allow this new NMI
  330. * to run, but we want to execute it when the first one finishes.
  331. * We set the state to "latched", and the exit of the first NMI will
  332. * perform a dec_return, if the result is zero (NOT_RUNNING), then
  333. * it will simply exit the NMI handler. If not, the dec_return
  334. * would have set the state to NMI_EXECUTING (what we want it to
  335. * be when we are running). In this case, we simply jump back
  336. * to rerun the NMI handler again, and restart the 'latched' NMI.
  337. *
  338. * No trap (breakpoint or page fault) should be hit before nmi_restart,
  339. * thus there is no race between the first check of state for NOT_RUNNING
  340. * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
  341. * at this point.
  342. *
  343. * In case the NMI takes a page fault, we need to save off the CR2
  344. * because the NMI could have preempted another page fault and corrupt
  345. * the CR2 that is about to be read. As nested NMIs must be restarted
  346. * and they can not take breakpoints or page faults, the update of the
  347. * CR2 must be done before converting the nmi state back to NOT_RUNNING.
  348. * Otherwise, there would be a race of another nested NMI coming in
  349. * after setting state to NOT_RUNNING but before updating the nmi_cr2.
  350. */
  351. enum nmi_states {
  352. NMI_NOT_RUNNING = 0,
  353. NMI_EXECUTING,
  354. NMI_LATCHED,
  355. };
  356. static DEFINE_PER_CPU(enum nmi_states, nmi_state);
  357. static DEFINE_PER_CPU(unsigned long, nmi_cr2);
  358. #define nmi_nesting_preprocess(regs) \
  359. do { \
  360. if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { \
  361. this_cpu_write(nmi_state, NMI_LATCHED); \
  362. return; \
  363. } \
  364. this_cpu_write(nmi_state, NMI_EXECUTING); \
  365. this_cpu_write(nmi_cr2, read_cr2()); \
  366. } while (0); \
  367. nmi_restart:
  368. #define nmi_nesting_postprocess() \
  369. do { \
  370. if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) \
  371. write_cr2(this_cpu_read(nmi_cr2)); \
  372. if (this_cpu_dec_return(nmi_state)) \
  373. goto nmi_restart; \
  374. } while (0)
  375. #else /* x86_64 */
  376. /*
  377. * In x86_64 things are a bit more difficult. This has the same problem
  378. * where an NMI hitting a breakpoint that calls iret will remove the
  379. * NMI context, allowing a nested NMI to enter. What makes this more
  380. * difficult is that both NMIs and breakpoints have their own stack.
  381. * When a new NMI or breakpoint is executed, the stack is set to a fixed
  382. * point. If an NMI is nested, it will have its stack set at that same
  383. * fixed address that the first NMI had, and will start corrupting the
  384. * stack. This is handled in entry_64.S, but the same problem exists with
  385. * the breakpoint stack.
  386. *
  387. * If a breakpoint is being processed, and the debug stack is being used,
  388. * if an NMI comes in and also hits a breakpoint, the stack pointer
  389. * will be set to the same fixed address as the breakpoint that was
  390. * interrupted, causing that stack to be corrupted. To handle this case,
  391. * check if the stack that was interrupted is the debug stack, and if
  392. * so, change the IDT so that new breakpoints will use the current stack
  393. * and not switch to the fixed address. On return of the NMI, switch back
  394. * to the original IDT.
  395. */
  396. static DEFINE_PER_CPU(int, update_debug_stack);
  397. static inline void nmi_nesting_preprocess(struct pt_regs *regs)
  398. {
  399. /*
  400. * If we interrupted a breakpoint, it is possible that
  401. * the nmi handler will have breakpoints too. We need to
  402. * change the IDT such that breakpoints that happen here
  403. * continue to use the NMI stack.
  404. */
  405. if (unlikely(is_debug_stack(regs->sp))) {
  406. debug_stack_set_zero();
  407. this_cpu_write(update_debug_stack, 1);
  408. }
  409. }
  410. static inline void nmi_nesting_postprocess(void)
  411. {
  412. if (unlikely(this_cpu_read(update_debug_stack))) {
  413. debug_stack_reset();
  414. this_cpu_write(update_debug_stack, 0);
  415. }
  416. }
  417. #endif
  418. dotraplinkage notrace __kprobes void
  419. do_nmi(struct pt_regs *regs, long error_code)
  420. {
  421. nmi_nesting_preprocess(regs);
  422. nmi_enter();
  423. inc_irq_stat(__nmi_count);
  424. if (!ignore_nmis)
  425. default_do_nmi(regs);
  426. nmi_exit();
  427. /* On i386, may loop back to preprocess */
  428. nmi_nesting_postprocess();
  429. }
  430. void stop_nmi(void)
  431. {
  432. ignore_nmis++;
  433. }
  434. void restart_nmi(void)
  435. {
  436. ignore_nmis--;
  437. }
  438. /* reset the back-to-back NMI logic */
  439. void local_touch_nmi(void)
  440. {
  441. __this_cpu_write(last_nmi_rip, 0);
  442. }