intel.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735
  1. #include <linux/init.h>
  2. #include <linux/kernel.h>
  3. #include <linux/string.h>
  4. #include <linux/bitops.h>
  5. #include <linux/smp.h>
  6. #include <linux/sched.h>
  7. #include <linux/thread_info.h>
  8. #include <linux/module.h>
  9. #include <linux/uaccess.h>
  10. #include <asm/processor.h>
  11. #include <asm/pgtable.h>
  12. #include <asm/msr.h>
  13. #include <asm/bugs.h>
  14. #include <asm/cpu.h>
  15. #ifdef CONFIG_X86_64
  16. #include <linux/topology.h>
  17. #include <asm/numa_64.h>
  18. #endif
  19. #include "cpu.h"
  20. #ifdef CONFIG_X86_LOCAL_APIC
  21. #include <asm/mpspec.h>
  22. #include <asm/apic.h>
  23. #endif
  24. static void __cpuinit early_init_intel(struct cpuinfo_x86 *c)
  25. {
  26. u64 misc_enable;
  27. /* Unmask CPUID levels if masked: */
  28. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  29. rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  30. if (misc_enable & MSR_IA32_MISC_ENABLE_LIMIT_CPUID) {
  31. misc_enable &= ~MSR_IA32_MISC_ENABLE_LIMIT_CPUID;
  32. wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  33. c->cpuid_level = cpuid_eax(0);
  34. get_cpu_cap(c);
  35. }
  36. }
  37. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  38. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  39. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  40. if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
  41. unsigned lower_word;
  42. wrmsr(MSR_IA32_UCODE_REV, 0, 0);
  43. /* Required by the SDM */
  44. sync_core();
  45. rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
  46. }
  47. /*
  48. * Atom erratum AAE44/AAF40/AAG38/AAH41:
  49. *
  50. * A race condition between speculative fetches and invalidating
  51. * a large page. This is worked around in microcode, but we
  52. * need the microcode to have already been loaded... so if it is
  53. * not, recommend a BIOS update and disable large pages.
  54. */
  55. if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
  56. c->microcode < 0x20e) {
  57. printk(KERN_WARNING "Atom PSE erratum detected, BIOS microcode update recommended\n");
  58. clear_cpu_cap(c, X86_FEATURE_PSE);
  59. }
  60. #ifdef CONFIG_X86_64
  61. set_cpu_cap(c, X86_FEATURE_SYSENTER32);
  62. #else
  63. /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
  64. if (c->x86 == 15 && c->x86_cache_alignment == 64)
  65. c->x86_cache_alignment = 128;
  66. #endif
  67. /* CPUID workaround for 0F33/0F34 CPU */
  68. if (c->x86 == 0xF && c->x86_model == 0x3
  69. && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
  70. c->x86_phys_bits = 36;
  71. /*
  72. * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
  73. * with P/T states and does not stop in deep C-states.
  74. *
  75. * It is also reliable across cores and sockets. (but not across
  76. * cabinets - we turn it off in that case explicitly.)
  77. */
  78. if (c->x86_power & (1 << 8)) {
  79. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  80. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
  81. if (!check_tsc_unstable())
  82. sched_clock_stable = 1;
  83. }
  84. /*
  85. * There is a known erratum on Pentium III and Core Solo
  86. * and Core Duo CPUs.
  87. * " Page with PAT set to WC while associated MTRR is UC
  88. * may consolidate to UC "
  89. * Because of this erratum, it is better to stick with
  90. * setting WC in MTRR rather than using PAT on these CPUs.
  91. *
  92. * Enable PAT WC only on P4, Core 2 or later CPUs.
  93. */
  94. if (c->x86 == 6 && c->x86_model < 15)
  95. clear_cpu_cap(c, X86_FEATURE_PAT);
  96. #ifdef CONFIG_KMEMCHECK
  97. /*
  98. * P4s have a "fast strings" feature which causes single-
  99. * stepping REP instructions to only generate a #DB on
  100. * cache-line boundaries.
  101. *
  102. * Ingo Molnar reported a Pentium D (model 6) and a Xeon
  103. * (model 2) with the same problem.
  104. */
  105. if (c->x86 == 15) {
  106. rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  107. if (misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING) {
  108. printk(KERN_INFO "kmemcheck: Disabling fast string operations\n");
  109. misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
  110. wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  111. }
  112. }
  113. #endif
  114. /*
  115. * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
  116. * clear the fast string and enhanced fast string CPU capabilities.
  117. */
  118. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  119. rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  120. if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
  121. printk(KERN_INFO "Disabled fast string operations\n");
  122. setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
  123. setup_clear_cpu_cap(X86_FEATURE_ERMS);
  124. }
  125. }
  126. }
  127. #ifdef CONFIG_X86_32
  128. /*
  129. * Early probe support logic for ppro memory erratum #50
  130. *
  131. * This is called before we do cpu ident work
  132. */
  133. int __cpuinit ppro_with_ram_bug(void)
  134. {
  135. /* Uses data from early_cpu_detect now */
  136. if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
  137. boot_cpu_data.x86 == 6 &&
  138. boot_cpu_data.x86_model == 1 &&
  139. boot_cpu_data.x86_mask < 8) {
  140. printk(KERN_INFO "Pentium Pro with Errata#50 detected. Taking evasive action.\n");
  141. return 1;
  142. }
  143. return 0;
  144. }
  145. #ifdef CONFIG_X86_F00F_BUG
  146. static void __cpuinit trap_init_f00f_bug(void)
  147. {
  148. __set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO);
  149. /*
  150. * Update the IDT descriptor and reload the IDT so that
  151. * it uses the read-only mapped virtual address.
  152. */
  153. idt_descr.address = fix_to_virt(FIX_F00F_IDT);
  154. load_idt(&idt_descr);
  155. }
  156. #endif
  157. static void __cpuinit intel_smp_check(struct cpuinfo_x86 *c)
  158. {
  159. /* calling is from identify_secondary_cpu() ? */
  160. if (!c->cpu_index)
  161. return;
  162. /*
  163. * Mask B, Pentium, but not Pentium MMX
  164. */
  165. if (c->x86 == 5 &&
  166. c->x86_mask >= 1 && c->x86_mask <= 4 &&
  167. c->x86_model <= 3) {
  168. /*
  169. * Remember we have B step Pentia with bugs
  170. */
  171. WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
  172. "with B stepping processors.\n");
  173. }
  174. }
  175. static void __cpuinit intel_workarounds(struct cpuinfo_x86 *c)
  176. {
  177. unsigned long lo, hi;
  178. #ifdef CONFIG_X86_F00F_BUG
  179. /*
  180. * All current models of Pentium and Pentium with MMX technology CPUs
  181. * have the F0 0F bug, which lets nonprivileged users lock up the
  182. * system.
  183. * Note that the workaround only should be initialized once...
  184. */
  185. c->f00f_bug = 0;
  186. if (!paravirt_enabled() && c->x86 == 5) {
  187. static int f00f_workaround_enabled;
  188. c->f00f_bug = 1;
  189. if (!f00f_workaround_enabled) {
  190. trap_init_f00f_bug();
  191. printk(KERN_NOTICE "Intel Pentium with F0 0F bug - workaround enabled.\n");
  192. f00f_workaround_enabled = 1;
  193. }
  194. }
  195. #endif
  196. /*
  197. * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
  198. * model 3 mask 3
  199. */
  200. if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
  201. clear_cpu_cap(c, X86_FEATURE_SEP);
  202. /*
  203. * P4 Xeon errata 037 workaround.
  204. * Hardware prefetcher may cause stale data to be loaded into the cache.
  205. */
  206. if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
  207. rdmsr(MSR_IA32_MISC_ENABLE, lo, hi);
  208. if ((lo & MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE) == 0) {
  209. printk (KERN_INFO "CPU: C0 stepping P4 Xeon detected.\n");
  210. printk (KERN_INFO "CPU: Disabling hardware prefetching (Errata 037)\n");
  211. lo |= MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE;
  212. wrmsr(MSR_IA32_MISC_ENABLE, lo, hi);
  213. }
  214. }
  215. /*
  216. * See if we have a good local APIC by checking for buggy Pentia,
  217. * i.e. all B steppings and the C2 stepping of P54C when using their
  218. * integrated APIC (see 11AP erratum in "Pentium Processor
  219. * Specification Update").
  220. */
  221. if (cpu_has_apic && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
  222. (c->x86_mask < 0x6 || c->x86_mask == 0xb))
  223. set_cpu_cap(c, X86_FEATURE_11AP);
  224. #ifdef CONFIG_X86_INTEL_USERCOPY
  225. /*
  226. * Set up the preferred alignment for movsl bulk memory moves
  227. */
  228. switch (c->x86) {
  229. case 4: /* 486: untested */
  230. break;
  231. case 5: /* Old Pentia: untested */
  232. break;
  233. case 6: /* PII/PIII only like movsl with 8-byte alignment */
  234. movsl_mask.mask = 7;
  235. break;
  236. case 15: /* P4 is OK down to 8-byte alignment */
  237. movsl_mask.mask = 7;
  238. break;
  239. }
  240. #endif
  241. #ifdef CONFIG_X86_NUMAQ
  242. numaq_tsc_disable();
  243. #endif
  244. intel_smp_check(c);
  245. }
  246. #else
  247. static void __cpuinit intel_workarounds(struct cpuinfo_x86 *c)
  248. {
  249. }
  250. #endif
  251. static void __cpuinit srat_detect_node(struct cpuinfo_x86 *c)
  252. {
  253. #ifdef CONFIG_NUMA
  254. unsigned node;
  255. int cpu = smp_processor_id();
  256. /* Don't do the funky fallback heuristics the AMD version employs
  257. for now. */
  258. node = numa_cpu_node(cpu);
  259. if (node == NUMA_NO_NODE || !node_online(node)) {
  260. /* reuse the value from init_cpu_to_node() */
  261. node = cpu_to_node(cpu);
  262. }
  263. numa_set_node(cpu, node);
  264. #endif
  265. }
  266. /*
  267. * find out the number of processor cores on the die
  268. */
  269. static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
  270. {
  271. unsigned int eax, ebx, ecx, edx;
  272. if (c->cpuid_level < 4)
  273. return 1;
  274. /* Intel has a non-standard dependency on %ecx for this CPUID level. */
  275. cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
  276. if (eax & 0x1f)
  277. return (eax >> 26) + 1;
  278. else
  279. return 1;
  280. }
  281. static void __cpuinit detect_vmx_virtcap(struct cpuinfo_x86 *c)
  282. {
  283. /* Intel VMX MSR indicated features */
  284. #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000
  285. #define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000
  286. #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000
  287. #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001
  288. #define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002
  289. #define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020
  290. u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
  291. clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  292. clear_cpu_cap(c, X86_FEATURE_VNMI);
  293. clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  294. clear_cpu_cap(c, X86_FEATURE_EPT);
  295. clear_cpu_cap(c, X86_FEATURE_VPID);
  296. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
  297. msr_ctl = vmx_msr_high | vmx_msr_low;
  298. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
  299. set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  300. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
  301. set_cpu_cap(c, X86_FEATURE_VNMI);
  302. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
  303. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  304. vmx_msr_low, vmx_msr_high);
  305. msr_ctl2 = vmx_msr_high | vmx_msr_low;
  306. if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
  307. (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
  308. set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  309. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
  310. set_cpu_cap(c, X86_FEATURE_EPT);
  311. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
  312. set_cpu_cap(c, X86_FEATURE_VPID);
  313. }
  314. }
  315. static void __cpuinit init_intel(struct cpuinfo_x86 *c)
  316. {
  317. unsigned int l2 = 0;
  318. early_init_intel(c);
  319. intel_workarounds(c);
  320. /*
  321. * Detect the extended topology information if available. This
  322. * will reinitialise the initial_apicid which will be used
  323. * in init_intel_cacheinfo()
  324. */
  325. detect_extended_topology(c);
  326. l2 = init_intel_cacheinfo(c);
  327. if (c->cpuid_level > 9) {
  328. unsigned eax = cpuid_eax(10);
  329. /* Check for version and the number of counters */
  330. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  331. set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
  332. }
  333. if (cpu_has_xmm2)
  334. set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
  335. if (cpu_has_ds) {
  336. unsigned int l1;
  337. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  338. if (!(l1 & (1<<11)))
  339. set_cpu_cap(c, X86_FEATURE_BTS);
  340. if (!(l1 & (1<<12)))
  341. set_cpu_cap(c, X86_FEATURE_PEBS);
  342. }
  343. if (c->x86 == 6 && c->x86_model == 29 && cpu_has_clflush)
  344. set_cpu_cap(c, X86_FEATURE_CLFLUSH_MONITOR);
  345. #ifdef CONFIG_X86_64
  346. if (c->x86 == 15)
  347. c->x86_cache_alignment = c->x86_clflush_size * 2;
  348. if (c->x86 == 6)
  349. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  350. #else
  351. /*
  352. * Names for the Pentium II/Celeron processors
  353. * detectable only by also checking the cache size.
  354. * Dixon is NOT a Celeron.
  355. */
  356. if (c->x86 == 6) {
  357. char *p = NULL;
  358. switch (c->x86_model) {
  359. case 5:
  360. if (l2 == 0)
  361. p = "Celeron (Covington)";
  362. else if (l2 == 256)
  363. p = "Mobile Pentium II (Dixon)";
  364. break;
  365. case 6:
  366. if (l2 == 128)
  367. p = "Celeron (Mendocino)";
  368. else if (c->x86_mask == 0 || c->x86_mask == 5)
  369. p = "Celeron-A";
  370. break;
  371. case 8:
  372. if (l2 == 128)
  373. p = "Celeron (Coppermine)";
  374. break;
  375. }
  376. if (p)
  377. strcpy(c->x86_model_id, p);
  378. }
  379. if (c->x86 == 15)
  380. set_cpu_cap(c, X86_FEATURE_P4);
  381. if (c->x86 == 6)
  382. set_cpu_cap(c, X86_FEATURE_P3);
  383. #endif
  384. if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
  385. /*
  386. * let's use the legacy cpuid vector 0x1 and 0x4 for topology
  387. * detection.
  388. */
  389. c->x86_max_cores = intel_num_cpu_cores(c);
  390. #ifdef CONFIG_X86_32
  391. detect_ht(c);
  392. #endif
  393. }
  394. /* Work around errata */
  395. srat_detect_node(c);
  396. if (cpu_has(c, X86_FEATURE_VMX))
  397. detect_vmx_virtcap(c);
  398. /*
  399. * Initialize MSR_IA32_ENERGY_PERF_BIAS if BIOS did not.
  400. * x86_energy_perf_policy(8) is available to change it at run-time
  401. */
  402. if (cpu_has(c, X86_FEATURE_EPB)) {
  403. u64 epb;
  404. rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  405. if ((epb & 0xF) == ENERGY_PERF_BIAS_PERFORMANCE) {
  406. printk_once(KERN_WARNING "ENERGY_PERF_BIAS:"
  407. " Set to 'normal', was 'performance'\n"
  408. "ENERGY_PERF_BIAS: View and update with"
  409. " x86_energy_perf_policy(8)\n");
  410. epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
  411. wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  412. }
  413. }
  414. }
  415. #ifdef CONFIG_X86_32
  416. static unsigned int __cpuinit intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
  417. {
  418. /*
  419. * Intel PIII Tualatin. This comes in two flavours.
  420. * One has 256kb of cache, the other 512. We have no way
  421. * to determine which, so we use a boottime override
  422. * for the 512kb model, and assume 256 otherwise.
  423. */
  424. if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
  425. size = 256;
  426. return size;
  427. }
  428. #endif
  429. #define TLB_INST_4K 0x01
  430. #define TLB_INST_4M 0x02
  431. #define TLB_INST_2M_4M 0x03
  432. #define TLB_INST_ALL 0x05
  433. #define TLB_INST_1G 0x06
  434. #define TLB_DATA_4K 0x11
  435. #define TLB_DATA_4M 0x12
  436. #define TLB_DATA_2M_4M 0x13
  437. #define TLB_DATA_4K_4M 0x14
  438. #define TLB_DATA_1G 0x16
  439. #define TLB_DATA0_4K 0x21
  440. #define TLB_DATA0_4M 0x22
  441. #define TLB_DATA0_2M_4M 0x23
  442. #define STLB_4K 0x41
  443. static const struct _tlb_table intel_tlb_table[] __cpuinitconst = {
  444. { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
  445. { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
  446. { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
  447. { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
  448. { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
  449. { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
  450. { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" },
  451. { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  452. { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  453. { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  454. { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
  455. { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
  456. { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
  457. { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
  458. { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
  459. { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
  460. { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
  461. { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
  462. { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
  463. { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
  464. { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
  465. { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
  466. { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
  467. { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
  468. { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
  469. { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
  470. { 0x00, 0, 0 }
  471. };
  472. static void __cpuinit intel_tlb_lookup(const unsigned char desc)
  473. {
  474. unsigned char k;
  475. if (desc == 0)
  476. return;
  477. /* look up this descriptor in the table */
  478. for (k = 0; intel_tlb_table[k].descriptor != desc && \
  479. intel_tlb_table[k].descriptor != 0; k++)
  480. ;
  481. if (intel_tlb_table[k].tlb_type == 0)
  482. return;
  483. switch (intel_tlb_table[k].tlb_type) {
  484. case STLB_4K:
  485. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  486. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  487. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  488. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  489. break;
  490. case TLB_INST_ALL:
  491. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  492. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  493. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  494. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  495. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  496. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  497. break;
  498. case TLB_INST_4K:
  499. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  500. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  501. break;
  502. case TLB_INST_4M:
  503. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  504. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  505. break;
  506. case TLB_INST_2M_4M:
  507. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  508. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  509. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  510. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  511. break;
  512. case TLB_DATA_4K:
  513. case TLB_DATA0_4K:
  514. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  515. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  516. break;
  517. case TLB_DATA_4M:
  518. case TLB_DATA0_4M:
  519. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  520. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  521. break;
  522. case TLB_DATA_2M_4M:
  523. case TLB_DATA0_2M_4M:
  524. if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
  525. tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
  526. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  527. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  528. break;
  529. case TLB_DATA_4K_4M:
  530. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  531. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  532. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  533. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  534. break;
  535. }
  536. }
  537. static void __cpuinit intel_tlb_flushall_shift_set(struct cpuinfo_x86 *c)
  538. {
  539. if (!cpu_has_invlpg) {
  540. tlb_flushall_shift = -1;
  541. return;
  542. }
  543. switch ((c->x86 << 8) + c->x86_model) {
  544. case 0x60f: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
  545. case 0x616: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
  546. case 0x617: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
  547. case 0x61d: /* six-core 45 nm xeon "Dunnington" */
  548. tlb_flushall_shift = -1;
  549. break;
  550. case 0x61a: /* 45 nm nehalem, "Bloomfield" */
  551. case 0x61e: /* 45 nm nehalem, "Lynnfield" */
  552. case 0x625: /* 32 nm nehalem, "Clarkdale" */
  553. case 0x62c: /* 32 nm nehalem, "Gulftown" */
  554. case 0x62e: /* 45 nm nehalem-ex, "Beckton" */
  555. case 0x62f: /* 32 nm Xeon E7 */
  556. tlb_flushall_shift = 6;
  557. break;
  558. case 0x62a: /* SandyBridge */
  559. case 0x62d: /* SandyBridge, "Romely-EP" */
  560. tlb_flushall_shift = 5;
  561. break;
  562. case 0x63a: /* Ivybridge */
  563. tlb_flushall_shift = 1;
  564. break;
  565. default:
  566. tlb_flushall_shift = 6;
  567. }
  568. }
  569. static void __cpuinit intel_detect_tlb(struct cpuinfo_x86 *c)
  570. {
  571. int i, j, n;
  572. unsigned int regs[4];
  573. unsigned char *desc = (unsigned char *)regs;
  574. if (c->cpuid_level < 2)
  575. return;
  576. /* Number of times to iterate */
  577. n = cpuid_eax(2) & 0xFF;
  578. for (i = 0 ; i < n ; i++) {
  579. cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
  580. /* If bit 31 is set, this is an unknown format */
  581. for (j = 0 ; j < 3 ; j++)
  582. if (regs[j] & (1 << 31))
  583. regs[j] = 0;
  584. /* Byte 0 is level count, not a descriptor */
  585. for (j = 1 ; j < 16 ; j++)
  586. intel_tlb_lookup(desc[j]);
  587. }
  588. intel_tlb_flushall_shift_set(c);
  589. }
  590. static const struct cpu_dev __cpuinitconst intel_cpu_dev = {
  591. .c_vendor = "Intel",
  592. .c_ident = { "GenuineIntel" },
  593. #ifdef CONFIG_X86_32
  594. .c_models = {
  595. { .vendor = X86_VENDOR_INTEL, .family = 4, .model_names =
  596. {
  597. [0] = "486 DX-25/33",
  598. [1] = "486 DX-50",
  599. [2] = "486 SX",
  600. [3] = "486 DX/2",
  601. [4] = "486 SL",
  602. [5] = "486 SX/2",
  603. [7] = "486 DX/2-WB",
  604. [8] = "486 DX/4",
  605. [9] = "486 DX/4-WB"
  606. }
  607. },
  608. { .vendor = X86_VENDOR_INTEL, .family = 5, .model_names =
  609. {
  610. [0] = "Pentium 60/66 A-step",
  611. [1] = "Pentium 60/66",
  612. [2] = "Pentium 75 - 200",
  613. [3] = "OverDrive PODP5V83",
  614. [4] = "Pentium MMX",
  615. [7] = "Mobile Pentium 75 - 200",
  616. [8] = "Mobile Pentium MMX"
  617. }
  618. },
  619. { .vendor = X86_VENDOR_INTEL, .family = 6, .model_names =
  620. {
  621. [0] = "Pentium Pro A-step",
  622. [1] = "Pentium Pro",
  623. [3] = "Pentium II (Klamath)",
  624. [4] = "Pentium II (Deschutes)",
  625. [5] = "Pentium II (Deschutes)",
  626. [6] = "Mobile Pentium II",
  627. [7] = "Pentium III (Katmai)",
  628. [8] = "Pentium III (Coppermine)",
  629. [10] = "Pentium III (Cascades)",
  630. [11] = "Pentium III (Tualatin)",
  631. }
  632. },
  633. { .vendor = X86_VENDOR_INTEL, .family = 15, .model_names =
  634. {
  635. [0] = "Pentium 4 (Unknown)",
  636. [1] = "Pentium 4 (Willamette)",
  637. [2] = "Pentium 4 (Northwood)",
  638. [4] = "Pentium 4 (Foster)",
  639. [5] = "Pentium 4 (Foster)",
  640. }
  641. },
  642. },
  643. .c_size_cache = intel_size_cache,
  644. #endif
  645. .c_detect_tlb = intel_detect_tlb,
  646. .c_early_init = early_init_intel,
  647. .c_init = init_intel,
  648. .c_x86_vendor = X86_VENDOR_INTEL,
  649. };
  650. cpu_dev_register(intel_cpu_dev);