common.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366
  1. #include <linux/bootmem.h>
  2. #include <linux/linkage.h>
  3. #include <linux/bitops.h>
  4. #include <linux/kernel.h>
  5. #include <linux/module.h>
  6. #include <linux/percpu.h>
  7. #include <linux/string.h>
  8. #include <linux/delay.h>
  9. #include <linux/sched.h>
  10. #include <linux/init.h>
  11. #include <linux/kgdb.h>
  12. #include <linux/smp.h>
  13. #include <linux/io.h>
  14. #include <asm/stackprotector.h>
  15. #include <asm/perf_event.h>
  16. #include <asm/mmu_context.h>
  17. #include <asm/archrandom.h>
  18. #include <asm/hypervisor.h>
  19. #include <asm/processor.h>
  20. #include <asm/debugreg.h>
  21. #include <asm/sections.h>
  22. #include <linux/topology.h>
  23. #include <linux/cpumask.h>
  24. #include <asm/pgtable.h>
  25. #include <linux/atomic.h>
  26. #include <asm/proto.h>
  27. #include <asm/setup.h>
  28. #include <asm/apic.h>
  29. #include <asm/desc.h>
  30. #include <asm/i387.h>
  31. #include <asm/fpu-internal.h>
  32. #include <asm/mtrr.h>
  33. #include <linux/numa.h>
  34. #include <asm/asm.h>
  35. #include <asm/cpu.h>
  36. #include <asm/mce.h>
  37. #include <asm/msr.h>
  38. #include <asm/pat.h>
  39. #ifdef CONFIG_X86_LOCAL_APIC
  40. #include <asm/uv/uv.h>
  41. #endif
  42. #include "cpu.h"
  43. /* all of these masks are initialized in setup_cpu_local_masks() */
  44. cpumask_var_t cpu_initialized_mask;
  45. cpumask_var_t cpu_callout_mask;
  46. cpumask_var_t cpu_callin_mask;
  47. /* representing cpus for which sibling maps can be computed */
  48. cpumask_var_t cpu_sibling_setup_mask;
  49. /* correctly size the local cpu masks */
  50. void __init setup_cpu_local_masks(void)
  51. {
  52. alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  53. alloc_bootmem_cpumask_var(&cpu_callin_mask);
  54. alloc_bootmem_cpumask_var(&cpu_callout_mask);
  55. alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  56. }
  57. static void __cpuinit default_init(struct cpuinfo_x86 *c)
  58. {
  59. #ifdef CONFIG_X86_64
  60. cpu_detect_cache_sizes(c);
  61. #else
  62. /* Not much we can do here... */
  63. /* Check if at least it has cpuid */
  64. if (c->cpuid_level == -1) {
  65. /* No cpuid. It must be an ancient CPU */
  66. if (c->x86 == 4)
  67. strcpy(c->x86_model_id, "486");
  68. else if (c->x86 == 3)
  69. strcpy(c->x86_model_id, "386");
  70. }
  71. #endif
  72. }
  73. static const struct cpu_dev __cpuinitconst default_cpu = {
  74. .c_init = default_init,
  75. .c_vendor = "Unknown",
  76. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  77. };
  78. static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
  79. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  80. #ifdef CONFIG_X86_64
  81. /*
  82. * We need valid kernel segments for data and code in long mode too
  83. * IRET will check the segment types kkeil 2000/10/28
  84. * Also sysret mandates a special GDT layout
  85. *
  86. * TLS descriptors are currently at a different place compared to i386.
  87. * Hopefully nobody expects them at a fixed place (Wine?)
  88. */
  89. [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
  90. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
  91. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
  92. [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
  93. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
  94. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
  95. #else
  96. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
  97. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  98. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
  99. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
  100. /*
  101. * Segments used for calling PnP BIOS have byte granularity.
  102. * They code segments and data segments have fixed 64k limits,
  103. * the transfer segment sizes are set at run time.
  104. */
  105. /* 32-bit code */
  106. [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  107. /* 16-bit code */
  108. [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  109. /* 16-bit data */
  110. [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
  111. /* 16-bit data */
  112. [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
  113. /* 16-bit data */
  114. [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
  115. /*
  116. * The APM segments have byte granularity and their bases
  117. * are set at run time. All have 64k limits.
  118. */
  119. /* 32-bit code */
  120. [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  121. /* 16-bit code */
  122. [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  123. /* data */
  124. [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
  125. [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  126. [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  127. GDT_STACK_CANARY_INIT
  128. #endif
  129. } };
  130. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  131. static int __init x86_xsave_setup(char *s)
  132. {
  133. setup_clear_cpu_cap(X86_FEATURE_XSAVE);
  134. setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
  135. setup_clear_cpu_cap(X86_FEATURE_AVX);
  136. setup_clear_cpu_cap(X86_FEATURE_AVX2);
  137. return 1;
  138. }
  139. __setup("noxsave", x86_xsave_setup);
  140. static int __init x86_xsaveopt_setup(char *s)
  141. {
  142. setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
  143. return 1;
  144. }
  145. __setup("noxsaveopt", x86_xsaveopt_setup);
  146. #ifdef CONFIG_X86_32
  147. static int cachesize_override __cpuinitdata = -1;
  148. static int disable_x86_serial_nr __cpuinitdata = 1;
  149. static int __init cachesize_setup(char *str)
  150. {
  151. get_option(&str, &cachesize_override);
  152. return 1;
  153. }
  154. __setup("cachesize=", cachesize_setup);
  155. static int __init x86_fxsr_setup(char *s)
  156. {
  157. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  158. setup_clear_cpu_cap(X86_FEATURE_XMM);
  159. return 1;
  160. }
  161. __setup("nofxsr", x86_fxsr_setup);
  162. static int __init x86_sep_setup(char *s)
  163. {
  164. setup_clear_cpu_cap(X86_FEATURE_SEP);
  165. return 1;
  166. }
  167. __setup("nosep", x86_sep_setup);
  168. /* Standard macro to see if a specific flag is changeable */
  169. static inline int flag_is_changeable_p(u32 flag)
  170. {
  171. u32 f1, f2;
  172. /*
  173. * Cyrix and IDT cpus allow disabling of CPUID
  174. * so the code below may return different results
  175. * when it is executed before and after enabling
  176. * the CPUID. Add "volatile" to not allow gcc to
  177. * optimize the subsequent calls to this function.
  178. */
  179. asm volatile ("pushfl \n\t"
  180. "pushfl \n\t"
  181. "popl %0 \n\t"
  182. "movl %0, %1 \n\t"
  183. "xorl %2, %0 \n\t"
  184. "pushl %0 \n\t"
  185. "popfl \n\t"
  186. "pushfl \n\t"
  187. "popl %0 \n\t"
  188. "popfl \n\t"
  189. : "=&r" (f1), "=&r" (f2)
  190. : "ir" (flag));
  191. return ((f1^f2) & flag) != 0;
  192. }
  193. /* Probe for the CPUID instruction */
  194. static int __cpuinit have_cpuid_p(void)
  195. {
  196. return flag_is_changeable_p(X86_EFLAGS_ID);
  197. }
  198. static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  199. {
  200. unsigned long lo, hi;
  201. if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
  202. return;
  203. /* Disable processor serial number: */
  204. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  205. lo |= 0x200000;
  206. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  207. printk(KERN_NOTICE "CPU serial number disabled.\n");
  208. clear_cpu_cap(c, X86_FEATURE_PN);
  209. /* Disabling the serial number may affect the cpuid level */
  210. c->cpuid_level = cpuid_eax(0);
  211. }
  212. static int __init x86_serial_nr_setup(char *s)
  213. {
  214. disable_x86_serial_nr = 0;
  215. return 1;
  216. }
  217. __setup("serialnumber", x86_serial_nr_setup);
  218. #else
  219. static inline int flag_is_changeable_p(u32 flag)
  220. {
  221. return 1;
  222. }
  223. /* Probe for the CPUID instruction */
  224. static inline int have_cpuid_p(void)
  225. {
  226. return 1;
  227. }
  228. static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  229. {
  230. }
  231. #endif
  232. static __init int setup_disable_smep(char *arg)
  233. {
  234. setup_clear_cpu_cap(X86_FEATURE_SMEP);
  235. return 1;
  236. }
  237. __setup("nosmep", setup_disable_smep);
  238. static __always_inline void setup_smep(struct cpuinfo_x86 *c)
  239. {
  240. if (cpu_has(c, X86_FEATURE_SMEP))
  241. set_in_cr4(X86_CR4_SMEP);
  242. }
  243. static __init int setup_disable_smap(char *arg)
  244. {
  245. setup_clear_cpu_cap(X86_FEATURE_SMAP);
  246. return 1;
  247. }
  248. __setup("nosmap", setup_disable_smap);
  249. static __always_inline void setup_smap(struct cpuinfo_x86 *c)
  250. {
  251. unsigned long eflags;
  252. /* This should have been cleared long ago */
  253. raw_local_save_flags(eflags);
  254. BUG_ON(eflags & X86_EFLAGS_AC);
  255. if (cpu_has(c, X86_FEATURE_SMAP))
  256. set_in_cr4(X86_CR4_SMAP);
  257. }
  258. /*
  259. * Some CPU features depend on higher CPUID levels, which may not always
  260. * be available due to CPUID level capping or broken virtualization
  261. * software. Add those features to this table to auto-disable them.
  262. */
  263. struct cpuid_dependent_feature {
  264. u32 feature;
  265. u32 level;
  266. };
  267. static const struct cpuid_dependent_feature __cpuinitconst
  268. cpuid_dependent_features[] = {
  269. { X86_FEATURE_MWAIT, 0x00000005 },
  270. { X86_FEATURE_DCA, 0x00000009 },
  271. { X86_FEATURE_XSAVE, 0x0000000d },
  272. { 0, 0 }
  273. };
  274. static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
  275. {
  276. const struct cpuid_dependent_feature *df;
  277. for (df = cpuid_dependent_features; df->feature; df++) {
  278. if (!cpu_has(c, df->feature))
  279. continue;
  280. /*
  281. * Note: cpuid_level is set to -1 if unavailable, but
  282. * extended_extended_level is set to 0 if unavailable
  283. * and the legitimate extended levels are all negative
  284. * when signed; hence the weird messing around with
  285. * signs here...
  286. */
  287. if (!((s32)df->level < 0 ?
  288. (u32)df->level > (u32)c->extended_cpuid_level :
  289. (s32)df->level > (s32)c->cpuid_level))
  290. continue;
  291. clear_cpu_cap(c, df->feature);
  292. if (!warn)
  293. continue;
  294. printk(KERN_WARNING
  295. "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
  296. x86_cap_flags[df->feature], df->level);
  297. }
  298. }
  299. /*
  300. * Naming convention should be: <Name> [(<Codename>)]
  301. * This table only is used unless init_<vendor>() below doesn't set it;
  302. * in particular, if CPUID levels 0x80000002..4 are supported, this
  303. * isn't used
  304. */
  305. /* Look up CPU names by table lookup. */
  306. static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
  307. {
  308. const struct cpu_model_info *info;
  309. if (c->x86_model >= 16)
  310. return NULL; /* Range check */
  311. if (!this_cpu)
  312. return NULL;
  313. info = this_cpu->c_models;
  314. while (info && info->family) {
  315. if (info->family == c->x86)
  316. return info->model_names[c->x86_model];
  317. info++;
  318. }
  319. return NULL; /* Not found */
  320. }
  321. __u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
  322. __u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
  323. void load_percpu_segment(int cpu)
  324. {
  325. #ifdef CONFIG_X86_32
  326. loadsegment(fs, __KERNEL_PERCPU);
  327. #else
  328. loadsegment(gs, 0);
  329. wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
  330. #endif
  331. load_stack_canary_segment();
  332. }
  333. /*
  334. * Current gdt points %fs at the "master" per-cpu area: after this,
  335. * it's on the real one.
  336. */
  337. void switch_to_new_gdt(int cpu)
  338. {
  339. struct desc_ptr gdt_descr;
  340. gdt_descr.address = (long)get_cpu_gdt_table(cpu);
  341. gdt_descr.size = GDT_SIZE - 1;
  342. load_gdt(&gdt_descr);
  343. /* Reload the per-cpu base */
  344. load_percpu_segment(cpu);
  345. }
  346. static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
  347. static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
  348. {
  349. unsigned int *v;
  350. char *p, *q;
  351. if (c->extended_cpuid_level < 0x80000004)
  352. return;
  353. v = (unsigned int *)c->x86_model_id;
  354. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  355. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  356. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  357. c->x86_model_id[48] = 0;
  358. /*
  359. * Intel chips right-justify this string for some dumb reason;
  360. * undo that brain damage:
  361. */
  362. p = q = &c->x86_model_id[0];
  363. while (*p == ' ')
  364. p++;
  365. if (p != q) {
  366. while (*p)
  367. *q++ = *p++;
  368. while (q <= &c->x86_model_id[48])
  369. *q++ = '\0'; /* Zero-pad the rest */
  370. }
  371. }
  372. void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
  373. {
  374. unsigned int n, dummy, ebx, ecx, edx, l2size;
  375. n = c->extended_cpuid_level;
  376. if (n >= 0x80000005) {
  377. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  378. c->x86_cache_size = (ecx>>24) + (edx>>24);
  379. #ifdef CONFIG_X86_64
  380. /* On K8 L1 TLB is inclusive, so don't count it */
  381. c->x86_tlbsize = 0;
  382. #endif
  383. }
  384. if (n < 0x80000006) /* Some chips just has a large L1. */
  385. return;
  386. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  387. l2size = ecx >> 16;
  388. #ifdef CONFIG_X86_64
  389. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  390. #else
  391. /* do processor-specific cache resizing */
  392. if (this_cpu->c_size_cache)
  393. l2size = this_cpu->c_size_cache(c, l2size);
  394. /* Allow user to override all this if necessary. */
  395. if (cachesize_override != -1)
  396. l2size = cachesize_override;
  397. if (l2size == 0)
  398. return; /* Again, no L2 cache is possible */
  399. #endif
  400. c->x86_cache_size = l2size;
  401. }
  402. u16 __read_mostly tlb_lli_4k[NR_INFO];
  403. u16 __read_mostly tlb_lli_2m[NR_INFO];
  404. u16 __read_mostly tlb_lli_4m[NR_INFO];
  405. u16 __read_mostly tlb_lld_4k[NR_INFO];
  406. u16 __read_mostly tlb_lld_2m[NR_INFO];
  407. u16 __read_mostly tlb_lld_4m[NR_INFO];
  408. /*
  409. * tlb_flushall_shift shows the balance point in replacing cr3 write
  410. * with multiple 'invlpg'. It will do this replacement when
  411. * flush_tlb_lines <= active_lines/2^tlb_flushall_shift.
  412. * If tlb_flushall_shift is -1, means the replacement will be disabled.
  413. */
  414. s8 __read_mostly tlb_flushall_shift = -1;
  415. void __cpuinit cpu_detect_tlb(struct cpuinfo_x86 *c)
  416. {
  417. if (this_cpu->c_detect_tlb)
  418. this_cpu->c_detect_tlb(c);
  419. printk(KERN_INFO "Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n" \
  420. "Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d\n" \
  421. "tlb_flushall_shift: %d\n",
  422. tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
  423. tlb_lli_4m[ENTRIES], tlb_lld_4k[ENTRIES],
  424. tlb_lld_2m[ENTRIES], tlb_lld_4m[ENTRIES],
  425. tlb_flushall_shift);
  426. }
  427. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  428. {
  429. #ifdef CONFIG_X86_HT
  430. u32 eax, ebx, ecx, edx;
  431. int index_msb, core_bits;
  432. static bool printed;
  433. if (!cpu_has(c, X86_FEATURE_HT))
  434. return;
  435. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  436. goto out;
  437. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  438. return;
  439. cpuid(1, &eax, &ebx, &ecx, &edx);
  440. smp_num_siblings = (ebx & 0xff0000) >> 16;
  441. if (smp_num_siblings == 1) {
  442. printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
  443. goto out;
  444. }
  445. if (smp_num_siblings <= 1)
  446. goto out;
  447. index_msb = get_count_order(smp_num_siblings);
  448. c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
  449. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  450. index_msb = get_count_order(smp_num_siblings);
  451. core_bits = get_count_order(c->x86_max_cores);
  452. c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
  453. ((1 << core_bits) - 1);
  454. out:
  455. if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
  456. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  457. c->phys_proc_id);
  458. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  459. c->cpu_core_id);
  460. printed = 1;
  461. }
  462. #endif
  463. }
  464. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  465. {
  466. char *v = c->x86_vendor_id;
  467. int i;
  468. for (i = 0; i < X86_VENDOR_NUM; i++) {
  469. if (!cpu_devs[i])
  470. break;
  471. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  472. (cpu_devs[i]->c_ident[1] &&
  473. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  474. this_cpu = cpu_devs[i];
  475. c->x86_vendor = this_cpu->c_x86_vendor;
  476. return;
  477. }
  478. }
  479. printk_once(KERN_ERR
  480. "CPU: vendor_id '%s' unknown, using generic init.\n" \
  481. "CPU: Your system may be unstable.\n", v);
  482. c->x86_vendor = X86_VENDOR_UNKNOWN;
  483. this_cpu = &default_cpu;
  484. }
  485. void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
  486. {
  487. /* Get vendor name */
  488. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  489. (unsigned int *)&c->x86_vendor_id[0],
  490. (unsigned int *)&c->x86_vendor_id[8],
  491. (unsigned int *)&c->x86_vendor_id[4]);
  492. c->x86 = 4;
  493. /* Intel-defined flags: level 0x00000001 */
  494. if (c->cpuid_level >= 0x00000001) {
  495. u32 junk, tfms, cap0, misc;
  496. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  497. c->x86 = (tfms >> 8) & 0xf;
  498. c->x86_model = (tfms >> 4) & 0xf;
  499. c->x86_mask = tfms & 0xf;
  500. if (c->x86 == 0xf)
  501. c->x86 += (tfms >> 20) & 0xff;
  502. if (c->x86 >= 0x6)
  503. c->x86_model += ((tfms >> 16) & 0xf) << 4;
  504. if (cap0 & (1<<19)) {
  505. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  506. c->x86_cache_alignment = c->x86_clflush_size;
  507. }
  508. }
  509. }
  510. void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
  511. {
  512. u32 tfms, xlvl;
  513. u32 ebx;
  514. /* Intel-defined flags: level 0x00000001 */
  515. if (c->cpuid_level >= 0x00000001) {
  516. u32 capability, excap;
  517. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  518. c->x86_capability[0] = capability;
  519. c->x86_capability[4] = excap;
  520. }
  521. /* Additional Intel-defined flags: level 0x00000007 */
  522. if (c->cpuid_level >= 0x00000007) {
  523. u32 eax, ebx, ecx, edx;
  524. cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
  525. c->x86_capability[9] = ebx;
  526. }
  527. /* AMD-defined flags: level 0x80000001 */
  528. xlvl = cpuid_eax(0x80000000);
  529. c->extended_cpuid_level = xlvl;
  530. if ((xlvl & 0xffff0000) == 0x80000000) {
  531. if (xlvl >= 0x80000001) {
  532. c->x86_capability[1] = cpuid_edx(0x80000001);
  533. c->x86_capability[6] = cpuid_ecx(0x80000001);
  534. }
  535. }
  536. if (c->extended_cpuid_level >= 0x80000008) {
  537. u32 eax = cpuid_eax(0x80000008);
  538. c->x86_virt_bits = (eax >> 8) & 0xff;
  539. c->x86_phys_bits = eax & 0xff;
  540. }
  541. #ifdef CONFIG_X86_32
  542. else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
  543. c->x86_phys_bits = 36;
  544. #endif
  545. if (c->extended_cpuid_level >= 0x80000007)
  546. c->x86_power = cpuid_edx(0x80000007);
  547. init_scattered_cpuid_features(c);
  548. }
  549. static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
  550. {
  551. #ifdef CONFIG_X86_32
  552. int i;
  553. /*
  554. * First of all, decide if this is a 486 or higher
  555. * It's a 486 if we can modify the AC flag
  556. */
  557. if (flag_is_changeable_p(X86_EFLAGS_AC))
  558. c->x86 = 4;
  559. else
  560. c->x86 = 3;
  561. for (i = 0; i < X86_VENDOR_NUM; i++)
  562. if (cpu_devs[i] && cpu_devs[i]->c_identify) {
  563. c->x86_vendor_id[0] = 0;
  564. cpu_devs[i]->c_identify(c);
  565. if (c->x86_vendor_id[0]) {
  566. get_cpu_vendor(c);
  567. break;
  568. }
  569. }
  570. #endif
  571. }
  572. /*
  573. * Do minimum CPU detection early.
  574. * Fields really needed: vendor, cpuid_level, family, model, mask,
  575. * cache alignment.
  576. * The others are not touched to avoid unwanted side effects.
  577. *
  578. * WARNING: this function is only called on the BP. Don't add code here
  579. * that is supposed to run on all CPUs.
  580. */
  581. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  582. {
  583. #ifdef CONFIG_X86_64
  584. c->x86_clflush_size = 64;
  585. c->x86_phys_bits = 36;
  586. c->x86_virt_bits = 48;
  587. #else
  588. c->x86_clflush_size = 32;
  589. c->x86_phys_bits = 32;
  590. c->x86_virt_bits = 32;
  591. #endif
  592. c->x86_cache_alignment = c->x86_clflush_size;
  593. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  594. c->extended_cpuid_level = 0;
  595. if (!have_cpuid_p())
  596. identify_cpu_without_cpuid(c);
  597. /* cyrix could have cpuid enabled via c_identify()*/
  598. if (!have_cpuid_p())
  599. return;
  600. cpu_detect(c);
  601. get_cpu_vendor(c);
  602. get_cpu_cap(c);
  603. if (this_cpu->c_early_init)
  604. this_cpu->c_early_init(c);
  605. c->cpu_index = 0;
  606. filter_cpuid_features(c, false);
  607. if (this_cpu->c_bsp_init)
  608. this_cpu->c_bsp_init(c);
  609. }
  610. void __init early_cpu_init(void)
  611. {
  612. const struct cpu_dev *const *cdev;
  613. int count = 0;
  614. #ifdef CONFIG_PROCESSOR_SELECT
  615. printk(KERN_INFO "KERNEL supported cpus:\n");
  616. #endif
  617. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  618. const struct cpu_dev *cpudev = *cdev;
  619. if (count >= X86_VENDOR_NUM)
  620. break;
  621. cpu_devs[count] = cpudev;
  622. count++;
  623. #ifdef CONFIG_PROCESSOR_SELECT
  624. {
  625. unsigned int j;
  626. for (j = 0; j < 2; j++) {
  627. if (!cpudev->c_ident[j])
  628. continue;
  629. printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
  630. cpudev->c_ident[j]);
  631. }
  632. }
  633. #endif
  634. }
  635. early_identify_cpu(&boot_cpu_data);
  636. }
  637. /*
  638. * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
  639. * unfortunately, that's not true in practice because of early VIA
  640. * chips and (more importantly) broken virtualizers that are not easy
  641. * to detect. In the latter case it doesn't even *fail* reliably, so
  642. * probing for it doesn't even work. Disable it completely on 32-bit
  643. * unless we can find a reliable way to detect all the broken cases.
  644. * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
  645. */
  646. static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
  647. {
  648. #ifdef CONFIG_X86_32
  649. clear_cpu_cap(c, X86_FEATURE_NOPL);
  650. #else
  651. set_cpu_cap(c, X86_FEATURE_NOPL);
  652. #endif
  653. }
  654. static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
  655. {
  656. c->extended_cpuid_level = 0;
  657. if (!have_cpuid_p())
  658. identify_cpu_without_cpuid(c);
  659. /* cyrix could have cpuid enabled via c_identify()*/
  660. if (!have_cpuid_p())
  661. return;
  662. cpu_detect(c);
  663. get_cpu_vendor(c);
  664. get_cpu_cap(c);
  665. if (c->cpuid_level >= 0x00000001) {
  666. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  667. #ifdef CONFIG_X86_32
  668. # ifdef CONFIG_X86_HT
  669. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  670. # else
  671. c->apicid = c->initial_apicid;
  672. # endif
  673. #endif
  674. c->phys_proc_id = c->initial_apicid;
  675. }
  676. get_model_name(c); /* Default name */
  677. detect_nopl(c);
  678. }
  679. /*
  680. * This does the hard work of actually picking apart the CPU stuff...
  681. */
  682. static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  683. {
  684. int i;
  685. c->loops_per_jiffy = loops_per_jiffy;
  686. c->x86_cache_size = -1;
  687. c->x86_vendor = X86_VENDOR_UNKNOWN;
  688. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  689. c->x86_vendor_id[0] = '\0'; /* Unset */
  690. c->x86_model_id[0] = '\0'; /* Unset */
  691. c->x86_max_cores = 1;
  692. c->x86_coreid_bits = 0;
  693. #ifdef CONFIG_X86_64
  694. c->x86_clflush_size = 64;
  695. c->x86_phys_bits = 36;
  696. c->x86_virt_bits = 48;
  697. #else
  698. c->cpuid_level = -1; /* CPUID not detected */
  699. c->x86_clflush_size = 32;
  700. c->x86_phys_bits = 32;
  701. c->x86_virt_bits = 32;
  702. #endif
  703. c->x86_cache_alignment = c->x86_clflush_size;
  704. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  705. generic_identify(c);
  706. if (this_cpu->c_identify)
  707. this_cpu->c_identify(c);
  708. /* Clear/Set all flags overriden by options, after probe */
  709. for (i = 0; i < NCAPINTS; i++) {
  710. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  711. c->x86_capability[i] |= cpu_caps_set[i];
  712. }
  713. #ifdef CONFIG_X86_64
  714. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  715. #endif
  716. /*
  717. * Vendor-specific initialization. In this section we
  718. * canonicalize the feature flags, meaning if there are
  719. * features a certain CPU supports which CPUID doesn't
  720. * tell us, CPUID claiming incorrect flags, or other bugs,
  721. * we handle them here.
  722. *
  723. * At the end of this section, c->x86_capability better
  724. * indicate the features this CPU genuinely supports!
  725. */
  726. if (this_cpu->c_init)
  727. this_cpu->c_init(c);
  728. /* Disable the PN if appropriate */
  729. squash_the_stupid_serial_number(c);
  730. /* Set up SMEP/SMAP */
  731. setup_smep(c);
  732. setup_smap(c);
  733. /*
  734. * The vendor-specific functions might have changed features.
  735. * Now we do "generic changes."
  736. */
  737. /* Filter out anything that depends on CPUID levels we don't have */
  738. filter_cpuid_features(c, true);
  739. /* If the model name is still unset, do table lookup. */
  740. if (!c->x86_model_id[0]) {
  741. const char *p;
  742. p = table_lookup_model(c);
  743. if (p)
  744. strcpy(c->x86_model_id, p);
  745. else
  746. /* Last resort... */
  747. sprintf(c->x86_model_id, "%02x/%02x",
  748. c->x86, c->x86_model);
  749. }
  750. #ifdef CONFIG_X86_64
  751. detect_ht(c);
  752. #endif
  753. init_hypervisor(c);
  754. x86_init_rdrand(c);
  755. /*
  756. * Clear/Set all flags overriden by options, need do it
  757. * before following smp all cpus cap AND.
  758. */
  759. for (i = 0; i < NCAPINTS; i++) {
  760. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  761. c->x86_capability[i] |= cpu_caps_set[i];
  762. }
  763. /*
  764. * On SMP, boot_cpu_data holds the common feature set between
  765. * all CPUs; so make sure that we indicate which features are
  766. * common between the CPUs. The first time this routine gets
  767. * executed, c == &boot_cpu_data.
  768. */
  769. if (c != &boot_cpu_data) {
  770. /* AND the already accumulated flags with these */
  771. for (i = 0; i < NCAPINTS; i++)
  772. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  773. }
  774. /* Init Machine Check Exception if available. */
  775. mcheck_cpu_init(c);
  776. select_idle_routine(c);
  777. #ifdef CONFIG_NUMA
  778. numa_add_cpu(smp_processor_id());
  779. #endif
  780. }
  781. #ifdef CONFIG_X86_64
  782. static void vgetcpu_set_mode(void)
  783. {
  784. if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
  785. vgetcpu_mode = VGETCPU_RDTSCP;
  786. else
  787. vgetcpu_mode = VGETCPU_LSL;
  788. }
  789. #endif
  790. void __init identify_boot_cpu(void)
  791. {
  792. identify_cpu(&boot_cpu_data);
  793. init_amd_e400_c1e_mask();
  794. #ifdef CONFIG_X86_32
  795. sysenter_setup();
  796. enable_sep_cpu();
  797. #else
  798. vgetcpu_set_mode();
  799. #endif
  800. cpu_detect_tlb(&boot_cpu_data);
  801. }
  802. void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
  803. {
  804. BUG_ON(c == &boot_cpu_data);
  805. identify_cpu(c);
  806. #ifdef CONFIG_X86_32
  807. enable_sep_cpu();
  808. #endif
  809. mtrr_ap_init();
  810. }
  811. struct msr_range {
  812. unsigned min;
  813. unsigned max;
  814. };
  815. static const struct msr_range msr_range_array[] __cpuinitconst = {
  816. { 0x00000000, 0x00000418},
  817. { 0xc0000000, 0xc000040b},
  818. { 0xc0010000, 0xc0010142},
  819. { 0xc0011000, 0xc001103b},
  820. };
  821. static void __cpuinit __print_cpu_msr(void)
  822. {
  823. unsigned index_min, index_max;
  824. unsigned index;
  825. u64 val;
  826. int i;
  827. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  828. index_min = msr_range_array[i].min;
  829. index_max = msr_range_array[i].max;
  830. for (index = index_min; index < index_max; index++) {
  831. if (rdmsrl_safe(index, &val))
  832. continue;
  833. printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
  834. }
  835. }
  836. }
  837. static int show_msr __cpuinitdata;
  838. static __init int setup_show_msr(char *arg)
  839. {
  840. int num;
  841. get_option(&arg, &num);
  842. if (num > 0)
  843. show_msr = num;
  844. return 1;
  845. }
  846. __setup("show_msr=", setup_show_msr);
  847. static __init int setup_noclflush(char *arg)
  848. {
  849. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  850. return 1;
  851. }
  852. __setup("noclflush", setup_noclflush);
  853. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  854. {
  855. const char *vendor = NULL;
  856. if (c->x86_vendor < X86_VENDOR_NUM) {
  857. vendor = this_cpu->c_vendor;
  858. } else {
  859. if (c->cpuid_level >= 0)
  860. vendor = c->x86_vendor_id;
  861. }
  862. if (vendor && !strstr(c->x86_model_id, vendor))
  863. printk(KERN_CONT "%s ", vendor);
  864. if (c->x86_model_id[0])
  865. printk(KERN_CONT "%s", strim(c->x86_model_id));
  866. else
  867. printk(KERN_CONT "%d86", c->x86);
  868. printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
  869. if (c->x86_mask || c->cpuid_level >= 0)
  870. printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
  871. else
  872. printk(KERN_CONT ")\n");
  873. print_cpu_msr(c);
  874. }
  875. void __cpuinit print_cpu_msr(struct cpuinfo_x86 *c)
  876. {
  877. if (c->cpu_index < show_msr)
  878. __print_cpu_msr();
  879. }
  880. static __init int setup_disablecpuid(char *arg)
  881. {
  882. int bit;
  883. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  884. setup_clear_cpu_cap(bit);
  885. else
  886. return 0;
  887. return 1;
  888. }
  889. __setup("clearcpuid=", setup_disablecpuid);
  890. #ifdef CONFIG_X86_64
  891. struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
  892. struct desc_ptr nmi_idt_descr = { NR_VECTORS * 16 - 1,
  893. (unsigned long) nmi_idt_table };
  894. DEFINE_PER_CPU_FIRST(union irq_stack_union,
  895. irq_stack_union) __aligned(PAGE_SIZE);
  896. /*
  897. * The following four percpu variables are hot. Align current_task to
  898. * cacheline size such that all four fall in the same cacheline.
  899. */
  900. DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
  901. &init_task;
  902. EXPORT_PER_CPU_SYMBOL(current_task);
  903. DEFINE_PER_CPU(unsigned long, kernel_stack) =
  904. (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
  905. EXPORT_PER_CPU_SYMBOL(kernel_stack);
  906. DEFINE_PER_CPU(char *, irq_stack_ptr) =
  907. init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
  908. DEFINE_PER_CPU(unsigned int, irq_count) = -1;
  909. DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
  910. /*
  911. * Special IST stacks which the CPU switches to when it calls
  912. * an IST-marked descriptor entry. Up to 7 stacks (hardware
  913. * limit), all of them are 4K, except the debug stack which
  914. * is 8K.
  915. */
  916. static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
  917. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
  918. [DEBUG_STACK - 1] = DEBUG_STKSZ
  919. };
  920. static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
  921. [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
  922. /* May not be marked __init: used by software suspend */
  923. void syscall_init(void)
  924. {
  925. /*
  926. * LSTAR and STAR live in a bit strange symbiosis.
  927. * They both write to the same internal register. STAR allows to
  928. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  929. */
  930. wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
  931. wrmsrl(MSR_LSTAR, system_call);
  932. wrmsrl(MSR_CSTAR, ignore_sysret);
  933. #ifdef CONFIG_IA32_EMULATION
  934. syscall32_cpu_init();
  935. #endif
  936. /* Flags to clear on syscall */
  937. wrmsrl(MSR_SYSCALL_MASK,
  938. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
  939. X86_EFLAGS_IOPL|X86_EFLAGS_AC);
  940. }
  941. /*
  942. * Copies of the original ist values from the tss are only accessed during
  943. * debugging, no special alignment required.
  944. */
  945. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  946. static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
  947. DEFINE_PER_CPU(int, debug_stack_usage);
  948. int is_debug_stack(unsigned long addr)
  949. {
  950. return __get_cpu_var(debug_stack_usage) ||
  951. (addr <= __get_cpu_var(debug_stack_addr) &&
  952. addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
  953. }
  954. static DEFINE_PER_CPU(u32, debug_stack_use_ctr);
  955. void debug_stack_set_zero(void)
  956. {
  957. this_cpu_inc(debug_stack_use_ctr);
  958. load_idt((const struct desc_ptr *)&nmi_idt_descr);
  959. }
  960. void debug_stack_reset(void)
  961. {
  962. if (WARN_ON(!this_cpu_read(debug_stack_use_ctr)))
  963. return;
  964. if (this_cpu_dec_return(debug_stack_use_ctr) == 0)
  965. load_idt((const struct desc_ptr *)&idt_descr);
  966. }
  967. #else /* CONFIG_X86_64 */
  968. DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
  969. EXPORT_PER_CPU_SYMBOL(current_task);
  970. DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
  971. #ifdef CONFIG_CC_STACKPROTECTOR
  972. DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
  973. #endif
  974. /* Make sure %fs and %gs are initialized properly in idle threads */
  975. struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
  976. {
  977. memset(regs, 0, sizeof(struct pt_regs));
  978. regs->fs = __KERNEL_PERCPU;
  979. regs->gs = __KERNEL_STACK_CANARY;
  980. return regs;
  981. }
  982. #endif /* CONFIG_X86_64 */
  983. /*
  984. * Clear all 6 debug registers:
  985. */
  986. static void clear_all_debug_regs(void)
  987. {
  988. int i;
  989. for (i = 0; i < 8; i++) {
  990. /* Ignore db4, db5 */
  991. if ((i == 4) || (i == 5))
  992. continue;
  993. set_debugreg(0, i);
  994. }
  995. }
  996. #ifdef CONFIG_KGDB
  997. /*
  998. * Restore debug regs if using kgdbwait and you have a kernel debugger
  999. * connection established.
  1000. */
  1001. static void dbg_restore_debug_regs(void)
  1002. {
  1003. if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
  1004. arch_kgdb_ops.correct_hw_break();
  1005. }
  1006. #else /* ! CONFIG_KGDB */
  1007. #define dbg_restore_debug_regs()
  1008. #endif /* ! CONFIG_KGDB */
  1009. /*
  1010. * cpu_init() initializes state that is per-CPU. Some data is already
  1011. * initialized (naturally) in the bootstrap process, such as the GDT
  1012. * and IDT. We reload them nevertheless, this function acts as a
  1013. * 'CPU state barrier', nothing should get across.
  1014. * A lot of state is already set up in PDA init for 64 bit
  1015. */
  1016. #ifdef CONFIG_X86_64
  1017. void __cpuinit cpu_init(void)
  1018. {
  1019. struct orig_ist *oist;
  1020. struct task_struct *me;
  1021. struct tss_struct *t;
  1022. unsigned long v;
  1023. int cpu;
  1024. int i;
  1025. cpu = stack_smp_processor_id();
  1026. t = &per_cpu(init_tss, cpu);
  1027. oist = &per_cpu(orig_ist, cpu);
  1028. #ifdef CONFIG_NUMA
  1029. if (cpu != 0 && this_cpu_read(numa_node) == 0 &&
  1030. early_cpu_to_node(cpu) != NUMA_NO_NODE)
  1031. set_numa_node(early_cpu_to_node(cpu));
  1032. #endif
  1033. me = current;
  1034. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
  1035. panic("CPU#%d already initialized!\n", cpu);
  1036. pr_debug("Initializing CPU#%d\n", cpu);
  1037. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  1038. /*
  1039. * Initialize the per-CPU GDT with the boot GDT,
  1040. * and set up the GDT descriptor:
  1041. */
  1042. switch_to_new_gdt(cpu);
  1043. loadsegment(fs, 0);
  1044. load_idt((const struct desc_ptr *)&idt_descr);
  1045. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  1046. syscall_init();
  1047. wrmsrl(MSR_FS_BASE, 0);
  1048. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  1049. barrier();
  1050. x86_configure_nx();
  1051. if (cpu != 0)
  1052. enable_x2apic();
  1053. /*
  1054. * set up and load the per-CPU TSS
  1055. */
  1056. if (!oist->ist[0]) {
  1057. char *estacks = per_cpu(exception_stacks, cpu);
  1058. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  1059. estacks += exception_stack_sizes[v];
  1060. oist->ist[v] = t->x86_tss.ist[v] =
  1061. (unsigned long)estacks;
  1062. if (v == DEBUG_STACK-1)
  1063. per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
  1064. }
  1065. }
  1066. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1067. /*
  1068. * <= is required because the CPU will access up to
  1069. * 8 bits beyond the end of the IO permission bitmap.
  1070. */
  1071. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  1072. t->io_bitmap[i] = ~0UL;
  1073. atomic_inc(&init_mm.mm_count);
  1074. me->active_mm = &init_mm;
  1075. BUG_ON(me->mm);
  1076. enter_lazy_tlb(&init_mm, me);
  1077. load_sp0(t, &current->thread);
  1078. set_tss_desc(cpu, t);
  1079. load_TR_desc();
  1080. load_LDT(&init_mm.context);
  1081. clear_all_debug_regs();
  1082. dbg_restore_debug_regs();
  1083. fpu_init();
  1084. if (is_uv_system())
  1085. uv_cpu_init();
  1086. }
  1087. #else
  1088. void __cpuinit cpu_init(void)
  1089. {
  1090. int cpu = smp_processor_id();
  1091. struct task_struct *curr = current;
  1092. struct tss_struct *t = &per_cpu(init_tss, cpu);
  1093. struct thread_struct *thread = &curr->thread;
  1094. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
  1095. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  1096. for (;;)
  1097. local_irq_enable();
  1098. }
  1099. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  1100. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  1101. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  1102. load_idt(&idt_descr);
  1103. switch_to_new_gdt(cpu);
  1104. /*
  1105. * Set up and load the per-CPU TSS and LDT
  1106. */
  1107. atomic_inc(&init_mm.mm_count);
  1108. curr->active_mm = &init_mm;
  1109. BUG_ON(curr->mm);
  1110. enter_lazy_tlb(&init_mm, curr);
  1111. load_sp0(t, thread);
  1112. set_tss_desc(cpu, t);
  1113. load_TR_desc();
  1114. load_LDT(&init_mm.context);
  1115. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1116. #ifdef CONFIG_DOUBLEFAULT
  1117. /* Set up doublefault TSS pointer in the GDT */
  1118. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  1119. #endif
  1120. clear_all_debug_regs();
  1121. dbg_restore_debug_regs();
  1122. fpu_init();
  1123. }
  1124. #endif