tsb.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507
  1. /* arch/sparc64/mm/tsb.c
  2. *
  3. * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/preempt.h>
  7. #include <linux/slab.h>
  8. #include <asm/page.h>
  9. #include <asm/tlbflush.h>
  10. #include <asm/tlb.h>
  11. #include <asm/mmu_context.h>
  12. #include <asm/pgtable.h>
  13. #include <asm/tsb.h>
  14. #include <asm/oplib.h>
  15. extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  16. static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
  17. {
  18. vaddr >>= hash_shift;
  19. return vaddr & (nentries - 1);
  20. }
  21. static inline int tag_compare(unsigned long tag, unsigned long vaddr)
  22. {
  23. return (tag == (vaddr >> 22));
  24. }
  25. /* TSB flushes need only occur on the processor initiating the address
  26. * space modification, not on each cpu the address space has run on.
  27. * Only the TLB flush needs that treatment.
  28. */
  29. void flush_tsb_kernel_range(unsigned long start, unsigned long end)
  30. {
  31. unsigned long v;
  32. for (v = start; v < end; v += PAGE_SIZE) {
  33. unsigned long hash = tsb_hash(v, PAGE_SHIFT,
  34. KERNEL_TSB_NENTRIES);
  35. struct tsb *ent = &swapper_tsb[hash];
  36. if (tag_compare(ent->tag, v))
  37. ent->tag = (1UL << TSB_TAG_INVALID_BIT);
  38. }
  39. }
  40. static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
  41. unsigned long tsb, unsigned long nentries)
  42. {
  43. unsigned long i;
  44. for (i = 0; i < tb->tlb_nr; i++) {
  45. unsigned long v = tb->vaddrs[i];
  46. unsigned long tag, ent, hash;
  47. v &= ~0x1UL;
  48. hash = tsb_hash(v, hash_shift, nentries);
  49. ent = tsb + (hash * sizeof(struct tsb));
  50. tag = (v >> 22UL);
  51. tsb_flush(ent, tag);
  52. }
  53. }
  54. void flush_tsb_user(struct tlb_batch *tb)
  55. {
  56. struct mm_struct *mm = tb->mm;
  57. unsigned long nentries, base, flags;
  58. spin_lock_irqsave(&mm->context.lock, flags);
  59. base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
  60. nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
  61. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  62. base = __pa(base);
  63. __flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
  64. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  65. if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
  66. base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
  67. nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
  68. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  69. base = __pa(base);
  70. __flush_tsb_one(tb, HPAGE_SHIFT, base, nentries);
  71. }
  72. #endif
  73. spin_unlock_irqrestore(&mm->context.lock, flags);
  74. }
  75. #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
  76. #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
  77. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  78. #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
  79. #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
  80. #endif
  81. static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
  82. {
  83. unsigned long tsb_reg, base, tsb_paddr;
  84. unsigned long page_sz, tte;
  85. mm->context.tsb_block[tsb_idx].tsb_nentries =
  86. tsb_bytes / sizeof(struct tsb);
  87. base = TSBMAP_BASE;
  88. tte = pgprot_val(PAGE_KERNEL_LOCKED);
  89. tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
  90. BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
  91. /* Use the smallest page size that can map the whole TSB
  92. * in one TLB entry.
  93. */
  94. switch (tsb_bytes) {
  95. case 8192 << 0:
  96. tsb_reg = 0x0UL;
  97. #ifdef DCACHE_ALIASING_POSSIBLE
  98. base += (tsb_paddr & 8192);
  99. #endif
  100. page_sz = 8192;
  101. break;
  102. case 8192 << 1:
  103. tsb_reg = 0x1UL;
  104. page_sz = 64 * 1024;
  105. break;
  106. case 8192 << 2:
  107. tsb_reg = 0x2UL;
  108. page_sz = 64 * 1024;
  109. break;
  110. case 8192 << 3:
  111. tsb_reg = 0x3UL;
  112. page_sz = 64 * 1024;
  113. break;
  114. case 8192 << 4:
  115. tsb_reg = 0x4UL;
  116. page_sz = 512 * 1024;
  117. break;
  118. case 8192 << 5:
  119. tsb_reg = 0x5UL;
  120. page_sz = 512 * 1024;
  121. break;
  122. case 8192 << 6:
  123. tsb_reg = 0x6UL;
  124. page_sz = 512 * 1024;
  125. break;
  126. case 8192 << 7:
  127. tsb_reg = 0x7UL;
  128. page_sz = 4 * 1024 * 1024;
  129. break;
  130. default:
  131. printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
  132. current->comm, current->pid, tsb_bytes);
  133. do_exit(SIGSEGV);
  134. }
  135. tte |= pte_sz_bits(page_sz);
  136. if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
  137. /* Physical mapping, no locked TLB entry for TSB. */
  138. tsb_reg |= tsb_paddr;
  139. mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
  140. mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
  141. mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
  142. } else {
  143. tsb_reg |= base;
  144. tsb_reg |= (tsb_paddr & (page_sz - 1UL));
  145. tte |= (tsb_paddr & ~(page_sz - 1UL));
  146. mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
  147. mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
  148. mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
  149. }
  150. /* Setup the Hypervisor TSB descriptor. */
  151. if (tlb_type == hypervisor) {
  152. struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
  153. switch (tsb_idx) {
  154. case MM_TSB_BASE:
  155. hp->pgsz_idx = HV_PGSZ_IDX_BASE;
  156. break;
  157. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  158. case MM_TSB_HUGE:
  159. hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
  160. break;
  161. #endif
  162. default:
  163. BUG();
  164. }
  165. hp->assoc = 1;
  166. hp->num_ttes = tsb_bytes / 16;
  167. hp->ctx_idx = 0;
  168. switch (tsb_idx) {
  169. case MM_TSB_BASE:
  170. hp->pgsz_mask = HV_PGSZ_MASK_BASE;
  171. break;
  172. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  173. case MM_TSB_HUGE:
  174. hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
  175. break;
  176. #endif
  177. default:
  178. BUG();
  179. }
  180. hp->tsb_base = tsb_paddr;
  181. hp->resv = 0;
  182. }
  183. }
  184. struct kmem_cache *pgtable_cache __read_mostly;
  185. static struct kmem_cache *tsb_caches[8] __read_mostly;
  186. static const char *tsb_cache_names[8] = {
  187. "tsb_8KB",
  188. "tsb_16KB",
  189. "tsb_32KB",
  190. "tsb_64KB",
  191. "tsb_128KB",
  192. "tsb_256KB",
  193. "tsb_512KB",
  194. "tsb_1MB",
  195. };
  196. void __init pgtable_cache_init(void)
  197. {
  198. unsigned long i;
  199. pgtable_cache = kmem_cache_create("pgtable_cache",
  200. PAGE_SIZE, PAGE_SIZE,
  201. 0,
  202. _clear_page);
  203. if (!pgtable_cache) {
  204. prom_printf("pgtable_cache_init(): Could not create!\n");
  205. prom_halt();
  206. }
  207. for (i = 0; i < 8; i++) {
  208. unsigned long size = 8192 << i;
  209. const char *name = tsb_cache_names[i];
  210. tsb_caches[i] = kmem_cache_create(name,
  211. size, size,
  212. 0, NULL);
  213. if (!tsb_caches[i]) {
  214. prom_printf("Could not create %s cache\n", name);
  215. prom_halt();
  216. }
  217. }
  218. }
  219. int sysctl_tsb_ratio = -2;
  220. static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
  221. {
  222. unsigned long num_ents = (new_size / sizeof(struct tsb));
  223. if (sysctl_tsb_ratio < 0)
  224. return num_ents - (num_ents >> -sysctl_tsb_ratio);
  225. else
  226. return num_ents + (num_ents >> sysctl_tsb_ratio);
  227. }
  228. /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
  229. * do_sparc64_fault() invokes this routine to try and grow it.
  230. *
  231. * When we reach the maximum TSB size supported, we stick ~0UL into
  232. * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
  233. * will not trigger any longer.
  234. *
  235. * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
  236. * of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
  237. * must be 512K aligned. It also must be physically contiguous, so we
  238. * cannot use vmalloc().
  239. *
  240. * The idea here is to grow the TSB when the RSS of the process approaches
  241. * the number of entries that the current TSB can hold at once. Currently,
  242. * we trigger when the RSS hits 3/4 of the TSB capacity.
  243. */
  244. void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
  245. {
  246. unsigned long max_tsb_size = 1 * 1024 * 1024;
  247. unsigned long new_size, old_size, flags;
  248. struct tsb *old_tsb, *new_tsb;
  249. unsigned long new_cache_index, old_cache_index;
  250. unsigned long new_rss_limit;
  251. gfp_t gfp_flags;
  252. if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
  253. max_tsb_size = (PAGE_SIZE << MAX_ORDER);
  254. new_cache_index = 0;
  255. for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
  256. new_rss_limit = tsb_size_to_rss_limit(new_size);
  257. if (new_rss_limit > rss)
  258. break;
  259. new_cache_index++;
  260. }
  261. if (new_size == max_tsb_size)
  262. new_rss_limit = ~0UL;
  263. retry_tsb_alloc:
  264. gfp_flags = GFP_KERNEL;
  265. if (new_size > (PAGE_SIZE * 2))
  266. gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
  267. new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
  268. gfp_flags, numa_node_id());
  269. if (unlikely(!new_tsb)) {
  270. /* Not being able to fork due to a high-order TSB
  271. * allocation failure is very bad behavior. Just back
  272. * down to a 0-order allocation and force no TSB
  273. * growing for this address space.
  274. */
  275. if (mm->context.tsb_block[tsb_index].tsb == NULL &&
  276. new_cache_index > 0) {
  277. new_cache_index = 0;
  278. new_size = 8192;
  279. new_rss_limit = ~0UL;
  280. goto retry_tsb_alloc;
  281. }
  282. /* If we failed on a TSB grow, we are under serious
  283. * memory pressure so don't try to grow any more.
  284. */
  285. if (mm->context.tsb_block[tsb_index].tsb != NULL)
  286. mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
  287. return;
  288. }
  289. /* Mark all tags as invalid. */
  290. tsb_init(new_tsb, new_size);
  291. /* Ok, we are about to commit the changes. If we are
  292. * growing an existing TSB the locking is very tricky,
  293. * so WATCH OUT!
  294. *
  295. * We have to hold mm->context.lock while committing to the
  296. * new TSB, this synchronizes us with processors in
  297. * flush_tsb_user() and switch_mm() for this address space.
  298. *
  299. * But even with that lock held, processors run asynchronously
  300. * accessing the old TSB via TLB miss handling. This is OK
  301. * because those actions are just propagating state from the
  302. * Linux page tables into the TSB, page table mappings are not
  303. * being changed. If a real fault occurs, the processor will
  304. * synchronize with us when it hits flush_tsb_user(), this is
  305. * also true for the case where vmscan is modifying the page
  306. * tables. The only thing we need to be careful with is to
  307. * skip any locked TSB entries during copy_tsb().
  308. *
  309. * When we finish committing to the new TSB, we have to drop
  310. * the lock and ask all other cpus running this address space
  311. * to run tsb_context_switch() to see the new TSB table.
  312. */
  313. spin_lock_irqsave(&mm->context.lock, flags);
  314. old_tsb = mm->context.tsb_block[tsb_index].tsb;
  315. old_cache_index =
  316. (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
  317. old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
  318. sizeof(struct tsb));
  319. /* Handle multiple threads trying to grow the TSB at the same time.
  320. * One will get in here first, and bump the size and the RSS limit.
  321. * The others will get in here next and hit this check.
  322. */
  323. if (unlikely(old_tsb &&
  324. (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
  325. spin_unlock_irqrestore(&mm->context.lock, flags);
  326. kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
  327. return;
  328. }
  329. mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
  330. if (old_tsb) {
  331. extern void copy_tsb(unsigned long old_tsb_base,
  332. unsigned long old_tsb_size,
  333. unsigned long new_tsb_base,
  334. unsigned long new_tsb_size);
  335. unsigned long old_tsb_base = (unsigned long) old_tsb;
  336. unsigned long new_tsb_base = (unsigned long) new_tsb;
  337. if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
  338. old_tsb_base = __pa(old_tsb_base);
  339. new_tsb_base = __pa(new_tsb_base);
  340. }
  341. copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
  342. }
  343. mm->context.tsb_block[tsb_index].tsb = new_tsb;
  344. setup_tsb_params(mm, tsb_index, new_size);
  345. spin_unlock_irqrestore(&mm->context.lock, flags);
  346. /* If old_tsb is NULL, we're being invoked for the first time
  347. * from init_new_context().
  348. */
  349. if (old_tsb) {
  350. /* Reload it on the local cpu. */
  351. tsb_context_switch(mm);
  352. /* Now force other processors to do the same. */
  353. preempt_disable();
  354. smp_tsb_sync(mm);
  355. preempt_enable();
  356. /* Now it is safe to free the old tsb. */
  357. kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
  358. }
  359. }
  360. int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
  361. {
  362. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  363. unsigned long huge_pte_count;
  364. #endif
  365. unsigned int i;
  366. spin_lock_init(&mm->context.lock);
  367. mm->context.sparc64_ctx_val = 0UL;
  368. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  369. /* We reset it to zero because the fork() page copying
  370. * will re-increment the counters as the parent PTEs are
  371. * copied into the child address space.
  372. */
  373. huge_pte_count = mm->context.huge_pte_count;
  374. mm->context.huge_pte_count = 0;
  375. #endif
  376. mm->context.pgtable_page = NULL;
  377. /* copy_mm() copies over the parent's mm_struct before calling
  378. * us, so we need to zero out the TSB pointer or else tsb_grow()
  379. * will be confused and think there is an older TSB to free up.
  380. */
  381. for (i = 0; i < MM_NUM_TSBS; i++)
  382. mm->context.tsb_block[i].tsb = NULL;
  383. /* If this is fork, inherit the parent's TSB size. We would
  384. * grow it to that size on the first page fault anyways.
  385. */
  386. tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
  387. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  388. if (unlikely(huge_pte_count))
  389. tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
  390. #endif
  391. if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
  392. return -ENOMEM;
  393. return 0;
  394. }
  395. static void tsb_destroy_one(struct tsb_config *tp)
  396. {
  397. unsigned long cache_index;
  398. if (!tp->tsb)
  399. return;
  400. cache_index = tp->tsb_reg_val & 0x7UL;
  401. kmem_cache_free(tsb_caches[cache_index], tp->tsb);
  402. tp->tsb = NULL;
  403. tp->tsb_reg_val = 0UL;
  404. }
  405. void destroy_context(struct mm_struct *mm)
  406. {
  407. unsigned long flags, i;
  408. struct page *page;
  409. for (i = 0; i < MM_NUM_TSBS; i++)
  410. tsb_destroy_one(&mm->context.tsb_block[i]);
  411. page = mm->context.pgtable_page;
  412. if (page && put_page_testzero(page)) {
  413. pgtable_page_dtor(page);
  414. free_hot_cold_page(page, 0);
  415. }
  416. spin_lock_irqsave(&ctx_alloc_lock, flags);
  417. if (CTX_VALID(mm->context)) {
  418. unsigned long nr = CTX_NRBITS(mm->context);
  419. mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
  420. }
  421. spin_unlock_irqrestore(&ctx_alloc_lock, flags);
  422. }