svc_xprt.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231
  1. /*
  2. * linux/net/sunrpc/svc_xprt.c
  3. *
  4. * Author: Tom Tucker <tom@opengridcomputing.com>
  5. */
  6. #include <linux/sched.h>
  7. #include <linux/smp_lock.h>
  8. #include <linux/errno.h>
  9. #include <linux/freezer.h>
  10. #include <linux/kthread.h>
  11. #include <net/sock.h>
  12. #include <linux/sunrpc/stats.h>
  13. #include <linux/sunrpc/svc_xprt.h>
  14. #include <linux/sunrpc/svcsock.h>
  15. #define RPCDBG_FACILITY RPCDBG_SVCXPRT
  16. static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
  17. static int svc_deferred_recv(struct svc_rqst *rqstp);
  18. static struct cache_deferred_req *svc_defer(struct cache_req *req);
  19. static void svc_age_temp_xprts(unsigned long closure);
  20. /* apparently the "standard" is that clients close
  21. * idle connections after 5 minutes, servers after
  22. * 6 minutes
  23. * http://www.connectathon.org/talks96/nfstcp.pdf
  24. */
  25. static int svc_conn_age_period = 6*60;
  26. /* List of registered transport classes */
  27. static DEFINE_SPINLOCK(svc_xprt_class_lock);
  28. static LIST_HEAD(svc_xprt_class_list);
  29. /* SMP locking strategy:
  30. *
  31. * svc_pool->sp_lock protects most of the fields of that pool.
  32. * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
  33. * when both need to be taken (rare), svc_serv->sv_lock is first.
  34. * BKL protects svc_serv->sv_nrthread.
  35. * svc_sock->sk_lock protects the svc_sock->sk_deferred list
  36. * and the ->sk_info_authunix cache.
  37. *
  38. * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
  39. * enqueued multiply. During normal transport processing this bit
  40. * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
  41. * Providers should not manipulate this bit directly.
  42. *
  43. * Some flags can be set to certain values at any time
  44. * providing that certain rules are followed:
  45. *
  46. * XPT_CONN, XPT_DATA:
  47. * - Can be set or cleared at any time.
  48. * - After a set, svc_xprt_enqueue must be called to enqueue
  49. * the transport for processing.
  50. * - After a clear, the transport must be read/accepted.
  51. * If this succeeds, it must be set again.
  52. * XPT_CLOSE:
  53. * - Can set at any time. It is never cleared.
  54. * XPT_DEAD:
  55. * - Can only be set while XPT_BUSY is held which ensures
  56. * that no other thread will be using the transport or will
  57. * try to set XPT_DEAD.
  58. */
  59. int svc_reg_xprt_class(struct svc_xprt_class *xcl)
  60. {
  61. struct svc_xprt_class *cl;
  62. int res = -EEXIST;
  63. dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
  64. INIT_LIST_HEAD(&xcl->xcl_list);
  65. spin_lock(&svc_xprt_class_lock);
  66. /* Make sure there isn't already a class with the same name */
  67. list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
  68. if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
  69. goto out;
  70. }
  71. list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
  72. res = 0;
  73. out:
  74. spin_unlock(&svc_xprt_class_lock);
  75. return res;
  76. }
  77. EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
  78. void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
  79. {
  80. dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
  81. spin_lock(&svc_xprt_class_lock);
  82. list_del_init(&xcl->xcl_list);
  83. spin_unlock(&svc_xprt_class_lock);
  84. }
  85. EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
  86. /*
  87. * Format the transport list for printing
  88. */
  89. int svc_print_xprts(char *buf, int maxlen)
  90. {
  91. struct list_head *le;
  92. char tmpstr[80];
  93. int len = 0;
  94. buf[0] = '\0';
  95. spin_lock(&svc_xprt_class_lock);
  96. list_for_each(le, &svc_xprt_class_list) {
  97. int slen;
  98. struct svc_xprt_class *xcl =
  99. list_entry(le, struct svc_xprt_class, xcl_list);
  100. sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
  101. slen = strlen(tmpstr);
  102. if (len + slen > maxlen)
  103. break;
  104. len += slen;
  105. strcat(buf, tmpstr);
  106. }
  107. spin_unlock(&svc_xprt_class_lock);
  108. return len;
  109. }
  110. static void svc_xprt_free(struct kref *kref)
  111. {
  112. struct svc_xprt *xprt =
  113. container_of(kref, struct svc_xprt, xpt_ref);
  114. struct module *owner = xprt->xpt_class->xcl_owner;
  115. if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags) &&
  116. xprt->xpt_auth_cache != NULL)
  117. svcauth_unix_info_release(xprt->xpt_auth_cache);
  118. xprt->xpt_ops->xpo_free(xprt);
  119. module_put(owner);
  120. }
  121. void svc_xprt_put(struct svc_xprt *xprt)
  122. {
  123. kref_put(&xprt->xpt_ref, svc_xprt_free);
  124. }
  125. EXPORT_SYMBOL_GPL(svc_xprt_put);
  126. /*
  127. * Called by transport drivers to initialize the transport independent
  128. * portion of the transport instance.
  129. */
  130. void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
  131. struct svc_serv *serv)
  132. {
  133. memset(xprt, 0, sizeof(*xprt));
  134. xprt->xpt_class = xcl;
  135. xprt->xpt_ops = xcl->xcl_ops;
  136. kref_init(&xprt->xpt_ref);
  137. xprt->xpt_server = serv;
  138. INIT_LIST_HEAD(&xprt->xpt_list);
  139. INIT_LIST_HEAD(&xprt->xpt_ready);
  140. INIT_LIST_HEAD(&xprt->xpt_deferred);
  141. mutex_init(&xprt->xpt_mutex);
  142. spin_lock_init(&xprt->xpt_lock);
  143. set_bit(XPT_BUSY, &xprt->xpt_flags);
  144. rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
  145. }
  146. EXPORT_SYMBOL_GPL(svc_xprt_init);
  147. static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
  148. struct svc_serv *serv,
  149. const int family,
  150. const unsigned short port,
  151. int flags)
  152. {
  153. struct sockaddr_in sin = {
  154. .sin_family = AF_INET,
  155. .sin_addr.s_addr = htonl(INADDR_ANY),
  156. .sin_port = htons(port),
  157. };
  158. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  159. struct sockaddr_in6 sin6 = {
  160. .sin6_family = AF_INET6,
  161. .sin6_addr = IN6ADDR_ANY_INIT,
  162. .sin6_port = htons(port),
  163. };
  164. #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
  165. struct sockaddr *sap;
  166. size_t len;
  167. switch (family) {
  168. case PF_INET:
  169. sap = (struct sockaddr *)&sin;
  170. len = sizeof(sin);
  171. break;
  172. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  173. case PF_INET6:
  174. sap = (struct sockaddr *)&sin6;
  175. len = sizeof(sin6);
  176. break;
  177. #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
  178. default:
  179. return ERR_PTR(-EAFNOSUPPORT);
  180. }
  181. return xcl->xcl_ops->xpo_create(serv, sap, len, flags);
  182. }
  183. int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
  184. const int family, const unsigned short port,
  185. int flags)
  186. {
  187. struct svc_xprt_class *xcl;
  188. dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
  189. spin_lock(&svc_xprt_class_lock);
  190. list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
  191. struct svc_xprt *newxprt;
  192. if (strcmp(xprt_name, xcl->xcl_name))
  193. continue;
  194. if (!try_module_get(xcl->xcl_owner))
  195. goto err;
  196. spin_unlock(&svc_xprt_class_lock);
  197. newxprt = __svc_xpo_create(xcl, serv, family, port, flags);
  198. if (IS_ERR(newxprt)) {
  199. module_put(xcl->xcl_owner);
  200. return PTR_ERR(newxprt);
  201. }
  202. clear_bit(XPT_TEMP, &newxprt->xpt_flags);
  203. spin_lock_bh(&serv->sv_lock);
  204. list_add(&newxprt->xpt_list, &serv->sv_permsocks);
  205. spin_unlock_bh(&serv->sv_lock);
  206. clear_bit(XPT_BUSY, &newxprt->xpt_flags);
  207. return svc_xprt_local_port(newxprt);
  208. }
  209. err:
  210. spin_unlock(&svc_xprt_class_lock);
  211. dprintk("svc: transport %s not found\n", xprt_name);
  212. /* This errno is exposed to user space. Provide a reasonable
  213. * perror msg for a bad transport. */
  214. return -EPROTONOSUPPORT;
  215. }
  216. EXPORT_SYMBOL_GPL(svc_create_xprt);
  217. /*
  218. * Copy the local and remote xprt addresses to the rqstp structure
  219. */
  220. void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
  221. {
  222. struct sockaddr *sin;
  223. memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
  224. rqstp->rq_addrlen = xprt->xpt_remotelen;
  225. /*
  226. * Destination address in request is needed for binding the
  227. * source address in RPC replies/callbacks later.
  228. */
  229. sin = (struct sockaddr *)&xprt->xpt_local;
  230. switch (sin->sa_family) {
  231. case AF_INET:
  232. rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
  233. break;
  234. case AF_INET6:
  235. rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
  236. break;
  237. }
  238. }
  239. EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
  240. /**
  241. * svc_print_addr - Format rq_addr field for printing
  242. * @rqstp: svc_rqst struct containing address to print
  243. * @buf: target buffer for formatted address
  244. * @len: length of target buffer
  245. *
  246. */
  247. char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
  248. {
  249. return __svc_print_addr(svc_addr(rqstp), buf, len);
  250. }
  251. EXPORT_SYMBOL_GPL(svc_print_addr);
  252. /*
  253. * Queue up an idle server thread. Must have pool->sp_lock held.
  254. * Note: this is really a stack rather than a queue, so that we only
  255. * use as many different threads as we need, and the rest don't pollute
  256. * the cache.
  257. */
  258. static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
  259. {
  260. list_add(&rqstp->rq_list, &pool->sp_threads);
  261. }
  262. /*
  263. * Dequeue an nfsd thread. Must have pool->sp_lock held.
  264. */
  265. static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
  266. {
  267. list_del(&rqstp->rq_list);
  268. }
  269. /*
  270. * Queue up a transport with data pending. If there are idle nfsd
  271. * processes, wake 'em up.
  272. *
  273. */
  274. void svc_xprt_enqueue(struct svc_xprt *xprt)
  275. {
  276. struct svc_serv *serv = xprt->xpt_server;
  277. struct svc_pool *pool;
  278. struct svc_rqst *rqstp;
  279. int cpu;
  280. if (!(xprt->xpt_flags &
  281. ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
  282. return;
  283. cpu = get_cpu();
  284. pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
  285. put_cpu();
  286. spin_lock_bh(&pool->sp_lock);
  287. if (!list_empty(&pool->sp_threads) &&
  288. !list_empty(&pool->sp_sockets))
  289. printk(KERN_ERR
  290. "svc_xprt_enqueue: "
  291. "threads and transports both waiting??\n");
  292. if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
  293. /* Don't enqueue dead transports */
  294. dprintk("svc: transport %p is dead, not enqueued\n", xprt);
  295. goto out_unlock;
  296. }
  297. pool->sp_stats.packets++;
  298. /* Mark transport as busy. It will remain in this state until
  299. * the provider calls svc_xprt_received. We update XPT_BUSY
  300. * atomically because it also guards against trying to enqueue
  301. * the transport twice.
  302. */
  303. if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
  304. /* Don't enqueue transport while already enqueued */
  305. dprintk("svc: transport %p busy, not enqueued\n", xprt);
  306. goto out_unlock;
  307. }
  308. BUG_ON(xprt->xpt_pool != NULL);
  309. xprt->xpt_pool = pool;
  310. /* Handle pending connection */
  311. if (test_bit(XPT_CONN, &xprt->xpt_flags))
  312. goto process;
  313. /* Handle close in-progress */
  314. if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
  315. goto process;
  316. /* Check if we have space to reply to a request */
  317. if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
  318. /* Don't enqueue while not enough space for reply */
  319. dprintk("svc: no write space, transport %p not enqueued\n",
  320. xprt);
  321. xprt->xpt_pool = NULL;
  322. clear_bit(XPT_BUSY, &xprt->xpt_flags);
  323. goto out_unlock;
  324. }
  325. process:
  326. if (!list_empty(&pool->sp_threads)) {
  327. rqstp = list_entry(pool->sp_threads.next,
  328. struct svc_rqst,
  329. rq_list);
  330. dprintk("svc: transport %p served by daemon %p\n",
  331. xprt, rqstp);
  332. svc_thread_dequeue(pool, rqstp);
  333. if (rqstp->rq_xprt)
  334. printk(KERN_ERR
  335. "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
  336. rqstp, rqstp->rq_xprt);
  337. rqstp->rq_xprt = xprt;
  338. svc_xprt_get(xprt);
  339. rqstp->rq_reserved = serv->sv_max_mesg;
  340. atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
  341. pool->sp_stats.threads_woken++;
  342. BUG_ON(xprt->xpt_pool != pool);
  343. wake_up(&rqstp->rq_wait);
  344. } else {
  345. dprintk("svc: transport %p put into queue\n", xprt);
  346. list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
  347. pool->sp_stats.sockets_queued++;
  348. BUG_ON(xprt->xpt_pool != pool);
  349. }
  350. out_unlock:
  351. spin_unlock_bh(&pool->sp_lock);
  352. }
  353. EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
  354. /*
  355. * Dequeue the first transport. Must be called with the pool->sp_lock held.
  356. */
  357. static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
  358. {
  359. struct svc_xprt *xprt;
  360. if (list_empty(&pool->sp_sockets))
  361. return NULL;
  362. xprt = list_entry(pool->sp_sockets.next,
  363. struct svc_xprt, xpt_ready);
  364. list_del_init(&xprt->xpt_ready);
  365. dprintk("svc: transport %p dequeued, inuse=%d\n",
  366. xprt, atomic_read(&xprt->xpt_ref.refcount));
  367. return xprt;
  368. }
  369. /*
  370. * svc_xprt_received conditionally queues the transport for processing
  371. * by another thread. The caller must hold the XPT_BUSY bit and must
  372. * not thereafter touch transport data.
  373. *
  374. * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
  375. * insufficient) data.
  376. */
  377. void svc_xprt_received(struct svc_xprt *xprt)
  378. {
  379. BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
  380. xprt->xpt_pool = NULL;
  381. clear_bit(XPT_BUSY, &xprt->xpt_flags);
  382. svc_xprt_enqueue(xprt);
  383. }
  384. EXPORT_SYMBOL_GPL(svc_xprt_received);
  385. /**
  386. * svc_reserve - change the space reserved for the reply to a request.
  387. * @rqstp: The request in question
  388. * @space: new max space to reserve
  389. *
  390. * Each request reserves some space on the output queue of the transport
  391. * to make sure the reply fits. This function reduces that reserved
  392. * space to be the amount of space used already, plus @space.
  393. *
  394. */
  395. void svc_reserve(struct svc_rqst *rqstp, int space)
  396. {
  397. space += rqstp->rq_res.head[0].iov_len;
  398. if (space < rqstp->rq_reserved) {
  399. struct svc_xprt *xprt = rqstp->rq_xprt;
  400. atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
  401. rqstp->rq_reserved = space;
  402. svc_xprt_enqueue(xprt);
  403. }
  404. }
  405. EXPORT_SYMBOL_GPL(svc_reserve);
  406. static void svc_xprt_release(struct svc_rqst *rqstp)
  407. {
  408. struct svc_xprt *xprt = rqstp->rq_xprt;
  409. rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
  410. kfree(rqstp->rq_deferred);
  411. rqstp->rq_deferred = NULL;
  412. svc_free_res_pages(rqstp);
  413. rqstp->rq_res.page_len = 0;
  414. rqstp->rq_res.page_base = 0;
  415. /* Reset response buffer and release
  416. * the reservation.
  417. * But first, check that enough space was reserved
  418. * for the reply, otherwise we have a bug!
  419. */
  420. if ((rqstp->rq_res.len) > rqstp->rq_reserved)
  421. printk(KERN_ERR "RPC request reserved %d but used %d\n",
  422. rqstp->rq_reserved,
  423. rqstp->rq_res.len);
  424. rqstp->rq_res.head[0].iov_len = 0;
  425. svc_reserve(rqstp, 0);
  426. rqstp->rq_xprt = NULL;
  427. svc_xprt_put(xprt);
  428. }
  429. /*
  430. * External function to wake up a server waiting for data
  431. * This really only makes sense for services like lockd
  432. * which have exactly one thread anyway.
  433. */
  434. void svc_wake_up(struct svc_serv *serv)
  435. {
  436. struct svc_rqst *rqstp;
  437. unsigned int i;
  438. struct svc_pool *pool;
  439. for (i = 0; i < serv->sv_nrpools; i++) {
  440. pool = &serv->sv_pools[i];
  441. spin_lock_bh(&pool->sp_lock);
  442. if (!list_empty(&pool->sp_threads)) {
  443. rqstp = list_entry(pool->sp_threads.next,
  444. struct svc_rqst,
  445. rq_list);
  446. dprintk("svc: daemon %p woken up.\n", rqstp);
  447. /*
  448. svc_thread_dequeue(pool, rqstp);
  449. rqstp->rq_xprt = NULL;
  450. */
  451. wake_up(&rqstp->rq_wait);
  452. }
  453. spin_unlock_bh(&pool->sp_lock);
  454. }
  455. }
  456. EXPORT_SYMBOL_GPL(svc_wake_up);
  457. int svc_port_is_privileged(struct sockaddr *sin)
  458. {
  459. switch (sin->sa_family) {
  460. case AF_INET:
  461. return ntohs(((struct sockaddr_in *)sin)->sin_port)
  462. < PROT_SOCK;
  463. case AF_INET6:
  464. return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
  465. < PROT_SOCK;
  466. default:
  467. return 0;
  468. }
  469. }
  470. /*
  471. * Make sure that we don't have too many active connections. If we have,
  472. * something must be dropped. It's not clear what will happen if we allow
  473. * "too many" connections, but when dealing with network-facing software,
  474. * we have to code defensively. Here we do that by imposing hard limits.
  475. *
  476. * There's no point in trying to do random drop here for DoS
  477. * prevention. The NFS clients does 1 reconnect in 15 seconds. An
  478. * attacker can easily beat that.
  479. *
  480. * The only somewhat efficient mechanism would be if drop old
  481. * connections from the same IP first. But right now we don't even
  482. * record the client IP in svc_sock.
  483. *
  484. * single-threaded services that expect a lot of clients will probably
  485. * need to set sv_maxconn to override the default value which is based
  486. * on the number of threads
  487. */
  488. static void svc_check_conn_limits(struct svc_serv *serv)
  489. {
  490. unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
  491. (serv->sv_nrthreads+3) * 20;
  492. if (serv->sv_tmpcnt > limit) {
  493. struct svc_xprt *xprt = NULL;
  494. spin_lock_bh(&serv->sv_lock);
  495. if (!list_empty(&serv->sv_tempsocks)) {
  496. if (net_ratelimit()) {
  497. /* Try to help the admin */
  498. printk(KERN_NOTICE "%s: too many open "
  499. "connections, consider increasing %s\n",
  500. serv->sv_name, serv->sv_maxconn ?
  501. "the max number of connections." :
  502. "the number of threads.");
  503. }
  504. /*
  505. * Always select the oldest connection. It's not fair,
  506. * but so is life
  507. */
  508. xprt = list_entry(serv->sv_tempsocks.prev,
  509. struct svc_xprt,
  510. xpt_list);
  511. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  512. svc_xprt_get(xprt);
  513. }
  514. spin_unlock_bh(&serv->sv_lock);
  515. if (xprt) {
  516. svc_xprt_enqueue(xprt);
  517. svc_xprt_put(xprt);
  518. }
  519. }
  520. }
  521. /*
  522. * Receive the next request on any transport. This code is carefully
  523. * organised not to touch any cachelines in the shared svc_serv
  524. * structure, only cachelines in the local svc_pool.
  525. */
  526. int svc_recv(struct svc_rqst *rqstp, long timeout)
  527. {
  528. struct svc_xprt *xprt = NULL;
  529. struct svc_serv *serv = rqstp->rq_server;
  530. struct svc_pool *pool = rqstp->rq_pool;
  531. int len, i;
  532. int pages;
  533. struct xdr_buf *arg;
  534. DECLARE_WAITQUEUE(wait, current);
  535. long time_left;
  536. dprintk("svc: server %p waiting for data (to = %ld)\n",
  537. rqstp, timeout);
  538. if (rqstp->rq_xprt)
  539. printk(KERN_ERR
  540. "svc_recv: service %p, transport not NULL!\n",
  541. rqstp);
  542. if (waitqueue_active(&rqstp->rq_wait))
  543. printk(KERN_ERR
  544. "svc_recv: service %p, wait queue active!\n",
  545. rqstp);
  546. /* now allocate needed pages. If we get a failure, sleep briefly */
  547. pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
  548. for (i = 0; i < pages ; i++)
  549. while (rqstp->rq_pages[i] == NULL) {
  550. struct page *p = alloc_page(GFP_KERNEL);
  551. if (!p) {
  552. set_current_state(TASK_INTERRUPTIBLE);
  553. if (signalled() || kthread_should_stop()) {
  554. set_current_state(TASK_RUNNING);
  555. return -EINTR;
  556. }
  557. schedule_timeout(msecs_to_jiffies(500));
  558. }
  559. rqstp->rq_pages[i] = p;
  560. }
  561. rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
  562. BUG_ON(pages >= RPCSVC_MAXPAGES);
  563. /* Make arg->head point to first page and arg->pages point to rest */
  564. arg = &rqstp->rq_arg;
  565. arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
  566. arg->head[0].iov_len = PAGE_SIZE;
  567. arg->pages = rqstp->rq_pages + 1;
  568. arg->page_base = 0;
  569. /* save at least one page for response */
  570. arg->page_len = (pages-2)*PAGE_SIZE;
  571. arg->len = (pages-1)*PAGE_SIZE;
  572. arg->tail[0].iov_len = 0;
  573. try_to_freeze();
  574. cond_resched();
  575. if (signalled() || kthread_should_stop())
  576. return -EINTR;
  577. spin_lock_bh(&pool->sp_lock);
  578. xprt = svc_xprt_dequeue(pool);
  579. if (xprt) {
  580. rqstp->rq_xprt = xprt;
  581. svc_xprt_get(xprt);
  582. rqstp->rq_reserved = serv->sv_max_mesg;
  583. atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
  584. } else {
  585. /* No data pending. Go to sleep */
  586. svc_thread_enqueue(pool, rqstp);
  587. /*
  588. * We have to be able to interrupt this wait
  589. * to bring down the daemons ...
  590. */
  591. set_current_state(TASK_INTERRUPTIBLE);
  592. /*
  593. * checking kthread_should_stop() here allows us to avoid
  594. * locking and signalling when stopping kthreads that call
  595. * svc_recv. If the thread has already been woken up, then
  596. * we can exit here without sleeping. If not, then it
  597. * it'll be woken up quickly during the schedule_timeout
  598. */
  599. if (kthread_should_stop()) {
  600. set_current_state(TASK_RUNNING);
  601. spin_unlock_bh(&pool->sp_lock);
  602. return -EINTR;
  603. }
  604. add_wait_queue(&rqstp->rq_wait, &wait);
  605. spin_unlock_bh(&pool->sp_lock);
  606. time_left = schedule_timeout(timeout);
  607. try_to_freeze();
  608. spin_lock_bh(&pool->sp_lock);
  609. remove_wait_queue(&rqstp->rq_wait, &wait);
  610. if (!time_left)
  611. pool->sp_stats.threads_timedout++;
  612. xprt = rqstp->rq_xprt;
  613. if (!xprt) {
  614. svc_thread_dequeue(pool, rqstp);
  615. spin_unlock_bh(&pool->sp_lock);
  616. dprintk("svc: server %p, no data yet\n", rqstp);
  617. if (signalled() || kthread_should_stop())
  618. return -EINTR;
  619. else
  620. return -EAGAIN;
  621. }
  622. }
  623. spin_unlock_bh(&pool->sp_lock);
  624. len = 0;
  625. if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
  626. struct svc_xprt *newxpt;
  627. newxpt = xprt->xpt_ops->xpo_accept(xprt);
  628. if (newxpt) {
  629. /*
  630. * We know this module_get will succeed because the
  631. * listener holds a reference too
  632. */
  633. __module_get(newxpt->xpt_class->xcl_owner);
  634. svc_check_conn_limits(xprt->xpt_server);
  635. spin_lock_bh(&serv->sv_lock);
  636. set_bit(XPT_TEMP, &newxpt->xpt_flags);
  637. list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
  638. serv->sv_tmpcnt++;
  639. if (serv->sv_temptimer.function == NULL) {
  640. /* setup timer to age temp transports */
  641. setup_timer(&serv->sv_temptimer,
  642. svc_age_temp_xprts,
  643. (unsigned long)serv);
  644. mod_timer(&serv->sv_temptimer,
  645. jiffies + svc_conn_age_period * HZ);
  646. }
  647. spin_unlock_bh(&serv->sv_lock);
  648. svc_xprt_received(newxpt);
  649. }
  650. svc_xprt_received(xprt);
  651. } else if (!test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
  652. dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
  653. rqstp, pool->sp_id, xprt,
  654. atomic_read(&xprt->xpt_ref.refcount));
  655. rqstp->rq_deferred = svc_deferred_dequeue(xprt);
  656. if (rqstp->rq_deferred) {
  657. svc_xprt_received(xprt);
  658. len = svc_deferred_recv(rqstp);
  659. } else
  660. len = xprt->xpt_ops->xpo_recvfrom(rqstp);
  661. dprintk("svc: got len=%d\n", len);
  662. }
  663. if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
  664. dprintk("svc_recv: found XPT_CLOSE\n");
  665. svc_delete_xprt(xprt);
  666. }
  667. /* No data, incomplete (TCP) read, or accept() */
  668. if (len == 0 || len == -EAGAIN) {
  669. rqstp->rq_res.len = 0;
  670. svc_xprt_release(rqstp);
  671. return -EAGAIN;
  672. }
  673. clear_bit(XPT_OLD, &xprt->xpt_flags);
  674. rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
  675. rqstp->rq_chandle.defer = svc_defer;
  676. if (serv->sv_stats)
  677. serv->sv_stats->netcnt++;
  678. return len;
  679. }
  680. EXPORT_SYMBOL_GPL(svc_recv);
  681. /*
  682. * Drop request
  683. */
  684. void svc_drop(struct svc_rqst *rqstp)
  685. {
  686. dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
  687. svc_xprt_release(rqstp);
  688. }
  689. EXPORT_SYMBOL_GPL(svc_drop);
  690. /*
  691. * Return reply to client.
  692. */
  693. int svc_send(struct svc_rqst *rqstp)
  694. {
  695. struct svc_xprt *xprt;
  696. int len;
  697. struct xdr_buf *xb;
  698. xprt = rqstp->rq_xprt;
  699. if (!xprt)
  700. return -EFAULT;
  701. /* release the receive skb before sending the reply */
  702. rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
  703. /* calculate over-all length */
  704. xb = &rqstp->rq_res;
  705. xb->len = xb->head[0].iov_len +
  706. xb->page_len +
  707. xb->tail[0].iov_len;
  708. /* Grab mutex to serialize outgoing data. */
  709. mutex_lock(&xprt->xpt_mutex);
  710. if (test_bit(XPT_DEAD, &xprt->xpt_flags))
  711. len = -ENOTCONN;
  712. else
  713. len = xprt->xpt_ops->xpo_sendto(rqstp);
  714. mutex_unlock(&xprt->xpt_mutex);
  715. rpc_wake_up(&xprt->xpt_bc_pending);
  716. svc_xprt_release(rqstp);
  717. if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
  718. return 0;
  719. return len;
  720. }
  721. /*
  722. * Timer function to close old temporary transports, using
  723. * a mark-and-sweep algorithm.
  724. */
  725. static void svc_age_temp_xprts(unsigned long closure)
  726. {
  727. struct svc_serv *serv = (struct svc_serv *)closure;
  728. struct svc_xprt *xprt;
  729. struct list_head *le, *next;
  730. LIST_HEAD(to_be_aged);
  731. dprintk("svc_age_temp_xprts\n");
  732. if (!spin_trylock_bh(&serv->sv_lock)) {
  733. /* busy, try again 1 sec later */
  734. dprintk("svc_age_temp_xprts: busy\n");
  735. mod_timer(&serv->sv_temptimer, jiffies + HZ);
  736. return;
  737. }
  738. list_for_each_safe(le, next, &serv->sv_tempsocks) {
  739. xprt = list_entry(le, struct svc_xprt, xpt_list);
  740. /* First time through, just mark it OLD. Second time
  741. * through, close it. */
  742. if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
  743. continue;
  744. if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
  745. test_bit(XPT_BUSY, &xprt->xpt_flags))
  746. continue;
  747. svc_xprt_get(xprt);
  748. list_move(le, &to_be_aged);
  749. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  750. set_bit(XPT_DETACHED, &xprt->xpt_flags);
  751. }
  752. spin_unlock_bh(&serv->sv_lock);
  753. while (!list_empty(&to_be_aged)) {
  754. le = to_be_aged.next;
  755. /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
  756. list_del_init(le);
  757. xprt = list_entry(le, struct svc_xprt, xpt_list);
  758. dprintk("queuing xprt %p for closing\n", xprt);
  759. /* a thread will dequeue and close it soon */
  760. svc_xprt_enqueue(xprt);
  761. svc_xprt_put(xprt);
  762. }
  763. mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
  764. }
  765. /*
  766. * Remove a dead transport
  767. */
  768. void svc_delete_xprt(struct svc_xprt *xprt)
  769. {
  770. struct svc_serv *serv = xprt->xpt_server;
  771. struct svc_deferred_req *dr;
  772. /* Only do this once */
  773. if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
  774. return;
  775. dprintk("svc: svc_delete_xprt(%p)\n", xprt);
  776. xprt->xpt_ops->xpo_detach(xprt);
  777. spin_lock_bh(&serv->sv_lock);
  778. if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
  779. list_del_init(&xprt->xpt_list);
  780. /*
  781. * We used to delete the transport from whichever list
  782. * it's sk_xprt.xpt_ready node was on, but we don't actually
  783. * need to. This is because the only time we're called
  784. * while still attached to a queue, the queue itself
  785. * is about to be destroyed (in svc_destroy).
  786. */
  787. if (test_bit(XPT_TEMP, &xprt->xpt_flags))
  788. serv->sv_tmpcnt--;
  789. while ((dr = svc_deferred_dequeue(xprt)) != NULL)
  790. kfree(dr);
  791. svc_xprt_put(xprt);
  792. spin_unlock_bh(&serv->sv_lock);
  793. }
  794. void svc_close_xprt(struct svc_xprt *xprt)
  795. {
  796. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  797. if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
  798. /* someone else will have to effect the close */
  799. return;
  800. svc_xprt_get(xprt);
  801. svc_delete_xprt(xprt);
  802. clear_bit(XPT_BUSY, &xprt->xpt_flags);
  803. svc_xprt_put(xprt);
  804. }
  805. EXPORT_SYMBOL_GPL(svc_close_xprt);
  806. void svc_close_all(struct list_head *xprt_list)
  807. {
  808. struct svc_xprt *xprt;
  809. struct svc_xprt *tmp;
  810. list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
  811. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  812. if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
  813. /* Waiting to be processed, but no threads left,
  814. * So just remove it from the waiting list
  815. */
  816. list_del_init(&xprt->xpt_ready);
  817. clear_bit(XPT_BUSY, &xprt->xpt_flags);
  818. }
  819. svc_close_xprt(xprt);
  820. }
  821. }
  822. /*
  823. * Handle defer and revisit of requests
  824. */
  825. static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
  826. {
  827. struct svc_deferred_req *dr =
  828. container_of(dreq, struct svc_deferred_req, handle);
  829. struct svc_xprt *xprt = dr->xprt;
  830. spin_lock(&xprt->xpt_lock);
  831. set_bit(XPT_DEFERRED, &xprt->xpt_flags);
  832. if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
  833. spin_unlock(&xprt->xpt_lock);
  834. dprintk("revisit canceled\n");
  835. svc_xprt_put(xprt);
  836. kfree(dr);
  837. return;
  838. }
  839. dprintk("revisit queued\n");
  840. dr->xprt = NULL;
  841. list_add(&dr->handle.recent, &xprt->xpt_deferred);
  842. spin_unlock(&xprt->xpt_lock);
  843. svc_xprt_enqueue(xprt);
  844. svc_xprt_put(xprt);
  845. }
  846. /*
  847. * Save the request off for later processing. The request buffer looks
  848. * like this:
  849. *
  850. * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
  851. *
  852. * This code can only handle requests that consist of an xprt-header
  853. * and rpc-header.
  854. */
  855. static struct cache_deferred_req *svc_defer(struct cache_req *req)
  856. {
  857. struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
  858. struct svc_deferred_req *dr;
  859. if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
  860. return NULL; /* if more than a page, give up FIXME */
  861. if (rqstp->rq_deferred) {
  862. dr = rqstp->rq_deferred;
  863. rqstp->rq_deferred = NULL;
  864. } else {
  865. size_t skip;
  866. size_t size;
  867. /* FIXME maybe discard if size too large */
  868. size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
  869. dr = kmalloc(size, GFP_KERNEL);
  870. if (dr == NULL)
  871. return NULL;
  872. dr->handle.owner = rqstp->rq_server;
  873. dr->prot = rqstp->rq_prot;
  874. memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
  875. dr->addrlen = rqstp->rq_addrlen;
  876. dr->daddr = rqstp->rq_daddr;
  877. dr->argslen = rqstp->rq_arg.len >> 2;
  878. dr->xprt_hlen = rqstp->rq_xprt_hlen;
  879. /* back up head to the start of the buffer and copy */
  880. skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
  881. memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
  882. dr->argslen << 2);
  883. }
  884. svc_xprt_get(rqstp->rq_xprt);
  885. dr->xprt = rqstp->rq_xprt;
  886. dr->handle.revisit = svc_revisit;
  887. return &dr->handle;
  888. }
  889. /*
  890. * recv data from a deferred request into an active one
  891. */
  892. static int svc_deferred_recv(struct svc_rqst *rqstp)
  893. {
  894. struct svc_deferred_req *dr = rqstp->rq_deferred;
  895. /* setup iov_base past transport header */
  896. rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
  897. /* The iov_len does not include the transport header bytes */
  898. rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
  899. rqstp->rq_arg.page_len = 0;
  900. /* The rq_arg.len includes the transport header bytes */
  901. rqstp->rq_arg.len = dr->argslen<<2;
  902. rqstp->rq_prot = dr->prot;
  903. memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
  904. rqstp->rq_addrlen = dr->addrlen;
  905. /* Save off transport header len in case we get deferred again */
  906. rqstp->rq_xprt_hlen = dr->xprt_hlen;
  907. rqstp->rq_daddr = dr->daddr;
  908. rqstp->rq_respages = rqstp->rq_pages;
  909. return (dr->argslen<<2) - dr->xprt_hlen;
  910. }
  911. static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
  912. {
  913. struct svc_deferred_req *dr = NULL;
  914. if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
  915. return NULL;
  916. spin_lock(&xprt->xpt_lock);
  917. clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
  918. if (!list_empty(&xprt->xpt_deferred)) {
  919. dr = list_entry(xprt->xpt_deferred.next,
  920. struct svc_deferred_req,
  921. handle.recent);
  922. list_del_init(&dr->handle.recent);
  923. set_bit(XPT_DEFERRED, &xprt->xpt_flags);
  924. }
  925. spin_unlock(&xprt->xpt_lock);
  926. return dr;
  927. }
  928. /**
  929. * svc_find_xprt - find an RPC transport instance
  930. * @serv: pointer to svc_serv to search
  931. * @xcl_name: C string containing transport's class name
  932. * @af: Address family of transport's local address
  933. * @port: transport's IP port number
  934. *
  935. * Return the transport instance pointer for the endpoint accepting
  936. * connections/peer traffic from the specified transport class,
  937. * address family and port.
  938. *
  939. * Specifying 0 for the address family or port is effectively a
  940. * wild-card, and will result in matching the first transport in the
  941. * service's list that has a matching class name.
  942. */
  943. struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
  944. const sa_family_t af, const unsigned short port)
  945. {
  946. struct svc_xprt *xprt;
  947. struct svc_xprt *found = NULL;
  948. /* Sanity check the args */
  949. if (serv == NULL || xcl_name == NULL)
  950. return found;
  951. spin_lock_bh(&serv->sv_lock);
  952. list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
  953. if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
  954. continue;
  955. if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
  956. continue;
  957. if (port != 0 && port != svc_xprt_local_port(xprt))
  958. continue;
  959. found = xprt;
  960. svc_xprt_get(xprt);
  961. break;
  962. }
  963. spin_unlock_bh(&serv->sv_lock);
  964. return found;
  965. }
  966. EXPORT_SYMBOL_GPL(svc_find_xprt);
  967. static int svc_one_xprt_name(const struct svc_xprt *xprt,
  968. char *pos, int remaining)
  969. {
  970. int len;
  971. len = snprintf(pos, remaining, "%s %u\n",
  972. xprt->xpt_class->xcl_name,
  973. svc_xprt_local_port(xprt));
  974. if (len >= remaining)
  975. return -ENAMETOOLONG;
  976. return len;
  977. }
  978. /**
  979. * svc_xprt_names - format a buffer with a list of transport names
  980. * @serv: pointer to an RPC service
  981. * @buf: pointer to a buffer to be filled in
  982. * @buflen: length of buffer to be filled in
  983. *
  984. * Fills in @buf with a string containing a list of transport names,
  985. * each name terminated with '\n'.
  986. *
  987. * Returns positive length of the filled-in string on success; otherwise
  988. * a negative errno value is returned if an error occurs.
  989. */
  990. int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
  991. {
  992. struct svc_xprt *xprt;
  993. int len, totlen;
  994. char *pos;
  995. /* Sanity check args */
  996. if (!serv)
  997. return 0;
  998. spin_lock_bh(&serv->sv_lock);
  999. pos = buf;
  1000. totlen = 0;
  1001. list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
  1002. len = svc_one_xprt_name(xprt, pos, buflen - totlen);
  1003. if (len < 0) {
  1004. *buf = '\0';
  1005. totlen = len;
  1006. }
  1007. if (len <= 0)
  1008. break;
  1009. pos += len;
  1010. totlen += len;
  1011. }
  1012. spin_unlock_bh(&serv->sv_lock);
  1013. return totlen;
  1014. }
  1015. EXPORT_SYMBOL_GPL(svc_xprt_names);
  1016. /*----------------------------------------------------------------------------*/
  1017. static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
  1018. {
  1019. unsigned int pidx = (unsigned int)*pos;
  1020. struct svc_serv *serv = m->private;
  1021. dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
  1022. if (!pidx)
  1023. return SEQ_START_TOKEN;
  1024. return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
  1025. }
  1026. static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
  1027. {
  1028. struct svc_pool *pool = p;
  1029. struct svc_serv *serv = m->private;
  1030. dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
  1031. if (p == SEQ_START_TOKEN) {
  1032. pool = &serv->sv_pools[0];
  1033. } else {
  1034. unsigned int pidx = (pool - &serv->sv_pools[0]);
  1035. if (pidx < serv->sv_nrpools-1)
  1036. pool = &serv->sv_pools[pidx+1];
  1037. else
  1038. pool = NULL;
  1039. }
  1040. ++*pos;
  1041. return pool;
  1042. }
  1043. static void svc_pool_stats_stop(struct seq_file *m, void *p)
  1044. {
  1045. }
  1046. static int svc_pool_stats_show(struct seq_file *m, void *p)
  1047. {
  1048. struct svc_pool *pool = p;
  1049. if (p == SEQ_START_TOKEN) {
  1050. seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
  1051. return 0;
  1052. }
  1053. seq_printf(m, "%u %lu %lu %lu %lu\n",
  1054. pool->sp_id,
  1055. pool->sp_stats.packets,
  1056. pool->sp_stats.sockets_queued,
  1057. pool->sp_stats.threads_woken,
  1058. pool->sp_stats.threads_timedout);
  1059. return 0;
  1060. }
  1061. static const struct seq_operations svc_pool_stats_seq_ops = {
  1062. .start = svc_pool_stats_start,
  1063. .next = svc_pool_stats_next,
  1064. .stop = svc_pool_stats_stop,
  1065. .show = svc_pool_stats_show,
  1066. };
  1067. int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
  1068. {
  1069. int err;
  1070. err = seq_open(file, &svc_pool_stats_seq_ops);
  1071. if (!err)
  1072. ((struct seq_file *) file->private_data)->private = serv;
  1073. return err;
  1074. }
  1075. EXPORT_SYMBOL(svc_pool_stats_open);
  1076. /*----------------------------------------------------------------------------*/