mmu.c 99 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include <linux/kvm_host.h>
  25. #include <linux/types.h>
  26. #include <linux/string.h>
  27. #include <linux/mm.h>
  28. #include <linux/highmem.h>
  29. #include <linux/module.h>
  30. #include <linux/swap.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/compiler.h>
  33. #include <linux/srcu.h>
  34. #include <linux/slab.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/page.h>
  37. #include <asm/cmpxchg.h>
  38. #include <asm/io.h>
  39. #include <asm/vmx.h>
  40. /*
  41. * When setting this variable to true it enables Two-Dimensional-Paging
  42. * where the hardware walks 2 page tables:
  43. * 1. the guest-virtual to guest-physical
  44. * 2. while doing 1. it walks guest-physical to host-physical
  45. * If the hardware supports that we don't need to do shadow paging.
  46. */
  47. bool tdp_enabled = false;
  48. enum {
  49. AUDIT_PRE_PAGE_FAULT,
  50. AUDIT_POST_PAGE_FAULT,
  51. AUDIT_PRE_PTE_WRITE,
  52. AUDIT_POST_PTE_WRITE,
  53. AUDIT_PRE_SYNC,
  54. AUDIT_POST_SYNC
  55. };
  56. char *audit_point_name[] = {
  57. "pre page fault",
  58. "post page fault",
  59. "pre pte write",
  60. "post pte write",
  61. "pre sync",
  62. "post sync"
  63. };
  64. #undef MMU_DEBUG
  65. #ifdef MMU_DEBUG
  66. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  67. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  68. #else
  69. #define pgprintk(x...) do { } while (0)
  70. #define rmap_printk(x...) do { } while (0)
  71. #endif
  72. #ifdef MMU_DEBUG
  73. static int dbg = 0;
  74. module_param(dbg, bool, 0644);
  75. #endif
  76. static int oos_shadow = 1;
  77. module_param(oos_shadow, bool, 0644);
  78. #ifndef MMU_DEBUG
  79. #define ASSERT(x) do { } while (0)
  80. #else
  81. #define ASSERT(x) \
  82. if (!(x)) { \
  83. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  84. __FILE__, __LINE__, #x); \
  85. }
  86. #endif
  87. #define PTE_PREFETCH_NUM 8
  88. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  89. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  90. #define PT64_LEVEL_BITS 9
  91. #define PT64_LEVEL_SHIFT(level) \
  92. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  93. #define PT64_INDEX(address, level)\
  94. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  95. #define PT32_LEVEL_BITS 10
  96. #define PT32_LEVEL_SHIFT(level) \
  97. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  98. #define PT32_LVL_OFFSET_MASK(level) \
  99. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  100. * PT32_LEVEL_BITS))) - 1))
  101. #define PT32_INDEX(address, level)\
  102. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  103. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  104. #define PT64_DIR_BASE_ADDR_MASK \
  105. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  106. #define PT64_LVL_ADDR_MASK(level) \
  107. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  108. * PT64_LEVEL_BITS))) - 1))
  109. #define PT64_LVL_OFFSET_MASK(level) \
  110. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  111. * PT64_LEVEL_BITS))) - 1))
  112. #define PT32_BASE_ADDR_MASK PAGE_MASK
  113. #define PT32_DIR_BASE_ADDR_MASK \
  114. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  115. #define PT32_LVL_ADDR_MASK(level) \
  116. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  117. * PT32_LEVEL_BITS))) - 1))
  118. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  119. | PT64_NX_MASK)
  120. #define PTE_LIST_EXT 4
  121. #define ACC_EXEC_MASK 1
  122. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  123. #define ACC_USER_MASK PT_USER_MASK
  124. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  125. #include <trace/events/kvm.h>
  126. #define CREATE_TRACE_POINTS
  127. #include "mmutrace.h"
  128. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  129. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  130. struct pte_list_desc {
  131. u64 *sptes[PTE_LIST_EXT];
  132. struct pte_list_desc *more;
  133. };
  134. struct kvm_shadow_walk_iterator {
  135. u64 addr;
  136. hpa_t shadow_addr;
  137. u64 *sptep;
  138. int level;
  139. unsigned index;
  140. };
  141. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  142. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  143. shadow_walk_okay(&(_walker)); \
  144. shadow_walk_next(&(_walker)))
  145. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  146. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  147. shadow_walk_okay(&(_walker)) && \
  148. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  149. __shadow_walk_next(&(_walker), spte))
  150. static struct kmem_cache *pte_list_desc_cache;
  151. static struct kmem_cache *mmu_page_header_cache;
  152. static struct percpu_counter kvm_total_used_mmu_pages;
  153. static u64 __read_mostly shadow_nx_mask;
  154. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  155. static u64 __read_mostly shadow_user_mask;
  156. static u64 __read_mostly shadow_accessed_mask;
  157. static u64 __read_mostly shadow_dirty_mask;
  158. static u64 __read_mostly shadow_mmio_mask;
  159. static void mmu_spte_set(u64 *sptep, u64 spte);
  160. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  161. {
  162. shadow_mmio_mask = mmio_mask;
  163. }
  164. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  165. static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
  166. {
  167. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  168. trace_mark_mmio_spte(sptep, gfn, access);
  169. mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
  170. }
  171. static bool is_mmio_spte(u64 spte)
  172. {
  173. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  174. }
  175. static gfn_t get_mmio_spte_gfn(u64 spte)
  176. {
  177. return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
  178. }
  179. static unsigned get_mmio_spte_access(u64 spte)
  180. {
  181. return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
  182. }
  183. static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
  184. {
  185. if (unlikely(is_noslot_pfn(pfn))) {
  186. mark_mmio_spte(sptep, gfn, access);
  187. return true;
  188. }
  189. return false;
  190. }
  191. static inline u64 rsvd_bits(int s, int e)
  192. {
  193. return ((1ULL << (e - s + 1)) - 1) << s;
  194. }
  195. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  196. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  197. {
  198. shadow_user_mask = user_mask;
  199. shadow_accessed_mask = accessed_mask;
  200. shadow_dirty_mask = dirty_mask;
  201. shadow_nx_mask = nx_mask;
  202. shadow_x_mask = x_mask;
  203. }
  204. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  205. static int is_cpuid_PSE36(void)
  206. {
  207. return 1;
  208. }
  209. static int is_nx(struct kvm_vcpu *vcpu)
  210. {
  211. return vcpu->arch.efer & EFER_NX;
  212. }
  213. static int is_shadow_present_pte(u64 pte)
  214. {
  215. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  216. }
  217. static int is_large_pte(u64 pte)
  218. {
  219. return pte & PT_PAGE_SIZE_MASK;
  220. }
  221. static int is_dirty_gpte(unsigned long pte)
  222. {
  223. return pte & PT_DIRTY_MASK;
  224. }
  225. static int is_rmap_spte(u64 pte)
  226. {
  227. return is_shadow_present_pte(pte);
  228. }
  229. static int is_last_spte(u64 pte, int level)
  230. {
  231. if (level == PT_PAGE_TABLE_LEVEL)
  232. return 1;
  233. if (is_large_pte(pte))
  234. return 1;
  235. return 0;
  236. }
  237. static pfn_t spte_to_pfn(u64 pte)
  238. {
  239. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  240. }
  241. static gfn_t pse36_gfn_delta(u32 gpte)
  242. {
  243. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  244. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  245. }
  246. #ifdef CONFIG_X86_64
  247. static void __set_spte(u64 *sptep, u64 spte)
  248. {
  249. *sptep = spte;
  250. }
  251. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  252. {
  253. *sptep = spte;
  254. }
  255. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  256. {
  257. return xchg(sptep, spte);
  258. }
  259. static u64 __get_spte_lockless(u64 *sptep)
  260. {
  261. return ACCESS_ONCE(*sptep);
  262. }
  263. static bool __check_direct_spte_mmio_pf(u64 spte)
  264. {
  265. /* It is valid if the spte is zapped. */
  266. return spte == 0ull;
  267. }
  268. #else
  269. union split_spte {
  270. struct {
  271. u32 spte_low;
  272. u32 spte_high;
  273. };
  274. u64 spte;
  275. };
  276. static void count_spte_clear(u64 *sptep, u64 spte)
  277. {
  278. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  279. if (is_shadow_present_pte(spte))
  280. return;
  281. /* Ensure the spte is completely set before we increase the count */
  282. smp_wmb();
  283. sp->clear_spte_count++;
  284. }
  285. static void __set_spte(u64 *sptep, u64 spte)
  286. {
  287. union split_spte *ssptep, sspte;
  288. ssptep = (union split_spte *)sptep;
  289. sspte = (union split_spte)spte;
  290. ssptep->spte_high = sspte.spte_high;
  291. /*
  292. * If we map the spte from nonpresent to present, We should store
  293. * the high bits firstly, then set present bit, so cpu can not
  294. * fetch this spte while we are setting the spte.
  295. */
  296. smp_wmb();
  297. ssptep->spte_low = sspte.spte_low;
  298. }
  299. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  300. {
  301. union split_spte *ssptep, sspte;
  302. ssptep = (union split_spte *)sptep;
  303. sspte = (union split_spte)spte;
  304. ssptep->spte_low = sspte.spte_low;
  305. /*
  306. * If we map the spte from present to nonpresent, we should clear
  307. * present bit firstly to avoid vcpu fetch the old high bits.
  308. */
  309. smp_wmb();
  310. ssptep->spte_high = sspte.spte_high;
  311. count_spte_clear(sptep, spte);
  312. }
  313. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  314. {
  315. union split_spte *ssptep, sspte, orig;
  316. ssptep = (union split_spte *)sptep;
  317. sspte = (union split_spte)spte;
  318. /* xchg acts as a barrier before the setting of the high bits */
  319. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  320. orig.spte_high = ssptep->spte_high;
  321. ssptep->spte_high = sspte.spte_high;
  322. count_spte_clear(sptep, spte);
  323. return orig.spte;
  324. }
  325. /*
  326. * The idea using the light way get the spte on x86_32 guest is from
  327. * gup_get_pte(arch/x86/mm/gup.c).
  328. * The difference is we can not catch the spte tlb flush if we leave
  329. * guest mode, so we emulate it by increase clear_spte_count when spte
  330. * is cleared.
  331. */
  332. static u64 __get_spte_lockless(u64 *sptep)
  333. {
  334. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  335. union split_spte spte, *orig = (union split_spte *)sptep;
  336. int count;
  337. retry:
  338. count = sp->clear_spte_count;
  339. smp_rmb();
  340. spte.spte_low = orig->spte_low;
  341. smp_rmb();
  342. spte.spte_high = orig->spte_high;
  343. smp_rmb();
  344. if (unlikely(spte.spte_low != orig->spte_low ||
  345. count != sp->clear_spte_count))
  346. goto retry;
  347. return spte.spte;
  348. }
  349. static bool __check_direct_spte_mmio_pf(u64 spte)
  350. {
  351. union split_spte sspte = (union split_spte)spte;
  352. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  353. /* It is valid if the spte is zapped. */
  354. if (spte == 0ull)
  355. return true;
  356. /* It is valid if the spte is being zapped. */
  357. if (sspte.spte_low == 0ull &&
  358. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  359. return true;
  360. return false;
  361. }
  362. #endif
  363. static bool spte_has_volatile_bits(u64 spte)
  364. {
  365. if (!shadow_accessed_mask)
  366. return false;
  367. if (!is_shadow_present_pte(spte))
  368. return false;
  369. if ((spte & shadow_accessed_mask) &&
  370. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  371. return false;
  372. return true;
  373. }
  374. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  375. {
  376. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  377. }
  378. /* Rules for using mmu_spte_set:
  379. * Set the sptep from nonpresent to present.
  380. * Note: the sptep being assigned *must* be either not present
  381. * or in a state where the hardware will not attempt to update
  382. * the spte.
  383. */
  384. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  385. {
  386. WARN_ON(is_shadow_present_pte(*sptep));
  387. __set_spte(sptep, new_spte);
  388. }
  389. /* Rules for using mmu_spte_update:
  390. * Update the state bits, it means the mapped pfn is not changged.
  391. */
  392. static void mmu_spte_update(u64 *sptep, u64 new_spte)
  393. {
  394. u64 mask, old_spte = *sptep;
  395. WARN_ON(!is_rmap_spte(new_spte));
  396. if (!is_shadow_present_pte(old_spte))
  397. return mmu_spte_set(sptep, new_spte);
  398. new_spte |= old_spte & shadow_dirty_mask;
  399. mask = shadow_accessed_mask;
  400. if (is_writable_pte(old_spte))
  401. mask |= shadow_dirty_mask;
  402. if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
  403. __update_clear_spte_fast(sptep, new_spte);
  404. else
  405. old_spte = __update_clear_spte_slow(sptep, new_spte);
  406. if (!shadow_accessed_mask)
  407. return;
  408. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  409. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  410. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  411. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  412. }
  413. /*
  414. * Rules for using mmu_spte_clear_track_bits:
  415. * It sets the sptep from present to nonpresent, and track the
  416. * state bits, it is used to clear the last level sptep.
  417. */
  418. static int mmu_spte_clear_track_bits(u64 *sptep)
  419. {
  420. pfn_t pfn;
  421. u64 old_spte = *sptep;
  422. if (!spte_has_volatile_bits(old_spte))
  423. __update_clear_spte_fast(sptep, 0ull);
  424. else
  425. old_spte = __update_clear_spte_slow(sptep, 0ull);
  426. if (!is_rmap_spte(old_spte))
  427. return 0;
  428. pfn = spte_to_pfn(old_spte);
  429. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  430. kvm_set_pfn_accessed(pfn);
  431. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  432. kvm_set_pfn_dirty(pfn);
  433. return 1;
  434. }
  435. /*
  436. * Rules for using mmu_spte_clear_no_track:
  437. * Directly clear spte without caring the state bits of sptep,
  438. * it is used to set the upper level spte.
  439. */
  440. static void mmu_spte_clear_no_track(u64 *sptep)
  441. {
  442. __update_clear_spte_fast(sptep, 0ull);
  443. }
  444. static u64 mmu_spte_get_lockless(u64 *sptep)
  445. {
  446. return __get_spte_lockless(sptep);
  447. }
  448. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  449. {
  450. rcu_read_lock();
  451. atomic_inc(&vcpu->kvm->arch.reader_counter);
  452. /* Increase the counter before walking shadow page table */
  453. smp_mb__after_atomic_inc();
  454. }
  455. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  456. {
  457. /* Decrease the counter after walking shadow page table finished */
  458. smp_mb__before_atomic_dec();
  459. atomic_dec(&vcpu->kvm->arch.reader_counter);
  460. rcu_read_unlock();
  461. }
  462. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  463. struct kmem_cache *base_cache, int min)
  464. {
  465. void *obj;
  466. if (cache->nobjs >= min)
  467. return 0;
  468. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  469. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  470. if (!obj)
  471. return -ENOMEM;
  472. cache->objects[cache->nobjs++] = obj;
  473. }
  474. return 0;
  475. }
  476. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  477. {
  478. return cache->nobjs;
  479. }
  480. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  481. struct kmem_cache *cache)
  482. {
  483. while (mc->nobjs)
  484. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  485. }
  486. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  487. int min)
  488. {
  489. void *page;
  490. if (cache->nobjs >= min)
  491. return 0;
  492. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  493. page = (void *)__get_free_page(GFP_KERNEL);
  494. if (!page)
  495. return -ENOMEM;
  496. cache->objects[cache->nobjs++] = page;
  497. }
  498. return 0;
  499. }
  500. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  501. {
  502. while (mc->nobjs)
  503. free_page((unsigned long)mc->objects[--mc->nobjs]);
  504. }
  505. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  506. {
  507. int r;
  508. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  509. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  510. if (r)
  511. goto out;
  512. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  513. if (r)
  514. goto out;
  515. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  516. mmu_page_header_cache, 4);
  517. out:
  518. return r;
  519. }
  520. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  521. {
  522. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  523. pte_list_desc_cache);
  524. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  525. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  526. mmu_page_header_cache);
  527. }
  528. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  529. size_t size)
  530. {
  531. void *p;
  532. BUG_ON(!mc->nobjs);
  533. p = mc->objects[--mc->nobjs];
  534. return p;
  535. }
  536. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  537. {
  538. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
  539. sizeof(struct pte_list_desc));
  540. }
  541. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  542. {
  543. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  544. }
  545. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  546. {
  547. if (!sp->role.direct)
  548. return sp->gfns[index];
  549. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  550. }
  551. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  552. {
  553. if (sp->role.direct)
  554. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  555. else
  556. sp->gfns[index] = gfn;
  557. }
  558. /*
  559. * Return the pointer to the large page information for a given gfn,
  560. * handling slots that are not large page aligned.
  561. */
  562. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  563. struct kvm_memory_slot *slot,
  564. int level)
  565. {
  566. unsigned long idx;
  567. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  568. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  569. return &slot->lpage_info[level - 2][idx];
  570. }
  571. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  572. {
  573. struct kvm_memory_slot *slot;
  574. struct kvm_lpage_info *linfo;
  575. int i;
  576. slot = gfn_to_memslot(kvm, gfn);
  577. for (i = PT_DIRECTORY_LEVEL;
  578. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  579. linfo = lpage_info_slot(gfn, slot, i);
  580. linfo->write_count += 1;
  581. }
  582. kvm->arch.indirect_shadow_pages++;
  583. }
  584. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  585. {
  586. struct kvm_memory_slot *slot;
  587. struct kvm_lpage_info *linfo;
  588. int i;
  589. slot = gfn_to_memslot(kvm, gfn);
  590. for (i = PT_DIRECTORY_LEVEL;
  591. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  592. linfo = lpage_info_slot(gfn, slot, i);
  593. linfo->write_count -= 1;
  594. WARN_ON(linfo->write_count < 0);
  595. }
  596. kvm->arch.indirect_shadow_pages--;
  597. }
  598. static int has_wrprotected_page(struct kvm *kvm,
  599. gfn_t gfn,
  600. int level)
  601. {
  602. struct kvm_memory_slot *slot;
  603. struct kvm_lpage_info *linfo;
  604. slot = gfn_to_memslot(kvm, gfn);
  605. if (slot) {
  606. linfo = lpage_info_slot(gfn, slot, level);
  607. return linfo->write_count;
  608. }
  609. return 1;
  610. }
  611. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  612. {
  613. unsigned long page_size;
  614. int i, ret = 0;
  615. page_size = kvm_host_page_size(kvm, gfn);
  616. for (i = PT_PAGE_TABLE_LEVEL;
  617. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  618. if (page_size >= KVM_HPAGE_SIZE(i))
  619. ret = i;
  620. else
  621. break;
  622. }
  623. return ret;
  624. }
  625. static struct kvm_memory_slot *
  626. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  627. bool no_dirty_log)
  628. {
  629. struct kvm_memory_slot *slot;
  630. slot = gfn_to_memslot(vcpu->kvm, gfn);
  631. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  632. (no_dirty_log && slot->dirty_bitmap))
  633. slot = NULL;
  634. return slot;
  635. }
  636. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  637. {
  638. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  639. }
  640. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  641. {
  642. int host_level, level, max_level;
  643. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  644. if (host_level == PT_PAGE_TABLE_LEVEL)
  645. return host_level;
  646. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  647. kvm_x86_ops->get_lpage_level() : host_level;
  648. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  649. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  650. break;
  651. return level - 1;
  652. }
  653. /*
  654. * Pte mapping structures:
  655. *
  656. * If pte_list bit zero is zero, then pte_list point to the spte.
  657. *
  658. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  659. * pte_list_desc containing more mappings.
  660. *
  661. * Returns the number of pte entries before the spte was added or zero if
  662. * the spte was not added.
  663. *
  664. */
  665. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  666. unsigned long *pte_list)
  667. {
  668. struct pte_list_desc *desc;
  669. int i, count = 0;
  670. if (!*pte_list) {
  671. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  672. *pte_list = (unsigned long)spte;
  673. } else if (!(*pte_list & 1)) {
  674. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  675. desc = mmu_alloc_pte_list_desc(vcpu);
  676. desc->sptes[0] = (u64 *)*pte_list;
  677. desc->sptes[1] = spte;
  678. *pte_list = (unsigned long)desc | 1;
  679. ++count;
  680. } else {
  681. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  682. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  683. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  684. desc = desc->more;
  685. count += PTE_LIST_EXT;
  686. }
  687. if (desc->sptes[PTE_LIST_EXT-1]) {
  688. desc->more = mmu_alloc_pte_list_desc(vcpu);
  689. desc = desc->more;
  690. }
  691. for (i = 0; desc->sptes[i]; ++i)
  692. ++count;
  693. desc->sptes[i] = spte;
  694. }
  695. return count;
  696. }
  697. static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
  698. {
  699. struct pte_list_desc *desc;
  700. u64 *prev_spte;
  701. int i;
  702. if (!*pte_list)
  703. return NULL;
  704. else if (!(*pte_list & 1)) {
  705. if (!spte)
  706. return (u64 *)*pte_list;
  707. return NULL;
  708. }
  709. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  710. prev_spte = NULL;
  711. while (desc) {
  712. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
  713. if (prev_spte == spte)
  714. return desc->sptes[i];
  715. prev_spte = desc->sptes[i];
  716. }
  717. desc = desc->more;
  718. }
  719. return NULL;
  720. }
  721. static void
  722. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  723. int i, struct pte_list_desc *prev_desc)
  724. {
  725. int j;
  726. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  727. ;
  728. desc->sptes[i] = desc->sptes[j];
  729. desc->sptes[j] = NULL;
  730. if (j != 0)
  731. return;
  732. if (!prev_desc && !desc->more)
  733. *pte_list = (unsigned long)desc->sptes[0];
  734. else
  735. if (prev_desc)
  736. prev_desc->more = desc->more;
  737. else
  738. *pte_list = (unsigned long)desc->more | 1;
  739. mmu_free_pte_list_desc(desc);
  740. }
  741. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  742. {
  743. struct pte_list_desc *desc;
  744. struct pte_list_desc *prev_desc;
  745. int i;
  746. if (!*pte_list) {
  747. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  748. BUG();
  749. } else if (!(*pte_list & 1)) {
  750. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  751. if ((u64 *)*pte_list != spte) {
  752. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  753. BUG();
  754. }
  755. *pte_list = 0;
  756. } else {
  757. rmap_printk("pte_list_remove: %p many->many\n", spte);
  758. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  759. prev_desc = NULL;
  760. while (desc) {
  761. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  762. if (desc->sptes[i] == spte) {
  763. pte_list_desc_remove_entry(pte_list,
  764. desc, i,
  765. prev_desc);
  766. return;
  767. }
  768. prev_desc = desc;
  769. desc = desc->more;
  770. }
  771. pr_err("pte_list_remove: %p many->many\n", spte);
  772. BUG();
  773. }
  774. }
  775. typedef void (*pte_list_walk_fn) (u64 *spte);
  776. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  777. {
  778. struct pte_list_desc *desc;
  779. int i;
  780. if (!*pte_list)
  781. return;
  782. if (!(*pte_list & 1))
  783. return fn((u64 *)*pte_list);
  784. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  785. while (desc) {
  786. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  787. fn(desc->sptes[i]);
  788. desc = desc->more;
  789. }
  790. }
  791. /*
  792. * Take gfn and return the reverse mapping to it.
  793. */
  794. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  795. {
  796. struct kvm_memory_slot *slot;
  797. struct kvm_lpage_info *linfo;
  798. slot = gfn_to_memslot(kvm, gfn);
  799. if (likely(level == PT_PAGE_TABLE_LEVEL))
  800. return &slot->rmap[gfn - slot->base_gfn];
  801. linfo = lpage_info_slot(gfn, slot, level);
  802. return &linfo->rmap_pde;
  803. }
  804. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  805. {
  806. struct kvm_mmu_memory_cache *cache;
  807. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  808. return mmu_memory_cache_free_objects(cache);
  809. }
  810. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  811. {
  812. struct kvm_mmu_page *sp;
  813. unsigned long *rmapp;
  814. sp = page_header(__pa(spte));
  815. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  816. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  817. return pte_list_add(vcpu, spte, rmapp);
  818. }
  819. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  820. {
  821. return pte_list_next(rmapp, spte);
  822. }
  823. static void rmap_remove(struct kvm *kvm, u64 *spte)
  824. {
  825. struct kvm_mmu_page *sp;
  826. gfn_t gfn;
  827. unsigned long *rmapp;
  828. sp = page_header(__pa(spte));
  829. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  830. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  831. pte_list_remove(spte, rmapp);
  832. }
  833. static void drop_spte(struct kvm *kvm, u64 *sptep)
  834. {
  835. if (mmu_spte_clear_track_bits(sptep))
  836. rmap_remove(kvm, sptep);
  837. }
  838. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  839. {
  840. unsigned long *rmapp;
  841. u64 *spte;
  842. int i, write_protected = 0;
  843. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  844. spte = rmap_next(kvm, rmapp, NULL);
  845. while (spte) {
  846. BUG_ON(!spte);
  847. BUG_ON(!(*spte & PT_PRESENT_MASK));
  848. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  849. if (is_writable_pte(*spte)) {
  850. mmu_spte_update(spte, *spte & ~PT_WRITABLE_MASK);
  851. write_protected = 1;
  852. }
  853. spte = rmap_next(kvm, rmapp, spte);
  854. }
  855. /* check for huge page mappings */
  856. for (i = PT_DIRECTORY_LEVEL;
  857. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  858. rmapp = gfn_to_rmap(kvm, gfn, i);
  859. spte = rmap_next(kvm, rmapp, NULL);
  860. while (spte) {
  861. BUG_ON(!spte);
  862. BUG_ON(!(*spte & PT_PRESENT_MASK));
  863. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  864. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  865. if (is_writable_pte(*spte)) {
  866. drop_spte(kvm, spte);
  867. --kvm->stat.lpages;
  868. spte = NULL;
  869. write_protected = 1;
  870. }
  871. spte = rmap_next(kvm, rmapp, spte);
  872. }
  873. }
  874. return write_protected;
  875. }
  876. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  877. unsigned long data)
  878. {
  879. u64 *spte;
  880. int need_tlb_flush = 0;
  881. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  882. BUG_ON(!(*spte & PT_PRESENT_MASK));
  883. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  884. drop_spte(kvm, spte);
  885. need_tlb_flush = 1;
  886. }
  887. return need_tlb_flush;
  888. }
  889. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  890. unsigned long data)
  891. {
  892. int need_flush = 0;
  893. u64 *spte, new_spte;
  894. pte_t *ptep = (pte_t *)data;
  895. pfn_t new_pfn;
  896. WARN_ON(pte_huge(*ptep));
  897. new_pfn = pte_pfn(*ptep);
  898. spte = rmap_next(kvm, rmapp, NULL);
  899. while (spte) {
  900. BUG_ON(!is_shadow_present_pte(*spte));
  901. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  902. need_flush = 1;
  903. if (pte_write(*ptep)) {
  904. drop_spte(kvm, spte);
  905. spte = rmap_next(kvm, rmapp, NULL);
  906. } else {
  907. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  908. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  909. new_spte &= ~PT_WRITABLE_MASK;
  910. new_spte &= ~SPTE_HOST_WRITEABLE;
  911. new_spte &= ~shadow_accessed_mask;
  912. mmu_spte_clear_track_bits(spte);
  913. mmu_spte_set(spte, new_spte);
  914. spte = rmap_next(kvm, rmapp, spte);
  915. }
  916. }
  917. if (need_flush)
  918. kvm_flush_remote_tlbs(kvm);
  919. return 0;
  920. }
  921. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  922. unsigned long data,
  923. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  924. unsigned long data))
  925. {
  926. int i, j;
  927. int ret;
  928. int retval = 0;
  929. struct kvm_memslots *slots;
  930. slots = kvm_memslots(kvm);
  931. for (i = 0; i < slots->nmemslots; i++) {
  932. struct kvm_memory_slot *memslot = &slots->memslots[i];
  933. unsigned long start = memslot->userspace_addr;
  934. unsigned long end;
  935. end = start + (memslot->npages << PAGE_SHIFT);
  936. if (hva >= start && hva < end) {
  937. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  938. gfn_t gfn = memslot->base_gfn + gfn_offset;
  939. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  940. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  941. struct kvm_lpage_info *linfo;
  942. linfo = lpage_info_slot(gfn, memslot,
  943. PT_DIRECTORY_LEVEL + j);
  944. ret |= handler(kvm, &linfo->rmap_pde, data);
  945. }
  946. trace_kvm_age_page(hva, memslot, ret);
  947. retval |= ret;
  948. }
  949. }
  950. return retval;
  951. }
  952. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  953. {
  954. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  955. }
  956. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  957. {
  958. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  959. }
  960. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  961. unsigned long data)
  962. {
  963. u64 *spte;
  964. int young = 0;
  965. /*
  966. * Emulate the accessed bit for EPT, by checking if this page has
  967. * an EPT mapping, and clearing it if it does. On the next access,
  968. * a new EPT mapping will be established.
  969. * This has some overhead, but not as much as the cost of swapping
  970. * out actively used pages or breaking up actively used hugepages.
  971. */
  972. if (!shadow_accessed_mask)
  973. return kvm_unmap_rmapp(kvm, rmapp, data);
  974. spte = rmap_next(kvm, rmapp, NULL);
  975. while (spte) {
  976. int _young;
  977. u64 _spte = *spte;
  978. BUG_ON(!(_spte & PT_PRESENT_MASK));
  979. _young = _spte & PT_ACCESSED_MASK;
  980. if (_young) {
  981. young = 1;
  982. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  983. }
  984. spte = rmap_next(kvm, rmapp, spte);
  985. }
  986. return young;
  987. }
  988. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  989. unsigned long data)
  990. {
  991. u64 *spte;
  992. int young = 0;
  993. /*
  994. * If there's no access bit in the secondary pte set by the
  995. * hardware it's up to gup-fast/gup to set the access bit in
  996. * the primary pte or in the page structure.
  997. */
  998. if (!shadow_accessed_mask)
  999. goto out;
  1000. spte = rmap_next(kvm, rmapp, NULL);
  1001. while (spte) {
  1002. u64 _spte = *spte;
  1003. BUG_ON(!(_spte & PT_PRESENT_MASK));
  1004. young = _spte & PT_ACCESSED_MASK;
  1005. if (young) {
  1006. young = 1;
  1007. break;
  1008. }
  1009. spte = rmap_next(kvm, rmapp, spte);
  1010. }
  1011. out:
  1012. return young;
  1013. }
  1014. #define RMAP_RECYCLE_THRESHOLD 1000
  1015. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1016. {
  1017. unsigned long *rmapp;
  1018. struct kvm_mmu_page *sp;
  1019. sp = page_header(__pa(spte));
  1020. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  1021. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  1022. kvm_flush_remote_tlbs(vcpu->kvm);
  1023. }
  1024. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  1025. {
  1026. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  1027. }
  1028. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1029. {
  1030. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1031. }
  1032. #ifdef MMU_DEBUG
  1033. static int is_empty_shadow_page(u64 *spt)
  1034. {
  1035. u64 *pos;
  1036. u64 *end;
  1037. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1038. if (is_shadow_present_pte(*pos)) {
  1039. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1040. pos, *pos);
  1041. return 0;
  1042. }
  1043. return 1;
  1044. }
  1045. #endif
  1046. /*
  1047. * This value is the sum of all of the kvm instances's
  1048. * kvm->arch.n_used_mmu_pages values. We need a global,
  1049. * aggregate version in order to make the slab shrinker
  1050. * faster
  1051. */
  1052. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1053. {
  1054. kvm->arch.n_used_mmu_pages += nr;
  1055. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1056. }
  1057. /*
  1058. * Remove the sp from shadow page cache, after call it,
  1059. * we can not find this sp from the cache, and the shadow
  1060. * page table is still valid.
  1061. * It should be under the protection of mmu lock.
  1062. */
  1063. static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
  1064. {
  1065. ASSERT(is_empty_shadow_page(sp->spt));
  1066. hlist_del(&sp->hash_link);
  1067. if (!sp->role.direct)
  1068. free_page((unsigned long)sp->gfns);
  1069. }
  1070. /*
  1071. * Free the shadow page table and the sp, we can do it
  1072. * out of the protection of mmu lock.
  1073. */
  1074. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1075. {
  1076. list_del(&sp->link);
  1077. free_page((unsigned long)sp->spt);
  1078. kmem_cache_free(mmu_page_header_cache, sp);
  1079. }
  1080. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1081. {
  1082. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1083. }
  1084. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1085. struct kvm_mmu_page *sp, u64 *parent_pte)
  1086. {
  1087. if (!parent_pte)
  1088. return;
  1089. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1090. }
  1091. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1092. u64 *parent_pte)
  1093. {
  1094. pte_list_remove(parent_pte, &sp->parent_ptes);
  1095. }
  1096. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1097. u64 *parent_pte)
  1098. {
  1099. mmu_page_remove_parent_pte(sp, parent_pte);
  1100. mmu_spte_clear_no_track(parent_pte);
  1101. }
  1102. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1103. u64 *parent_pte, int direct)
  1104. {
  1105. struct kvm_mmu_page *sp;
  1106. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
  1107. sizeof *sp);
  1108. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  1109. if (!direct)
  1110. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
  1111. PAGE_SIZE);
  1112. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1113. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1114. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  1115. sp->parent_ptes = 0;
  1116. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1117. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1118. return sp;
  1119. }
  1120. static void mark_unsync(u64 *spte);
  1121. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1122. {
  1123. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1124. }
  1125. static void mark_unsync(u64 *spte)
  1126. {
  1127. struct kvm_mmu_page *sp;
  1128. unsigned int index;
  1129. sp = page_header(__pa(spte));
  1130. index = spte - sp->spt;
  1131. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1132. return;
  1133. if (sp->unsync_children++)
  1134. return;
  1135. kvm_mmu_mark_parents_unsync(sp);
  1136. }
  1137. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1138. struct kvm_mmu_page *sp)
  1139. {
  1140. return 1;
  1141. }
  1142. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1143. {
  1144. }
  1145. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1146. struct kvm_mmu_page *sp, u64 *spte,
  1147. const void *pte)
  1148. {
  1149. WARN_ON(1);
  1150. }
  1151. #define KVM_PAGE_ARRAY_NR 16
  1152. struct kvm_mmu_pages {
  1153. struct mmu_page_and_offset {
  1154. struct kvm_mmu_page *sp;
  1155. unsigned int idx;
  1156. } page[KVM_PAGE_ARRAY_NR];
  1157. unsigned int nr;
  1158. };
  1159. #define for_each_unsync_children(bitmap, idx) \
  1160. for (idx = find_first_bit(bitmap, 512); \
  1161. idx < 512; \
  1162. idx = find_next_bit(bitmap, 512, idx+1))
  1163. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1164. int idx)
  1165. {
  1166. int i;
  1167. if (sp->unsync)
  1168. for (i=0; i < pvec->nr; i++)
  1169. if (pvec->page[i].sp == sp)
  1170. return 0;
  1171. pvec->page[pvec->nr].sp = sp;
  1172. pvec->page[pvec->nr].idx = idx;
  1173. pvec->nr++;
  1174. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1175. }
  1176. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1177. struct kvm_mmu_pages *pvec)
  1178. {
  1179. int i, ret, nr_unsync_leaf = 0;
  1180. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  1181. struct kvm_mmu_page *child;
  1182. u64 ent = sp->spt[i];
  1183. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1184. goto clear_child_bitmap;
  1185. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1186. if (child->unsync_children) {
  1187. if (mmu_pages_add(pvec, child, i))
  1188. return -ENOSPC;
  1189. ret = __mmu_unsync_walk(child, pvec);
  1190. if (!ret)
  1191. goto clear_child_bitmap;
  1192. else if (ret > 0)
  1193. nr_unsync_leaf += ret;
  1194. else
  1195. return ret;
  1196. } else if (child->unsync) {
  1197. nr_unsync_leaf++;
  1198. if (mmu_pages_add(pvec, child, i))
  1199. return -ENOSPC;
  1200. } else
  1201. goto clear_child_bitmap;
  1202. continue;
  1203. clear_child_bitmap:
  1204. __clear_bit(i, sp->unsync_child_bitmap);
  1205. sp->unsync_children--;
  1206. WARN_ON((int)sp->unsync_children < 0);
  1207. }
  1208. return nr_unsync_leaf;
  1209. }
  1210. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1211. struct kvm_mmu_pages *pvec)
  1212. {
  1213. if (!sp->unsync_children)
  1214. return 0;
  1215. mmu_pages_add(pvec, sp, 0);
  1216. return __mmu_unsync_walk(sp, pvec);
  1217. }
  1218. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1219. {
  1220. WARN_ON(!sp->unsync);
  1221. trace_kvm_mmu_sync_page(sp);
  1222. sp->unsync = 0;
  1223. --kvm->stat.mmu_unsync;
  1224. }
  1225. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1226. struct list_head *invalid_list);
  1227. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1228. struct list_head *invalid_list);
  1229. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1230. hlist_for_each_entry(sp, pos, \
  1231. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1232. if ((sp)->gfn != (gfn)) {} else
  1233. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1234. hlist_for_each_entry(sp, pos, \
  1235. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1236. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1237. (sp)->role.invalid) {} else
  1238. /* @sp->gfn should be write-protected at the call site */
  1239. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1240. struct list_head *invalid_list, bool clear_unsync)
  1241. {
  1242. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1243. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1244. return 1;
  1245. }
  1246. if (clear_unsync)
  1247. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1248. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1249. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1250. return 1;
  1251. }
  1252. kvm_mmu_flush_tlb(vcpu);
  1253. return 0;
  1254. }
  1255. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1256. struct kvm_mmu_page *sp)
  1257. {
  1258. LIST_HEAD(invalid_list);
  1259. int ret;
  1260. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1261. if (ret)
  1262. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1263. return ret;
  1264. }
  1265. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1266. struct list_head *invalid_list)
  1267. {
  1268. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1269. }
  1270. /* @gfn should be write-protected at the call site */
  1271. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1272. {
  1273. struct kvm_mmu_page *s;
  1274. struct hlist_node *node;
  1275. LIST_HEAD(invalid_list);
  1276. bool flush = false;
  1277. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1278. if (!s->unsync)
  1279. continue;
  1280. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1281. kvm_unlink_unsync_page(vcpu->kvm, s);
  1282. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1283. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1284. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1285. continue;
  1286. }
  1287. flush = true;
  1288. }
  1289. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1290. if (flush)
  1291. kvm_mmu_flush_tlb(vcpu);
  1292. }
  1293. struct mmu_page_path {
  1294. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1295. unsigned int idx[PT64_ROOT_LEVEL-1];
  1296. };
  1297. #define for_each_sp(pvec, sp, parents, i) \
  1298. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1299. sp = pvec.page[i].sp; \
  1300. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1301. i = mmu_pages_next(&pvec, &parents, i))
  1302. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1303. struct mmu_page_path *parents,
  1304. int i)
  1305. {
  1306. int n;
  1307. for (n = i+1; n < pvec->nr; n++) {
  1308. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1309. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1310. parents->idx[0] = pvec->page[n].idx;
  1311. return n;
  1312. }
  1313. parents->parent[sp->role.level-2] = sp;
  1314. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1315. }
  1316. return n;
  1317. }
  1318. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1319. {
  1320. struct kvm_mmu_page *sp;
  1321. unsigned int level = 0;
  1322. do {
  1323. unsigned int idx = parents->idx[level];
  1324. sp = parents->parent[level];
  1325. if (!sp)
  1326. return;
  1327. --sp->unsync_children;
  1328. WARN_ON((int)sp->unsync_children < 0);
  1329. __clear_bit(idx, sp->unsync_child_bitmap);
  1330. level++;
  1331. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1332. }
  1333. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1334. struct mmu_page_path *parents,
  1335. struct kvm_mmu_pages *pvec)
  1336. {
  1337. parents->parent[parent->role.level-1] = NULL;
  1338. pvec->nr = 0;
  1339. }
  1340. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1341. struct kvm_mmu_page *parent)
  1342. {
  1343. int i;
  1344. struct kvm_mmu_page *sp;
  1345. struct mmu_page_path parents;
  1346. struct kvm_mmu_pages pages;
  1347. LIST_HEAD(invalid_list);
  1348. kvm_mmu_pages_init(parent, &parents, &pages);
  1349. while (mmu_unsync_walk(parent, &pages)) {
  1350. int protected = 0;
  1351. for_each_sp(pages, sp, parents, i)
  1352. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1353. if (protected)
  1354. kvm_flush_remote_tlbs(vcpu->kvm);
  1355. for_each_sp(pages, sp, parents, i) {
  1356. kvm_sync_page(vcpu, sp, &invalid_list);
  1357. mmu_pages_clear_parents(&parents);
  1358. }
  1359. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1360. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1361. kvm_mmu_pages_init(parent, &parents, &pages);
  1362. }
  1363. }
  1364. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1365. {
  1366. int i;
  1367. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1368. sp->spt[i] = 0ull;
  1369. }
  1370. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1371. gfn_t gfn,
  1372. gva_t gaddr,
  1373. unsigned level,
  1374. int direct,
  1375. unsigned access,
  1376. u64 *parent_pte)
  1377. {
  1378. union kvm_mmu_page_role role;
  1379. unsigned quadrant;
  1380. struct kvm_mmu_page *sp;
  1381. struct hlist_node *node;
  1382. bool need_sync = false;
  1383. role = vcpu->arch.mmu.base_role;
  1384. role.level = level;
  1385. role.direct = direct;
  1386. if (role.direct)
  1387. role.cr4_pae = 0;
  1388. role.access = access;
  1389. if (!vcpu->arch.mmu.direct_map
  1390. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1391. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1392. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1393. role.quadrant = quadrant;
  1394. }
  1395. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1396. if (!need_sync && sp->unsync)
  1397. need_sync = true;
  1398. if (sp->role.word != role.word)
  1399. continue;
  1400. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1401. break;
  1402. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1403. if (sp->unsync_children) {
  1404. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1405. kvm_mmu_mark_parents_unsync(sp);
  1406. } else if (sp->unsync)
  1407. kvm_mmu_mark_parents_unsync(sp);
  1408. trace_kvm_mmu_get_page(sp, false);
  1409. return sp;
  1410. }
  1411. ++vcpu->kvm->stat.mmu_cache_miss;
  1412. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1413. if (!sp)
  1414. return sp;
  1415. sp->gfn = gfn;
  1416. sp->role = role;
  1417. hlist_add_head(&sp->hash_link,
  1418. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1419. if (!direct) {
  1420. if (rmap_write_protect(vcpu->kvm, gfn))
  1421. kvm_flush_remote_tlbs(vcpu->kvm);
  1422. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1423. kvm_sync_pages(vcpu, gfn);
  1424. account_shadowed(vcpu->kvm, gfn);
  1425. }
  1426. init_shadow_page_table(sp);
  1427. trace_kvm_mmu_get_page(sp, true);
  1428. return sp;
  1429. }
  1430. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1431. struct kvm_vcpu *vcpu, u64 addr)
  1432. {
  1433. iterator->addr = addr;
  1434. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1435. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1436. if (iterator->level == PT64_ROOT_LEVEL &&
  1437. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1438. !vcpu->arch.mmu.direct_map)
  1439. --iterator->level;
  1440. if (iterator->level == PT32E_ROOT_LEVEL) {
  1441. iterator->shadow_addr
  1442. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1443. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1444. --iterator->level;
  1445. if (!iterator->shadow_addr)
  1446. iterator->level = 0;
  1447. }
  1448. }
  1449. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1450. {
  1451. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1452. return false;
  1453. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1454. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1455. return true;
  1456. }
  1457. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1458. u64 spte)
  1459. {
  1460. if (is_last_spte(spte, iterator->level)) {
  1461. iterator->level = 0;
  1462. return;
  1463. }
  1464. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1465. --iterator->level;
  1466. }
  1467. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1468. {
  1469. return __shadow_walk_next(iterator, *iterator->sptep);
  1470. }
  1471. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1472. {
  1473. u64 spte;
  1474. spte = __pa(sp->spt)
  1475. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1476. | PT_WRITABLE_MASK | PT_USER_MASK;
  1477. mmu_spte_set(sptep, spte);
  1478. }
  1479. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  1480. {
  1481. if (is_large_pte(*sptep)) {
  1482. drop_spte(vcpu->kvm, sptep);
  1483. kvm_flush_remote_tlbs(vcpu->kvm);
  1484. }
  1485. }
  1486. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1487. unsigned direct_access)
  1488. {
  1489. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1490. struct kvm_mmu_page *child;
  1491. /*
  1492. * For the direct sp, if the guest pte's dirty bit
  1493. * changed form clean to dirty, it will corrupt the
  1494. * sp's access: allow writable in the read-only sp,
  1495. * so we should update the spte at this point to get
  1496. * a new sp with the correct access.
  1497. */
  1498. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1499. if (child->role.access == direct_access)
  1500. return;
  1501. drop_parent_pte(child, sptep);
  1502. kvm_flush_remote_tlbs(vcpu->kvm);
  1503. }
  1504. }
  1505. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1506. u64 *spte)
  1507. {
  1508. u64 pte;
  1509. struct kvm_mmu_page *child;
  1510. pte = *spte;
  1511. if (is_shadow_present_pte(pte)) {
  1512. if (is_last_spte(pte, sp->role.level)) {
  1513. drop_spte(kvm, spte);
  1514. if (is_large_pte(pte))
  1515. --kvm->stat.lpages;
  1516. } else {
  1517. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1518. drop_parent_pte(child, spte);
  1519. }
  1520. return true;
  1521. }
  1522. if (is_mmio_spte(pte))
  1523. mmu_spte_clear_no_track(spte);
  1524. return false;
  1525. }
  1526. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1527. struct kvm_mmu_page *sp)
  1528. {
  1529. unsigned i;
  1530. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1531. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1532. }
  1533. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1534. {
  1535. mmu_page_remove_parent_pte(sp, parent_pte);
  1536. }
  1537. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1538. {
  1539. int i;
  1540. struct kvm_vcpu *vcpu;
  1541. kvm_for_each_vcpu(i, vcpu, kvm)
  1542. vcpu->arch.last_pte_updated = NULL;
  1543. }
  1544. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1545. {
  1546. u64 *parent_pte;
  1547. while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
  1548. drop_parent_pte(sp, parent_pte);
  1549. }
  1550. static int mmu_zap_unsync_children(struct kvm *kvm,
  1551. struct kvm_mmu_page *parent,
  1552. struct list_head *invalid_list)
  1553. {
  1554. int i, zapped = 0;
  1555. struct mmu_page_path parents;
  1556. struct kvm_mmu_pages pages;
  1557. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1558. return 0;
  1559. kvm_mmu_pages_init(parent, &parents, &pages);
  1560. while (mmu_unsync_walk(parent, &pages)) {
  1561. struct kvm_mmu_page *sp;
  1562. for_each_sp(pages, sp, parents, i) {
  1563. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1564. mmu_pages_clear_parents(&parents);
  1565. zapped++;
  1566. }
  1567. kvm_mmu_pages_init(parent, &parents, &pages);
  1568. }
  1569. return zapped;
  1570. }
  1571. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1572. struct list_head *invalid_list)
  1573. {
  1574. int ret;
  1575. trace_kvm_mmu_prepare_zap_page(sp);
  1576. ++kvm->stat.mmu_shadow_zapped;
  1577. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1578. kvm_mmu_page_unlink_children(kvm, sp);
  1579. kvm_mmu_unlink_parents(kvm, sp);
  1580. if (!sp->role.invalid && !sp->role.direct)
  1581. unaccount_shadowed(kvm, sp->gfn);
  1582. if (sp->unsync)
  1583. kvm_unlink_unsync_page(kvm, sp);
  1584. if (!sp->root_count) {
  1585. /* Count self */
  1586. ret++;
  1587. list_move(&sp->link, invalid_list);
  1588. kvm_mod_used_mmu_pages(kvm, -1);
  1589. } else {
  1590. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1591. kvm_reload_remote_mmus(kvm);
  1592. }
  1593. sp->role.invalid = 1;
  1594. kvm_mmu_reset_last_pte_updated(kvm);
  1595. return ret;
  1596. }
  1597. static void kvm_mmu_isolate_pages(struct list_head *invalid_list)
  1598. {
  1599. struct kvm_mmu_page *sp;
  1600. list_for_each_entry(sp, invalid_list, link)
  1601. kvm_mmu_isolate_page(sp);
  1602. }
  1603. static void free_pages_rcu(struct rcu_head *head)
  1604. {
  1605. struct kvm_mmu_page *next, *sp;
  1606. sp = container_of(head, struct kvm_mmu_page, rcu);
  1607. while (sp) {
  1608. if (!list_empty(&sp->link))
  1609. next = list_first_entry(&sp->link,
  1610. struct kvm_mmu_page, link);
  1611. else
  1612. next = NULL;
  1613. kvm_mmu_free_page(sp);
  1614. sp = next;
  1615. }
  1616. }
  1617. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1618. struct list_head *invalid_list)
  1619. {
  1620. struct kvm_mmu_page *sp;
  1621. if (list_empty(invalid_list))
  1622. return;
  1623. kvm_flush_remote_tlbs(kvm);
  1624. if (atomic_read(&kvm->arch.reader_counter)) {
  1625. kvm_mmu_isolate_pages(invalid_list);
  1626. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1627. list_del_init(invalid_list);
  1628. trace_kvm_mmu_delay_free_pages(sp);
  1629. call_rcu(&sp->rcu, free_pages_rcu);
  1630. return;
  1631. }
  1632. do {
  1633. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1634. WARN_ON(!sp->role.invalid || sp->root_count);
  1635. kvm_mmu_isolate_page(sp);
  1636. kvm_mmu_free_page(sp);
  1637. } while (!list_empty(invalid_list));
  1638. }
  1639. /*
  1640. * Changing the number of mmu pages allocated to the vm
  1641. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1642. */
  1643. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1644. {
  1645. LIST_HEAD(invalid_list);
  1646. /*
  1647. * If we set the number of mmu pages to be smaller be than the
  1648. * number of actived pages , we must to free some mmu pages before we
  1649. * change the value
  1650. */
  1651. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1652. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1653. !list_empty(&kvm->arch.active_mmu_pages)) {
  1654. struct kvm_mmu_page *page;
  1655. page = container_of(kvm->arch.active_mmu_pages.prev,
  1656. struct kvm_mmu_page, link);
  1657. kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
  1658. }
  1659. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1660. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1661. }
  1662. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1663. }
  1664. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1665. {
  1666. struct kvm_mmu_page *sp;
  1667. struct hlist_node *node;
  1668. LIST_HEAD(invalid_list);
  1669. int r;
  1670. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1671. r = 0;
  1672. spin_lock(&kvm->mmu_lock);
  1673. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1674. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1675. sp->role.word);
  1676. r = 1;
  1677. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1678. }
  1679. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1680. spin_unlock(&kvm->mmu_lock);
  1681. return r;
  1682. }
  1683. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  1684. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1685. {
  1686. struct kvm_mmu_page *sp;
  1687. struct hlist_node *node;
  1688. LIST_HEAD(invalid_list);
  1689. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1690. pgprintk("%s: zap %llx %x\n",
  1691. __func__, gfn, sp->role.word);
  1692. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1693. }
  1694. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1695. }
  1696. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1697. {
  1698. int slot = memslot_id(kvm, gfn);
  1699. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1700. __set_bit(slot, sp->slot_bitmap);
  1701. }
  1702. /*
  1703. * The function is based on mtrr_type_lookup() in
  1704. * arch/x86/kernel/cpu/mtrr/generic.c
  1705. */
  1706. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1707. u64 start, u64 end)
  1708. {
  1709. int i;
  1710. u64 base, mask;
  1711. u8 prev_match, curr_match;
  1712. int num_var_ranges = KVM_NR_VAR_MTRR;
  1713. if (!mtrr_state->enabled)
  1714. return 0xFF;
  1715. /* Make end inclusive end, instead of exclusive */
  1716. end--;
  1717. /* Look in fixed ranges. Just return the type as per start */
  1718. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1719. int idx;
  1720. if (start < 0x80000) {
  1721. idx = 0;
  1722. idx += (start >> 16);
  1723. return mtrr_state->fixed_ranges[idx];
  1724. } else if (start < 0xC0000) {
  1725. idx = 1 * 8;
  1726. idx += ((start - 0x80000) >> 14);
  1727. return mtrr_state->fixed_ranges[idx];
  1728. } else if (start < 0x1000000) {
  1729. idx = 3 * 8;
  1730. idx += ((start - 0xC0000) >> 12);
  1731. return mtrr_state->fixed_ranges[idx];
  1732. }
  1733. }
  1734. /*
  1735. * Look in variable ranges
  1736. * Look of multiple ranges matching this address and pick type
  1737. * as per MTRR precedence
  1738. */
  1739. if (!(mtrr_state->enabled & 2))
  1740. return mtrr_state->def_type;
  1741. prev_match = 0xFF;
  1742. for (i = 0; i < num_var_ranges; ++i) {
  1743. unsigned short start_state, end_state;
  1744. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1745. continue;
  1746. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1747. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1748. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1749. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1750. start_state = ((start & mask) == (base & mask));
  1751. end_state = ((end & mask) == (base & mask));
  1752. if (start_state != end_state)
  1753. return 0xFE;
  1754. if ((start & mask) != (base & mask))
  1755. continue;
  1756. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1757. if (prev_match == 0xFF) {
  1758. prev_match = curr_match;
  1759. continue;
  1760. }
  1761. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1762. curr_match == MTRR_TYPE_UNCACHABLE)
  1763. return MTRR_TYPE_UNCACHABLE;
  1764. if ((prev_match == MTRR_TYPE_WRBACK &&
  1765. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1766. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1767. curr_match == MTRR_TYPE_WRBACK)) {
  1768. prev_match = MTRR_TYPE_WRTHROUGH;
  1769. curr_match = MTRR_TYPE_WRTHROUGH;
  1770. }
  1771. if (prev_match != curr_match)
  1772. return MTRR_TYPE_UNCACHABLE;
  1773. }
  1774. if (prev_match != 0xFF)
  1775. return prev_match;
  1776. return mtrr_state->def_type;
  1777. }
  1778. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1779. {
  1780. u8 mtrr;
  1781. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1782. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1783. if (mtrr == 0xfe || mtrr == 0xff)
  1784. mtrr = MTRR_TYPE_WRBACK;
  1785. return mtrr;
  1786. }
  1787. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1788. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1789. {
  1790. trace_kvm_mmu_unsync_page(sp);
  1791. ++vcpu->kvm->stat.mmu_unsync;
  1792. sp->unsync = 1;
  1793. kvm_mmu_mark_parents_unsync(sp);
  1794. }
  1795. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1796. {
  1797. struct kvm_mmu_page *s;
  1798. struct hlist_node *node;
  1799. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1800. if (s->unsync)
  1801. continue;
  1802. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1803. __kvm_unsync_page(vcpu, s);
  1804. }
  1805. }
  1806. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1807. bool can_unsync)
  1808. {
  1809. struct kvm_mmu_page *s;
  1810. struct hlist_node *node;
  1811. bool need_unsync = false;
  1812. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1813. if (!can_unsync)
  1814. return 1;
  1815. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1816. return 1;
  1817. if (!need_unsync && !s->unsync) {
  1818. if (!oos_shadow)
  1819. return 1;
  1820. need_unsync = true;
  1821. }
  1822. }
  1823. if (need_unsync)
  1824. kvm_unsync_pages(vcpu, gfn);
  1825. return 0;
  1826. }
  1827. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1828. unsigned pte_access, int user_fault,
  1829. int write_fault, int level,
  1830. gfn_t gfn, pfn_t pfn, bool speculative,
  1831. bool can_unsync, bool host_writable)
  1832. {
  1833. u64 spte, entry = *sptep;
  1834. int ret = 0;
  1835. if (set_mmio_spte(sptep, gfn, pfn, pte_access))
  1836. return 0;
  1837. spte = PT_PRESENT_MASK;
  1838. if (!speculative)
  1839. spte |= shadow_accessed_mask;
  1840. if (pte_access & ACC_EXEC_MASK)
  1841. spte |= shadow_x_mask;
  1842. else
  1843. spte |= shadow_nx_mask;
  1844. if (pte_access & ACC_USER_MASK)
  1845. spte |= shadow_user_mask;
  1846. if (level > PT_PAGE_TABLE_LEVEL)
  1847. spte |= PT_PAGE_SIZE_MASK;
  1848. if (tdp_enabled)
  1849. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1850. kvm_is_mmio_pfn(pfn));
  1851. if (host_writable)
  1852. spte |= SPTE_HOST_WRITEABLE;
  1853. else
  1854. pte_access &= ~ACC_WRITE_MASK;
  1855. spte |= (u64)pfn << PAGE_SHIFT;
  1856. if ((pte_access & ACC_WRITE_MASK)
  1857. || (!vcpu->arch.mmu.direct_map && write_fault
  1858. && !is_write_protection(vcpu) && !user_fault)) {
  1859. if (level > PT_PAGE_TABLE_LEVEL &&
  1860. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1861. ret = 1;
  1862. drop_spte(vcpu->kvm, sptep);
  1863. goto done;
  1864. }
  1865. spte |= PT_WRITABLE_MASK;
  1866. if (!vcpu->arch.mmu.direct_map
  1867. && !(pte_access & ACC_WRITE_MASK)) {
  1868. spte &= ~PT_USER_MASK;
  1869. /*
  1870. * If we converted a user page to a kernel page,
  1871. * so that the kernel can write to it when cr0.wp=0,
  1872. * then we should prevent the kernel from executing it
  1873. * if SMEP is enabled.
  1874. */
  1875. if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
  1876. spte |= PT64_NX_MASK;
  1877. }
  1878. /*
  1879. * Optimization: for pte sync, if spte was writable the hash
  1880. * lookup is unnecessary (and expensive). Write protection
  1881. * is responsibility of mmu_get_page / kvm_sync_page.
  1882. * Same reasoning can be applied to dirty page accounting.
  1883. */
  1884. if (!can_unsync && is_writable_pte(*sptep))
  1885. goto set_pte;
  1886. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1887. pgprintk("%s: found shadow page for %llx, marking ro\n",
  1888. __func__, gfn);
  1889. ret = 1;
  1890. pte_access &= ~ACC_WRITE_MASK;
  1891. if (is_writable_pte(spte))
  1892. spte &= ~PT_WRITABLE_MASK;
  1893. }
  1894. }
  1895. if (pte_access & ACC_WRITE_MASK)
  1896. mark_page_dirty(vcpu->kvm, gfn);
  1897. set_pte:
  1898. mmu_spte_update(sptep, spte);
  1899. /*
  1900. * If we overwrite a writable spte with a read-only one we
  1901. * should flush remote TLBs. Otherwise rmap_write_protect
  1902. * will find a read-only spte, even though the writable spte
  1903. * might be cached on a CPU's TLB.
  1904. */
  1905. if (is_writable_pte(entry) && !is_writable_pte(*sptep))
  1906. kvm_flush_remote_tlbs(vcpu->kvm);
  1907. done:
  1908. return ret;
  1909. }
  1910. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1911. unsigned pt_access, unsigned pte_access,
  1912. int user_fault, int write_fault,
  1913. int *emulate, int level, gfn_t gfn,
  1914. pfn_t pfn, bool speculative,
  1915. bool host_writable)
  1916. {
  1917. int was_rmapped = 0;
  1918. int rmap_count;
  1919. pgprintk("%s: spte %llx access %x write_fault %d"
  1920. " user_fault %d gfn %llx\n",
  1921. __func__, *sptep, pt_access,
  1922. write_fault, user_fault, gfn);
  1923. if (is_rmap_spte(*sptep)) {
  1924. /*
  1925. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1926. * the parent of the now unreachable PTE.
  1927. */
  1928. if (level > PT_PAGE_TABLE_LEVEL &&
  1929. !is_large_pte(*sptep)) {
  1930. struct kvm_mmu_page *child;
  1931. u64 pte = *sptep;
  1932. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1933. drop_parent_pte(child, sptep);
  1934. kvm_flush_remote_tlbs(vcpu->kvm);
  1935. } else if (pfn != spte_to_pfn(*sptep)) {
  1936. pgprintk("hfn old %llx new %llx\n",
  1937. spte_to_pfn(*sptep), pfn);
  1938. drop_spte(vcpu->kvm, sptep);
  1939. kvm_flush_remote_tlbs(vcpu->kvm);
  1940. } else
  1941. was_rmapped = 1;
  1942. }
  1943. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1944. level, gfn, pfn, speculative, true,
  1945. host_writable)) {
  1946. if (write_fault)
  1947. *emulate = 1;
  1948. kvm_mmu_flush_tlb(vcpu);
  1949. }
  1950. if (unlikely(is_mmio_spte(*sptep) && emulate))
  1951. *emulate = 1;
  1952. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1953. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  1954. is_large_pte(*sptep)? "2MB" : "4kB",
  1955. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1956. *sptep, sptep);
  1957. if (!was_rmapped && is_large_pte(*sptep))
  1958. ++vcpu->kvm->stat.lpages;
  1959. if (is_shadow_present_pte(*sptep)) {
  1960. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1961. if (!was_rmapped) {
  1962. rmap_count = rmap_add(vcpu, sptep, gfn);
  1963. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1964. rmap_recycle(vcpu, sptep, gfn);
  1965. }
  1966. }
  1967. kvm_release_pfn_clean(pfn);
  1968. if (speculative)
  1969. vcpu->arch.last_pte_updated = sptep;
  1970. }
  1971. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1972. {
  1973. }
  1974. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  1975. bool no_dirty_log)
  1976. {
  1977. struct kvm_memory_slot *slot;
  1978. unsigned long hva;
  1979. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  1980. if (!slot) {
  1981. get_page(fault_page);
  1982. return page_to_pfn(fault_page);
  1983. }
  1984. hva = gfn_to_hva_memslot(slot, gfn);
  1985. return hva_to_pfn_atomic(vcpu->kvm, hva);
  1986. }
  1987. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  1988. struct kvm_mmu_page *sp,
  1989. u64 *start, u64 *end)
  1990. {
  1991. struct page *pages[PTE_PREFETCH_NUM];
  1992. unsigned access = sp->role.access;
  1993. int i, ret;
  1994. gfn_t gfn;
  1995. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  1996. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  1997. return -1;
  1998. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  1999. if (ret <= 0)
  2000. return -1;
  2001. for (i = 0; i < ret; i++, gfn++, start++)
  2002. mmu_set_spte(vcpu, start, ACC_ALL,
  2003. access, 0, 0, NULL,
  2004. sp->role.level, gfn,
  2005. page_to_pfn(pages[i]), true, true);
  2006. return 0;
  2007. }
  2008. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2009. struct kvm_mmu_page *sp, u64 *sptep)
  2010. {
  2011. u64 *spte, *start = NULL;
  2012. int i;
  2013. WARN_ON(!sp->role.direct);
  2014. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2015. spte = sp->spt + i;
  2016. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2017. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2018. if (!start)
  2019. continue;
  2020. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2021. break;
  2022. start = NULL;
  2023. } else if (!start)
  2024. start = spte;
  2025. }
  2026. }
  2027. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2028. {
  2029. struct kvm_mmu_page *sp;
  2030. /*
  2031. * Since it's no accessed bit on EPT, it's no way to
  2032. * distinguish between actually accessed translations
  2033. * and prefetched, so disable pte prefetch if EPT is
  2034. * enabled.
  2035. */
  2036. if (!shadow_accessed_mask)
  2037. return;
  2038. sp = page_header(__pa(sptep));
  2039. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2040. return;
  2041. __direct_pte_prefetch(vcpu, sp, sptep);
  2042. }
  2043. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2044. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2045. bool prefault)
  2046. {
  2047. struct kvm_shadow_walk_iterator iterator;
  2048. struct kvm_mmu_page *sp;
  2049. int emulate = 0;
  2050. gfn_t pseudo_gfn;
  2051. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2052. if (iterator.level == level) {
  2053. unsigned pte_access = ACC_ALL;
  2054. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
  2055. 0, write, &emulate,
  2056. level, gfn, pfn, prefault, map_writable);
  2057. direct_pte_prefetch(vcpu, iterator.sptep);
  2058. ++vcpu->stat.pf_fixed;
  2059. break;
  2060. }
  2061. if (!is_shadow_present_pte(*iterator.sptep)) {
  2062. u64 base_addr = iterator.addr;
  2063. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2064. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2065. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2066. iterator.level - 1,
  2067. 1, ACC_ALL, iterator.sptep);
  2068. if (!sp) {
  2069. pgprintk("nonpaging_map: ENOMEM\n");
  2070. kvm_release_pfn_clean(pfn);
  2071. return -ENOMEM;
  2072. }
  2073. mmu_spte_set(iterator.sptep,
  2074. __pa(sp->spt)
  2075. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  2076. | shadow_user_mask | shadow_x_mask
  2077. | shadow_accessed_mask);
  2078. }
  2079. }
  2080. return emulate;
  2081. }
  2082. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2083. {
  2084. siginfo_t info;
  2085. info.si_signo = SIGBUS;
  2086. info.si_errno = 0;
  2087. info.si_code = BUS_MCEERR_AR;
  2088. info.si_addr = (void __user *)address;
  2089. info.si_addr_lsb = PAGE_SHIFT;
  2090. send_sig_info(SIGBUS, &info, tsk);
  2091. }
  2092. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2093. {
  2094. kvm_release_pfn_clean(pfn);
  2095. if (is_hwpoison_pfn(pfn)) {
  2096. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  2097. return 0;
  2098. }
  2099. return -EFAULT;
  2100. }
  2101. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2102. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2103. {
  2104. pfn_t pfn = *pfnp;
  2105. gfn_t gfn = *gfnp;
  2106. int level = *levelp;
  2107. /*
  2108. * Check if it's a transparent hugepage. If this would be an
  2109. * hugetlbfs page, level wouldn't be set to
  2110. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2111. * here.
  2112. */
  2113. if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  2114. level == PT_PAGE_TABLE_LEVEL &&
  2115. PageTransCompound(pfn_to_page(pfn)) &&
  2116. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  2117. unsigned long mask;
  2118. /*
  2119. * mmu_notifier_retry was successful and we hold the
  2120. * mmu_lock here, so the pmd can't become splitting
  2121. * from under us, and in turn
  2122. * __split_huge_page_refcount() can't run from under
  2123. * us and we can safely transfer the refcount from
  2124. * PG_tail to PG_head as we switch the pfn to tail to
  2125. * head.
  2126. */
  2127. *levelp = level = PT_DIRECTORY_LEVEL;
  2128. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2129. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2130. if (pfn & mask) {
  2131. gfn &= ~mask;
  2132. *gfnp = gfn;
  2133. kvm_release_pfn_clean(pfn);
  2134. pfn &= ~mask;
  2135. if (!get_page_unless_zero(pfn_to_page(pfn)))
  2136. BUG();
  2137. *pfnp = pfn;
  2138. }
  2139. }
  2140. }
  2141. static bool mmu_invalid_pfn(pfn_t pfn)
  2142. {
  2143. return unlikely(is_invalid_pfn(pfn));
  2144. }
  2145. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2146. pfn_t pfn, unsigned access, int *ret_val)
  2147. {
  2148. bool ret = true;
  2149. /* The pfn is invalid, report the error! */
  2150. if (unlikely(is_invalid_pfn(pfn))) {
  2151. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2152. goto exit;
  2153. }
  2154. if (unlikely(is_noslot_pfn(pfn)))
  2155. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2156. ret = false;
  2157. exit:
  2158. return ret;
  2159. }
  2160. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2161. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2162. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
  2163. bool prefault)
  2164. {
  2165. int r;
  2166. int level;
  2167. int force_pt_level;
  2168. pfn_t pfn;
  2169. unsigned long mmu_seq;
  2170. bool map_writable;
  2171. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2172. if (likely(!force_pt_level)) {
  2173. level = mapping_level(vcpu, gfn);
  2174. /*
  2175. * This path builds a PAE pagetable - so we can map
  2176. * 2mb pages at maximum. Therefore check if the level
  2177. * is larger than that.
  2178. */
  2179. if (level > PT_DIRECTORY_LEVEL)
  2180. level = PT_DIRECTORY_LEVEL;
  2181. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2182. } else
  2183. level = PT_PAGE_TABLE_LEVEL;
  2184. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2185. smp_rmb();
  2186. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2187. return 0;
  2188. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2189. return r;
  2190. spin_lock(&vcpu->kvm->mmu_lock);
  2191. if (mmu_notifier_retry(vcpu, mmu_seq))
  2192. goto out_unlock;
  2193. kvm_mmu_free_some_pages(vcpu);
  2194. if (likely(!force_pt_level))
  2195. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2196. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2197. prefault);
  2198. spin_unlock(&vcpu->kvm->mmu_lock);
  2199. return r;
  2200. out_unlock:
  2201. spin_unlock(&vcpu->kvm->mmu_lock);
  2202. kvm_release_pfn_clean(pfn);
  2203. return 0;
  2204. }
  2205. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2206. {
  2207. int i;
  2208. struct kvm_mmu_page *sp;
  2209. LIST_HEAD(invalid_list);
  2210. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2211. return;
  2212. spin_lock(&vcpu->kvm->mmu_lock);
  2213. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2214. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2215. vcpu->arch.mmu.direct_map)) {
  2216. hpa_t root = vcpu->arch.mmu.root_hpa;
  2217. sp = page_header(root);
  2218. --sp->root_count;
  2219. if (!sp->root_count && sp->role.invalid) {
  2220. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2221. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2222. }
  2223. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2224. spin_unlock(&vcpu->kvm->mmu_lock);
  2225. return;
  2226. }
  2227. for (i = 0; i < 4; ++i) {
  2228. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2229. if (root) {
  2230. root &= PT64_BASE_ADDR_MASK;
  2231. sp = page_header(root);
  2232. --sp->root_count;
  2233. if (!sp->root_count && sp->role.invalid)
  2234. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2235. &invalid_list);
  2236. }
  2237. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2238. }
  2239. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2240. spin_unlock(&vcpu->kvm->mmu_lock);
  2241. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2242. }
  2243. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2244. {
  2245. int ret = 0;
  2246. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2247. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2248. ret = 1;
  2249. }
  2250. return ret;
  2251. }
  2252. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2253. {
  2254. struct kvm_mmu_page *sp;
  2255. unsigned i;
  2256. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2257. spin_lock(&vcpu->kvm->mmu_lock);
  2258. kvm_mmu_free_some_pages(vcpu);
  2259. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2260. 1, ACC_ALL, NULL);
  2261. ++sp->root_count;
  2262. spin_unlock(&vcpu->kvm->mmu_lock);
  2263. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2264. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2265. for (i = 0; i < 4; ++i) {
  2266. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2267. ASSERT(!VALID_PAGE(root));
  2268. spin_lock(&vcpu->kvm->mmu_lock);
  2269. kvm_mmu_free_some_pages(vcpu);
  2270. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2271. i << 30,
  2272. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2273. NULL);
  2274. root = __pa(sp->spt);
  2275. ++sp->root_count;
  2276. spin_unlock(&vcpu->kvm->mmu_lock);
  2277. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2278. }
  2279. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2280. } else
  2281. BUG();
  2282. return 0;
  2283. }
  2284. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2285. {
  2286. struct kvm_mmu_page *sp;
  2287. u64 pdptr, pm_mask;
  2288. gfn_t root_gfn;
  2289. int i;
  2290. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2291. if (mmu_check_root(vcpu, root_gfn))
  2292. return 1;
  2293. /*
  2294. * Do we shadow a long mode page table? If so we need to
  2295. * write-protect the guests page table root.
  2296. */
  2297. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2298. hpa_t root = vcpu->arch.mmu.root_hpa;
  2299. ASSERT(!VALID_PAGE(root));
  2300. spin_lock(&vcpu->kvm->mmu_lock);
  2301. kvm_mmu_free_some_pages(vcpu);
  2302. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2303. 0, ACC_ALL, NULL);
  2304. root = __pa(sp->spt);
  2305. ++sp->root_count;
  2306. spin_unlock(&vcpu->kvm->mmu_lock);
  2307. vcpu->arch.mmu.root_hpa = root;
  2308. return 0;
  2309. }
  2310. /*
  2311. * We shadow a 32 bit page table. This may be a legacy 2-level
  2312. * or a PAE 3-level page table. In either case we need to be aware that
  2313. * the shadow page table may be a PAE or a long mode page table.
  2314. */
  2315. pm_mask = PT_PRESENT_MASK;
  2316. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2317. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2318. for (i = 0; i < 4; ++i) {
  2319. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2320. ASSERT(!VALID_PAGE(root));
  2321. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2322. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2323. if (!is_present_gpte(pdptr)) {
  2324. vcpu->arch.mmu.pae_root[i] = 0;
  2325. continue;
  2326. }
  2327. root_gfn = pdptr >> PAGE_SHIFT;
  2328. if (mmu_check_root(vcpu, root_gfn))
  2329. return 1;
  2330. }
  2331. spin_lock(&vcpu->kvm->mmu_lock);
  2332. kvm_mmu_free_some_pages(vcpu);
  2333. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2334. PT32_ROOT_LEVEL, 0,
  2335. ACC_ALL, NULL);
  2336. root = __pa(sp->spt);
  2337. ++sp->root_count;
  2338. spin_unlock(&vcpu->kvm->mmu_lock);
  2339. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2340. }
  2341. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2342. /*
  2343. * If we shadow a 32 bit page table with a long mode page
  2344. * table we enter this path.
  2345. */
  2346. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2347. if (vcpu->arch.mmu.lm_root == NULL) {
  2348. /*
  2349. * The additional page necessary for this is only
  2350. * allocated on demand.
  2351. */
  2352. u64 *lm_root;
  2353. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2354. if (lm_root == NULL)
  2355. return 1;
  2356. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2357. vcpu->arch.mmu.lm_root = lm_root;
  2358. }
  2359. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2360. }
  2361. return 0;
  2362. }
  2363. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2364. {
  2365. if (vcpu->arch.mmu.direct_map)
  2366. return mmu_alloc_direct_roots(vcpu);
  2367. else
  2368. return mmu_alloc_shadow_roots(vcpu);
  2369. }
  2370. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2371. {
  2372. int i;
  2373. struct kvm_mmu_page *sp;
  2374. if (vcpu->arch.mmu.direct_map)
  2375. return;
  2376. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2377. return;
  2378. vcpu_clear_mmio_info(vcpu, ~0ul);
  2379. trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2380. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2381. hpa_t root = vcpu->arch.mmu.root_hpa;
  2382. sp = page_header(root);
  2383. mmu_sync_children(vcpu, sp);
  2384. trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2385. return;
  2386. }
  2387. for (i = 0; i < 4; ++i) {
  2388. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2389. if (root && VALID_PAGE(root)) {
  2390. root &= PT64_BASE_ADDR_MASK;
  2391. sp = page_header(root);
  2392. mmu_sync_children(vcpu, sp);
  2393. }
  2394. }
  2395. trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2396. }
  2397. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2398. {
  2399. spin_lock(&vcpu->kvm->mmu_lock);
  2400. mmu_sync_roots(vcpu);
  2401. spin_unlock(&vcpu->kvm->mmu_lock);
  2402. }
  2403. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2404. u32 access, struct x86_exception *exception)
  2405. {
  2406. if (exception)
  2407. exception->error_code = 0;
  2408. return vaddr;
  2409. }
  2410. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2411. u32 access,
  2412. struct x86_exception *exception)
  2413. {
  2414. if (exception)
  2415. exception->error_code = 0;
  2416. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2417. }
  2418. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2419. {
  2420. if (direct)
  2421. return vcpu_match_mmio_gpa(vcpu, addr);
  2422. return vcpu_match_mmio_gva(vcpu, addr);
  2423. }
  2424. /*
  2425. * On direct hosts, the last spte is only allows two states
  2426. * for mmio page fault:
  2427. * - It is the mmio spte
  2428. * - It is zapped or it is being zapped.
  2429. *
  2430. * This function completely checks the spte when the last spte
  2431. * is not the mmio spte.
  2432. */
  2433. static bool check_direct_spte_mmio_pf(u64 spte)
  2434. {
  2435. return __check_direct_spte_mmio_pf(spte);
  2436. }
  2437. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2438. {
  2439. struct kvm_shadow_walk_iterator iterator;
  2440. u64 spte = 0ull;
  2441. walk_shadow_page_lockless_begin(vcpu);
  2442. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2443. if (!is_shadow_present_pte(spte))
  2444. break;
  2445. walk_shadow_page_lockless_end(vcpu);
  2446. return spte;
  2447. }
  2448. /*
  2449. * If it is a real mmio page fault, return 1 and emulat the instruction
  2450. * directly, return 0 to let CPU fault again on the address, -1 is
  2451. * returned if bug is detected.
  2452. */
  2453. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2454. {
  2455. u64 spte;
  2456. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2457. return 1;
  2458. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2459. if (is_mmio_spte(spte)) {
  2460. gfn_t gfn = get_mmio_spte_gfn(spte);
  2461. unsigned access = get_mmio_spte_access(spte);
  2462. if (direct)
  2463. addr = 0;
  2464. trace_handle_mmio_page_fault(addr, gfn, access);
  2465. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2466. return 1;
  2467. }
  2468. /*
  2469. * It's ok if the gva is remapped by other cpus on shadow guest,
  2470. * it's a BUG if the gfn is not a mmio page.
  2471. */
  2472. if (direct && !check_direct_spte_mmio_pf(spte))
  2473. return -1;
  2474. /*
  2475. * If the page table is zapped by other cpus, let CPU fault again on
  2476. * the address.
  2477. */
  2478. return 0;
  2479. }
  2480. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2481. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2482. u32 error_code, bool direct)
  2483. {
  2484. int ret;
  2485. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2486. WARN_ON(ret < 0);
  2487. return ret;
  2488. }
  2489. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2490. u32 error_code, bool prefault)
  2491. {
  2492. gfn_t gfn;
  2493. int r;
  2494. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2495. if (unlikely(error_code & PFERR_RSVD_MASK))
  2496. return handle_mmio_page_fault(vcpu, gva, error_code, true);
  2497. r = mmu_topup_memory_caches(vcpu);
  2498. if (r)
  2499. return r;
  2500. ASSERT(vcpu);
  2501. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2502. gfn = gva >> PAGE_SHIFT;
  2503. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2504. error_code & PFERR_WRITE_MASK, gfn, prefault);
  2505. }
  2506. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2507. {
  2508. struct kvm_arch_async_pf arch;
  2509. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2510. arch.gfn = gfn;
  2511. arch.direct_map = vcpu->arch.mmu.direct_map;
  2512. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2513. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2514. }
  2515. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2516. {
  2517. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2518. kvm_event_needs_reinjection(vcpu)))
  2519. return false;
  2520. return kvm_x86_ops->interrupt_allowed(vcpu);
  2521. }
  2522. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2523. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2524. {
  2525. bool async;
  2526. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2527. if (!async)
  2528. return false; /* *pfn has correct page already */
  2529. put_page(pfn_to_page(*pfn));
  2530. if (!prefault && can_do_async_pf(vcpu)) {
  2531. trace_kvm_try_async_get_page(gva, gfn);
  2532. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2533. trace_kvm_async_pf_doublefault(gva, gfn);
  2534. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2535. return true;
  2536. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2537. return true;
  2538. }
  2539. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2540. return false;
  2541. }
  2542. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2543. bool prefault)
  2544. {
  2545. pfn_t pfn;
  2546. int r;
  2547. int level;
  2548. int force_pt_level;
  2549. gfn_t gfn = gpa >> PAGE_SHIFT;
  2550. unsigned long mmu_seq;
  2551. int write = error_code & PFERR_WRITE_MASK;
  2552. bool map_writable;
  2553. ASSERT(vcpu);
  2554. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2555. if (unlikely(error_code & PFERR_RSVD_MASK))
  2556. return handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2557. r = mmu_topup_memory_caches(vcpu);
  2558. if (r)
  2559. return r;
  2560. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2561. if (likely(!force_pt_level)) {
  2562. level = mapping_level(vcpu, gfn);
  2563. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2564. } else
  2565. level = PT_PAGE_TABLE_LEVEL;
  2566. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2567. smp_rmb();
  2568. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2569. return 0;
  2570. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2571. return r;
  2572. spin_lock(&vcpu->kvm->mmu_lock);
  2573. if (mmu_notifier_retry(vcpu, mmu_seq))
  2574. goto out_unlock;
  2575. kvm_mmu_free_some_pages(vcpu);
  2576. if (likely(!force_pt_level))
  2577. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2578. r = __direct_map(vcpu, gpa, write, map_writable,
  2579. level, gfn, pfn, prefault);
  2580. spin_unlock(&vcpu->kvm->mmu_lock);
  2581. return r;
  2582. out_unlock:
  2583. spin_unlock(&vcpu->kvm->mmu_lock);
  2584. kvm_release_pfn_clean(pfn);
  2585. return 0;
  2586. }
  2587. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2588. {
  2589. mmu_free_roots(vcpu);
  2590. }
  2591. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2592. struct kvm_mmu *context)
  2593. {
  2594. context->new_cr3 = nonpaging_new_cr3;
  2595. context->page_fault = nonpaging_page_fault;
  2596. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2597. context->free = nonpaging_free;
  2598. context->sync_page = nonpaging_sync_page;
  2599. context->invlpg = nonpaging_invlpg;
  2600. context->update_pte = nonpaging_update_pte;
  2601. context->root_level = 0;
  2602. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2603. context->root_hpa = INVALID_PAGE;
  2604. context->direct_map = true;
  2605. context->nx = false;
  2606. return 0;
  2607. }
  2608. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2609. {
  2610. ++vcpu->stat.tlb_flush;
  2611. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2612. }
  2613. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2614. {
  2615. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2616. mmu_free_roots(vcpu);
  2617. }
  2618. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2619. {
  2620. return kvm_read_cr3(vcpu);
  2621. }
  2622. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2623. struct x86_exception *fault)
  2624. {
  2625. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2626. }
  2627. static void paging_free(struct kvm_vcpu *vcpu)
  2628. {
  2629. nonpaging_free(vcpu);
  2630. }
  2631. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2632. {
  2633. int bit7;
  2634. bit7 = (gpte >> 7) & 1;
  2635. return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
  2636. }
  2637. static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
  2638. int *nr_present)
  2639. {
  2640. if (unlikely(is_mmio_spte(*sptep))) {
  2641. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2642. mmu_spte_clear_no_track(sptep);
  2643. return true;
  2644. }
  2645. (*nr_present)++;
  2646. mark_mmio_spte(sptep, gfn, access);
  2647. return true;
  2648. }
  2649. return false;
  2650. }
  2651. #define PTTYPE 64
  2652. #include "paging_tmpl.h"
  2653. #undef PTTYPE
  2654. #define PTTYPE 32
  2655. #include "paging_tmpl.h"
  2656. #undef PTTYPE
  2657. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2658. struct kvm_mmu *context,
  2659. int level)
  2660. {
  2661. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2662. u64 exb_bit_rsvd = 0;
  2663. if (!context->nx)
  2664. exb_bit_rsvd = rsvd_bits(63, 63);
  2665. switch (level) {
  2666. case PT32_ROOT_LEVEL:
  2667. /* no rsvd bits for 2 level 4K page table entries */
  2668. context->rsvd_bits_mask[0][1] = 0;
  2669. context->rsvd_bits_mask[0][0] = 0;
  2670. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2671. if (!is_pse(vcpu)) {
  2672. context->rsvd_bits_mask[1][1] = 0;
  2673. break;
  2674. }
  2675. if (is_cpuid_PSE36())
  2676. /* 36bits PSE 4MB page */
  2677. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2678. else
  2679. /* 32 bits PSE 4MB page */
  2680. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2681. break;
  2682. case PT32E_ROOT_LEVEL:
  2683. context->rsvd_bits_mask[0][2] =
  2684. rsvd_bits(maxphyaddr, 63) |
  2685. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2686. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2687. rsvd_bits(maxphyaddr, 62); /* PDE */
  2688. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2689. rsvd_bits(maxphyaddr, 62); /* PTE */
  2690. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2691. rsvd_bits(maxphyaddr, 62) |
  2692. rsvd_bits(13, 20); /* large page */
  2693. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2694. break;
  2695. case PT64_ROOT_LEVEL:
  2696. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2697. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2698. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2699. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2700. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2701. rsvd_bits(maxphyaddr, 51);
  2702. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2703. rsvd_bits(maxphyaddr, 51);
  2704. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2705. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2706. rsvd_bits(maxphyaddr, 51) |
  2707. rsvd_bits(13, 29);
  2708. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2709. rsvd_bits(maxphyaddr, 51) |
  2710. rsvd_bits(13, 20); /* large page */
  2711. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2712. break;
  2713. }
  2714. }
  2715. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2716. struct kvm_mmu *context,
  2717. int level)
  2718. {
  2719. context->nx = is_nx(vcpu);
  2720. reset_rsvds_bits_mask(vcpu, context, level);
  2721. ASSERT(is_pae(vcpu));
  2722. context->new_cr3 = paging_new_cr3;
  2723. context->page_fault = paging64_page_fault;
  2724. context->gva_to_gpa = paging64_gva_to_gpa;
  2725. context->sync_page = paging64_sync_page;
  2726. context->invlpg = paging64_invlpg;
  2727. context->update_pte = paging64_update_pte;
  2728. context->free = paging_free;
  2729. context->root_level = level;
  2730. context->shadow_root_level = level;
  2731. context->root_hpa = INVALID_PAGE;
  2732. context->direct_map = false;
  2733. return 0;
  2734. }
  2735. static int paging64_init_context(struct kvm_vcpu *vcpu,
  2736. struct kvm_mmu *context)
  2737. {
  2738. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  2739. }
  2740. static int paging32_init_context(struct kvm_vcpu *vcpu,
  2741. struct kvm_mmu *context)
  2742. {
  2743. context->nx = false;
  2744. reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
  2745. context->new_cr3 = paging_new_cr3;
  2746. context->page_fault = paging32_page_fault;
  2747. context->gva_to_gpa = paging32_gva_to_gpa;
  2748. context->free = paging_free;
  2749. context->sync_page = paging32_sync_page;
  2750. context->invlpg = paging32_invlpg;
  2751. context->update_pte = paging32_update_pte;
  2752. context->root_level = PT32_ROOT_LEVEL;
  2753. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2754. context->root_hpa = INVALID_PAGE;
  2755. context->direct_map = false;
  2756. return 0;
  2757. }
  2758. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  2759. struct kvm_mmu *context)
  2760. {
  2761. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  2762. }
  2763. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2764. {
  2765. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  2766. context->base_role.word = 0;
  2767. context->new_cr3 = nonpaging_new_cr3;
  2768. context->page_fault = tdp_page_fault;
  2769. context->free = nonpaging_free;
  2770. context->sync_page = nonpaging_sync_page;
  2771. context->invlpg = nonpaging_invlpg;
  2772. context->update_pte = nonpaging_update_pte;
  2773. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2774. context->root_hpa = INVALID_PAGE;
  2775. context->direct_map = true;
  2776. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  2777. context->get_cr3 = get_cr3;
  2778. context->get_pdptr = kvm_pdptr_read;
  2779. context->inject_page_fault = kvm_inject_page_fault;
  2780. context->nx = is_nx(vcpu);
  2781. if (!is_paging(vcpu)) {
  2782. context->nx = false;
  2783. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2784. context->root_level = 0;
  2785. } else if (is_long_mode(vcpu)) {
  2786. context->nx = is_nx(vcpu);
  2787. reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
  2788. context->gva_to_gpa = paging64_gva_to_gpa;
  2789. context->root_level = PT64_ROOT_LEVEL;
  2790. } else if (is_pae(vcpu)) {
  2791. context->nx = is_nx(vcpu);
  2792. reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
  2793. context->gva_to_gpa = paging64_gva_to_gpa;
  2794. context->root_level = PT32E_ROOT_LEVEL;
  2795. } else {
  2796. context->nx = false;
  2797. reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
  2798. context->gva_to_gpa = paging32_gva_to_gpa;
  2799. context->root_level = PT32_ROOT_LEVEL;
  2800. }
  2801. return 0;
  2802. }
  2803. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  2804. {
  2805. int r;
  2806. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  2807. ASSERT(vcpu);
  2808. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2809. if (!is_paging(vcpu))
  2810. r = nonpaging_init_context(vcpu, context);
  2811. else if (is_long_mode(vcpu))
  2812. r = paging64_init_context(vcpu, context);
  2813. else if (is_pae(vcpu))
  2814. r = paging32E_init_context(vcpu, context);
  2815. else
  2816. r = paging32_init_context(vcpu, context);
  2817. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2818. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2819. vcpu->arch.mmu.base_role.smep_andnot_wp
  2820. = smep && !is_write_protection(vcpu);
  2821. return r;
  2822. }
  2823. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  2824. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2825. {
  2826. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  2827. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  2828. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  2829. vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
  2830. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  2831. return r;
  2832. }
  2833. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  2834. {
  2835. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  2836. g_context->get_cr3 = get_cr3;
  2837. g_context->get_pdptr = kvm_pdptr_read;
  2838. g_context->inject_page_fault = kvm_inject_page_fault;
  2839. /*
  2840. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  2841. * translation of l2_gpa to l1_gpa addresses is done using the
  2842. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  2843. * functions between mmu and nested_mmu are swapped.
  2844. */
  2845. if (!is_paging(vcpu)) {
  2846. g_context->nx = false;
  2847. g_context->root_level = 0;
  2848. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  2849. } else if (is_long_mode(vcpu)) {
  2850. g_context->nx = is_nx(vcpu);
  2851. reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
  2852. g_context->root_level = PT64_ROOT_LEVEL;
  2853. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  2854. } else if (is_pae(vcpu)) {
  2855. g_context->nx = is_nx(vcpu);
  2856. reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
  2857. g_context->root_level = PT32E_ROOT_LEVEL;
  2858. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  2859. } else {
  2860. g_context->nx = false;
  2861. reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
  2862. g_context->root_level = PT32_ROOT_LEVEL;
  2863. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  2864. }
  2865. return 0;
  2866. }
  2867. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2868. {
  2869. if (mmu_is_nested(vcpu))
  2870. return init_kvm_nested_mmu(vcpu);
  2871. else if (tdp_enabled)
  2872. return init_kvm_tdp_mmu(vcpu);
  2873. else
  2874. return init_kvm_softmmu(vcpu);
  2875. }
  2876. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2877. {
  2878. ASSERT(vcpu);
  2879. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2880. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2881. vcpu->arch.mmu.free(vcpu);
  2882. }
  2883. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2884. {
  2885. destroy_kvm_mmu(vcpu);
  2886. return init_kvm_mmu(vcpu);
  2887. }
  2888. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2889. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2890. {
  2891. int r;
  2892. r = mmu_topup_memory_caches(vcpu);
  2893. if (r)
  2894. goto out;
  2895. r = mmu_alloc_roots(vcpu);
  2896. spin_lock(&vcpu->kvm->mmu_lock);
  2897. mmu_sync_roots(vcpu);
  2898. spin_unlock(&vcpu->kvm->mmu_lock);
  2899. if (r)
  2900. goto out;
  2901. /* set_cr3() should ensure TLB has been flushed */
  2902. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2903. out:
  2904. return r;
  2905. }
  2906. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2907. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2908. {
  2909. mmu_free_roots(vcpu);
  2910. }
  2911. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  2912. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2913. struct kvm_mmu_page *sp, u64 *spte,
  2914. const void *new)
  2915. {
  2916. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2917. ++vcpu->kvm->stat.mmu_pde_zapped;
  2918. return;
  2919. }
  2920. ++vcpu->kvm->stat.mmu_pte_updated;
  2921. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  2922. }
  2923. static bool need_remote_flush(u64 old, u64 new)
  2924. {
  2925. if (!is_shadow_present_pte(old))
  2926. return false;
  2927. if (!is_shadow_present_pte(new))
  2928. return true;
  2929. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2930. return true;
  2931. old ^= PT64_NX_MASK;
  2932. new ^= PT64_NX_MASK;
  2933. return (old & ~new & PT64_PERM_MASK) != 0;
  2934. }
  2935. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  2936. bool remote_flush, bool local_flush)
  2937. {
  2938. if (zap_page)
  2939. return;
  2940. if (remote_flush)
  2941. kvm_flush_remote_tlbs(vcpu->kvm);
  2942. else if (local_flush)
  2943. kvm_mmu_flush_tlb(vcpu);
  2944. }
  2945. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2946. {
  2947. u64 *spte = vcpu->arch.last_pte_updated;
  2948. return !!(spte && (*spte & shadow_accessed_mask));
  2949. }
  2950. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2951. const u8 *new, int bytes)
  2952. {
  2953. gfn_t gfn = gpa >> PAGE_SHIFT;
  2954. union kvm_mmu_page_role mask = { .word = 0 };
  2955. struct kvm_mmu_page *sp;
  2956. struct hlist_node *node;
  2957. LIST_HEAD(invalid_list);
  2958. u64 entry, gentry, *spte;
  2959. unsigned pte_size, page_offset, misaligned, quadrant, offset;
  2960. int level, npte, r, flooded = 0;
  2961. bool remote_flush, local_flush, zap_page;
  2962. /*
  2963. * If we don't have indirect shadow pages, it means no page is
  2964. * write-protected, so we can exit simply.
  2965. */
  2966. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  2967. return;
  2968. zap_page = remote_flush = local_flush = false;
  2969. offset = offset_in_page(gpa);
  2970. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2971. /*
  2972. * Assume that the pte write on a page table of the same type
  2973. * as the current vcpu paging mode since we update the sptes only
  2974. * when they have the same mode.
  2975. */
  2976. if (is_pae(vcpu) && bytes == 4) {
  2977. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2978. gpa &= ~(gpa_t)7;
  2979. bytes = 8;
  2980. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2981. if (r)
  2982. gentry = 0;
  2983. new = (const u8 *)&gentry;
  2984. }
  2985. switch (bytes) {
  2986. case 4:
  2987. gentry = *(const u32 *)new;
  2988. break;
  2989. case 8:
  2990. gentry = *(const u64 *)new;
  2991. break;
  2992. default:
  2993. gentry = 0;
  2994. break;
  2995. }
  2996. /*
  2997. * No need to care whether allocation memory is successful
  2998. * or not since pte prefetch is skiped if it does not have
  2999. * enough objects in the cache.
  3000. */
  3001. mmu_topup_memory_caches(vcpu);
  3002. spin_lock(&vcpu->kvm->mmu_lock);
  3003. kvm_mmu_free_some_pages(vcpu);
  3004. ++vcpu->kvm->stat.mmu_pte_write;
  3005. trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3006. if (gfn == vcpu->arch.last_pt_write_gfn
  3007. && !last_updated_pte_accessed(vcpu)) {
  3008. ++vcpu->arch.last_pt_write_count;
  3009. if (vcpu->arch.last_pt_write_count >= 3)
  3010. flooded = 1;
  3011. } else {
  3012. vcpu->arch.last_pt_write_gfn = gfn;
  3013. vcpu->arch.last_pt_write_count = 1;
  3014. vcpu->arch.last_pte_updated = NULL;
  3015. }
  3016. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  3017. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  3018. pte_size = sp->role.cr4_pae ? 8 : 4;
  3019. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3020. misaligned |= bytes < 4;
  3021. if (misaligned || flooded) {
  3022. /*
  3023. * Misaligned accesses are too much trouble to fix
  3024. * up; also, they usually indicate a page is not used
  3025. * as a page table.
  3026. *
  3027. * If we're seeing too many writes to a page,
  3028. * it may no longer be a page table, or we may be
  3029. * forking, in which case it is better to unmap the
  3030. * page.
  3031. */
  3032. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3033. gpa, bytes, sp->role.word);
  3034. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3035. &invalid_list);
  3036. ++vcpu->kvm->stat.mmu_flooded;
  3037. continue;
  3038. }
  3039. page_offset = offset;
  3040. level = sp->role.level;
  3041. npte = 1;
  3042. if (!sp->role.cr4_pae) {
  3043. page_offset <<= 1; /* 32->64 */
  3044. /*
  3045. * A 32-bit pde maps 4MB while the shadow pdes map
  3046. * only 2MB. So we need to double the offset again
  3047. * and zap two pdes instead of one.
  3048. */
  3049. if (level == PT32_ROOT_LEVEL) {
  3050. page_offset &= ~7; /* kill rounding error */
  3051. page_offset <<= 1;
  3052. npte = 2;
  3053. }
  3054. quadrant = page_offset >> PAGE_SHIFT;
  3055. page_offset &= ~PAGE_MASK;
  3056. if (quadrant != sp->role.quadrant)
  3057. continue;
  3058. }
  3059. local_flush = true;
  3060. spte = &sp->spt[page_offset / sizeof(*spte)];
  3061. while (npte--) {
  3062. entry = *spte;
  3063. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3064. if (gentry &&
  3065. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3066. & mask.word) && rmap_can_add(vcpu))
  3067. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3068. if (!remote_flush && need_remote_flush(entry, *spte))
  3069. remote_flush = true;
  3070. ++spte;
  3071. }
  3072. }
  3073. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3074. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3075. trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3076. spin_unlock(&vcpu->kvm->mmu_lock);
  3077. }
  3078. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3079. {
  3080. gpa_t gpa;
  3081. int r;
  3082. if (vcpu->arch.mmu.direct_map)
  3083. return 0;
  3084. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3085. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3086. return r;
  3087. }
  3088. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3089. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  3090. {
  3091. LIST_HEAD(invalid_list);
  3092. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  3093. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  3094. struct kvm_mmu_page *sp;
  3095. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  3096. struct kvm_mmu_page, link);
  3097. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  3098. ++vcpu->kvm->stat.mmu_recycled;
  3099. }
  3100. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3101. }
  3102. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3103. {
  3104. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3105. return vcpu_match_mmio_gpa(vcpu, addr);
  3106. return vcpu_match_mmio_gva(vcpu, addr);
  3107. }
  3108. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3109. void *insn, int insn_len)
  3110. {
  3111. int r, emulation_type = EMULTYPE_RETRY;
  3112. enum emulation_result er;
  3113. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3114. if (r < 0)
  3115. goto out;
  3116. if (!r) {
  3117. r = 1;
  3118. goto out;
  3119. }
  3120. if (is_mmio_page_fault(vcpu, cr2))
  3121. emulation_type = 0;
  3122. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3123. switch (er) {
  3124. case EMULATE_DONE:
  3125. return 1;
  3126. case EMULATE_DO_MMIO:
  3127. ++vcpu->stat.mmio_exits;
  3128. /* fall through */
  3129. case EMULATE_FAIL:
  3130. return 0;
  3131. default:
  3132. BUG();
  3133. }
  3134. out:
  3135. return r;
  3136. }
  3137. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3138. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3139. {
  3140. vcpu->arch.mmu.invlpg(vcpu, gva);
  3141. kvm_mmu_flush_tlb(vcpu);
  3142. ++vcpu->stat.invlpg;
  3143. }
  3144. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3145. void kvm_enable_tdp(void)
  3146. {
  3147. tdp_enabled = true;
  3148. }
  3149. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3150. void kvm_disable_tdp(void)
  3151. {
  3152. tdp_enabled = false;
  3153. }
  3154. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3155. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3156. {
  3157. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3158. if (vcpu->arch.mmu.lm_root != NULL)
  3159. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3160. }
  3161. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3162. {
  3163. struct page *page;
  3164. int i;
  3165. ASSERT(vcpu);
  3166. /*
  3167. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3168. * Therefore we need to allocate shadow page tables in the first
  3169. * 4GB of memory, which happens to fit the DMA32 zone.
  3170. */
  3171. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3172. if (!page)
  3173. return -ENOMEM;
  3174. vcpu->arch.mmu.pae_root = page_address(page);
  3175. for (i = 0; i < 4; ++i)
  3176. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3177. return 0;
  3178. }
  3179. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3180. {
  3181. ASSERT(vcpu);
  3182. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3183. return alloc_mmu_pages(vcpu);
  3184. }
  3185. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3186. {
  3187. ASSERT(vcpu);
  3188. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3189. return init_kvm_mmu(vcpu);
  3190. }
  3191. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  3192. {
  3193. struct kvm_mmu_page *sp;
  3194. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  3195. int i;
  3196. u64 *pt;
  3197. if (!test_bit(slot, sp->slot_bitmap))
  3198. continue;
  3199. pt = sp->spt;
  3200. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  3201. if (!is_shadow_present_pte(pt[i]) ||
  3202. !is_last_spte(pt[i], sp->role.level))
  3203. continue;
  3204. if (is_large_pte(pt[i])) {
  3205. drop_spte(kvm, &pt[i]);
  3206. --kvm->stat.lpages;
  3207. continue;
  3208. }
  3209. /* avoid RMW */
  3210. if (is_writable_pte(pt[i]))
  3211. mmu_spte_update(&pt[i],
  3212. pt[i] & ~PT_WRITABLE_MASK);
  3213. }
  3214. }
  3215. kvm_flush_remote_tlbs(kvm);
  3216. }
  3217. void kvm_mmu_zap_all(struct kvm *kvm)
  3218. {
  3219. struct kvm_mmu_page *sp, *node;
  3220. LIST_HEAD(invalid_list);
  3221. spin_lock(&kvm->mmu_lock);
  3222. restart:
  3223. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  3224. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  3225. goto restart;
  3226. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3227. spin_unlock(&kvm->mmu_lock);
  3228. }
  3229. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  3230. struct list_head *invalid_list)
  3231. {
  3232. struct kvm_mmu_page *page;
  3233. page = container_of(kvm->arch.active_mmu_pages.prev,
  3234. struct kvm_mmu_page, link);
  3235. return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  3236. }
  3237. static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
  3238. {
  3239. struct kvm *kvm;
  3240. struct kvm *kvm_freed = NULL;
  3241. int nr_to_scan = sc->nr_to_scan;
  3242. if (nr_to_scan == 0)
  3243. goto out;
  3244. raw_spin_lock(&kvm_lock);
  3245. list_for_each_entry(kvm, &vm_list, vm_list) {
  3246. int idx, freed_pages;
  3247. LIST_HEAD(invalid_list);
  3248. idx = srcu_read_lock(&kvm->srcu);
  3249. spin_lock(&kvm->mmu_lock);
  3250. if (!kvm_freed && nr_to_scan > 0 &&
  3251. kvm->arch.n_used_mmu_pages > 0) {
  3252. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
  3253. &invalid_list);
  3254. kvm_freed = kvm;
  3255. }
  3256. nr_to_scan--;
  3257. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3258. spin_unlock(&kvm->mmu_lock);
  3259. srcu_read_unlock(&kvm->srcu, idx);
  3260. }
  3261. if (kvm_freed)
  3262. list_move_tail(&kvm_freed->vm_list, &vm_list);
  3263. raw_spin_unlock(&kvm_lock);
  3264. out:
  3265. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3266. }
  3267. static struct shrinker mmu_shrinker = {
  3268. .shrink = mmu_shrink,
  3269. .seeks = DEFAULT_SEEKS * 10,
  3270. };
  3271. static void mmu_destroy_caches(void)
  3272. {
  3273. if (pte_list_desc_cache)
  3274. kmem_cache_destroy(pte_list_desc_cache);
  3275. if (mmu_page_header_cache)
  3276. kmem_cache_destroy(mmu_page_header_cache);
  3277. }
  3278. int kvm_mmu_module_init(void)
  3279. {
  3280. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  3281. sizeof(struct pte_list_desc),
  3282. 0, 0, NULL);
  3283. if (!pte_list_desc_cache)
  3284. goto nomem;
  3285. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3286. sizeof(struct kvm_mmu_page),
  3287. 0, 0, NULL);
  3288. if (!mmu_page_header_cache)
  3289. goto nomem;
  3290. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  3291. goto nomem;
  3292. register_shrinker(&mmu_shrinker);
  3293. return 0;
  3294. nomem:
  3295. mmu_destroy_caches();
  3296. return -ENOMEM;
  3297. }
  3298. /*
  3299. * Caculate mmu pages needed for kvm.
  3300. */
  3301. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3302. {
  3303. int i;
  3304. unsigned int nr_mmu_pages;
  3305. unsigned int nr_pages = 0;
  3306. struct kvm_memslots *slots;
  3307. slots = kvm_memslots(kvm);
  3308. for (i = 0; i < slots->nmemslots; i++)
  3309. nr_pages += slots->memslots[i].npages;
  3310. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3311. nr_mmu_pages = max(nr_mmu_pages,
  3312. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3313. return nr_mmu_pages;
  3314. }
  3315. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  3316. unsigned len)
  3317. {
  3318. if (len > buffer->len)
  3319. return NULL;
  3320. return buffer->ptr;
  3321. }
  3322. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  3323. unsigned len)
  3324. {
  3325. void *ret;
  3326. ret = pv_mmu_peek_buffer(buffer, len);
  3327. if (!ret)
  3328. return ret;
  3329. buffer->ptr += len;
  3330. buffer->len -= len;
  3331. buffer->processed += len;
  3332. return ret;
  3333. }
  3334. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  3335. gpa_t addr, gpa_t value)
  3336. {
  3337. int bytes = 8;
  3338. int r;
  3339. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  3340. bytes = 4;
  3341. r = mmu_topup_memory_caches(vcpu);
  3342. if (r)
  3343. return r;
  3344. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  3345. return -EFAULT;
  3346. return 1;
  3347. }
  3348. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  3349. {
  3350. (void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
  3351. return 1;
  3352. }
  3353. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  3354. {
  3355. spin_lock(&vcpu->kvm->mmu_lock);
  3356. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  3357. spin_unlock(&vcpu->kvm->mmu_lock);
  3358. return 1;
  3359. }
  3360. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  3361. struct kvm_pv_mmu_op_buffer *buffer)
  3362. {
  3363. struct kvm_mmu_op_header *header;
  3364. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  3365. if (!header)
  3366. return 0;
  3367. switch (header->op) {
  3368. case KVM_MMU_OP_WRITE_PTE: {
  3369. struct kvm_mmu_op_write_pte *wpte;
  3370. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  3371. if (!wpte)
  3372. return 0;
  3373. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  3374. wpte->pte_val);
  3375. }
  3376. case KVM_MMU_OP_FLUSH_TLB: {
  3377. struct kvm_mmu_op_flush_tlb *ftlb;
  3378. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  3379. if (!ftlb)
  3380. return 0;
  3381. return kvm_pv_mmu_flush_tlb(vcpu);
  3382. }
  3383. case KVM_MMU_OP_RELEASE_PT: {
  3384. struct kvm_mmu_op_release_pt *rpt;
  3385. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  3386. if (!rpt)
  3387. return 0;
  3388. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  3389. }
  3390. default: return 0;
  3391. }
  3392. }
  3393. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  3394. gpa_t addr, unsigned long *ret)
  3395. {
  3396. int r;
  3397. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  3398. buffer->ptr = buffer->buf;
  3399. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  3400. buffer->processed = 0;
  3401. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  3402. if (r)
  3403. goto out;
  3404. while (buffer->len) {
  3405. r = kvm_pv_mmu_op_one(vcpu, buffer);
  3406. if (r < 0)
  3407. goto out;
  3408. if (r == 0)
  3409. break;
  3410. }
  3411. r = 1;
  3412. out:
  3413. *ret = buffer->processed;
  3414. return r;
  3415. }
  3416. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3417. {
  3418. struct kvm_shadow_walk_iterator iterator;
  3419. u64 spte;
  3420. int nr_sptes = 0;
  3421. walk_shadow_page_lockless_begin(vcpu);
  3422. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  3423. sptes[iterator.level-1] = spte;
  3424. nr_sptes++;
  3425. if (!is_shadow_present_pte(spte))
  3426. break;
  3427. }
  3428. walk_shadow_page_lockless_end(vcpu);
  3429. return nr_sptes;
  3430. }
  3431. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3432. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3433. {
  3434. ASSERT(vcpu);
  3435. destroy_kvm_mmu(vcpu);
  3436. free_mmu_pages(vcpu);
  3437. mmu_free_memory_caches(vcpu);
  3438. }
  3439. #ifdef CONFIG_KVM_MMU_AUDIT
  3440. #include "mmu_audit.c"
  3441. #else
  3442. static void mmu_audit_disable(void) { }
  3443. #endif
  3444. void kvm_mmu_module_exit(void)
  3445. {
  3446. mmu_destroy_caches();
  3447. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3448. unregister_shrinker(&mmu_shrinker);
  3449. mmu_audit_disable();
  3450. }