swapfile.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769
  1. /*
  2. * linux/mm/swapfile.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. * Swap reorganised 29.12.95, Stephen Tweedie
  6. */
  7. #include <linux/config.h>
  8. #include <linux/mm.h>
  9. #include <linux/hugetlb.h>
  10. #include <linux/mman.h>
  11. #include <linux/slab.h>
  12. #include <linux/kernel_stat.h>
  13. #include <linux/swap.h>
  14. #include <linux/vmalloc.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/namei.h>
  17. #include <linux/shm.h>
  18. #include <linux/blkdev.h>
  19. #include <linux/writeback.h>
  20. #include <linux/proc_fs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/init.h>
  23. #include <linux/module.h>
  24. #include <linux/rmap.h>
  25. #include <linux/security.h>
  26. #include <linux/backing-dev.h>
  27. #include <linux/mutex.h>
  28. #include <linux/capability.h>
  29. #include <linux/syscalls.h>
  30. #include <asm/pgtable.h>
  31. #include <asm/tlbflush.h>
  32. #include <linux/swapops.h>
  33. DEFINE_SPINLOCK(swap_lock);
  34. unsigned int nr_swapfiles;
  35. long total_swap_pages;
  36. static int swap_overflow;
  37. static const char Bad_file[] = "Bad swap file entry ";
  38. static const char Unused_file[] = "Unused swap file entry ";
  39. static const char Bad_offset[] = "Bad swap offset entry ";
  40. static const char Unused_offset[] = "Unused swap offset entry ";
  41. struct swap_list_t swap_list = {-1, -1};
  42. static struct swap_info_struct swap_info[MAX_SWAPFILES];
  43. static DEFINE_MUTEX(swapon_mutex);
  44. /*
  45. * We need this because the bdev->unplug_fn can sleep and we cannot
  46. * hold swap_lock while calling the unplug_fn. And swap_lock
  47. * cannot be turned into a mutex.
  48. */
  49. static DECLARE_RWSEM(swap_unplug_sem);
  50. void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
  51. {
  52. swp_entry_t entry;
  53. down_read(&swap_unplug_sem);
  54. entry.val = page_private(page);
  55. if (PageSwapCache(page)) {
  56. struct block_device *bdev = swap_info[swp_type(entry)].bdev;
  57. struct backing_dev_info *bdi;
  58. /*
  59. * If the page is removed from swapcache from under us (with a
  60. * racy try_to_unuse/swapoff) we need an additional reference
  61. * count to avoid reading garbage from page_private(page) above.
  62. * If the WARN_ON triggers during a swapoff it maybe the race
  63. * condition and it's harmless. However if it triggers without
  64. * swapoff it signals a problem.
  65. */
  66. WARN_ON(page_count(page) <= 1);
  67. bdi = bdev->bd_inode->i_mapping->backing_dev_info;
  68. blk_run_backing_dev(bdi, page);
  69. }
  70. up_read(&swap_unplug_sem);
  71. }
  72. #define SWAPFILE_CLUSTER 256
  73. #define LATENCY_LIMIT 256
  74. static inline unsigned long scan_swap_map(struct swap_info_struct *si)
  75. {
  76. unsigned long offset, last_in_cluster;
  77. int latency_ration = LATENCY_LIMIT;
  78. /*
  79. * We try to cluster swap pages by allocating them sequentially
  80. * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
  81. * way, however, we resort to first-free allocation, starting
  82. * a new cluster. This prevents us from scattering swap pages
  83. * all over the entire swap partition, so that we reduce
  84. * overall disk seek times between swap pages. -- sct
  85. * But we do now try to find an empty cluster. -Andrea
  86. */
  87. si->flags += SWP_SCANNING;
  88. if (unlikely(!si->cluster_nr)) {
  89. si->cluster_nr = SWAPFILE_CLUSTER - 1;
  90. if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
  91. goto lowest;
  92. spin_unlock(&swap_lock);
  93. offset = si->lowest_bit;
  94. last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
  95. /* Locate the first empty (unaligned) cluster */
  96. for (; last_in_cluster <= si->highest_bit; offset++) {
  97. if (si->swap_map[offset])
  98. last_in_cluster = offset + SWAPFILE_CLUSTER;
  99. else if (offset == last_in_cluster) {
  100. spin_lock(&swap_lock);
  101. si->cluster_next = offset-SWAPFILE_CLUSTER+1;
  102. goto cluster;
  103. }
  104. if (unlikely(--latency_ration < 0)) {
  105. cond_resched();
  106. latency_ration = LATENCY_LIMIT;
  107. }
  108. }
  109. spin_lock(&swap_lock);
  110. goto lowest;
  111. }
  112. si->cluster_nr--;
  113. cluster:
  114. offset = si->cluster_next;
  115. if (offset > si->highest_bit)
  116. lowest: offset = si->lowest_bit;
  117. checks: if (!(si->flags & SWP_WRITEOK))
  118. goto no_page;
  119. if (!si->highest_bit)
  120. goto no_page;
  121. if (!si->swap_map[offset]) {
  122. if (offset == si->lowest_bit)
  123. si->lowest_bit++;
  124. if (offset == si->highest_bit)
  125. si->highest_bit--;
  126. si->inuse_pages++;
  127. if (si->inuse_pages == si->pages) {
  128. si->lowest_bit = si->max;
  129. si->highest_bit = 0;
  130. }
  131. si->swap_map[offset] = 1;
  132. si->cluster_next = offset + 1;
  133. si->flags -= SWP_SCANNING;
  134. return offset;
  135. }
  136. spin_unlock(&swap_lock);
  137. while (++offset <= si->highest_bit) {
  138. if (!si->swap_map[offset]) {
  139. spin_lock(&swap_lock);
  140. goto checks;
  141. }
  142. if (unlikely(--latency_ration < 0)) {
  143. cond_resched();
  144. latency_ration = LATENCY_LIMIT;
  145. }
  146. }
  147. spin_lock(&swap_lock);
  148. goto lowest;
  149. no_page:
  150. si->flags -= SWP_SCANNING;
  151. return 0;
  152. }
  153. swp_entry_t get_swap_page(void)
  154. {
  155. struct swap_info_struct *si;
  156. pgoff_t offset;
  157. int type, next;
  158. int wrapped = 0;
  159. spin_lock(&swap_lock);
  160. if (nr_swap_pages <= 0)
  161. goto noswap;
  162. nr_swap_pages--;
  163. for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
  164. si = swap_info + type;
  165. next = si->next;
  166. if (next < 0 ||
  167. (!wrapped && si->prio != swap_info[next].prio)) {
  168. next = swap_list.head;
  169. wrapped++;
  170. }
  171. if (!si->highest_bit)
  172. continue;
  173. if (!(si->flags & SWP_WRITEOK))
  174. continue;
  175. swap_list.next = next;
  176. offset = scan_swap_map(si);
  177. if (offset) {
  178. spin_unlock(&swap_lock);
  179. return swp_entry(type, offset);
  180. }
  181. next = swap_list.next;
  182. }
  183. nr_swap_pages++;
  184. noswap:
  185. spin_unlock(&swap_lock);
  186. return (swp_entry_t) {0};
  187. }
  188. swp_entry_t get_swap_page_of_type(int type)
  189. {
  190. struct swap_info_struct *si;
  191. pgoff_t offset;
  192. spin_lock(&swap_lock);
  193. si = swap_info + type;
  194. if (si->flags & SWP_WRITEOK) {
  195. nr_swap_pages--;
  196. offset = scan_swap_map(si);
  197. if (offset) {
  198. spin_unlock(&swap_lock);
  199. return swp_entry(type, offset);
  200. }
  201. nr_swap_pages++;
  202. }
  203. spin_unlock(&swap_lock);
  204. return (swp_entry_t) {0};
  205. }
  206. static struct swap_info_struct * swap_info_get(swp_entry_t entry)
  207. {
  208. struct swap_info_struct * p;
  209. unsigned long offset, type;
  210. if (!entry.val)
  211. goto out;
  212. type = swp_type(entry);
  213. if (type >= nr_swapfiles)
  214. goto bad_nofile;
  215. p = & swap_info[type];
  216. if (!(p->flags & SWP_USED))
  217. goto bad_device;
  218. offset = swp_offset(entry);
  219. if (offset >= p->max)
  220. goto bad_offset;
  221. if (!p->swap_map[offset])
  222. goto bad_free;
  223. spin_lock(&swap_lock);
  224. return p;
  225. bad_free:
  226. printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
  227. goto out;
  228. bad_offset:
  229. printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
  230. goto out;
  231. bad_device:
  232. printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
  233. goto out;
  234. bad_nofile:
  235. printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
  236. out:
  237. return NULL;
  238. }
  239. static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
  240. {
  241. int count = p->swap_map[offset];
  242. if (count < SWAP_MAP_MAX) {
  243. count--;
  244. p->swap_map[offset] = count;
  245. if (!count) {
  246. if (offset < p->lowest_bit)
  247. p->lowest_bit = offset;
  248. if (offset > p->highest_bit)
  249. p->highest_bit = offset;
  250. if (p->prio > swap_info[swap_list.next].prio)
  251. swap_list.next = p - swap_info;
  252. nr_swap_pages++;
  253. p->inuse_pages--;
  254. }
  255. }
  256. return count;
  257. }
  258. /*
  259. * Caller has made sure that the swapdevice corresponding to entry
  260. * is still around or has not been recycled.
  261. */
  262. void swap_free(swp_entry_t entry)
  263. {
  264. struct swap_info_struct * p;
  265. p = swap_info_get(entry);
  266. if (p) {
  267. swap_entry_free(p, swp_offset(entry));
  268. spin_unlock(&swap_lock);
  269. }
  270. }
  271. /*
  272. * How many references to page are currently swapped out?
  273. */
  274. static inline int page_swapcount(struct page *page)
  275. {
  276. int count = 0;
  277. struct swap_info_struct *p;
  278. swp_entry_t entry;
  279. entry.val = page_private(page);
  280. p = swap_info_get(entry);
  281. if (p) {
  282. /* Subtract the 1 for the swap cache itself */
  283. count = p->swap_map[swp_offset(entry)] - 1;
  284. spin_unlock(&swap_lock);
  285. }
  286. return count;
  287. }
  288. /*
  289. * We can use this swap cache entry directly
  290. * if there are no other references to it.
  291. */
  292. int can_share_swap_page(struct page *page)
  293. {
  294. int count;
  295. BUG_ON(!PageLocked(page));
  296. count = page_mapcount(page);
  297. if (count <= 1 && PageSwapCache(page))
  298. count += page_swapcount(page);
  299. return count == 1;
  300. }
  301. /*
  302. * Work out if there are any other processes sharing this
  303. * swap cache page. Free it if you can. Return success.
  304. */
  305. int remove_exclusive_swap_page(struct page *page)
  306. {
  307. int retval;
  308. struct swap_info_struct * p;
  309. swp_entry_t entry;
  310. BUG_ON(PagePrivate(page));
  311. BUG_ON(!PageLocked(page));
  312. if (!PageSwapCache(page))
  313. return 0;
  314. if (PageWriteback(page))
  315. return 0;
  316. if (page_count(page) != 2) /* 2: us + cache */
  317. return 0;
  318. entry.val = page_private(page);
  319. p = swap_info_get(entry);
  320. if (!p)
  321. return 0;
  322. /* Is the only swap cache user the cache itself? */
  323. retval = 0;
  324. if (p->swap_map[swp_offset(entry)] == 1) {
  325. /* Recheck the page count with the swapcache lock held.. */
  326. write_lock_irq(&swapper_space.tree_lock);
  327. if ((page_count(page) == 2) && !PageWriteback(page)) {
  328. __delete_from_swap_cache(page);
  329. SetPageDirty(page);
  330. retval = 1;
  331. }
  332. write_unlock_irq(&swapper_space.tree_lock);
  333. }
  334. spin_unlock(&swap_lock);
  335. if (retval) {
  336. swap_free(entry);
  337. page_cache_release(page);
  338. }
  339. return retval;
  340. }
  341. /*
  342. * Free the swap entry like above, but also try to
  343. * free the page cache entry if it is the last user.
  344. */
  345. void free_swap_and_cache(swp_entry_t entry)
  346. {
  347. struct swap_info_struct * p;
  348. struct page *page = NULL;
  349. p = swap_info_get(entry);
  350. if (p) {
  351. if (swap_entry_free(p, swp_offset(entry)) == 1)
  352. page = find_trylock_page(&swapper_space, entry.val);
  353. spin_unlock(&swap_lock);
  354. }
  355. if (page) {
  356. int one_user;
  357. BUG_ON(PagePrivate(page));
  358. page_cache_get(page);
  359. one_user = (page_count(page) == 2);
  360. /* Only cache user (+us), or swap space full? Free it! */
  361. if (!PageWriteback(page) && (one_user || vm_swap_full())) {
  362. delete_from_swap_cache(page);
  363. SetPageDirty(page);
  364. }
  365. unlock_page(page);
  366. page_cache_release(page);
  367. }
  368. }
  369. #ifdef CONFIG_SOFTWARE_SUSPEND
  370. /*
  371. * Find the swap type that corresponds to given device (if any)
  372. *
  373. * This is needed for software suspend and is done in such a way that inode
  374. * aliasing is allowed.
  375. */
  376. int swap_type_of(dev_t device)
  377. {
  378. int i;
  379. if (!device)
  380. return -EINVAL;
  381. spin_lock(&swap_lock);
  382. for (i = 0; i < nr_swapfiles; i++) {
  383. struct inode *inode;
  384. if (!(swap_info[i].flags & SWP_WRITEOK))
  385. continue;
  386. inode = swap_info->swap_file->f_dentry->d_inode;
  387. if (S_ISBLK(inode->i_mode) &&
  388. device == MKDEV(imajor(inode), iminor(inode))) {
  389. spin_unlock(&swap_lock);
  390. return i;
  391. }
  392. }
  393. spin_unlock(&swap_lock);
  394. return -ENODEV;
  395. }
  396. /*
  397. * Return either the total number of swap pages of given type, or the number
  398. * of free pages of that type (depending on @free)
  399. *
  400. * This is needed for software suspend
  401. */
  402. unsigned int count_swap_pages(int type, int free)
  403. {
  404. unsigned int n = 0;
  405. if (type < nr_swapfiles) {
  406. spin_lock(&swap_lock);
  407. if (swap_info[type].flags & SWP_WRITEOK) {
  408. n = swap_info[type].pages;
  409. if (free)
  410. n -= swap_info[type].inuse_pages;
  411. }
  412. spin_unlock(&swap_lock);
  413. }
  414. return n;
  415. }
  416. #endif
  417. /*
  418. * No need to decide whether this PTE shares the swap entry with others,
  419. * just let do_wp_page work it out if a write is requested later - to
  420. * force COW, vm_page_prot omits write permission from any private vma.
  421. */
  422. static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
  423. unsigned long addr, swp_entry_t entry, struct page *page)
  424. {
  425. inc_mm_counter(vma->vm_mm, anon_rss);
  426. get_page(page);
  427. set_pte_at(vma->vm_mm, addr, pte,
  428. pte_mkold(mk_pte(page, vma->vm_page_prot)));
  429. page_add_anon_rmap(page, vma, addr);
  430. swap_free(entry);
  431. /*
  432. * Move the page to the active list so it is not
  433. * immediately swapped out again after swapon.
  434. */
  435. activate_page(page);
  436. }
  437. static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
  438. unsigned long addr, unsigned long end,
  439. swp_entry_t entry, struct page *page)
  440. {
  441. pte_t swp_pte = swp_entry_to_pte(entry);
  442. pte_t *pte;
  443. spinlock_t *ptl;
  444. int found = 0;
  445. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  446. do {
  447. /*
  448. * swapoff spends a _lot_ of time in this loop!
  449. * Test inline before going to call unuse_pte.
  450. */
  451. if (unlikely(pte_same(*pte, swp_pte))) {
  452. unuse_pte(vma, pte++, addr, entry, page);
  453. found = 1;
  454. break;
  455. }
  456. } while (pte++, addr += PAGE_SIZE, addr != end);
  457. pte_unmap_unlock(pte - 1, ptl);
  458. return found;
  459. }
  460. static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
  461. unsigned long addr, unsigned long end,
  462. swp_entry_t entry, struct page *page)
  463. {
  464. pmd_t *pmd;
  465. unsigned long next;
  466. pmd = pmd_offset(pud, addr);
  467. do {
  468. next = pmd_addr_end(addr, end);
  469. if (pmd_none_or_clear_bad(pmd))
  470. continue;
  471. if (unuse_pte_range(vma, pmd, addr, next, entry, page))
  472. return 1;
  473. } while (pmd++, addr = next, addr != end);
  474. return 0;
  475. }
  476. static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
  477. unsigned long addr, unsigned long end,
  478. swp_entry_t entry, struct page *page)
  479. {
  480. pud_t *pud;
  481. unsigned long next;
  482. pud = pud_offset(pgd, addr);
  483. do {
  484. next = pud_addr_end(addr, end);
  485. if (pud_none_or_clear_bad(pud))
  486. continue;
  487. if (unuse_pmd_range(vma, pud, addr, next, entry, page))
  488. return 1;
  489. } while (pud++, addr = next, addr != end);
  490. return 0;
  491. }
  492. static int unuse_vma(struct vm_area_struct *vma,
  493. swp_entry_t entry, struct page *page)
  494. {
  495. pgd_t *pgd;
  496. unsigned long addr, end, next;
  497. if (page->mapping) {
  498. addr = page_address_in_vma(page, vma);
  499. if (addr == -EFAULT)
  500. return 0;
  501. else
  502. end = addr + PAGE_SIZE;
  503. } else {
  504. addr = vma->vm_start;
  505. end = vma->vm_end;
  506. }
  507. pgd = pgd_offset(vma->vm_mm, addr);
  508. do {
  509. next = pgd_addr_end(addr, end);
  510. if (pgd_none_or_clear_bad(pgd))
  511. continue;
  512. if (unuse_pud_range(vma, pgd, addr, next, entry, page))
  513. return 1;
  514. } while (pgd++, addr = next, addr != end);
  515. return 0;
  516. }
  517. static int unuse_mm(struct mm_struct *mm,
  518. swp_entry_t entry, struct page *page)
  519. {
  520. struct vm_area_struct *vma;
  521. if (!down_read_trylock(&mm->mmap_sem)) {
  522. /*
  523. * Activate page so shrink_cache is unlikely to unmap its
  524. * ptes while lock is dropped, so swapoff can make progress.
  525. */
  526. activate_page(page);
  527. unlock_page(page);
  528. down_read(&mm->mmap_sem);
  529. lock_page(page);
  530. }
  531. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  532. if (vma->anon_vma && unuse_vma(vma, entry, page))
  533. break;
  534. }
  535. up_read(&mm->mmap_sem);
  536. /*
  537. * Currently unuse_mm cannot fail, but leave error handling
  538. * at call sites for now, since we change it from time to time.
  539. */
  540. return 0;
  541. }
  542. #ifdef CONFIG_MIGRATION
  543. int remove_vma_swap(struct vm_area_struct *vma, struct page *page)
  544. {
  545. swp_entry_t entry = { .val = page_private(page) };
  546. return unuse_vma(vma, entry, page);
  547. }
  548. #endif
  549. /*
  550. * Scan swap_map from current position to next entry still in use.
  551. * Recycle to start on reaching the end, returning 0 when empty.
  552. */
  553. static unsigned int find_next_to_unuse(struct swap_info_struct *si,
  554. unsigned int prev)
  555. {
  556. unsigned int max = si->max;
  557. unsigned int i = prev;
  558. int count;
  559. /*
  560. * No need for swap_lock here: we're just looking
  561. * for whether an entry is in use, not modifying it; false
  562. * hits are okay, and sys_swapoff() has already prevented new
  563. * allocations from this area (while holding swap_lock).
  564. */
  565. for (;;) {
  566. if (++i >= max) {
  567. if (!prev) {
  568. i = 0;
  569. break;
  570. }
  571. /*
  572. * No entries in use at top of swap_map,
  573. * loop back to start and recheck there.
  574. */
  575. max = prev + 1;
  576. prev = 0;
  577. i = 1;
  578. }
  579. count = si->swap_map[i];
  580. if (count && count != SWAP_MAP_BAD)
  581. break;
  582. }
  583. return i;
  584. }
  585. /*
  586. * We completely avoid races by reading each swap page in advance,
  587. * and then search for the process using it. All the necessary
  588. * page table adjustments can then be made atomically.
  589. */
  590. static int try_to_unuse(unsigned int type)
  591. {
  592. struct swap_info_struct * si = &swap_info[type];
  593. struct mm_struct *start_mm;
  594. unsigned short *swap_map;
  595. unsigned short swcount;
  596. struct page *page;
  597. swp_entry_t entry;
  598. unsigned int i = 0;
  599. int retval = 0;
  600. int reset_overflow = 0;
  601. int shmem;
  602. /*
  603. * When searching mms for an entry, a good strategy is to
  604. * start at the first mm we freed the previous entry from
  605. * (though actually we don't notice whether we or coincidence
  606. * freed the entry). Initialize this start_mm with a hold.
  607. *
  608. * A simpler strategy would be to start at the last mm we
  609. * freed the previous entry from; but that would take less
  610. * advantage of mmlist ordering, which clusters forked mms
  611. * together, child after parent. If we race with dup_mmap(), we
  612. * prefer to resolve parent before child, lest we miss entries
  613. * duplicated after we scanned child: using last mm would invert
  614. * that. Though it's only a serious concern when an overflowed
  615. * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
  616. */
  617. start_mm = &init_mm;
  618. atomic_inc(&init_mm.mm_users);
  619. /*
  620. * Keep on scanning until all entries have gone. Usually,
  621. * one pass through swap_map is enough, but not necessarily:
  622. * there are races when an instance of an entry might be missed.
  623. */
  624. while ((i = find_next_to_unuse(si, i)) != 0) {
  625. if (signal_pending(current)) {
  626. retval = -EINTR;
  627. break;
  628. }
  629. /*
  630. * Get a page for the entry, using the existing swap
  631. * cache page if there is one. Otherwise, get a clean
  632. * page and read the swap into it.
  633. */
  634. swap_map = &si->swap_map[i];
  635. entry = swp_entry(type, i);
  636. again:
  637. page = read_swap_cache_async(entry, NULL, 0);
  638. if (!page) {
  639. /*
  640. * Either swap_duplicate() failed because entry
  641. * has been freed independently, and will not be
  642. * reused since sys_swapoff() already disabled
  643. * allocation from here, or alloc_page() failed.
  644. */
  645. if (!*swap_map)
  646. continue;
  647. retval = -ENOMEM;
  648. break;
  649. }
  650. /*
  651. * Don't hold on to start_mm if it looks like exiting.
  652. */
  653. if (atomic_read(&start_mm->mm_users) == 1) {
  654. mmput(start_mm);
  655. start_mm = &init_mm;
  656. atomic_inc(&init_mm.mm_users);
  657. }
  658. /*
  659. * Wait for and lock page. When do_swap_page races with
  660. * try_to_unuse, do_swap_page can handle the fault much
  661. * faster than try_to_unuse can locate the entry. This
  662. * apparently redundant "wait_on_page_locked" lets try_to_unuse
  663. * defer to do_swap_page in such a case - in some tests,
  664. * do_swap_page and try_to_unuse repeatedly compete.
  665. */
  666. wait_on_page_locked(page);
  667. wait_on_page_writeback(page);
  668. lock_page(page);
  669. if (!PageSwapCache(page)) {
  670. /* Page migration has occured */
  671. unlock_page(page);
  672. page_cache_release(page);
  673. goto again;
  674. }
  675. wait_on_page_writeback(page);
  676. /*
  677. * Remove all references to entry.
  678. * Whenever we reach init_mm, there's no address space
  679. * to search, but use it as a reminder to search shmem.
  680. */
  681. shmem = 0;
  682. swcount = *swap_map;
  683. if (swcount > 1) {
  684. if (start_mm == &init_mm)
  685. shmem = shmem_unuse(entry, page);
  686. else
  687. retval = unuse_mm(start_mm, entry, page);
  688. }
  689. if (*swap_map > 1) {
  690. int set_start_mm = (*swap_map >= swcount);
  691. struct list_head *p = &start_mm->mmlist;
  692. struct mm_struct *new_start_mm = start_mm;
  693. struct mm_struct *prev_mm = start_mm;
  694. struct mm_struct *mm;
  695. atomic_inc(&new_start_mm->mm_users);
  696. atomic_inc(&prev_mm->mm_users);
  697. spin_lock(&mmlist_lock);
  698. while (*swap_map > 1 && !retval &&
  699. (p = p->next) != &start_mm->mmlist) {
  700. mm = list_entry(p, struct mm_struct, mmlist);
  701. if (atomic_inc_return(&mm->mm_users) == 1) {
  702. atomic_dec(&mm->mm_users);
  703. continue;
  704. }
  705. spin_unlock(&mmlist_lock);
  706. mmput(prev_mm);
  707. prev_mm = mm;
  708. cond_resched();
  709. swcount = *swap_map;
  710. if (swcount <= 1)
  711. ;
  712. else if (mm == &init_mm) {
  713. set_start_mm = 1;
  714. shmem = shmem_unuse(entry, page);
  715. } else
  716. retval = unuse_mm(mm, entry, page);
  717. if (set_start_mm && *swap_map < swcount) {
  718. mmput(new_start_mm);
  719. atomic_inc(&mm->mm_users);
  720. new_start_mm = mm;
  721. set_start_mm = 0;
  722. }
  723. spin_lock(&mmlist_lock);
  724. }
  725. spin_unlock(&mmlist_lock);
  726. mmput(prev_mm);
  727. mmput(start_mm);
  728. start_mm = new_start_mm;
  729. }
  730. if (retval) {
  731. unlock_page(page);
  732. page_cache_release(page);
  733. break;
  734. }
  735. /*
  736. * How could swap count reach 0x7fff when the maximum
  737. * pid is 0x7fff, and there's no way to repeat a swap
  738. * page within an mm (except in shmem, where it's the
  739. * shared object which takes the reference count)?
  740. * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
  741. *
  742. * If that's wrong, then we should worry more about
  743. * exit_mmap() and do_munmap() cases described above:
  744. * we might be resetting SWAP_MAP_MAX too early here.
  745. * We know "Undead"s can happen, they're okay, so don't
  746. * report them; but do report if we reset SWAP_MAP_MAX.
  747. */
  748. if (*swap_map == SWAP_MAP_MAX) {
  749. spin_lock(&swap_lock);
  750. *swap_map = 1;
  751. spin_unlock(&swap_lock);
  752. reset_overflow = 1;
  753. }
  754. /*
  755. * If a reference remains (rare), we would like to leave
  756. * the page in the swap cache; but try_to_unmap could
  757. * then re-duplicate the entry once we drop page lock,
  758. * so we might loop indefinitely; also, that page could
  759. * not be swapped out to other storage meanwhile. So:
  760. * delete from cache even if there's another reference,
  761. * after ensuring that the data has been saved to disk -
  762. * since if the reference remains (rarer), it will be
  763. * read from disk into another page. Splitting into two
  764. * pages would be incorrect if swap supported "shared
  765. * private" pages, but they are handled by tmpfs files.
  766. *
  767. * Note shmem_unuse already deleted a swappage from
  768. * the swap cache, unless the move to filepage failed:
  769. * in which case it left swappage in cache, lowered its
  770. * swap count to pass quickly through the loops above,
  771. * and now we must reincrement count to try again later.
  772. */
  773. if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
  774. struct writeback_control wbc = {
  775. .sync_mode = WB_SYNC_NONE,
  776. };
  777. swap_writepage(page, &wbc);
  778. lock_page(page);
  779. wait_on_page_writeback(page);
  780. }
  781. if (PageSwapCache(page)) {
  782. if (shmem)
  783. swap_duplicate(entry);
  784. else
  785. delete_from_swap_cache(page);
  786. }
  787. /*
  788. * So we could skip searching mms once swap count went
  789. * to 1, we did not mark any present ptes as dirty: must
  790. * mark page dirty so shrink_list will preserve it.
  791. */
  792. SetPageDirty(page);
  793. unlock_page(page);
  794. page_cache_release(page);
  795. /*
  796. * Make sure that we aren't completely killing
  797. * interactive performance.
  798. */
  799. cond_resched();
  800. }
  801. mmput(start_mm);
  802. if (reset_overflow) {
  803. printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
  804. swap_overflow = 0;
  805. }
  806. return retval;
  807. }
  808. /*
  809. * After a successful try_to_unuse, if no swap is now in use, we know
  810. * we can empty the mmlist. swap_lock must be held on entry and exit.
  811. * Note that mmlist_lock nests inside swap_lock, and an mm must be
  812. * added to the mmlist just after page_duplicate - before would be racy.
  813. */
  814. static void drain_mmlist(void)
  815. {
  816. struct list_head *p, *next;
  817. unsigned int i;
  818. for (i = 0; i < nr_swapfiles; i++)
  819. if (swap_info[i].inuse_pages)
  820. return;
  821. spin_lock(&mmlist_lock);
  822. list_for_each_safe(p, next, &init_mm.mmlist)
  823. list_del_init(p);
  824. spin_unlock(&mmlist_lock);
  825. }
  826. /*
  827. * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
  828. * corresponds to page offset `offset'.
  829. */
  830. sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
  831. {
  832. struct swap_extent *se = sis->curr_swap_extent;
  833. struct swap_extent *start_se = se;
  834. for ( ; ; ) {
  835. struct list_head *lh;
  836. if (se->start_page <= offset &&
  837. offset < (se->start_page + se->nr_pages)) {
  838. return se->start_block + (offset - se->start_page);
  839. }
  840. lh = se->list.next;
  841. if (lh == &sis->extent_list)
  842. lh = lh->next;
  843. se = list_entry(lh, struct swap_extent, list);
  844. sis->curr_swap_extent = se;
  845. BUG_ON(se == start_se); /* It *must* be present */
  846. }
  847. }
  848. /*
  849. * Free all of a swapdev's extent information
  850. */
  851. static void destroy_swap_extents(struct swap_info_struct *sis)
  852. {
  853. while (!list_empty(&sis->extent_list)) {
  854. struct swap_extent *se;
  855. se = list_entry(sis->extent_list.next,
  856. struct swap_extent, list);
  857. list_del(&se->list);
  858. kfree(se);
  859. }
  860. }
  861. /*
  862. * Add a block range (and the corresponding page range) into this swapdev's
  863. * extent list. The extent list is kept sorted in page order.
  864. *
  865. * This function rather assumes that it is called in ascending page order.
  866. */
  867. static int
  868. add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
  869. unsigned long nr_pages, sector_t start_block)
  870. {
  871. struct swap_extent *se;
  872. struct swap_extent *new_se;
  873. struct list_head *lh;
  874. lh = sis->extent_list.prev; /* The highest page extent */
  875. if (lh != &sis->extent_list) {
  876. se = list_entry(lh, struct swap_extent, list);
  877. BUG_ON(se->start_page + se->nr_pages != start_page);
  878. if (se->start_block + se->nr_pages == start_block) {
  879. /* Merge it */
  880. se->nr_pages += nr_pages;
  881. return 0;
  882. }
  883. }
  884. /*
  885. * No merge. Insert a new extent, preserving ordering.
  886. */
  887. new_se = kmalloc(sizeof(*se), GFP_KERNEL);
  888. if (new_se == NULL)
  889. return -ENOMEM;
  890. new_se->start_page = start_page;
  891. new_se->nr_pages = nr_pages;
  892. new_se->start_block = start_block;
  893. list_add_tail(&new_se->list, &sis->extent_list);
  894. return 1;
  895. }
  896. /*
  897. * A `swap extent' is a simple thing which maps a contiguous range of pages
  898. * onto a contiguous range of disk blocks. An ordered list of swap extents
  899. * is built at swapon time and is then used at swap_writepage/swap_readpage
  900. * time for locating where on disk a page belongs.
  901. *
  902. * If the swapfile is an S_ISBLK block device, a single extent is installed.
  903. * This is done so that the main operating code can treat S_ISBLK and S_ISREG
  904. * swap files identically.
  905. *
  906. * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
  907. * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
  908. * swapfiles are handled *identically* after swapon time.
  909. *
  910. * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
  911. * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
  912. * some stray blocks are found which do not fall within the PAGE_SIZE alignment
  913. * requirements, they are simply tossed out - we will never use those blocks
  914. * for swapping.
  915. *
  916. * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
  917. * prevents root from shooting her foot off by ftruncating an in-use swapfile,
  918. * which will scribble on the fs.
  919. *
  920. * The amount of disk space which a single swap extent represents varies.
  921. * Typically it is in the 1-4 megabyte range. So we can have hundreds of
  922. * extents in the list. To avoid much list walking, we cache the previous
  923. * search location in `curr_swap_extent', and start new searches from there.
  924. * This is extremely effective. The average number of iterations in
  925. * map_swap_page() has been measured at about 0.3 per page. - akpm.
  926. */
  927. static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
  928. {
  929. struct inode *inode;
  930. unsigned blocks_per_page;
  931. unsigned long page_no;
  932. unsigned blkbits;
  933. sector_t probe_block;
  934. sector_t last_block;
  935. sector_t lowest_block = -1;
  936. sector_t highest_block = 0;
  937. int nr_extents = 0;
  938. int ret;
  939. inode = sis->swap_file->f_mapping->host;
  940. if (S_ISBLK(inode->i_mode)) {
  941. ret = add_swap_extent(sis, 0, sis->max, 0);
  942. *span = sis->pages;
  943. goto done;
  944. }
  945. blkbits = inode->i_blkbits;
  946. blocks_per_page = PAGE_SIZE >> blkbits;
  947. /*
  948. * Map all the blocks into the extent list. This code doesn't try
  949. * to be very smart.
  950. */
  951. probe_block = 0;
  952. page_no = 0;
  953. last_block = i_size_read(inode) >> blkbits;
  954. while ((probe_block + blocks_per_page) <= last_block &&
  955. page_no < sis->max) {
  956. unsigned block_in_page;
  957. sector_t first_block;
  958. first_block = bmap(inode, probe_block);
  959. if (first_block == 0)
  960. goto bad_bmap;
  961. /*
  962. * It must be PAGE_SIZE aligned on-disk
  963. */
  964. if (first_block & (blocks_per_page - 1)) {
  965. probe_block++;
  966. goto reprobe;
  967. }
  968. for (block_in_page = 1; block_in_page < blocks_per_page;
  969. block_in_page++) {
  970. sector_t block;
  971. block = bmap(inode, probe_block + block_in_page);
  972. if (block == 0)
  973. goto bad_bmap;
  974. if (block != first_block + block_in_page) {
  975. /* Discontiguity */
  976. probe_block++;
  977. goto reprobe;
  978. }
  979. }
  980. first_block >>= (PAGE_SHIFT - blkbits);
  981. if (page_no) { /* exclude the header page */
  982. if (first_block < lowest_block)
  983. lowest_block = first_block;
  984. if (first_block > highest_block)
  985. highest_block = first_block;
  986. }
  987. /*
  988. * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
  989. */
  990. ret = add_swap_extent(sis, page_no, 1, first_block);
  991. if (ret < 0)
  992. goto out;
  993. nr_extents += ret;
  994. page_no++;
  995. probe_block += blocks_per_page;
  996. reprobe:
  997. continue;
  998. }
  999. ret = nr_extents;
  1000. *span = 1 + highest_block - lowest_block;
  1001. if (page_no == 0)
  1002. page_no = 1; /* force Empty message */
  1003. sis->max = page_no;
  1004. sis->pages = page_no - 1;
  1005. sis->highest_bit = page_no - 1;
  1006. done:
  1007. sis->curr_swap_extent = list_entry(sis->extent_list.prev,
  1008. struct swap_extent, list);
  1009. goto out;
  1010. bad_bmap:
  1011. printk(KERN_ERR "swapon: swapfile has holes\n");
  1012. ret = -EINVAL;
  1013. out:
  1014. return ret;
  1015. }
  1016. #if 0 /* We don't need this yet */
  1017. #include <linux/backing-dev.h>
  1018. int page_queue_congested(struct page *page)
  1019. {
  1020. struct backing_dev_info *bdi;
  1021. BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
  1022. if (PageSwapCache(page)) {
  1023. swp_entry_t entry = { .val = page_private(page) };
  1024. struct swap_info_struct *sis;
  1025. sis = get_swap_info_struct(swp_type(entry));
  1026. bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
  1027. } else
  1028. bdi = page->mapping->backing_dev_info;
  1029. return bdi_write_congested(bdi);
  1030. }
  1031. #endif
  1032. asmlinkage long sys_swapoff(const char __user * specialfile)
  1033. {
  1034. struct swap_info_struct * p = NULL;
  1035. unsigned short *swap_map;
  1036. struct file *swap_file, *victim;
  1037. struct address_space *mapping;
  1038. struct inode *inode;
  1039. char * pathname;
  1040. int i, type, prev;
  1041. int err;
  1042. if (!capable(CAP_SYS_ADMIN))
  1043. return -EPERM;
  1044. pathname = getname(specialfile);
  1045. err = PTR_ERR(pathname);
  1046. if (IS_ERR(pathname))
  1047. goto out;
  1048. victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
  1049. putname(pathname);
  1050. err = PTR_ERR(victim);
  1051. if (IS_ERR(victim))
  1052. goto out;
  1053. mapping = victim->f_mapping;
  1054. prev = -1;
  1055. spin_lock(&swap_lock);
  1056. for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
  1057. p = swap_info + type;
  1058. if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
  1059. if (p->swap_file->f_mapping == mapping)
  1060. break;
  1061. }
  1062. prev = type;
  1063. }
  1064. if (type < 0) {
  1065. err = -EINVAL;
  1066. spin_unlock(&swap_lock);
  1067. goto out_dput;
  1068. }
  1069. if (!security_vm_enough_memory(p->pages))
  1070. vm_unacct_memory(p->pages);
  1071. else {
  1072. err = -ENOMEM;
  1073. spin_unlock(&swap_lock);
  1074. goto out_dput;
  1075. }
  1076. if (prev < 0) {
  1077. swap_list.head = p->next;
  1078. } else {
  1079. swap_info[prev].next = p->next;
  1080. }
  1081. if (type == swap_list.next) {
  1082. /* just pick something that's safe... */
  1083. swap_list.next = swap_list.head;
  1084. }
  1085. nr_swap_pages -= p->pages;
  1086. total_swap_pages -= p->pages;
  1087. p->flags &= ~SWP_WRITEOK;
  1088. spin_unlock(&swap_lock);
  1089. current->flags |= PF_SWAPOFF;
  1090. err = try_to_unuse(type);
  1091. current->flags &= ~PF_SWAPOFF;
  1092. if (err) {
  1093. /* re-insert swap space back into swap_list */
  1094. spin_lock(&swap_lock);
  1095. for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
  1096. if (p->prio >= swap_info[i].prio)
  1097. break;
  1098. p->next = i;
  1099. if (prev < 0)
  1100. swap_list.head = swap_list.next = p - swap_info;
  1101. else
  1102. swap_info[prev].next = p - swap_info;
  1103. nr_swap_pages += p->pages;
  1104. total_swap_pages += p->pages;
  1105. p->flags |= SWP_WRITEOK;
  1106. spin_unlock(&swap_lock);
  1107. goto out_dput;
  1108. }
  1109. /* wait for any unplug function to finish */
  1110. down_write(&swap_unplug_sem);
  1111. up_write(&swap_unplug_sem);
  1112. destroy_swap_extents(p);
  1113. mutex_lock(&swapon_mutex);
  1114. spin_lock(&swap_lock);
  1115. drain_mmlist();
  1116. /* wait for anyone still in scan_swap_map */
  1117. p->highest_bit = 0; /* cuts scans short */
  1118. while (p->flags >= SWP_SCANNING) {
  1119. spin_unlock(&swap_lock);
  1120. schedule_timeout_uninterruptible(1);
  1121. spin_lock(&swap_lock);
  1122. }
  1123. swap_file = p->swap_file;
  1124. p->swap_file = NULL;
  1125. p->max = 0;
  1126. swap_map = p->swap_map;
  1127. p->swap_map = NULL;
  1128. p->flags = 0;
  1129. spin_unlock(&swap_lock);
  1130. mutex_unlock(&swapon_mutex);
  1131. vfree(swap_map);
  1132. inode = mapping->host;
  1133. if (S_ISBLK(inode->i_mode)) {
  1134. struct block_device *bdev = I_BDEV(inode);
  1135. set_blocksize(bdev, p->old_block_size);
  1136. bd_release(bdev);
  1137. } else {
  1138. mutex_lock(&inode->i_mutex);
  1139. inode->i_flags &= ~S_SWAPFILE;
  1140. mutex_unlock(&inode->i_mutex);
  1141. }
  1142. filp_close(swap_file, NULL);
  1143. err = 0;
  1144. out_dput:
  1145. filp_close(victim, NULL);
  1146. out:
  1147. return err;
  1148. }
  1149. #ifdef CONFIG_PROC_FS
  1150. /* iterator */
  1151. static void *swap_start(struct seq_file *swap, loff_t *pos)
  1152. {
  1153. struct swap_info_struct *ptr = swap_info;
  1154. int i;
  1155. loff_t l = *pos;
  1156. mutex_lock(&swapon_mutex);
  1157. for (i = 0; i < nr_swapfiles; i++, ptr++) {
  1158. if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
  1159. continue;
  1160. if (!l--)
  1161. return ptr;
  1162. }
  1163. return NULL;
  1164. }
  1165. static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
  1166. {
  1167. struct swap_info_struct *ptr = v;
  1168. struct swap_info_struct *endptr = swap_info + nr_swapfiles;
  1169. for (++ptr; ptr < endptr; ptr++) {
  1170. if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
  1171. continue;
  1172. ++*pos;
  1173. return ptr;
  1174. }
  1175. return NULL;
  1176. }
  1177. static void swap_stop(struct seq_file *swap, void *v)
  1178. {
  1179. mutex_unlock(&swapon_mutex);
  1180. }
  1181. static int swap_show(struct seq_file *swap, void *v)
  1182. {
  1183. struct swap_info_struct *ptr = v;
  1184. struct file *file;
  1185. int len;
  1186. if (v == swap_info)
  1187. seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
  1188. file = ptr->swap_file;
  1189. len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
  1190. seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
  1191. len < 40 ? 40 - len : 1, " ",
  1192. S_ISBLK(file->f_dentry->d_inode->i_mode) ?
  1193. "partition" : "file\t",
  1194. ptr->pages << (PAGE_SHIFT - 10),
  1195. ptr->inuse_pages << (PAGE_SHIFT - 10),
  1196. ptr->prio);
  1197. return 0;
  1198. }
  1199. static struct seq_operations swaps_op = {
  1200. .start = swap_start,
  1201. .next = swap_next,
  1202. .stop = swap_stop,
  1203. .show = swap_show
  1204. };
  1205. static int swaps_open(struct inode *inode, struct file *file)
  1206. {
  1207. return seq_open(file, &swaps_op);
  1208. }
  1209. static struct file_operations proc_swaps_operations = {
  1210. .open = swaps_open,
  1211. .read = seq_read,
  1212. .llseek = seq_lseek,
  1213. .release = seq_release,
  1214. };
  1215. static int __init procswaps_init(void)
  1216. {
  1217. struct proc_dir_entry *entry;
  1218. entry = create_proc_entry("swaps", 0, NULL);
  1219. if (entry)
  1220. entry->proc_fops = &proc_swaps_operations;
  1221. return 0;
  1222. }
  1223. __initcall(procswaps_init);
  1224. #endif /* CONFIG_PROC_FS */
  1225. /*
  1226. * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
  1227. *
  1228. * The swapon system call
  1229. */
  1230. asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
  1231. {
  1232. struct swap_info_struct * p;
  1233. char *name = NULL;
  1234. struct block_device *bdev = NULL;
  1235. struct file *swap_file = NULL;
  1236. struct address_space *mapping;
  1237. unsigned int type;
  1238. int i, prev;
  1239. int error;
  1240. static int least_priority;
  1241. union swap_header *swap_header = NULL;
  1242. int swap_header_version;
  1243. unsigned int nr_good_pages = 0;
  1244. int nr_extents = 0;
  1245. sector_t span;
  1246. unsigned long maxpages = 1;
  1247. int swapfilesize;
  1248. unsigned short *swap_map;
  1249. struct page *page = NULL;
  1250. struct inode *inode = NULL;
  1251. int did_down = 0;
  1252. if (!capable(CAP_SYS_ADMIN))
  1253. return -EPERM;
  1254. spin_lock(&swap_lock);
  1255. p = swap_info;
  1256. for (type = 0 ; type < nr_swapfiles ; type++,p++)
  1257. if (!(p->flags & SWP_USED))
  1258. break;
  1259. error = -EPERM;
  1260. /*
  1261. * Test if adding another swap device is possible. There are
  1262. * two limiting factors: 1) the number of bits for the swap
  1263. * type swp_entry_t definition and 2) the number of bits for
  1264. * the swap type in the swap ptes as defined by the different
  1265. * architectures. To honor both limitations a swap entry
  1266. * with swap offset 0 and swap type ~0UL is created, encoded
  1267. * to a swap pte, decoded to a swp_entry_t again and finally
  1268. * the swap type part is extracted. This will mask all bits
  1269. * from the initial ~0UL that can't be encoded in either the
  1270. * swp_entry_t or the architecture definition of a swap pte.
  1271. */
  1272. if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
  1273. spin_unlock(&swap_lock);
  1274. goto out;
  1275. }
  1276. if (type >= nr_swapfiles)
  1277. nr_swapfiles = type+1;
  1278. INIT_LIST_HEAD(&p->extent_list);
  1279. p->flags = SWP_USED;
  1280. p->swap_file = NULL;
  1281. p->old_block_size = 0;
  1282. p->swap_map = NULL;
  1283. p->lowest_bit = 0;
  1284. p->highest_bit = 0;
  1285. p->cluster_nr = 0;
  1286. p->inuse_pages = 0;
  1287. p->next = -1;
  1288. if (swap_flags & SWAP_FLAG_PREFER) {
  1289. p->prio =
  1290. (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
  1291. } else {
  1292. p->prio = --least_priority;
  1293. }
  1294. spin_unlock(&swap_lock);
  1295. name = getname(specialfile);
  1296. error = PTR_ERR(name);
  1297. if (IS_ERR(name)) {
  1298. name = NULL;
  1299. goto bad_swap_2;
  1300. }
  1301. swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
  1302. error = PTR_ERR(swap_file);
  1303. if (IS_ERR(swap_file)) {
  1304. swap_file = NULL;
  1305. goto bad_swap_2;
  1306. }
  1307. p->swap_file = swap_file;
  1308. mapping = swap_file->f_mapping;
  1309. inode = mapping->host;
  1310. error = -EBUSY;
  1311. for (i = 0; i < nr_swapfiles; i++) {
  1312. struct swap_info_struct *q = &swap_info[i];
  1313. if (i == type || !q->swap_file)
  1314. continue;
  1315. if (mapping == q->swap_file->f_mapping)
  1316. goto bad_swap;
  1317. }
  1318. error = -EINVAL;
  1319. if (S_ISBLK(inode->i_mode)) {
  1320. bdev = I_BDEV(inode);
  1321. error = bd_claim(bdev, sys_swapon);
  1322. if (error < 0) {
  1323. bdev = NULL;
  1324. error = -EINVAL;
  1325. goto bad_swap;
  1326. }
  1327. p->old_block_size = block_size(bdev);
  1328. error = set_blocksize(bdev, PAGE_SIZE);
  1329. if (error < 0)
  1330. goto bad_swap;
  1331. p->bdev = bdev;
  1332. } else if (S_ISREG(inode->i_mode)) {
  1333. p->bdev = inode->i_sb->s_bdev;
  1334. mutex_lock(&inode->i_mutex);
  1335. did_down = 1;
  1336. if (IS_SWAPFILE(inode)) {
  1337. error = -EBUSY;
  1338. goto bad_swap;
  1339. }
  1340. } else {
  1341. goto bad_swap;
  1342. }
  1343. swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
  1344. /*
  1345. * Read the swap header.
  1346. */
  1347. if (!mapping->a_ops->readpage) {
  1348. error = -EINVAL;
  1349. goto bad_swap;
  1350. }
  1351. page = read_cache_page(mapping, 0,
  1352. (filler_t *)mapping->a_ops->readpage, swap_file);
  1353. if (IS_ERR(page)) {
  1354. error = PTR_ERR(page);
  1355. goto bad_swap;
  1356. }
  1357. wait_on_page_locked(page);
  1358. if (!PageUptodate(page))
  1359. goto bad_swap;
  1360. kmap(page);
  1361. swap_header = page_address(page);
  1362. if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
  1363. swap_header_version = 1;
  1364. else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
  1365. swap_header_version = 2;
  1366. else {
  1367. printk(KERN_ERR "Unable to find swap-space signature\n");
  1368. error = -EINVAL;
  1369. goto bad_swap;
  1370. }
  1371. switch (swap_header_version) {
  1372. case 1:
  1373. printk(KERN_ERR "version 0 swap is no longer supported. "
  1374. "Use mkswap -v1 %s\n", name);
  1375. error = -EINVAL;
  1376. goto bad_swap;
  1377. case 2:
  1378. /* Check the swap header's sub-version and the size of
  1379. the swap file and bad block lists */
  1380. if (swap_header->info.version != 1) {
  1381. printk(KERN_WARNING
  1382. "Unable to handle swap header version %d\n",
  1383. swap_header->info.version);
  1384. error = -EINVAL;
  1385. goto bad_swap;
  1386. }
  1387. p->lowest_bit = 1;
  1388. p->cluster_next = 1;
  1389. /*
  1390. * Find out how many pages are allowed for a single swap
  1391. * device. There are two limiting factors: 1) the number of
  1392. * bits for the swap offset in the swp_entry_t type and
  1393. * 2) the number of bits in the a swap pte as defined by
  1394. * the different architectures. In order to find the
  1395. * largest possible bit mask a swap entry with swap type 0
  1396. * and swap offset ~0UL is created, encoded to a swap pte,
  1397. * decoded to a swp_entry_t again and finally the swap
  1398. * offset is extracted. This will mask all the bits from
  1399. * the initial ~0UL mask that can't be encoded in either
  1400. * the swp_entry_t or the architecture definition of a
  1401. * swap pte.
  1402. */
  1403. maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
  1404. if (maxpages > swap_header->info.last_page)
  1405. maxpages = swap_header->info.last_page;
  1406. p->highest_bit = maxpages - 1;
  1407. error = -EINVAL;
  1408. if (!maxpages)
  1409. goto bad_swap;
  1410. if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
  1411. goto bad_swap;
  1412. if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
  1413. goto bad_swap;
  1414. /* OK, set up the swap map and apply the bad block list */
  1415. if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
  1416. error = -ENOMEM;
  1417. goto bad_swap;
  1418. }
  1419. error = 0;
  1420. memset(p->swap_map, 0, maxpages * sizeof(short));
  1421. for (i = 0; i < swap_header->info.nr_badpages; i++) {
  1422. int page_nr = swap_header->info.badpages[i];
  1423. if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
  1424. error = -EINVAL;
  1425. else
  1426. p->swap_map[page_nr] = SWAP_MAP_BAD;
  1427. }
  1428. nr_good_pages = swap_header->info.last_page -
  1429. swap_header->info.nr_badpages -
  1430. 1 /* header page */;
  1431. if (error)
  1432. goto bad_swap;
  1433. }
  1434. if (swapfilesize && maxpages > swapfilesize) {
  1435. printk(KERN_WARNING
  1436. "Swap area shorter than signature indicates\n");
  1437. error = -EINVAL;
  1438. goto bad_swap;
  1439. }
  1440. if (nr_good_pages) {
  1441. p->swap_map[0] = SWAP_MAP_BAD;
  1442. p->max = maxpages;
  1443. p->pages = nr_good_pages;
  1444. nr_extents = setup_swap_extents(p, &span);
  1445. if (nr_extents < 0) {
  1446. error = nr_extents;
  1447. goto bad_swap;
  1448. }
  1449. nr_good_pages = p->pages;
  1450. }
  1451. if (!nr_good_pages) {
  1452. printk(KERN_WARNING "Empty swap-file\n");
  1453. error = -EINVAL;
  1454. goto bad_swap;
  1455. }
  1456. mutex_lock(&swapon_mutex);
  1457. spin_lock(&swap_lock);
  1458. p->flags = SWP_ACTIVE;
  1459. nr_swap_pages += nr_good_pages;
  1460. total_swap_pages += nr_good_pages;
  1461. printk(KERN_INFO "Adding %uk swap on %s. "
  1462. "Priority:%d extents:%d across:%lluk\n",
  1463. nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
  1464. nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
  1465. /* insert swap space into swap_list: */
  1466. prev = -1;
  1467. for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
  1468. if (p->prio >= swap_info[i].prio) {
  1469. break;
  1470. }
  1471. prev = i;
  1472. }
  1473. p->next = i;
  1474. if (prev < 0) {
  1475. swap_list.head = swap_list.next = p - swap_info;
  1476. } else {
  1477. swap_info[prev].next = p - swap_info;
  1478. }
  1479. spin_unlock(&swap_lock);
  1480. mutex_unlock(&swapon_mutex);
  1481. error = 0;
  1482. goto out;
  1483. bad_swap:
  1484. if (bdev) {
  1485. set_blocksize(bdev, p->old_block_size);
  1486. bd_release(bdev);
  1487. }
  1488. destroy_swap_extents(p);
  1489. bad_swap_2:
  1490. spin_lock(&swap_lock);
  1491. swap_map = p->swap_map;
  1492. p->swap_file = NULL;
  1493. p->swap_map = NULL;
  1494. p->flags = 0;
  1495. if (!(swap_flags & SWAP_FLAG_PREFER))
  1496. ++least_priority;
  1497. spin_unlock(&swap_lock);
  1498. vfree(swap_map);
  1499. if (swap_file)
  1500. filp_close(swap_file, NULL);
  1501. out:
  1502. if (page && !IS_ERR(page)) {
  1503. kunmap(page);
  1504. page_cache_release(page);
  1505. }
  1506. if (name)
  1507. putname(name);
  1508. if (did_down) {
  1509. if (!error)
  1510. inode->i_flags |= S_SWAPFILE;
  1511. mutex_unlock(&inode->i_mutex);
  1512. }
  1513. return error;
  1514. }
  1515. void si_swapinfo(struct sysinfo *val)
  1516. {
  1517. unsigned int i;
  1518. unsigned long nr_to_be_unused = 0;
  1519. spin_lock(&swap_lock);
  1520. for (i = 0; i < nr_swapfiles; i++) {
  1521. if (!(swap_info[i].flags & SWP_USED) ||
  1522. (swap_info[i].flags & SWP_WRITEOK))
  1523. continue;
  1524. nr_to_be_unused += swap_info[i].inuse_pages;
  1525. }
  1526. val->freeswap = nr_swap_pages + nr_to_be_unused;
  1527. val->totalswap = total_swap_pages + nr_to_be_unused;
  1528. spin_unlock(&swap_lock);
  1529. }
  1530. /*
  1531. * Verify that a swap entry is valid and increment its swap map count.
  1532. *
  1533. * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
  1534. * "permanent", but will be reclaimed by the next swapoff.
  1535. */
  1536. int swap_duplicate(swp_entry_t entry)
  1537. {
  1538. struct swap_info_struct * p;
  1539. unsigned long offset, type;
  1540. int result = 0;
  1541. type = swp_type(entry);
  1542. if (type >= nr_swapfiles)
  1543. goto bad_file;
  1544. p = type + swap_info;
  1545. offset = swp_offset(entry);
  1546. spin_lock(&swap_lock);
  1547. if (offset < p->max && p->swap_map[offset]) {
  1548. if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
  1549. p->swap_map[offset]++;
  1550. result = 1;
  1551. } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
  1552. if (swap_overflow++ < 5)
  1553. printk(KERN_WARNING "swap_dup: swap entry overflow\n");
  1554. p->swap_map[offset] = SWAP_MAP_MAX;
  1555. result = 1;
  1556. }
  1557. }
  1558. spin_unlock(&swap_lock);
  1559. out:
  1560. return result;
  1561. bad_file:
  1562. printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
  1563. goto out;
  1564. }
  1565. struct swap_info_struct *
  1566. get_swap_info_struct(unsigned type)
  1567. {
  1568. return &swap_info[type];
  1569. }
  1570. /*
  1571. * swap_lock prevents swap_map being freed. Don't grab an extra
  1572. * reference on the swaphandle, it doesn't matter if it becomes unused.
  1573. */
  1574. int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
  1575. {
  1576. int ret = 0, i = 1 << page_cluster;
  1577. unsigned long toff;
  1578. struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
  1579. if (!page_cluster) /* no readahead */
  1580. return 0;
  1581. toff = (swp_offset(entry) >> page_cluster) << page_cluster;
  1582. if (!toff) /* first page is swap header */
  1583. toff++, i--;
  1584. *offset = toff;
  1585. spin_lock(&swap_lock);
  1586. do {
  1587. /* Don't read-ahead past the end of the swap area */
  1588. if (toff >= swapdev->max)
  1589. break;
  1590. /* Don't read in free or bad pages */
  1591. if (!swapdev->swap_map[toff])
  1592. break;
  1593. if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
  1594. break;
  1595. toff++;
  1596. ret++;
  1597. } while (--i);
  1598. spin_unlock(&swap_lock);
  1599. return ret;
  1600. }