i915_gem.c 102 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  41. unsigned alignment,
  42. bool map_and_fenceable);
  43. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  44. struct drm_i915_fence_reg *reg);
  45. static int i915_gem_phys_pwrite(struct drm_device *dev,
  46. struct drm_i915_gem_object *obj,
  47. struct drm_i915_gem_pwrite *args,
  48. struct drm_file *file);
  49. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  50. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  51. struct shrink_control *sc);
  52. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  53. /* some bookkeeping */
  54. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  55. size_t size)
  56. {
  57. dev_priv->mm.object_count++;
  58. dev_priv->mm.object_memory += size;
  59. }
  60. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  61. size_t size)
  62. {
  63. dev_priv->mm.object_count--;
  64. dev_priv->mm.object_memory -= size;
  65. }
  66. static int
  67. i915_gem_wait_for_error(struct drm_device *dev)
  68. {
  69. struct drm_i915_private *dev_priv = dev->dev_private;
  70. struct completion *x = &dev_priv->error_completion;
  71. unsigned long flags;
  72. int ret;
  73. if (!atomic_read(&dev_priv->mm.wedged))
  74. return 0;
  75. ret = wait_for_completion_interruptible(x);
  76. if (ret)
  77. return ret;
  78. if (atomic_read(&dev_priv->mm.wedged)) {
  79. /* GPU is hung, bump the completion count to account for
  80. * the token we just consumed so that we never hit zero and
  81. * end up waiting upon a subsequent completion event that
  82. * will never happen.
  83. */
  84. spin_lock_irqsave(&x->wait.lock, flags);
  85. x->done++;
  86. spin_unlock_irqrestore(&x->wait.lock, flags);
  87. }
  88. return 0;
  89. }
  90. int i915_mutex_lock_interruptible(struct drm_device *dev)
  91. {
  92. int ret;
  93. ret = i915_gem_wait_for_error(dev);
  94. if (ret)
  95. return ret;
  96. ret = mutex_lock_interruptible(&dev->struct_mutex);
  97. if (ret)
  98. return ret;
  99. WARN_ON(i915_verify_lists(dev));
  100. return 0;
  101. }
  102. static inline bool
  103. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  104. {
  105. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  106. }
  107. int
  108. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  109. struct drm_file *file)
  110. {
  111. struct drm_i915_gem_init *args = data;
  112. if (args->gtt_start >= args->gtt_end ||
  113. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  114. return -EINVAL;
  115. mutex_lock(&dev->struct_mutex);
  116. i915_gem_init_global_gtt(dev, args->gtt_start,
  117. args->gtt_end, args->gtt_end);
  118. mutex_unlock(&dev->struct_mutex);
  119. return 0;
  120. }
  121. int
  122. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  123. struct drm_file *file)
  124. {
  125. struct drm_i915_private *dev_priv = dev->dev_private;
  126. struct drm_i915_gem_get_aperture *args = data;
  127. struct drm_i915_gem_object *obj;
  128. size_t pinned;
  129. if (!(dev->driver->driver_features & DRIVER_GEM))
  130. return -ENODEV;
  131. pinned = 0;
  132. mutex_lock(&dev->struct_mutex);
  133. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  134. pinned += obj->gtt_space->size;
  135. mutex_unlock(&dev->struct_mutex);
  136. args->aper_size = dev_priv->mm.gtt_total;
  137. args->aper_available_size = args->aper_size - pinned;
  138. return 0;
  139. }
  140. static int
  141. i915_gem_create(struct drm_file *file,
  142. struct drm_device *dev,
  143. uint64_t size,
  144. uint32_t *handle_p)
  145. {
  146. struct drm_i915_gem_object *obj;
  147. int ret;
  148. u32 handle;
  149. size = roundup(size, PAGE_SIZE);
  150. if (size == 0)
  151. return -EINVAL;
  152. /* Allocate the new object */
  153. obj = i915_gem_alloc_object(dev, size);
  154. if (obj == NULL)
  155. return -ENOMEM;
  156. ret = drm_gem_handle_create(file, &obj->base, &handle);
  157. if (ret) {
  158. drm_gem_object_release(&obj->base);
  159. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  160. kfree(obj);
  161. return ret;
  162. }
  163. /* drop reference from allocate - handle holds it now */
  164. drm_gem_object_unreference(&obj->base);
  165. trace_i915_gem_object_create(obj);
  166. *handle_p = handle;
  167. return 0;
  168. }
  169. int
  170. i915_gem_dumb_create(struct drm_file *file,
  171. struct drm_device *dev,
  172. struct drm_mode_create_dumb *args)
  173. {
  174. /* have to work out size/pitch and return them */
  175. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  176. args->size = args->pitch * args->height;
  177. return i915_gem_create(file, dev,
  178. args->size, &args->handle);
  179. }
  180. int i915_gem_dumb_destroy(struct drm_file *file,
  181. struct drm_device *dev,
  182. uint32_t handle)
  183. {
  184. return drm_gem_handle_delete(file, handle);
  185. }
  186. /**
  187. * Creates a new mm object and returns a handle to it.
  188. */
  189. int
  190. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  191. struct drm_file *file)
  192. {
  193. struct drm_i915_gem_create *args = data;
  194. return i915_gem_create(file, dev,
  195. args->size, &args->handle);
  196. }
  197. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  198. {
  199. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  200. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  201. obj->tiling_mode != I915_TILING_NONE;
  202. }
  203. static inline int
  204. __copy_to_user_swizzled(char __user *cpu_vaddr,
  205. const char *gpu_vaddr, int gpu_offset,
  206. int length)
  207. {
  208. int ret, cpu_offset = 0;
  209. while (length > 0) {
  210. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  211. int this_length = min(cacheline_end - gpu_offset, length);
  212. int swizzled_gpu_offset = gpu_offset ^ 64;
  213. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  214. gpu_vaddr + swizzled_gpu_offset,
  215. this_length);
  216. if (ret)
  217. return ret + length;
  218. cpu_offset += this_length;
  219. gpu_offset += this_length;
  220. length -= this_length;
  221. }
  222. return 0;
  223. }
  224. static inline int
  225. __copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
  226. const char *cpu_vaddr,
  227. int length)
  228. {
  229. int ret, cpu_offset = 0;
  230. while (length > 0) {
  231. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  232. int this_length = min(cacheline_end - gpu_offset, length);
  233. int swizzled_gpu_offset = gpu_offset ^ 64;
  234. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  235. cpu_vaddr + cpu_offset,
  236. this_length);
  237. if (ret)
  238. return ret + length;
  239. cpu_offset += this_length;
  240. gpu_offset += this_length;
  241. length -= this_length;
  242. }
  243. return 0;
  244. }
  245. /* Per-page copy function for the shmem pread fastpath.
  246. * Flushes invalid cachelines before reading the target if
  247. * needs_clflush is set. */
  248. static int
  249. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  250. char __user *user_data,
  251. bool page_do_bit17_swizzling, bool needs_clflush)
  252. {
  253. char *vaddr;
  254. int ret;
  255. if (page_do_bit17_swizzling)
  256. return -EINVAL;
  257. vaddr = kmap_atomic(page);
  258. if (needs_clflush)
  259. drm_clflush_virt_range(vaddr + shmem_page_offset,
  260. page_length);
  261. ret = __copy_to_user_inatomic(user_data,
  262. vaddr + shmem_page_offset,
  263. page_length);
  264. kunmap_atomic(vaddr);
  265. return ret;
  266. }
  267. /* Only difference to the fast-path function is that this can handle bit17
  268. * and uses non-atomic copy and kmap functions. */
  269. static int
  270. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  271. char __user *user_data,
  272. bool page_do_bit17_swizzling, bool needs_clflush)
  273. {
  274. char *vaddr;
  275. int ret;
  276. vaddr = kmap(page);
  277. if (needs_clflush)
  278. drm_clflush_virt_range(vaddr + shmem_page_offset,
  279. page_length);
  280. if (page_do_bit17_swizzling)
  281. ret = __copy_to_user_swizzled(user_data,
  282. vaddr, shmem_page_offset,
  283. page_length);
  284. else
  285. ret = __copy_to_user(user_data,
  286. vaddr + shmem_page_offset,
  287. page_length);
  288. kunmap(page);
  289. return ret;
  290. }
  291. static int
  292. i915_gem_shmem_pread(struct drm_device *dev,
  293. struct drm_i915_gem_object *obj,
  294. struct drm_i915_gem_pread *args,
  295. struct drm_file *file)
  296. {
  297. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  298. char __user *user_data;
  299. ssize_t remain;
  300. loff_t offset;
  301. int shmem_page_offset, page_length, ret = 0;
  302. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  303. int hit_slowpath = 0;
  304. int prefaulted = 0;
  305. int needs_clflush = 0;
  306. int release_page;
  307. user_data = (char __user *) (uintptr_t) args->data_ptr;
  308. remain = args->size;
  309. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  310. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  311. /* If we're not in the cpu read domain, set ourself into the gtt
  312. * read domain and manually flush cachelines (if required). This
  313. * optimizes for the case when the gpu will dirty the data
  314. * anyway again before the next pread happens. */
  315. if (obj->cache_level == I915_CACHE_NONE)
  316. needs_clflush = 1;
  317. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  318. if (ret)
  319. return ret;
  320. }
  321. offset = args->offset;
  322. while (remain > 0) {
  323. struct page *page;
  324. /* Operation in this page
  325. *
  326. * shmem_page_offset = offset within page in shmem file
  327. * page_length = bytes to copy for this page
  328. */
  329. shmem_page_offset = offset_in_page(offset);
  330. page_length = remain;
  331. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  332. page_length = PAGE_SIZE - shmem_page_offset;
  333. if (obj->pages) {
  334. page = obj->pages[offset >> PAGE_SHIFT];
  335. release_page = 0;
  336. } else {
  337. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  338. if (IS_ERR(page)) {
  339. ret = PTR_ERR(page);
  340. goto out;
  341. }
  342. release_page = 1;
  343. }
  344. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  345. (page_to_phys(page) & (1 << 17)) != 0;
  346. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  347. user_data, page_do_bit17_swizzling,
  348. needs_clflush);
  349. if (ret == 0)
  350. goto next_page;
  351. hit_slowpath = 1;
  352. page_cache_get(page);
  353. mutex_unlock(&dev->struct_mutex);
  354. if (!prefaulted) {
  355. ret = fault_in_multipages_writeable(user_data, remain);
  356. /* Userspace is tricking us, but we've already clobbered
  357. * its pages with the prefault and promised to write the
  358. * data up to the first fault. Hence ignore any errors
  359. * and just continue. */
  360. (void)ret;
  361. prefaulted = 1;
  362. }
  363. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  364. user_data, page_do_bit17_swizzling,
  365. needs_clflush);
  366. mutex_lock(&dev->struct_mutex);
  367. page_cache_release(page);
  368. next_page:
  369. mark_page_accessed(page);
  370. if (release_page)
  371. page_cache_release(page);
  372. if (ret) {
  373. ret = -EFAULT;
  374. goto out;
  375. }
  376. remain -= page_length;
  377. user_data += page_length;
  378. offset += page_length;
  379. }
  380. out:
  381. if (hit_slowpath) {
  382. /* Fixup: Kill any reinstated backing storage pages */
  383. if (obj->madv == __I915_MADV_PURGED)
  384. i915_gem_object_truncate(obj);
  385. }
  386. return ret;
  387. }
  388. /**
  389. * Reads data from the object referenced by handle.
  390. *
  391. * On error, the contents of *data are undefined.
  392. */
  393. int
  394. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  395. struct drm_file *file)
  396. {
  397. struct drm_i915_gem_pread *args = data;
  398. struct drm_i915_gem_object *obj;
  399. int ret = 0;
  400. if (args->size == 0)
  401. return 0;
  402. if (!access_ok(VERIFY_WRITE,
  403. (char __user *)(uintptr_t)args->data_ptr,
  404. args->size))
  405. return -EFAULT;
  406. ret = i915_mutex_lock_interruptible(dev);
  407. if (ret)
  408. return ret;
  409. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  410. if (&obj->base == NULL) {
  411. ret = -ENOENT;
  412. goto unlock;
  413. }
  414. /* Bounds check source. */
  415. if (args->offset > obj->base.size ||
  416. args->size > obj->base.size - args->offset) {
  417. ret = -EINVAL;
  418. goto out;
  419. }
  420. trace_i915_gem_object_pread(obj, args->offset, args->size);
  421. ret = i915_gem_shmem_pread(dev, obj, args, file);
  422. out:
  423. drm_gem_object_unreference(&obj->base);
  424. unlock:
  425. mutex_unlock(&dev->struct_mutex);
  426. return ret;
  427. }
  428. /* This is the fast write path which cannot handle
  429. * page faults in the source data
  430. */
  431. static inline int
  432. fast_user_write(struct io_mapping *mapping,
  433. loff_t page_base, int page_offset,
  434. char __user *user_data,
  435. int length)
  436. {
  437. char *vaddr_atomic;
  438. unsigned long unwritten;
  439. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  440. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  441. user_data, length);
  442. io_mapping_unmap_atomic(vaddr_atomic);
  443. return unwritten;
  444. }
  445. /**
  446. * This is the fast pwrite path, where we copy the data directly from the
  447. * user into the GTT, uncached.
  448. */
  449. static int
  450. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  451. struct drm_i915_gem_object *obj,
  452. struct drm_i915_gem_pwrite *args,
  453. struct drm_file *file)
  454. {
  455. drm_i915_private_t *dev_priv = dev->dev_private;
  456. ssize_t remain;
  457. loff_t offset, page_base;
  458. char __user *user_data;
  459. int page_offset, page_length, ret;
  460. ret = i915_gem_object_pin(obj, 0, true);
  461. if (ret)
  462. goto out;
  463. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  464. if (ret)
  465. goto out_unpin;
  466. ret = i915_gem_object_put_fence(obj);
  467. if (ret)
  468. goto out_unpin;
  469. user_data = (char __user *) (uintptr_t) args->data_ptr;
  470. remain = args->size;
  471. offset = obj->gtt_offset + args->offset;
  472. while (remain > 0) {
  473. /* Operation in this page
  474. *
  475. * page_base = page offset within aperture
  476. * page_offset = offset within page
  477. * page_length = bytes to copy for this page
  478. */
  479. page_base = offset & PAGE_MASK;
  480. page_offset = offset_in_page(offset);
  481. page_length = remain;
  482. if ((page_offset + remain) > PAGE_SIZE)
  483. page_length = PAGE_SIZE - page_offset;
  484. /* If we get a fault while copying data, then (presumably) our
  485. * source page isn't available. Return the error and we'll
  486. * retry in the slow path.
  487. */
  488. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  489. page_offset, user_data, page_length)) {
  490. ret = -EFAULT;
  491. goto out_unpin;
  492. }
  493. remain -= page_length;
  494. user_data += page_length;
  495. offset += page_length;
  496. }
  497. out_unpin:
  498. i915_gem_object_unpin(obj);
  499. out:
  500. return ret;
  501. }
  502. /* Per-page copy function for the shmem pwrite fastpath.
  503. * Flushes invalid cachelines before writing to the target if
  504. * needs_clflush_before is set and flushes out any written cachelines after
  505. * writing if needs_clflush is set. */
  506. static int
  507. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  508. char __user *user_data,
  509. bool page_do_bit17_swizzling,
  510. bool needs_clflush_before,
  511. bool needs_clflush_after)
  512. {
  513. char *vaddr;
  514. int ret;
  515. if (page_do_bit17_swizzling)
  516. return -EINVAL;
  517. vaddr = kmap_atomic(page);
  518. if (needs_clflush_before)
  519. drm_clflush_virt_range(vaddr + shmem_page_offset,
  520. page_length);
  521. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  522. user_data,
  523. page_length);
  524. if (needs_clflush_after)
  525. drm_clflush_virt_range(vaddr + shmem_page_offset,
  526. page_length);
  527. kunmap_atomic(vaddr);
  528. return ret;
  529. }
  530. /* Only difference to the fast-path function is that this can handle bit17
  531. * and uses non-atomic copy and kmap functions. */
  532. static int
  533. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  534. char __user *user_data,
  535. bool page_do_bit17_swizzling,
  536. bool needs_clflush_before,
  537. bool needs_clflush_after)
  538. {
  539. char *vaddr;
  540. int ret;
  541. vaddr = kmap(page);
  542. if (needs_clflush_before)
  543. drm_clflush_virt_range(vaddr + shmem_page_offset,
  544. page_length);
  545. if (page_do_bit17_swizzling)
  546. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  547. user_data,
  548. page_length);
  549. else
  550. ret = __copy_from_user(vaddr + shmem_page_offset,
  551. user_data,
  552. page_length);
  553. if (needs_clflush_after)
  554. drm_clflush_virt_range(vaddr + shmem_page_offset,
  555. page_length);
  556. kunmap(page);
  557. return ret;
  558. }
  559. static int
  560. i915_gem_shmem_pwrite(struct drm_device *dev,
  561. struct drm_i915_gem_object *obj,
  562. struct drm_i915_gem_pwrite *args,
  563. struct drm_file *file)
  564. {
  565. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  566. ssize_t remain;
  567. loff_t offset;
  568. char __user *user_data;
  569. int shmem_page_offset, page_length, ret = 0;
  570. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  571. int hit_slowpath = 0;
  572. int needs_clflush_after = 0;
  573. int needs_clflush_before = 0;
  574. int release_page;
  575. user_data = (char __user *) (uintptr_t) args->data_ptr;
  576. remain = args->size;
  577. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  578. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  579. /* If we're not in the cpu write domain, set ourself into the gtt
  580. * write domain and manually flush cachelines (if required). This
  581. * optimizes for the case when the gpu will use the data
  582. * right away and we therefore have to clflush anyway. */
  583. if (obj->cache_level == I915_CACHE_NONE)
  584. needs_clflush_after = 1;
  585. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  586. if (ret)
  587. return ret;
  588. }
  589. /* Same trick applies for invalidate partially written cachelines before
  590. * writing. */
  591. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  592. && obj->cache_level == I915_CACHE_NONE)
  593. needs_clflush_before = 1;
  594. offset = args->offset;
  595. obj->dirty = 1;
  596. while (remain > 0) {
  597. struct page *page;
  598. int partial_cacheline_write;
  599. /* Operation in this page
  600. *
  601. * shmem_page_offset = offset within page in shmem file
  602. * page_length = bytes to copy for this page
  603. */
  604. shmem_page_offset = offset_in_page(offset);
  605. page_length = remain;
  606. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  607. page_length = PAGE_SIZE - shmem_page_offset;
  608. /* If we don't overwrite a cacheline completely we need to be
  609. * careful to have up-to-date data by first clflushing. Don't
  610. * overcomplicate things and flush the entire patch. */
  611. partial_cacheline_write = needs_clflush_before &&
  612. ((shmem_page_offset | page_length)
  613. & (boot_cpu_data.x86_clflush_size - 1));
  614. if (obj->pages) {
  615. page = obj->pages[offset >> PAGE_SHIFT];
  616. release_page = 0;
  617. } else {
  618. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  619. if (IS_ERR(page)) {
  620. ret = PTR_ERR(page);
  621. goto out;
  622. }
  623. release_page = 1;
  624. }
  625. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  626. (page_to_phys(page) & (1 << 17)) != 0;
  627. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  628. user_data, page_do_bit17_swizzling,
  629. partial_cacheline_write,
  630. needs_clflush_after);
  631. if (ret == 0)
  632. goto next_page;
  633. hit_slowpath = 1;
  634. page_cache_get(page);
  635. mutex_unlock(&dev->struct_mutex);
  636. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  637. user_data, page_do_bit17_swizzling,
  638. partial_cacheline_write,
  639. needs_clflush_after);
  640. mutex_lock(&dev->struct_mutex);
  641. page_cache_release(page);
  642. next_page:
  643. set_page_dirty(page);
  644. mark_page_accessed(page);
  645. if (release_page)
  646. page_cache_release(page);
  647. if (ret) {
  648. ret = -EFAULT;
  649. goto out;
  650. }
  651. remain -= page_length;
  652. user_data += page_length;
  653. offset += page_length;
  654. }
  655. out:
  656. if (hit_slowpath) {
  657. /* Fixup: Kill any reinstated backing storage pages */
  658. if (obj->madv == __I915_MADV_PURGED)
  659. i915_gem_object_truncate(obj);
  660. /* and flush dirty cachelines in case the object isn't in the cpu write
  661. * domain anymore. */
  662. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  663. i915_gem_clflush_object(obj);
  664. intel_gtt_chipset_flush();
  665. }
  666. }
  667. if (needs_clflush_after)
  668. intel_gtt_chipset_flush();
  669. return ret;
  670. }
  671. /**
  672. * Writes data to the object referenced by handle.
  673. *
  674. * On error, the contents of the buffer that were to be modified are undefined.
  675. */
  676. int
  677. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  678. struct drm_file *file)
  679. {
  680. struct drm_i915_gem_pwrite *args = data;
  681. struct drm_i915_gem_object *obj;
  682. int ret;
  683. if (args->size == 0)
  684. return 0;
  685. if (!access_ok(VERIFY_READ,
  686. (char __user *)(uintptr_t)args->data_ptr,
  687. args->size))
  688. return -EFAULT;
  689. ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
  690. args->size);
  691. if (ret)
  692. return -EFAULT;
  693. ret = i915_mutex_lock_interruptible(dev);
  694. if (ret)
  695. return ret;
  696. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  697. if (&obj->base == NULL) {
  698. ret = -ENOENT;
  699. goto unlock;
  700. }
  701. /* Bounds check destination. */
  702. if (args->offset > obj->base.size ||
  703. args->size > obj->base.size - args->offset) {
  704. ret = -EINVAL;
  705. goto out;
  706. }
  707. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  708. ret = -EFAULT;
  709. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  710. * it would end up going through the fenced access, and we'll get
  711. * different detiling behavior between reading and writing.
  712. * pread/pwrite currently are reading and writing from the CPU
  713. * perspective, requiring manual detiling by the client.
  714. */
  715. if (obj->phys_obj) {
  716. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  717. goto out;
  718. }
  719. if (obj->gtt_space &&
  720. obj->cache_level == I915_CACHE_NONE &&
  721. obj->map_and_fenceable &&
  722. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  723. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  724. /* Note that the gtt paths might fail with non-page-backed user
  725. * pointers (e.g. gtt mappings when moving data between
  726. * textures). Fallback to the shmem path in that case. */
  727. }
  728. if (ret == -EFAULT)
  729. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  730. out:
  731. drm_gem_object_unreference(&obj->base);
  732. unlock:
  733. mutex_unlock(&dev->struct_mutex);
  734. return ret;
  735. }
  736. /**
  737. * Called when user space prepares to use an object with the CPU, either
  738. * through the mmap ioctl's mapping or a GTT mapping.
  739. */
  740. int
  741. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  742. struct drm_file *file)
  743. {
  744. struct drm_i915_gem_set_domain *args = data;
  745. struct drm_i915_gem_object *obj;
  746. uint32_t read_domains = args->read_domains;
  747. uint32_t write_domain = args->write_domain;
  748. int ret;
  749. if (!(dev->driver->driver_features & DRIVER_GEM))
  750. return -ENODEV;
  751. /* Only handle setting domains to types used by the CPU. */
  752. if (write_domain & I915_GEM_GPU_DOMAINS)
  753. return -EINVAL;
  754. if (read_domains & I915_GEM_GPU_DOMAINS)
  755. return -EINVAL;
  756. /* Having something in the write domain implies it's in the read
  757. * domain, and only that read domain. Enforce that in the request.
  758. */
  759. if (write_domain != 0 && read_domains != write_domain)
  760. return -EINVAL;
  761. ret = i915_mutex_lock_interruptible(dev);
  762. if (ret)
  763. return ret;
  764. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  765. if (&obj->base == NULL) {
  766. ret = -ENOENT;
  767. goto unlock;
  768. }
  769. if (read_domains & I915_GEM_DOMAIN_GTT) {
  770. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  771. /* Silently promote "you're not bound, there was nothing to do"
  772. * to success, since the client was just asking us to
  773. * make sure everything was done.
  774. */
  775. if (ret == -EINVAL)
  776. ret = 0;
  777. } else {
  778. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  779. }
  780. drm_gem_object_unreference(&obj->base);
  781. unlock:
  782. mutex_unlock(&dev->struct_mutex);
  783. return ret;
  784. }
  785. /**
  786. * Called when user space has done writes to this buffer
  787. */
  788. int
  789. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  790. struct drm_file *file)
  791. {
  792. struct drm_i915_gem_sw_finish *args = data;
  793. struct drm_i915_gem_object *obj;
  794. int ret = 0;
  795. if (!(dev->driver->driver_features & DRIVER_GEM))
  796. return -ENODEV;
  797. ret = i915_mutex_lock_interruptible(dev);
  798. if (ret)
  799. return ret;
  800. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  801. if (&obj->base == NULL) {
  802. ret = -ENOENT;
  803. goto unlock;
  804. }
  805. /* Pinned buffers may be scanout, so flush the cache */
  806. if (obj->pin_count)
  807. i915_gem_object_flush_cpu_write_domain(obj);
  808. drm_gem_object_unreference(&obj->base);
  809. unlock:
  810. mutex_unlock(&dev->struct_mutex);
  811. return ret;
  812. }
  813. /**
  814. * Maps the contents of an object, returning the address it is mapped
  815. * into.
  816. *
  817. * While the mapping holds a reference on the contents of the object, it doesn't
  818. * imply a ref on the object itself.
  819. */
  820. int
  821. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  822. struct drm_file *file)
  823. {
  824. struct drm_i915_gem_mmap *args = data;
  825. struct drm_gem_object *obj;
  826. unsigned long addr;
  827. if (!(dev->driver->driver_features & DRIVER_GEM))
  828. return -ENODEV;
  829. obj = drm_gem_object_lookup(dev, file, args->handle);
  830. if (obj == NULL)
  831. return -ENOENT;
  832. down_write(&current->mm->mmap_sem);
  833. addr = do_mmap(obj->filp, 0, args->size,
  834. PROT_READ | PROT_WRITE, MAP_SHARED,
  835. args->offset);
  836. up_write(&current->mm->mmap_sem);
  837. drm_gem_object_unreference_unlocked(obj);
  838. if (IS_ERR((void *)addr))
  839. return addr;
  840. args->addr_ptr = (uint64_t) addr;
  841. return 0;
  842. }
  843. /**
  844. * i915_gem_fault - fault a page into the GTT
  845. * vma: VMA in question
  846. * vmf: fault info
  847. *
  848. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  849. * from userspace. The fault handler takes care of binding the object to
  850. * the GTT (if needed), allocating and programming a fence register (again,
  851. * only if needed based on whether the old reg is still valid or the object
  852. * is tiled) and inserting a new PTE into the faulting process.
  853. *
  854. * Note that the faulting process may involve evicting existing objects
  855. * from the GTT and/or fence registers to make room. So performance may
  856. * suffer if the GTT working set is large or there are few fence registers
  857. * left.
  858. */
  859. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  860. {
  861. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  862. struct drm_device *dev = obj->base.dev;
  863. drm_i915_private_t *dev_priv = dev->dev_private;
  864. pgoff_t page_offset;
  865. unsigned long pfn;
  866. int ret = 0;
  867. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  868. /* We don't use vmf->pgoff since that has the fake offset */
  869. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  870. PAGE_SHIFT;
  871. ret = i915_mutex_lock_interruptible(dev);
  872. if (ret)
  873. goto out;
  874. trace_i915_gem_object_fault(obj, page_offset, true, write);
  875. /* Now bind it into the GTT if needed */
  876. if (!obj->map_and_fenceable) {
  877. ret = i915_gem_object_unbind(obj);
  878. if (ret)
  879. goto unlock;
  880. }
  881. if (!obj->gtt_space) {
  882. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  883. if (ret)
  884. goto unlock;
  885. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  886. if (ret)
  887. goto unlock;
  888. }
  889. if (!obj->has_global_gtt_mapping)
  890. i915_gem_gtt_bind_object(obj, obj->cache_level);
  891. if (obj->tiling_mode == I915_TILING_NONE)
  892. ret = i915_gem_object_put_fence(obj);
  893. else
  894. ret = i915_gem_object_get_fence(obj, NULL);
  895. if (ret)
  896. goto unlock;
  897. if (i915_gem_object_is_inactive(obj))
  898. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  899. obj->fault_mappable = true;
  900. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  901. page_offset;
  902. /* Finally, remap it using the new GTT offset */
  903. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  904. unlock:
  905. mutex_unlock(&dev->struct_mutex);
  906. out:
  907. switch (ret) {
  908. case -EIO:
  909. case -EAGAIN:
  910. /* Give the error handler a chance to run and move the
  911. * objects off the GPU active list. Next time we service the
  912. * fault, we should be able to transition the page into the
  913. * GTT without touching the GPU (and so avoid further
  914. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  915. * with coherency, just lost writes.
  916. */
  917. set_need_resched();
  918. case 0:
  919. case -ERESTARTSYS:
  920. case -EINTR:
  921. return VM_FAULT_NOPAGE;
  922. case -ENOMEM:
  923. return VM_FAULT_OOM;
  924. default:
  925. return VM_FAULT_SIGBUS;
  926. }
  927. }
  928. /**
  929. * i915_gem_release_mmap - remove physical page mappings
  930. * @obj: obj in question
  931. *
  932. * Preserve the reservation of the mmapping with the DRM core code, but
  933. * relinquish ownership of the pages back to the system.
  934. *
  935. * It is vital that we remove the page mapping if we have mapped a tiled
  936. * object through the GTT and then lose the fence register due to
  937. * resource pressure. Similarly if the object has been moved out of the
  938. * aperture, than pages mapped into userspace must be revoked. Removing the
  939. * mapping will then trigger a page fault on the next user access, allowing
  940. * fixup by i915_gem_fault().
  941. */
  942. void
  943. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  944. {
  945. if (!obj->fault_mappable)
  946. return;
  947. if (obj->base.dev->dev_mapping)
  948. unmap_mapping_range(obj->base.dev->dev_mapping,
  949. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  950. obj->base.size, 1);
  951. obj->fault_mappable = false;
  952. }
  953. static uint32_t
  954. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  955. {
  956. uint32_t gtt_size;
  957. if (INTEL_INFO(dev)->gen >= 4 ||
  958. tiling_mode == I915_TILING_NONE)
  959. return size;
  960. /* Previous chips need a power-of-two fence region when tiling */
  961. if (INTEL_INFO(dev)->gen == 3)
  962. gtt_size = 1024*1024;
  963. else
  964. gtt_size = 512*1024;
  965. while (gtt_size < size)
  966. gtt_size <<= 1;
  967. return gtt_size;
  968. }
  969. /**
  970. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  971. * @obj: object to check
  972. *
  973. * Return the required GTT alignment for an object, taking into account
  974. * potential fence register mapping.
  975. */
  976. static uint32_t
  977. i915_gem_get_gtt_alignment(struct drm_device *dev,
  978. uint32_t size,
  979. int tiling_mode)
  980. {
  981. /*
  982. * Minimum alignment is 4k (GTT page size), but might be greater
  983. * if a fence register is needed for the object.
  984. */
  985. if (INTEL_INFO(dev)->gen >= 4 ||
  986. tiling_mode == I915_TILING_NONE)
  987. return 4096;
  988. /*
  989. * Previous chips need to be aligned to the size of the smallest
  990. * fence register that can contain the object.
  991. */
  992. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  993. }
  994. /**
  995. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  996. * unfenced object
  997. * @dev: the device
  998. * @size: size of the object
  999. * @tiling_mode: tiling mode of the object
  1000. *
  1001. * Return the required GTT alignment for an object, only taking into account
  1002. * unfenced tiled surface requirements.
  1003. */
  1004. uint32_t
  1005. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1006. uint32_t size,
  1007. int tiling_mode)
  1008. {
  1009. /*
  1010. * Minimum alignment is 4k (GTT page size) for sane hw.
  1011. */
  1012. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1013. tiling_mode == I915_TILING_NONE)
  1014. return 4096;
  1015. /* Previous hardware however needs to be aligned to a power-of-two
  1016. * tile height. The simplest method for determining this is to reuse
  1017. * the power-of-tile object size.
  1018. */
  1019. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1020. }
  1021. int
  1022. i915_gem_mmap_gtt(struct drm_file *file,
  1023. struct drm_device *dev,
  1024. uint32_t handle,
  1025. uint64_t *offset)
  1026. {
  1027. struct drm_i915_private *dev_priv = dev->dev_private;
  1028. struct drm_i915_gem_object *obj;
  1029. int ret;
  1030. if (!(dev->driver->driver_features & DRIVER_GEM))
  1031. return -ENODEV;
  1032. ret = i915_mutex_lock_interruptible(dev);
  1033. if (ret)
  1034. return ret;
  1035. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1036. if (&obj->base == NULL) {
  1037. ret = -ENOENT;
  1038. goto unlock;
  1039. }
  1040. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1041. ret = -E2BIG;
  1042. goto out;
  1043. }
  1044. if (obj->madv != I915_MADV_WILLNEED) {
  1045. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1046. ret = -EINVAL;
  1047. goto out;
  1048. }
  1049. if (!obj->base.map_list.map) {
  1050. ret = drm_gem_create_mmap_offset(&obj->base);
  1051. if (ret)
  1052. goto out;
  1053. }
  1054. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1055. out:
  1056. drm_gem_object_unreference(&obj->base);
  1057. unlock:
  1058. mutex_unlock(&dev->struct_mutex);
  1059. return ret;
  1060. }
  1061. /**
  1062. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1063. * @dev: DRM device
  1064. * @data: GTT mapping ioctl data
  1065. * @file: GEM object info
  1066. *
  1067. * Simply returns the fake offset to userspace so it can mmap it.
  1068. * The mmap call will end up in drm_gem_mmap(), which will set things
  1069. * up so we can get faults in the handler above.
  1070. *
  1071. * The fault handler will take care of binding the object into the GTT
  1072. * (since it may have been evicted to make room for something), allocating
  1073. * a fence register, and mapping the appropriate aperture address into
  1074. * userspace.
  1075. */
  1076. int
  1077. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1078. struct drm_file *file)
  1079. {
  1080. struct drm_i915_gem_mmap_gtt *args = data;
  1081. if (!(dev->driver->driver_features & DRIVER_GEM))
  1082. return -ENODEV;
  1083. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1084. }
  1085. static int
  1086. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1087. gfp_t gfpmask)
  1088. {
  1089. int page_count, i;
  1090. struct address_space *mapping;
  1091. struct inode *inode;
  1092. struct page *page;
  1093. /* Get the list of pages out of our struct file. They'll be pinned
  1094. * at this point until we release them.
  1095. */
  1096. page_count = obj->base.size / PAGE_SIZE;
  1097. BUG_ON(obj->pages != NULL);
  1098. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1099. if (obj->pages == NULL)
  1100. return -ENOMEM;
  1101. inode = obj->base.filp->f_path.dentry->d_inode;
  1102. mapping = inode->i_mapping;
  1103. gfpmask |= mapping_gfp_mask(mapping);
  1104. for (i = 0; i < page_count; i++) {
  1105. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1106. if (IS_ERR(page))
  1107. goto err_pages;
  1108. obj->pages[i] = page;
  1109. }
  1110. if (i915_gem_object_needs_bit17_swizzle(obj))
  1111. i915_gem_object_do_bit_17_swizzle(obj);
  1112. return 0;
  1113. err_pages:
  1114. while (i--)
  1115. page_cache_release(obj->pages[i]);
  1116. drm_free_large(obj->pages);
  1117. obj->pages = NULL;
  1118. return PTR_ERR(page);
  1119. }
  1120. static void
  1121. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1122. {
  1123. int page_count = obj->base.size / PAGE_SIZE;
  1124. int i;
  1125. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1126. if (i915_gem_object_needs_bit17_swizzle(obj))
  1127. i915_gem_object_save_bit_17_swizzle(obj);
  1128. if (obj->madv == I915_MADV_DONTNEED)
  1129. obj->dirty = 0;
  1130. for (i = 0; i < page_count; i++) {
  1131. if (obj->dirty)
  1132. set_page_dirty(obj->pages[i]);
  1133. if (obj->madv == I915_MADV_WILLNEED)
  1134. mark_page_accessed(obj->pages[i]);
  1135. page_cache_release(obj->pages[i]);
  1136. }
  1137. obj->dirty = 0;
  1138. drm_free_large(obj->pages);
  1139. obj->pages = NULL;
  1140. }
  1141. void
  1142. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1143. struct intel_ring_buffer *ring,
  1144. u32 seqno)
  1145. {
  1146. struct drm_device *dev = obj->base.dev;
  1147. struct drm_i915_private *dev_priv = dev->dev_private;
  1148. BUG_ON(ring == NULL);
  1149. obj->ring = ring;
  1150. /* Add a reference if we're newly entering the active list. */
  1151. if (!obj->active) {
  1152. drm_gem_object_reference(&obj->base);
  1153. obj->active = 1;
  1154. }
  1155. /* Move from whatever list we were on to the tail of execution. */
  1156. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1157. list_move_tail(&obj->ring_list, &ring->active_list);
  1158. obj->last_rendering_seqno = seqno;
  1159. if (obj->fenced_gpu_access) {
  1160. struct drm_i915_fence_reg *reg;
  1161. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1162. obj->last_fenced_seqno = seqno;
  1163. obj->last_fenced_ring = ring;
  1164. reg = &dev_priv->fence_regs[obj->fence_reg];
  1165. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1166. }
  1167. }
  1168. static void
  1169. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1170. {
  1171. list_del_init(&obj->ring_list);
  1172. obj->last_rendering_seqno = 0;
  1173. }
  1174. static void
  1175. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1176. {
  1177. struct drm_device *dev = obj->base.dev;
  1178. drm_i915_private_t *dev_priv = dev->dev_private;
  1179. BUG_ON(!obj->active);
  1180. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1181. i915_gem_object_move_off_active(obj);
  1182. }
  1183. static void
  1184. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1185. {
  1186. struct drm_device *dev = obj->base.dev;
  1187. struct drm_i915_private *dev_priv = dev->dev_private;
  1188. if (obj->pin_count != 0)
  1189. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1190. else
  1191. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1192. BUG_ON(!list_empty(&obj->gpu_write_list));
  1193. BUG_ON(!obj->active);
  1194. obj->ring = NULL;
  1195. i915_gem_object_move_off_active(obj);
  1196. obj->fenced_gpu_access = false;
  1197. obj->active = 0;
  1198. obj->pending_gpu_write = false;
  1199. drm_gem_object_unreference(&obj->base);
  1200. WARN_ON(i915_verify_lists(dev));
  1201. }
  1202. /* Immediately discard the backing storage */
  1203. static void
  1204. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1205. {
  1206. struct inode *inode;
  1207. /* Our goal here is to return as much of the memory as
  1208. * is possible back to the system as we are called from OOM.
  1209. * To do this we must instruct the shmfs to drop all of its
  1210. * backing pages, *now*.
  1211. */
  1212. inode = obj->base.filp->f_path.dentry->d_inode;
  1213. shmem_truncate_range(inode, 0, (loff_t)-1);
  1214. if (obj->base.map_list.map)
  1215. drm_gem_free_mmap_offset(&obj->base);
  1216. obj->madv = __I915_MADV_PURGED;
  1217. }
  1218. static inline int
  1219. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1220. {
  1221. return obj->madv == I915_MADV_DONTNEED;
  1222. }
  1223. static void
  1224. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1225. uint32_t flush_domains)
  1226. {
  1227. struct drm_i915_gem_object *obj, *next;
  1228. list_for_each_entry_safe(obj, next,
  1229. &ring->gpu_write_list,
  1230. gpu_write_list) {
  1231. if (obj->base.write_domain & flush_domains) {
  1232. uint32_t old_write_domain = obj->base.write_domain;
  1233. obj->base.write_domain = 0;
  1234. list_del_init(&obj->gpu_write_list);
  1235. i915_gem_object_move_to_active(obj, ring,
  1236. i915_gem_next_request_seqno(ring));
  1237. trace_i915_gem_object_change_domain(obj,
  1238. obj->base.read_domains,
  1239. old_write_domain);
  1240. }
  1241. }
  1242. }
  1243. static u32
  1244. i915_gem_get_seqno(struct drm_device *dev)
  1245. {
  1246. drm_i915_private_t *dev_priv = dev->dev_private;
  1247. u32 seqno = dev_priv->next_seqno;
  1248. /* reserve 0 for non-seqno */
  1249. if (++dev_priv->next_seqno == 0)
  1250. dev_priv->next_seqno = 1;
  1251. return seqno;
  1252. }
  1253. u32
  1254. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1255. {
  1256. if (ring->outstanding_lazy_request == 0)
  1257. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1258. return ring->outstanding_lazy_request;
  1259. }
  1260. int
  1261. i915_add_request(struct intel_ring_buffer *ring,
  1262. struct drm_file *file,
  1263. struct drm_i915_gem_request *request)
  1264. {
  1265. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1266. uint32_t seqno;
  1267. u32 request_ring_position;
  1268. int was_empty;
  1269. int ret;
  1270. BUG_ON(request == NULL);
  1271. seqno = i915_gem_next_request_seqno(ring);
  1272. /* Record the position of the start of the request so that
  1273. * should we detect the updated seqno part-way through the
  1274. * GPU processing the request, we never over-estimate the
  1275. * position of the head.
  1276. */
  1277. request_ring_position = intel_ring_get_tail(ring);
  1278. ret = ring->add_request(ring, &seqno);
  1279. if (ret)
  1280. return ret;
  1281. trace_i915_gem_request_add(ring, seqno);
  1282. request->seqno = seqno;
  1283. request->ring = ring;
  1284. request->tail = request_ring_position;
  1285. request->emitted_jiffies = jiffies;
  1286. was_empty = list_empty(&ring->request_list);
  1287. list_add_tail(&request->list, &ring->request_list);
  1288. if (file) {
  1289. struct drm_i915_file_private *file_priv = file->driver_priv;
  1290. spin_lock(&file_priv->mm.lock);
  1291. request->file_priv = file_priv;
  1292. list_add_tail(&request->client_list,
  1293. &file_priv->mm.request_list);
  1294. spin_unlock(&file_priv->mm.lock);
  1295. }
  1296. ring->outstanding_lazy_request = 0;
  1297. if (!dev_priv->mm.suspended) {
  1298. if (i915_enable_hangcheck) {
  1299. mod_timer(&dev_priv->hangcheck_timer,
  1300. jiffies +
  1301. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1302. }
  1303. if (was_empty)
  1304. queue_delayed_work(dev_priv->wq,
  1305. &dev_priv->mm.retire_work, HZ);
  1306. }
  1307. return 0;
  1308. }
  1309. static inline void
  1310. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1311. {
  1312. struct drm_i915_file_private *file_priv = request->file_priv;
  1313. if (!file_priv)
  1314. return;
  1315. spin_lock(&file_priv->mm.lock);
  1316. if (request->file_priv) {
  1317. list_del(&request->client_list);
  1318. request->file_priv = NULL;
  1319. }
  1320. spin_unlock(&file_priv->mm.lock);
  1321. }
  1322. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1323. struct intel_ring_buffer *ring)
  1324. {
  1325. while (!list_empty(&ring->request_list)) {
  1326. struct drm_i915_gem_request *request;
  1327. request = list_first_entry(&ring->request_list,
  1328. struct drm_i915_gem_request,
  1329. list);
  1330. list_del(&request->list);
  1331. i915_gem_request_remove_from_client(request);
  1332. kfree(request);
  1333. }
  1334. while (!list_empty(&ring->active_list)) {
  1335. struct drm_i915_gem_object *obj;
  1336. obj = list_first_entry(&ring->active_list,
  1337. struct drm_i915_gem_object,
  1338. ring_list);
  1339. obj->base.write_domain = 0;
  1340. list_del_init(&obj->gpu_write_list);
  1341. i915_gem_object_move_to_inactive(obj);
  1342. }
  1343. }
  1344. static void i915_gem_reset_fences(struct drm_device *dev)
  1345. {
  1346. struct drm_i915_private *dev_priv = dev->dev_private;
  1347. int i;
  1348. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1349. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1350. struct drm_i915_gem_object *obj = reg->obj;
  1351. if (!obj)
  1352. continue;
  1353. if (obj->tiling_mode)
  1354. i915_gem_release_mmap(obj);
  1355. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1356. reg->obj->fenced_gpu_access = false;
  1357. reg->obj->last_fenced_seqno = 0;
  1358. reg->obj->last_fenced_ring = NULL;
  1359. i915_gem_clear_fence_reg(dev, reg);
  1360. }
  1361. }
  1362. void i915_gem_reset(struct drm_device *dev)
  1363. {
  1364. struct drm_i915_private *dev_priv = dev->dev_private;
  1365. struct drm_i915_gem_object *obj;
  1366. int i;
  1367. for (i = 0; i < I915_NUM_RINGS; i++)
  1368. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1369. /* Remove anything from the flushing lists. The GPU cache is likely
  1370. * to be lost on reset along with the data, so simply move the
  1371. * lost bo to the inactive list.
  1372. */
  1373. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1374. obj = list_first_entry(&dev_priv->mm.flushing_list,
  1375. struct drm_i915_gem_object,
  1376. mm_list);
  1377. obj->base.write_domain = 0;
  1378. list_del_init(&obj->gpu_write_list);
  1379. i915_gem_object_move_to_inactive(obj);
  1380. }
  1381. /* Move everything out of the GPU domains to ensure we do any
  1382. * necessary invalidation upon reuse.
  1383. */
  1384. list_for_each_entry(obj,
  1385. &dev_priv->mm.inactive_list,
  1386. mm_list)
  1387. {
  1388. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1389. }
  1390. /* The fence registers are invalidated so clear them out */
  1391. i915_gem_reset_fences(dev);
  1392. }
  1393. /**
  1394. * This function clears the request list as sequence numbers are passed.
  1395. */
  1396. void
  1397. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1398. {
  1399. uint32_t seqno;
  1400. int i;
  1401. if (list_empty(&ring->request_list))
  1402. return;
  1403. WARN_ON(i915_verify_lists(ring->dev));
  1404. seqno = ring->get_seqno(ring);
  1405. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1406. if (seqno >= ring->sync_seqno[i])
  1407. ring->sync_seqno[i] = 0;
  1408. while (!list_empty(&ring->request_list)) {
  1409. struct drm_i915_gem_request *request;
  1410. request = list_first_entry(&ring->request_list,
  1411. struct drm_i915_gem_request,
  1412. list);
  1413. if (!i915_seqno_passed(seqno, request->seqno))
  1414. break;
  1415. trace_i915_gem_request_retire(ring, request->seqno);
  1416. /* We know the GPU must have read the request to have
  1417. * sent us the seqno + interrupt, so use the position
  1418. * of tail of the request to update the last known position
  1419. * of the GPU head.
  1420. */
  1421. ring->last_retired_head = request->tail;
  1422. list_del(&request->list);
  1423. i915_gem_request_remove_from_client(request);
  1424. kfree(request);
  1425. }
  1426. /* Move any buffers on the active list that are no longer referenced
  1427. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1428. */
  1429. while (!list_empty(&ring->active_list)) {
  1430. struct drm_i915_gem_object *obj;
  1431. obj = list_first_entry(&ring->active_list,
  1432. struct drm_i915_gem_object,
  1433. ring_list);
  1434. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1435. break;
  1436. if (obj->base.write_domain != 0)
  1437. i915_gem_object_move_to_flushing(obj);
  1438. else
  1439. i915_gem_object_move_to_inactive(obj);
  1440. }
  1441. if (unlikely(ring->trace_irq_seqno &&
  1442. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1443. ring->irq_put(ring);
  1444. ring->trace_irq_seqno = 0;
  1445. }
  1446. WARN_ON(i915_verify_lists(ring->dev));
  1447. }
  1448. void
  1449. i915_gem_retire_requests(struct drm_device *dev)
  1450. {
  1451. drm_i915_private_t *dev_priv = dev->dev_private;
  1452. int i;
  1453. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1454. struct drm_i915_gem_object *obj, *next;
  1455. /* We must be careful that during unbind() we do not
  1456. * accidentally infinitely recurse into retire requests.
  1457. * Currently:
  1458. * retire -> free -> unbind -> wait -> retire_ring
  1459. */
  1460. list_for_each_entry_safe(obj, next,
  1461. &dev_priv->mm.deferred_free_list,
  1462. mm_list)
  1463. i915_gem_free_object_tail(obj);
  1464. }
  1465. for (i = 0; i < I915_NUM_RINGS; i++)
  1466. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1467. }
  1468. static void
  1469. i915_gem_retire_work_handler(struct work_struct *work)
  1470. {
  1471. drm_i915_private_t *dev_priv;
  1472. struct drm_device *dev;
  1473. bool idle;
  1474. int i;
  1475. dev_priv = container_of(work, drm_i915_private_t,
  1476. mm.retire_work.work);
  1477. dev = dev_priv->dev;
  1478. /* Come back later if the device is busy... */
  1479. if (!mutex_trylock(&dev->struct_mutex)) {
  1480. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1481. return;
  1482. }
  1483. i915_gem_retire_requests(dev);
  1484. /* Send a periodic flush down the ring so we don't hold onto GEM
  1485. * objects indefinitely.
  1486. */
  1487. idle = true;
  1488. for (i = 0; i < I915_NUM_RINGS; i++) {
  1489. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1490. if (!list_empty(&ring->gpu_write_list)) {
  1491. struct drm_i915_gem_request *request;
  1492. int ret;
  1493. ret = i915_gem_flush_ring(ring,
  1494. 0, I915_GEM_GPU_DOMAINS);
  1495. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1496. if (ret || request == NULL ||
  1497. i915_add_request(ring, NULL, request))
  1498. kfree(request);
  1499. }
  1500. idle &= list_empty(&ring->request_list);
  1501. }
  1502. if (!dev_priv->mm.suspended && !idle)
  1503. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1504. mutex_unlock(&dev->struct_mutex);
  1505. }
  1506. /**
  1507. * Waits for a sequence number to be signaled, and cleans up the
  1508. * request and object lists appropriately for that event.
  1509. */
  1510. int
  1511. i915_wait_request(struct intel_ring_buffer *ring,
  1512. uint32_t seqno,
  1513. bool do_retire)
  1514. {
  1515. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1516. u32 ier;
  1517. int ret = 0;
  1518. BUG_ON(seqno == 0);
  1519. if (atomic_read(&dev_priv->mm.wedged)) {
  1520. struct completion *x = &dev_priv->error_completion;
  1521. bool recovery_complete;
  1522. unsigned long flags;
  1523. /* Give the error handler a chance to run. */
  1524. spin_lock_irqsave(&x->wait.lock, flags);
  1525. recovery_complete = x->done > 0;
  1526. spin_unlock_irqrestore(&x->wait.lock, flags);
  1527. return recovery_complete ? -EIO : -EAGAIN;
  1528. }
  1529. if (seqno == ring->outstanding_lazy_request) {
  1530. struct drm_i915_gem_request *request;
  1531. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1532. if (request == NULL)
  1533. return -ENOMEM;
  1534. ret = i915_add_request(ring, NULL, request);
  1535. if (ret) {
  1536. kfree(request);
  1537. return ret;
  1538. }
  1539. seqno = request->seqno;
  1540. }
  1541. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1542. if (HAS_PCH_SPLIT(ring->dev))
  1543. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1544. else
  1545. ier = I915_READ(IER);
  1546. if (!ier) {
  1547. DRM_ERROR("something (likely vbetool) disabled "
  1548. "interrupts, re-enabling\n");
  1549. ring->dev->driver->irq_preinstall(ring->dev);
  1550. ring->dev->driver->irq_postinstall(ring->dev);
  1551. }
  1552. trace_i915_gem_request_wait_begin(ring, seqno);
  1553. ring->waiting_seqno = seqno;
  1554. if (ring->irq_get(ring)) {
  1555. if (dev_priv->mm.interruptible)
  1556. ret = wait_event_interruptible(ring->irq_queue,
  1557. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1558. || atomic_read(&dev_priv->mm.wedged));
  1559. else
  1560. wait_event(ring->irq_queue,
  1561. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1562. || atomic_read(&dev_priv->mm.wedged));
  1563. ring->irq_put(ring);
  1564. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  1565. seqno) ||
  1566. atomic_read(&dev_priv->mm.wedged), 3000))
  1567. ret = -EBUSY;
  1568. ring->waiting_seqno = 0;
  1569. trace_i915_gem_request_wait_end(ring, seqno);
  1570. }
  1571. if (atomic_read(&dev_priv->mm.wedged))
  1572. ret = -EAGAIN;
  1573. /* Directly dispatch request retiring. While we have the work queue
  1574. * to handle this, the waiter on a request often wants an associated
  1575. * buffer to have made it to the inactive list, and we would need
  1576. * a separate wait queue to handle that.
  1577. */
  1578. if (ret == 0 && do_retire)
  1579. i915_gem_retire_requests_ring(ring);
  1580. return ret;
  1581. }
  1582. /**
  1583. * Ensures that all rendering to the object has completed and the object is
  1584. * safe to unbind from the GTT or access from the CPU.
  1585. */
  1586. int
  1587. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1588. {
  1589. int ret;
  1590. /* This function only exists to support waiting for existing rendering,
  1591. * not for emitting required flushes.
  1592. */
  1593. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1594. /* If there is rendering queued on the buffer being evicted, wait for
  1595. * it.
  1596. */
  1597. if (obj->active) {
  1598. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
  1599. true);
  1600. if (ret)
  1601. return ret;
  1602. }
  1603. return 0;
  1604. }
  1605. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1606. {
  1607. u32 old_write_domain, old_read_domains;
  1608. /* Act a barrier for all accesses through the GTT */
  1609. mb();
  1610. /* Force a pagefault for domain tracking on next user access */
  1611. i915_gem_release_mmap(obj);
  1612. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1613. return;
  1614. old_read_domains = obj->base.read_domains;
  1615. old_write_domain = obj->base.write_domain;
  1616. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1617. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1618. trace_i915_gem_object_change_domain(obj,
  1619. old_read_domains,
  1620. old_write_domain);
  1621. }
  1622. /**
  1623. * Unbinds an object from the GTT aperture.
  1624. */
  1625. int
  1626. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1627. {
  1628. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  1629. int ret = 0;
  1630. if (obj->gtt_space == NULL)
  1631. return 0;
  1632. if (obj->pin_count != 0) {
  1633. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1634. return -EINVAL;
  1635. }
  1636. ret = i915_gem_object_finish_gpu(obj);
  1637. if (ret == -ERESTARTSYS)
  1638. return ret;
  1639. /* Continue on if we fail due to EIO, the GPU is hung so we
  1640. * should be safe and we need to cleanup or else we might
  1641. * cause memory corruption through use-after-free.
  1642. */
  1643. i915_gem_object_finish_gtt(obj);
  1644. /* Move the object to the CPU domain to ensure that
  1645. * any possible CPU writes while it's not in the GTT
  1646. * are flushed when we go to remap it.
  1647. */
  1648. if (ret == 0)
  1649. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1650. if (ret == -ERESTARTSYS)
  1651. return ret;
  1652. if (ret) {
  1653. /* In the event of a disaster, abandon all caches and
  1654. * hope for the best.
  1655. */
  1656. i915_gem_clflush_object(obj);
  1657. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1658. }
  1659. /* release the fence reg _after_ flushing */
  1660. ret = i915_gem_object_put_fence(obj);
  1661. if (ret == -ERESTARTSYS)
  1662. return ret;
  1663. trace_i915_gem_object_unbind(obj);
  1664. if (obj->has_global_gtt_mapping)
  1665. i915_gem_gtt_unbind_object(obj);
  1666. if (obj->has_aliasing_ppgtt_mapping) {
  1667. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  1668. obj->has_aliasing_ppgtt_mapping = 0;
  1669. }
  1670. i915_gem_gtt_finish_object(obj);
  1671. i915_gem_object_put_pages_gtt(obj);
  1672. list_del_init(&obj->gtt_list);
  1673. list_del_init(&obj->mm_list);
  1674. /* Avoid an unnecessary call to unbind on rebind. */
  1675. obj->map_and_fenceable = true;
  1676. drm_mm_put_block(obj->gtt_space);
  1677. obj->gtt_space = NULL;
  1678. obj->gtt_offset = 0;
  1679. if (i915_gem_object_is_purgeable(obj))
  1680. i915_gem_object_truncate(obj);
  1681. return ret;
  1682. }
  1683. int
  1684. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1685. uint32_t invalidate_domains,
  1686. uint32_t flush_domains)
  1687. {
  1688. int ret;
  1689. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1690. return 0;
  1691. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1692. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1693. if (ret)
  1694. return ret;
  1695. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1696. i915_gem_process_flushing_list(ring, flush_domains);
  1697. return 0;
  1698. }
  1699. static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
  1700. {
  1701. int ret;
  1702. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1703. return 0;
  1704. if (!list_empty(&ring->gpu_write_list)) {
  1705. ret = i915_gem_flush_ring(ring,
  1706. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1707. if (ret)
  1708. return ret;
  1709. }
  1710. return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
  1711. do_retire);
  1712. }
  1713. int i915_gpu_idle(struct drm_device *dev, bool do_retire)
  1714. {
  1715. drm_i915_private_t *dev_priv = dev->dev_private;
  1716. int ret, i;
  1717. /* Flush everything onto the inactive list. */
  1718. for (i = 0; i < I915_NUM_RINGS; i++) {
  1719. ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
  1720. if (ret)
  1721. return ret;
  1722. }
  1723. return 0;
  1724. }
  1725. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1726. struct intel_ring_buffer *pipelined)
  1727. {
  1728. struct drm_device *dev = obj->base.dev;
  1729. drm_i915_private_t *dev_priv = dev->dev_private;
  1730. u32 size = obj->gtt_space->size;
  1731. int regnum = obj->fence_reg;
  1732. uint64_t val;
  1733. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1734. 0xfffff000) << 32;
  1735. val |= obj->gtt_offset & 0xfffff000;
  1736. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1737. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1738. if (obj->tiling_mode == I915_TILING_Y)
  1739. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1740. val |= I965_FENCE_REG_VALID;
  1741. if (pipelined) {
  1742. int ret = intel_ring_begin(pipelined, 6);
  1743. if (ret)
  1744. return ret;
  1745. intel_ring_emit(pipelined, MI_NOOP);
  1746. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1747. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1748. intel_ring_emit(pipelined, (u32)val);
  1749. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1750. intel_ring_emit(pipelined, (u32)(val >> 32));
  1751. intel_ring_advance(pipelined);
  1752. } else
  1753. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1754. return 0;
  1755. }
  1756. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1757. struct intel_ring_buffer *pipelined)
  1758. {
  1759. struct drm_device *dev = obj->base.dev;
  1760. drm_i915_private_t *dev_priv = dev->dev_private;
  1761. u32 size = obj->gtt_space->size;
  1762. int regnum = obj->fence_reg;
  1763. uint64_t val;
  1764. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1765. 0xfffff000) << 32;
  1766. val |= obj->gtt_offset & 0xfffff000;
  1767. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1768. if (obj->tiling_mode == I915_TILING_Y)
  1769. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1770. val |= I965_FENCE_REG_VALID;
  1771. if (pipelined) {
  1772. int ret = intel_ring_begin(pipelined, 6);
  1773. if (ret)
  1774. return ret;
  1775. intel_ring_emit(pipelined, MI_NOOP);
  1776. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1777. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1778. intel_ring_emit(pipelined, (u32)val);
  1779. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1780. intel_ring_emit(pipelined, (u32)(val >> 32));
  1781. intel_ring_advance(pipelined);
  1782. } else
  1783. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1784. return 0;
  1785. }
  1786. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1787. struct intel_ring_buffer *pipelined)
  1788. {
  1789. struct drm_device *dev = obj->base.dev;
  1790. drm_i915_private_t *dev_priv = dev->dev_private;
  1791. u32 size = obj->gtt_space->size;
  1792. u32 fence_reg, val, pitch_val;
  1793. int tile_width;
  1794. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1795. (size & -size) != size ||
  1796. (obj->gtt_offset & (size - 1)),
  1797. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1798. obj->gtt_offset, obj->map_and_fenceable, size))
  1799. return -EINVAL;
  1800. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1801. tile_width = 128;
  1802. else
  1803. tile_width = 512;
  1804. /* Note: pitch better be a power of two tile widths */
  1805. pitch_val = obj->stride / tile_width;
  1806. pitch_val = ffs(pitch_val) - 1;
  1807. val = obj->gtt_offset;
  1808. if (obj->tiling_mode == I915_TILING_Y)
  1809. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1810. val |= I915_FENCE_SIZE_BITS(size);
  1811. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1812. val |= I830_FENCE_REG_VALID;
  1813. fence_reg = obj->fence_reg;
  1814. if (fence_reg < 8)
  1815. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1816. else
  1817. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1818. if (pipelined) {
  1819. int ret = intel_ring_begin(pipelined, 4);
  1820. if (ret)
  1821. return ret;
  1822. intel_ring_emit(pipelined, MI_NOOP);
  1823. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1824. intel_ring_emit(pipelined, fence_reg);
  1825. intel_ring_emit(pipelined, val);
  1826. intel_ring_advance(pipelined);
  1827. } else
  1828. I915_WRITE(fence_reg, val);
  1829. return 0;
  1830. }
  1831. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  1832. struct intel_ring_buffer *pipelined)
  1833. {
  1834. struct drm_device *dev = obj->base.dev;
  1835. drm_i915_private_t *dev_priv = dev->dev_private;
  1836. u32 size = obj->gtt_space->size;
  1837. int regnum = obj->fence_reg;
  1838. uint32_t val;
  1839. uint32_t pitch_val;
  1840. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1841. (size & -size) != size ||
  1842. (obj->gtt_offset & (size - 1)),
  1843. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1844. obj->gtt_offset, size))
  1845. return -EINVAL;
  1846. pitch_val = obj->stride / 128;
  1847. pitch_val = ffs(pitch_val) - 1;
  1848. val = obj->gtt_offset;
  1849. if (obj->tiling_mode == I915_TILING_Y)
  1850. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1851. val |= I830_FENCE_SIZE_BITS(size);
  1852. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1853. val |= I830_FENCE_REG_VALID;
  1854. if (pipelined) {
  1855. int ret = intel_ring_begin(pipelined, 4);
  1856. if (ret)
  1857. return ret;
  1858. intel_ring_emit(pipelined, MI_NOOP);
  1859. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1860. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  1861. intel_ring_emit(pipelined, val);
  1862. intel_ring_advance(pipelined);
  1863. } else
  1864. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  1865. return 0;
  1866. }
  1867. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1868. {
  1869. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  1870. }
  1871. static int
  1872. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  1873. struct intel_ring_buffer *pipelined)
  1874. {
  1875. int ret;
  1876. if (obj->fenced_gpu_access) {
  1877. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  1878. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  1879. 0, obj->base.write_domain);
  1880. if (ret)
  1881. return ret;
  1882. }
  1883. obj->fenced_gpu_access = false;
  1884. }
  1885. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  1886. if (!ring_passed_seqno(obj->last_fenced_ring,
  1887. obj->last_fenced_seqno)) {
  1888. ret = i915_wait_request(obj->last_fenced_ring,
  1889. obj->last_fenced_seqno,
  1890. true);
  1891. if (ret)
  1892. return ret;
  1893. }
  1894. obj->last_fenced_seqno = 0;
  1895. obj->last_fenced_ring = NULL;
  1896. }
  1897. /* Ensure that all CPU reads are completed before installing a fence
  1898. * and all writes before removing the fence.
  1899. */
  1900. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  1901. mb();
  1902. return 0;
  1903. }
  1904. int
  1905. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  1906. {
  1907. int ret;
  1908. if (obj->tiling_mode)
  1909. i915_gem_release_mmap(obj);
  1910. ret = i915_gem_object_flush_fence(obj, NULL);
  1911. if (ret)
  1912. return ret;
  1913. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1914. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1915. WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
  1916. i915_gem_clear_fence_reg(obj->base.dev,
  1917. &dev_priv->fence_regs[obj->fence_reg]);
  1918. obj->fence_reg = I915_FENCE_REG_NONE;
  1919. }
  1920. return 0;
  1921. }
  1922. static struct drm_i915_fence_reg *
  1923. i915_find_fence_reg(struct drm_device *dev,
  1924. struct intel_ring_buffer *pipelined)
  1925. {
  1926. struct drm_i915_private *dev_priv = dev->dev_private;
  1927. struct drm_i915_fence_reg *reg, *first, *avail;
  1928. int i;
  1929. /* First try to find a free reg */
  1930. avail = NULL;
  1931. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1932. reg = &dev_priv->fence_regs[i];
  1933. if (!reg->obj)
  1934. return reg;
  1935. if (!reg->pin_count)
  1936. avail = reg;
  1937. }
  1938. if (avail == NULL)
  1939. return NULL;
  1940. /* None available, try to steal one or wait for a user to finish */
  1941. avail = first = NULL;
  1942. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  1943. if (reg->pin_count)
  1944. continue;
  1945. if (first == NULL)
  1946. first = reg;
  1947. if (!pipelined ||
  1948. !reg->obj->last_fenced_ring ||
  1949. reg->obj->last_fenced_ring == pipelined) {
  1950. avail = reg;
  1951. break;
  1952. }
  1953. }
  1954. if (avail == NULL)
  1955. avail = first;
  1956. return avail;
  1957. }
  1958. /**
  1959. * i915_gem_object_get_fence - set up a fence reg for an object
  1960. * @obj: object to map through a fence reg
  1961. * @pipelined: ring on which to queue the change, or NULL for CPU access
  1962. * @interruptible: must we wait uninterruptibly for the register to retire?
  1963. *
  1964. * When mapping objects through the GTT, userspace wants to be able to write
  1965. * to them without having to worry about swizzling if the object is tiled.
  1966. *
  1967. * This function walks the fence regs looking for a free one for @obj,
  1968. * stealing one if it can't find any.
  1969. *
  1970. * It then sets up the reg based on the object's properties: address, pitch
  1971. * and tiling format.
  1972. */
  1973. int
  1974. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  1975. struct intel_ring_buffer *pipelined)
  1976. {
  1977. struct drm_device *dev = obj->base.dev;
  1978. struct drm_i915_private *dev_priv = dev->dev_private;
  1979. struct drm_i915_fence_reg *reg;
  1980. int ret;
  1981. /* XXX disable pipelining. There are bugs. Shocking. */
  1982. pipelined = NULL;
  1983. /* Just update our place in the LRU if our fence is getting reused. */
  1984. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1985. reg = &dev_priv->fence_regs[obj->fence_reg];
  1986. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1987. if (obj->tiling_changed) {
  1988. ret = i915_gem_object_flush_fence(obj, pipelined);
  1989. if (ret)
  1990. return ret;
  1991. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  1992. pipelined = NULL;
  1993. if (pipelined) {
  1994. reg->setup_seqno =
  1995. i915_gem_next_request_seqno(pipelined);
  1996. obj->last_fenced_seqno = reg->setup_seqno;
  1997. obj->last_fenced_ring = pipelined;
  1998. }
  1999. goto update;
  2000. }
  2001. if (!pipelined) {
  2002. if (reg->setup_seqno) {
  2003. if (!ring_passed_seqno(obj->last_fenced_ring,
  2004. reg->setup_seqno)) {
  2005. ret = i915_wait_request(obj->last_fenced_ring,
  2006. reg->setup_seqno,
  2007. true);
  2008. if (ret)
  2009. return ret;
  2010. }
  2011. reg->setup_seqno = 0;
  2012. }
  2013. } else if (obj->last_fenced_ring &&
  2014. obj->last_fenced_ring != pipelined) {
  2015. ret = i915_gem_object_flush_fence(obj, pipelined);
  2016. if (ret)
  2017. return ret;
  2018. }
  2019. return 0;
  2020. }
  2021. reg = i915_find_fence_reg(dev, pipelined);
  2022. if (reg == NULL)
  2023. return -EDEADLK;
  2024. ret = i915_gem_object_flush_fence(obj, pipelined);
  2025. if (ret)
  2026. return ret;
  2027. if (reg->obj) {
  2028. struct drm_i915_gem_object *old = reg->obj;
  2029. drm_gem_object_reference(&old->base);
  2030. if (old->tiling_mode)
  2031. i915_gem_release_mmap(old);
  2032. ret = i915_gem_object_flush_fence(old, pipelined);
  2033. if (ret) {
  2034. drm_gem_object_unreference(&old->base);
  2035. return ret;
  2036. }
  2037. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2038. pipelined = NULL;
  2039. old->fence_reg = I915_FENCE_REG_NONE;
  2040. old->last_fenced_ring = pipelined;
  2041. old->last_fenced_seqno =
  2042. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2043. drm_gem_object_unreference(&old->base);
  2044. } else if (obj->last_fenced_seqno == 0)
  2045. pipelined = NULL;
  2046. reg->obj = obj;
  2047. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2048. obj->fence_reg = reg - dev_priv->fence_regs;
  2049. obj->last_fenced_ring = pipelined;
  2050. reg->setup_seqno =
  2051. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2052. obj->last_fenced_seqno = reg->setup_seqno;
  2053. update:
  2054. obj->tiling_changed = false;
  2055. switch (INTEL_INFO(dev)->gen) {
  2056. case 7:
  2057. case 6:
  2058. ret = sandybridge_write_fence_reg(obj, pipelined);
  2059. break;
  2060. case 5:
  2061. case 4:
  2062. ret = i965_write_fence_reg(obj, pipelined);
  2063. break;
  2064. case 3:
  2065. ret = i915_write_fence_reg(obj, pipelined);
  2066. break;
  2067. case 2:
  2068. ret = i830_write_fence_reg(obj, pipelined);
  2069. break;
  2070. }
  2071. return ret;
  2072. }
  2073. /**
  2074. * i915_gem_clear_fence_reg - clear out fence register info
  2075. * @obj: object to clear
  2076. *
  2077. * Zeroes out the fence register itself and clears out the associated
  2078. * data structures in dev_priv and obj.
  2079. */
  2080. static void
  2081. i915_gem_clear_fence_reg(struct drm_device *dev,
  2082. struct drm_i915_fence_reg *reg)
  2083. {
  2084. drm_i915_private_t *dev_priv = dev->dev_private;
  2085. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2086. switch (INTEL_INFO(dev)->gen) {
  2087. case 7:
  2088. case 6:
  2089. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2090. break;
  2091. case 5:
  2092. case 4:
  2093. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2094. break;
  2095. case 3:
  2096. if (fence_reg >= 8)
  2097. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2098. else
  2099. case 2:
  2100. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2101. I915_WRITE(fence_reg, 0);
  2102. break;
  2103. }
  2104. list_del_init(&reg->lru_list);
  2105. reg->obj = NULL;
  2106. reg->setup_seqno = 0;
  2107. reg->pin_count = 0;
  2108. }
  2109. /**
  2110. * Finds free space in the GTT aperture and binds the object there.
  2111. */
  2112. static int
  2113. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2114. unsigned alignment,
  2115. bool map_and_fenceable)
  2116. {
  2117. struct drm_device *dev = obj->base.dev;
  2118. drm_i915_private_t *dev_priv = dev->dev_private;
  2119. struct drm_mm_node *free_space;
  2120. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2121. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2122. bool mappable, fenceable;
  2123. int ret;
  2124. if (obj->madv != I915_MADV_WILLNEED) {
  2125. DRM_ERROR("Attempting to bind a purgeable object\n");
  2126. return -EINVAL;
  2127. }
  2128. fence_size = i915_gem_get_gtt_size(dev,
  2129. obj->base.size,
  2130. obj->tiling_mode);
  2131. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2132. obj->base.size,
  2133. obj->tiling_mode);
  2134. unfenced_alignment =
  2135. i915_gem_get_unfenced_gtt_alignment(dev,
  2136. obj->base.size,
  2137. obj->tiling_mode);
  2138. if (alignment == 0)
  2139. alignment = map_and_fenceable ? fence_alignment :
  2140. unfenced_alignment;
  2141. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2142. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2143. return -EINVAL;
  2144. }
  2145. size = map_and_fenceable ? fence_size : obj->base.size;
  2146. /* If the object is bigger than the entire aperture, reject it early
  2147. * before evicting everything in a vain attempt to find space.
  2148. */
  2149. if (obj->base.size >
  2150. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2151. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2152. return -E2BIG;
  2153. }
  2154. search_free:
  2155. if (map_and_fenceable)
  2156. free_space =
  2157. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2158. size, alignment, 0,
  2159. dev_priv->mm.gtt_mappable_end,
  2160. 0);
  2161. else
  2162. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2163. size, alignment, 0);
  2164. if (free_space != NULL) {
  2165. if (map_and_fenceable)
  2166. obj->gtt_space =
  2167. drm_mm_get_block_range_generic(free_space,
  2168. size, alignment, 0,
  2169. dev_priv->mm.gtt_mappable_end,
  2170. 0);
  2171. else
  2172. obj->gtt_space =
  2173. drm_mm_get_block(free_space, size, alignment);
  2174. }
  2175. if (obj->gtt_space == NULL) {
  2176. /* If the gtt is empty and we're still having trouble
  2177. * fitting our object in, we're out of memory.
  2178. */
  2179. ret = i915_gem_evict_something(dev, size, alignment,
  2180. map_and_fenceable);
  2181. if (ret)
  2182. return ret;
  2183. goto search_free;
  2184. }
  2185. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2186. if (ret) {
  2187. drm_mm_put_block(obj->gtt_space);
  2188. obj->gtt_space = NULL;
  2189. if (ret == -ENOMEM) {
  2190. /* first try to reclaim some memory by clearing the GTT */
  2191. ret = i915_gem_evict_everything(dev, false);
  2192. if (ret) {
  2193. /* now try to shrink everyone else */
  2194. if (gfpmask) {
  2195. gfpmask = 0;
  2196. goto search_free;
  2197. }
  2198. return -ENOMEM;
  2199. }
  2200. goto search_free;
  2201. }
  2202. return ret;
  2203. }
  2204. ret = i915_gem_gtt_prepare_object(obj);
  2205. if (ret) {
  2206. i915_gem_object_put_pages_gtt(obj);
  2207. drm_mm_put_block(obj->gtt_space);
  2208. obj->gtt_space = NULL;
  2209. if (i915_gem_evict_everything(dev, false))
  2210. return ret;
  2211. goto search_free;
  2212. }
  2213. if (!dev_priv->mm.aliasing_ppgtt)
  2214. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2215. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2216. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2217. /* Assert that the object is not currently in any GPU domain. As it
  2218. * wasn't in the GTT, there shouldn't be any way it could have been in
  2219. * a GPU cache
  2220. */
  2221. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2222. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2223. obj->gtt_offset = obj->gtt_space->start;
  2224. fenceable =
  2225. obj->gtt_space->size == fence_size &&
  2226. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2227. mappable =
  2228. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2229. obj->map_and_fenceable = mappable && fenceable;
  2230. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2231. return 0;
  2232. }
  2233. void
  2234. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2235. {
  2236. /* If we don't have a page list set up, then we're not pinned
  2237. * to GPU, and we can ignore the cache flush because it'll happen
  2238. * again at bind time.
  2239. */
  2240. if (obj->pages == NULL)
  2241. return;
  2242. /* If the GPU is snooping the contents of the CPU cache,
  2243. * we do not need to manually clear the CPU cache lines. However,
  2244. * the caches are only snooped when the render cache is
  2245. * flushed/invalidated. As we always have to emit invalidations
  2246. * and flushes when moving into and out of the RENDER domain, correct
  2247. * snooping behaviour occurs naturally as the result of our domain
  2248. * tracking.
  2249. */
  2250. if (obj->cache_level != I915_CACHE_NONE)
  2251. return;
  2252. trace_i915_gem_object_clflush(obj);
  2253. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2254. }
  2255. /** Flushes any GPU write domain for the object if it's dirty. */
  2256. static int
  2257. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2258. {
  2259. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2260. return 0;
  2261. /* Queue the GPU write cache flushing we need. */
  2262. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2263. }
  2264. /** Flushes the GTT write domain for the object if it's dirty. */
  2265. static void
  2266. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2267. {
  2268. uint32_t old_write_domain;
  2269. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2270. return;
  2271. /* No actual flushing is required for the GTT write domain. Writes
  2272. * to it immediately go to main memory as far as we know, so there's
  2273. * no chipset flush. It also doesn't land in render cache.
  2274. *
  2275. * However, we do have to enforce the order so that all writes through
  2276. * the GTT land before any writes to the device, such as updates to
  2277. * the GATT itself.
  2278. */
  2279. wmb();
  2280. old_write_domain = obj->base.write_domain;
  2281. obj->base.write_domain = 0;
  2282. trace_i915_gem_object_change_domain(obj,
  2283. obj->base.read_domains,
  2284. old_write_domain);
  2285. }
  2286. /** Flushes the CPU write domain for the object if it's dirty. */
  2287. static void
  2288. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2289. {
  2290. uint32_t old_write_domain;
  2291. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2292. return;
  2293. i915_gem_clflush_object(obj);
  2294. intel_gtt_chipset_flush();
  2295. old_write_domain = obj->base.write_domain;
  2296. obj->base.write_domain = 0;
  2297. trace_i915_gem_object_change_domain(obj,
  2298. obj->base.read_domains,
  2299. old_write_domain);
  2300. }
  2301. /**
  2302. * Moves a single object to the GTT read, and possibly write domain.
  2303. *
  2304. * This function returns when the move is complete, including waiting on
  2305. * flushes to occur.
  2306. */
  2307. int
  2308. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2309. {
  2310. uint32_t old_write_domain, old_read_domains;
  2311. int ret;
  2312. /* Not valid to be called on unbound objects. */
  2313. if (obj->gtt_space == NULL)
  2314. return -EINVAL;
  2315. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2316. return 0;
  2317. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2318. if (ret)
  2319. return ret;
  2320. if (obj->pending_gpu_write || write) {
  2321. ret = i915_gem_object_wait_rendering(obj);
  2322. if (ret)
  2323. return ret;
  2324. }
  2325. i915_gem_object_flush_cpu_write_domain(obj);
  2326. old_write_domain = obj->base.write_domain;
  2327. old_read_domains = obj->base.read_domains;
  2328. /* It should now be out of any other write domains, and we can update
  2329. * the domain values for our changes.
  2330. */
  2331. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2332. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2333. if (write) {
  2334. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2335. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2336. obj->dirty = 1;
  2337. }
  2338. trace_i915_gem_object_change_domain(obj,
  2339. old_read_domains,
  2340. old_write_domain);
  2341. return 0;
  2342. }
  2343. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2344. enum i915_cache_level cache_level)
  2345. {
  2346. struct drm_device *dev = obj->base.dev;
  2347. drm_i915_private_t *dev_priv = dev->dev_private;
  2348. int ret;
  2349. if (obj->cache_level == cache_level)
  2350. return 0;
  2351. if (obj->pin_count) {
  2352. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2353. return -EBUSY;
  2354. }
  2355. if (obj->gtt_space) {
  2356. ret = i915_gem_object_finish_gpu(obj);
  2357. if (ret)
  2358. return ret;
  2359. i915_gem_object_finish_gtt(obj);
  2360. /* Before SandyBridge, you could not use tiling or fence
  2361. * registers with snooped memory, so relinquish any fences
  2362. * currently pointing to our region in the aperture.
  2363. */
  2364. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2365. ret = i915_gem_object_put_fence(obj);
  2366. if (ret)
  2367. return ret;
  2368. }
  2369. if (obj->has_global_gtt_mapping)
  2370. i915_gem_gtt_bind_object(obj, cache_level);
  2371. if (obj->has_aliasing_ppgtt_mapping)
  2372. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2373. obj, cache_level);
  2374. }
  2375. if (cache_level == I915_CACHE_NONE) {
  2376. u32 old_read_domains, old_write_domain;
  2377. /* If we're coming from LLC cached, then we haven't
  2378. * actually been tracking whether the data is in the
  2379. * CPU cache or not, since we only allow one bit set
  2380. * in obj->write_domain and have been skipping the clflushes.
  2381. * Just set it to the CPU cache for now.
  2382. */
  2383. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2384. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2385. old_read_domains = obj->base.read_domains;
  2386. old_write_domain = obj->base.write_domain;
  2387. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2388. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2389. trace_i915_gem_object_change_domain(obj,
  2390. old_read_domains,
  2391. old_write_domain);
  2392. }
  2393. obj->cache_level = cache_level;
  2394. return 0;
  2395. }
  2396. /*
  2397. * Prepare buffer for display plane (scanout, cursors, etc).
  2398. * Can be called from an uninterruptible phase (modesetting) and allows
  2399. * any flushes to be pipelined (for pageflips).
  2400. *
  2401. * For the display plane, we want to be in the GTT but out of any write
  2402. * domains. So in many ways this looks like set_to_gtt_domain() apart from the
  2403. * ability to pipeline the waits, pinning and any additional subtleties
  2404. * that may differentiate the display plane from ordinary buffers.
  2405. */
  2406. int
  2407. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2408. u32 alignment,
  2409. struct intel_ring_buffer *pipelined)
  2410. {
  2411. u32 old_read_domains, old_write_domain;
  2412. int ret;
  2413. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2414. if (ret)
  2415. return ret;
  2416. if (pipelined != obj->ring) {
  2417. ret = i915_gem_object_wait_rendering(obj);
  2418. if (ret == -ERESTARTSYS)
  2419. return ret;
  2420. }
  2421. /* The display engine is not coherent with the LLC cache on gen6. As
  2422. * a result, we make sure that the pinning that is about to occur is
  2423. * done with uncached PTEs. This is lowest common denominator for all
  2424. * chipsets.
  2425. *
  2426. * However for gen6+, we could do better by using the GFDT bit instead
  2427. * of uncaching, which would allow us to flush all the LLC-cached data
  2428. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2429. */
  2430. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2431. if (ret)
  2432. return ret;
  2433. /* As the user may map the buffer once pinned in the display plane
  2434. * (e.g. libkms for the bootup splash), we have to ensure that we
  2435. * always use map_and_fenceable for all scanout buffers.
  2436. */
  2437. ret = i915_gem_object_pin(obj, alignment, true);
  2438. if (ret)
  2439. return ret;
  2440. i915_gem_object_flush_cpu_write_domain(obj);
  2441. old_write_domain = obj->base.write_domain;
  2442. old_read_domains = obj->base.read_domains;
  2443. /* It should now be out of any other write domains, and we can update
  2444. * the domain values for our changes.
  2445. */
  2446. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2447. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2448. trace_i915_gem_object_change_domain(obj,
  2449. old_read_domains,
  2450. old_write_domain);
  2451. return 0;
  2452. }
  2453. int
  2454. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2455. {
  2456. int ret;
  2457. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2458. return 0;
  2459. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2460. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2461. if (ret)
  2462. return ret;
  2463. }
  2464. ret = i915_gem_object_wait_rendering(obj);
  2465. if (ret)
  2466. return ret;
  2467. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2468. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2469. return 0;
  2470. }
  2471. /**
  2472. * Moves a single object to the CPU read, and possibly write domain.
  2473. *
  2474. * This function returns when the move is complete, including waiting on
  2475. * flushes to occur.
  2476. */
  2477. int
  2478. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2479. {
  2480. uint32_t old_write_domain, old_read_domains;
  2481. int ret;
  2482. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2483. return 0;
  2484. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2485. if (ret)
  2486. return ret;
  2487. ret = i915_gem_object_wait_rendering(obj);
  2488. if (ret)
  2489. return ret;
  2490. i915_gem_object_flush_gtt_write_domain(obj);
  2491. old_write_domain = obj->base.write_domain;
  2492. old_read_domains = obj->base.read_domains;
  2493. /* Flush the CPU cache if it's still invalid. */
  2494. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2495. i915_gem_clflush_object(obj);
  2496. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2497. }
  2498. /* It should now be out of any other write domains, and we can update
  2499. * the domain values for our changes.
  2500. */
  2501. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2502. /* If we're writing through the CPU, then the GPU read domains will
  2503. * need to be invalidated at next use.
  2504. */
  2505. if (write) {
  2506. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2507. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2508. }
  2509. trace_i915_gem_object_change_domain(obj,
  2510. old_read_domains,
  2511. old_write_domain);
  2512. return 0;
  2513. }
  2514. /* Throttle our rendering by waiting until the ring has completed our requests
  2515. * emitted over 20 msec ago.
  2516. *
  2517. * Note that if we were to use the current jiffies each time around the loop,
  2518. * we wouldn't escape the function with any frames outstanding if the time to
  2519. * render a frame was over 20ms.
  2520. *
  2521. * This should get us reasonable parallelism between CPU and GPU but also
  2522. * relatively low latency when blocking on a particular request to finish.
  2523. */
  2524. static int
  2525. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2526. {
  2527. struct drm_i915_private *dev_priv = dev->dev_private;
  2528. struct drm_i915_file_private *file_priv = file->driver_priv;
  2529. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2530. struct drm_i915_gem_request *request;
  2531. struct intel_ring_buffer *ring = NULL;
  2532. u32 seqno = 0;
  2533. int ret;
  2534. if (atomic_read(&dev_priv->mm.wedged))
  2535. return -EIO;
  2536. spin_lock(&file_priv->mm.lock);
  2537. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2538. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2539. break;
  2540. ring = request->ring;
  2541. seqno = request->seqno;
  2542. }
  2543. spin_unlock(&file_priv->mm.lock);
  2544. if (seqno == 0)
  2545. return 0;
  2546. ret = 0;
  2547. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2548. /* And wait for the seqno passing without holding any locks and
  2549. * causing extra latency for others. This is safe as the irq
  2550. * generation is designed to be run atomically and so is
  2551. * lockless.
  2552. */
  2553. if (ring->irq_get(ring)) {
  2554. ret = wait_event_interruptible(ring->irq_queue,
  2555. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2556. || atomic_read(&dev_priv->mm.wedged));
  2557. ring->irq_put(ring);
  2558. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2559. ret = -EIO;
  2560. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  2561. seqno) ||
  2562. atomic_read(&dev_priv->mm.wedged), 3000)) {
  2563. ret = -EBUSY;
  2564. }
  2565. }
  2566. if (ret == 0)
  2567. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2568. return ret;
  2569. }
  2570. int
  2571. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2572. uint32_t alignment,
  2573. bool map_and_fenceable)
  2574. {
  2575. struct drm_device *dev = obj->base.dev;
  2576. struct drm_i915_private *dev_priv = dev->dev_private;
  2577. int ret;
  2578. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2579. WARN_ON(i915_verify_lists(dev));
  2580. if (obj->gtt_space != NULL) {
  2581. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2582. (map_and_fenceable && !obj->map_and_fenceable)) {
  2583. WARN(obj->pin_count,
  2584. "bo is already pinned with incorrect alignment:"
  2585. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2586. " obj->map_and_fenceable=%d\n",
  2587. obj->gtt_offset, alignment,
  2588. map_and_fenceable,
  2589. obj->map_and_fenceable);
  2590. ret = i915_gem_object_unbind(obj);
  2591. if (ret)
  2592. return ret;
  2593. }
  2594. }
  2595. if (obj->gtt_space == NULL) {
  2596. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2597. map_and_fenceable);
  2598. if (ret)
  2599. return ret;
  2600. }
  2601. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2602. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2603. if (obj->pin_count++ == 0) {
  2604. if (!obj->active)
  2605. list_move_tail(&obj->mm_list,
  2606. &dev_priv->mm.pinned_list);
  2607. }
  2608. obj->pin_mappable |= map_and_fenceable;
  2609. WARN_ON(i915_verify_lists(dev));
  2610. return 0;
  2611. }
  2612. void
  2613. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2614. {
  2615. struct drm_device *dev = obj->base.dev;
  2616. drm_i915_private_t *dev_priv = dev->dev_private;
  2617. WARN_ON(i915_verify_lists(dev));
  2618. BUG_ON(obj->pin_count == 0);
  2619. BUG_ON(obj->gtt_space == NULL);
  2620. if (--obj->pin_count == 0) {
  2621. if (!obj->active)
  2622. list_move_tail(&obj->mm_list,
  2623. &dev_priv->mm.inactive_list);
  2624. obj->pin_mappable = false;
  2625. }
  2626. WARN_ON(i915_verify_lists(dev));
  2627. }
  2628. int
  2629. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2630. struct drm_file *file)
  2631. {
  2632. struct drm_i915_gem_pin *args = data;
  2633. struct drm_i915_gem_object *obj;
  2634. int ret;
  2635. ret = i915_mutex_lock_interruptible(dev);
  2636. if (ret)
  2637. return ret;
  2638. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2639. if (&obj->base == NULL) {
  2640. ret = -ENOENT;
  2641. goto unlock;
  2642. }
  2643. if (obj->madv != I915_MADV_WILLNEED) {
  2644. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2645. ret = -EINVAL;
  2646. goto out;
  2647. }
  2648. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2649. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2650. args->handle);
  2651. ret = -EINVAL;
  2652. goto out;
  2653. }
  2654. obj->user_pin_count++;
  2655. obj->pin_filp = file;
  2656. if (obj->user_pin_count == 1) {
  2657. ret = i915_gem_object_pin(obj, args->alignment, true);
  2658. if (ret)
  2659. goto out;
  2660. }
  2661. /* XXX - flush the CPU caches for pinned objects
  2662. * as the X server doesn't manage domains yet
  2663. */
  2664. i915_gem_object_flush_cpu_write_domain(obj);
  2665. args->offset = obj->gtt_offset;
  2666. out:
  2667. drm_gem_object_unreference(&obj->base);
  2668. unlock:
  2669. mutex_unlock(&dev->struct_mutex);
  2670. return ret;
  2671. }
  2672. int
  2673. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2674. struct drm_file *file)
  2675. {
  2676. struct drm_i915_gem_pin *args = data;
  2677. struct drm_i915_gem_object *obj;
  2678. int ret;
  2679. ret = i915_mutex_lock_interruptible(dev);
  2680. if (ret)
  2681. return ret;
  2682. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2683. if (&obj->base == NULL) {
  2684. ret = -ENOENT;
  2685. goto unlock;
  2686. }
  2687. if (obj->pin_filp != file) {
  2688. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2689. args->handle);
  2690. ret = -EINVAL;
  2691. goto out;
  2692. }
  2693. obj->user_pin_count--;
  2694. if (obj->user_pin_count == 0) {
  2695. obj->pin_filp = NULL;
  2696. i915_gem_object_unpin(obj);
  2697. }
  2698. out:
  2699. drm_gem_object_unreference(&obj->base);
  2700. unlock:
  2701. mutex_unlock(&dev->struct_mutex);
  2702. return ret;
  2703. }
  2704. int
  2705. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2706. struct drm_file *file)
  2707. {
  2708. struct drm_i915_gem_busy *args = data;
  2709. struct drm_i915_gem_object *obj;
  2710. int ret;
  2711. ret = i915_mutex_lock_interruptible(dev);
  2712. if (ret)
  2713. return ret;
  2714. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2715. if (&obj->base == NULL) {
  2716. ret = -ENOENT;
  2717. goto unlock;
  2718. }
  2719. /* Count all active objects as busy, even if they are currently not used
  2720. * by the gpu. Users of this interface expect objects to eventually
  2721. * become non-busy without any further actions, therefore emit any
  2722. * necessary flushes here.
  2723. */
  2724. args->busy = obj->active;
  2725. if (args->busy) {
  2726. /* Unconditionally flush objects, even when the gpu still uses this
  2727. * object. Userspace calling this function indicates that it wants to
  2728. * use this buffer rather sooner than later, so issuing the required
  2729. * flush earlier is beneficial.
  2730. */
  2731. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2732. ret = i915_gem_flush_ring(obj->ring,
  2733. 0, obj->base.write_domain);
  2734. } else if (obj->ring->outstanding_lazy_request ==
  2735. obj->last_rendering_seqno) {
  2736. struct drm_i915_gem_request *request;
  2737. /* This ring is not being cleared by active usage,
  2738. * so emit a request to do so.
  2739. */
  2740. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2741. if (request) {
  2742. ret = i915_add_request(obj->ring, NULL, request);
  2743. if (ret)
  2744. kfree(request);
  2745. } else
  2746. ret = -ENOMEM;
  2747. }
  2748. /* Update the active list for the hardware's current position.
  2749. * Otherwise this only updates on a delayed timer or when irqs
  2750. * are actually unmasked, and our working set ends up being
  2751. * larger than required.
  2752. */
  2753. i915_gem_retire_requests_ring(obj->ring);
  2754. args->busy = obj->active;
  2755. }
  2756. drm_gem_object_unreference(&obj->base);
  2757. unlock:
  2758. mutex_unlock(&dev->struct_mutex);
  2759. return ret;
  2760. }
  2761. int
  2762. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2763. struct drm_file *file_priv)
  2764. {
  2765. return i915_gem_ring_throttle(dev, file_priv);
  2766. }
  2767. int
  2768. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2769. struct drm_file *file_priv)
  2770. {
  2771. struct drm_i915_gem_madvise *args = data;
  2772. struct drm_i915_gem_object *obj;
  2773. int ret;
  2774. switch (args->madv) {
  2775. case I915_MADV_DONTNEED:
  2776. case I915_MADV_WILLNEED:
  2777. break;
  2778. default:
  2779. return -EINVAL;
  2780. }
  2781. ret = i915_mutex_lock_interruptible(dev);
  2782. if (ret)
  2783. return ret;
  2784. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2785. if (&obj->base == NULL) {
  2786. ret = -ENOENT;
  2787. goto unlock;
  2788. }
  2789. if (obj->pin_count) {
  2790. ret = -EINVAL;
  2791. goto out;
  2792. }
  2793. if (obj->madv != __I915_MADV_PURGED)
  2794. obj->madv = args->madv;
  2795. /* if the object is no longer bound, discard its backing storage */
  2796. if (i915_gem_object_is_purgeable(obj) &&
  2797. obj->gtt_space == NULL)
  2798. i915_gem_object_truncate(obj);
  2799. args->retained = obj->madv != __I915_MADV_PURGED;
  2800. out:
  2801. drm_gem_object_unreference(&obj->base);
  2802. unlock:
  2803. mutex_unlock(&dev->struct_mutex);
  2804. return ret;
  2805. }
  2806. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2807. size_t size)
  2808. {
  2809. struct drm_i915_private *dev_priv = dev->dev_private;
  2810. struct drm_i915_gem_object *obj;
  2811. struct address_space *mapping;
  2812. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2813. if (obj == NULL)
  2814. return NULL;
  2815. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2816. kfree(obj);
  2817. return NULL;
  2818. }
  2819. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  2820. mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
  2821. i915_gem_info_add_obj(dev_priv, size);
  2822. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2823. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2824. if (HAS_LLC(dev)) {
  2825. /* On some devices, we can have the GPU use the LLC (the CPU
  2826. * cache) for about a 10% performance improvement
  2827. * compared to uncached. Graphics requests other than
  2828. * display scanout are coherent with the CPU in
  2829. * accessing this cache. This means in this mode we
  2830. * don't need to clflush on the CPU side, and on the
  2831. * GPU side we only need to flush internal caches to
  2832. * get data visible to the CPU.
  2833. *
  2834. * However, we maintain the display planes as UC, and so
  2835. * need to rebind when first used as such.
  2836. */
  2837. obj->cache_level = I915_CACHE_LLC;
  2838. } else
  2839. obj->cache_level = I915_CACHE_NONE;
  2840. obj->base.driver_private = NULL;
  2841. obj->fence_reg = I915_FENCE_REG_NONE;
  2842. INIT_LIST_HEAD(&obj->mm_list);
  2843. INIT_LIST_HEAD(&obj->gtt_list);
  2844. INIT_LIST_HEAD(&obj->ring_list);
  2845. INIT_LIST_HEAD(&obj->exec_list);
  2846. INIT_LIST_HEAD(&obj->gpu_write_list);
  2847. obj->madv = I915_MADV_WILLNEED;
  2848. /* Avoid an unnecessary call to unbind on the first bind. */
  2849. obj->map_and_fenceable = true;
  2850. return obj;
  2851. }
  2852. int i915_gem_init_object(struct drm_gem_object *obj)
  2853. {
  2854. BUG();
  2855. return 0;
  2856. }
  2857. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  2858. {
  2859. struct drm_device *dev = obj->base.dev;
  2860. drm_i915_private_t *dev_priv = dev->dev_private;
  2861. int ret;
  2862. ret = i915_gem_object_unbind(obj);
  2863. if (ret == -ERESTARTSYS) {
  2864. list_move(&obj->mm_list,
  2865. &dev_priv->mm.deferred_free_list);
  2866. return;
  2867. }
  2868. trace_i915_gem_object_destroy(obj);
  2869. if (obj->base.map_list.map)
  2870. drm_gem_free_mmap_offset(&obj->base);
  2871. drm_gem_object_release(&obj->base);
  2872. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2873. kfree(obj->bit_17);
  2874. kfree(obj);
  2875. }
  2876. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  2877. {
  2878. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  2879. struct drm_device *dev = obj->base.dev;
  2880. while (obj->pin_count > 0)
  2881. i915_gem_object_unpin(obj);
  2882. if (obj->phys_obj)
  2883. i915_gem_detach_phys_object(dev, obj);
  2884. i915_gem_free_object_tail(obj);
  2885. }
  2886. int
  2887. i915_gem_idle(struct drm_device *dev)
  2888. {
  2889. drm_i915_private_t *dev_priv = dev->dev_private;
  2890. int ret;
  2891. mutex_lock(&dev->struct_mutex);
  2892. if (dev_priv->mm.suspended) {
  2893. mutex_unlock(&dev->struct_mutex);
  2894. return 0;
  2895. }
  2896. ret = i915_gpu_idle(dev, true);
  2897. if (ret) {
  2898. mutex_unlock(&dev->struct_mutex);
  2899. return ret;
  2900. }
  2901. /* Under UMS, be paranoid and evict. */
  2902. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  2903. ret = i915_gem_evict_inactive(dev, false);
  2904. if (ret) {
  2905. mutex_unlock(&dev->struct_mutex);
  2906. return ret;
  2907. }
  2908. }
  2909. i915_gem_reset_fences(dev);
  2910. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  2911. * We need to replace this with a semaphore, or something.
  2912. * And not confound mm.suspended!
  2913. */
  2914. dev_priv->mm.suspended = 1;
  2915. del_timer_sync(&dev_priv->hangcheck_timer);
  2916. i915_kernel_lost_context(dev);
  2917. i915_gem_cleanup_ringbuffer(dev);
  2918. mutex_unlock(&dev->struct_mutex);
  2919. /* Cancel the retire work handler, which should be idle now. */
  2920. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  2921. return 0;
  2922. }
  2923. void i915_gem_init_swizzling(struct drm_device *dev)
  2924. {
  2925. drm_i915_private_t *dev_priv = dev->dev_private;
  2926. if (INTEL_INFO(dev)->gen < 5 ||
  2927. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  2928. return;
  2929. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  2930. DISP_TILE_SURFACE_SWIZZLING);
  2931. if (IS_GEN5(dev))
  2932. return;
  2933. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  2934. if (IS_GEN6(dev))
  2935. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
  2936. else
  2937. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
  2938. }
  2939. void i915_gem_init_ppgtt(struct drm_device *dev)
  2940. {
  2941. drm_i915_private_t *dev_priv = dev->dev_private;
  2942. uint32_t pd_offset;
  2943. struct intel_ring_buffer *ring;
  2944. int i;
  2945. if (!dev_priv->mm.aliasing_ppgtt)
  2946. return;
  2947. pd_offset = dev_priv->mm.aliasing_ppgtt->pd_offset;
  2948. pd_offset /= 64; /* in cachelines, */
  2949. pd_offset <<= 16;
  2950. if (INTEL_INFO(dev)->gen == 6) {
  2951. uint32_t ecochk = I915_READ(GAM_ECOCHK);
  2952. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  2953. ECOCHK_PPGTT_CACHE64B);
  2954. I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
  2955. } else if (INTEL_INFO(dev)->gen >= 7) {
  2956. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  2957. /* GFX_MODE is per-ring on gen7+ */
  2958. }
  2959. for (i = 0; i < I915_NUM_RINGS; i++) {
  2960. ring = &dev_priv->ring[i];
  2961. if (INTEL_INFO(dev)->gen >= 7)
  2962. I915_WRITE(RING_MODE_GEN7(ring),
  2963. GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
  2964. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  2965. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  2966. }
  2967. }
  2968. int
  2969. i915_gem_init_hw(struct drm_device *dev)
  2970. {
  2971. drm_i915_private_t *dev_priv = dev->dev_private;
  2972. int ret;
  2973. i915_gem_init_swizzling(dev);
  2974. ret = intel_init_render_ring_buffer(dev);
  2975. if (ret)
  2976. return ret;
  2977. if (HAS_BSD(dev)) {
  2978. ret = intel_init_bsd_ring_buffer(dev);
  2979. if (ret)
  2980. goto cleanup_render_ring;
  2981. }
  2982. if (HAS_BLT(dev)) {
  2983. ret = intel_init_blt_ring_buffer(dev);
  2984. if (ret)
  2985. goto cleanup_bsd_ring;
  2986. }
  2987. dev_priv->next_seqno = 1;
  2988. i915_gem_init_ppgtt(dev);
  2989. return 0;
  2990. cleanup_bsd_ring:
  2991. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  2992. cleanup_render_ring:
  2993. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  2994. return ret;
  2995. }
  2996. void
  2997. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  2998. {
  2999. drm_i915_private_t *dev_priv = dev->dev_private;
  3000. int i;
  3001. for (i = 0; i < I915_NUM_RINGS; i++)
  3002. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3003. }
  3004. int
  3005. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3006. struct drm_file *file_priv)
  3007. {
  3008. drm_i915_private_t *dev_priv = dev->dev_private;
  3009. int ret, i;
  3010. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3011. return 0;
  3012. if (atomic_read(&dev_priv->mm.wedged)) {
  3013. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3014. atomic_set(&dev_priv->mm.wedged, 0);
  3015. }
  3016. mutex_lock(&dev->struct_mutex);
  3017. dev_priv->mm.suspended = 0;
  3018. ret = i915_gem_init_hw(dev);
  3019. if (ret != 0) {
  3020. mutex_unlock(&dev->struct_mutex);
  3021. return ret;
  3022. }
  3023. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3024. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3025. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3026. for (i = 0; i < I915_NUM_RINGS; i++) {
  3027. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3028. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3029. }
  3030. mutex_unlock(&dev->struct_mutex);
  3031. ret = drm_irq_install(dev);
  3032. if (ret)
  3033. goto cleanup_ringbuffer;
  3034. return 0;
  3035. cleanup_ringbuffer:
  3036. mutex_lock(&dev->struct_mutex);
  3037. i915_gem_cleanup_ringbuffer(dev);
  3038. dev_priv->mm.suspended = 1;
  3039. mutex_unlock(&dev->struct_mutex);
  3040. return ret;
  3041. }
  3042. int
  3043. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3044. struct drm_file *file_priv)
  3045. {
  3046. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3047. return 0;
  3048. drm_irq_uninstall(dev);
  3049. return i915_gem_idle(dev);
  3050. }
  3051. void
  3052. i915_gem_lastclose(struct drm_device *dev)
  3053. {
  3054. int ret;
  3055. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3056. return;
  3057. ret = i915_gem_idle(dev);
  3058. if (ret)
  3059. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3060. }
  3061. static void
  3062. init_ring_lists(struct intel_ring_buffer *ring)
  3063. {
  3064. INIT_LIST_HEAD(&ring->active_list);
  3065. INIT_LIST_HEAD(&ring->request_list);
  3066. INIT_LIST_HEAD(&ring->gpu_write_list);
  3067. }
  3068. void
  3069. i915_gem_load(struct drm_device *dev)
  3070. {
  3071. int i;
  3072. drm_i915_private_t *dev_priv = dev->dev_private;
  3073. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3074. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3075. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3076. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3077. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3078. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3079. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3080. for (i = 0; i < I915_NUM_RINGS; i++)
  3081. init_ring_lists(&dev_priv->ring[i]);
  3082. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3083. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3084. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3085. i915_gem_retire_work_handler);
  3086. init_completion(&dev_priv->error_completion);
  3087. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3088. if (IS_GEN3(dev)) {
  3089. u32 tmp = I915_READ(MI_ARB_STATE);
  3090. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3091. /* arb state is a masked write, so set bit + bit in mask */
  3092. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3093. I915_WRITE(MI_ARB_STATE, tmp);
  3094. }
  3095. }
  3096. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3097. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3098. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3099. dev_priv->fence_reg_start = 3;
  3100. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3101. dev_priv->num_fence_regs = 16;
  3102. else
  3103. dev_priv->num_fence_regs = 8;
  3104. /* Initialize fence registers to zero */
  3105. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  3106. i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
  3107. }
  3108. i915_gem_detect_bit_6_swizzle(dev);
  3109. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3110. dev_priv->mm.interruptible = true;
  3111. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3112. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3113. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3114. }
  3115. /*
  3116. * Create a physically contiguous memory object for this object
  3117. * e.g. for cursor + overlay regs
  3118. */
  3119. static int i915_gem_init_phys_object(struct drm_device *dev,
  3120. int id, int size, int align)
  3121. {
  3122. drm_i915_private_t *dev_priv = dev->dev_private;
  3123. struct drm_i915_gem_phys_object *phys_obj;
  3124. int ret;
  3125. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3126. return 0;
  3127. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3128. if (!phys_obj)
  3129. return -ENOMEM;
  3130. phys_obj->id = id;
  3131. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3132. if (!phys_obj->handle) {
  3133. ret = -ENOMEM;
  3134. goto kfree_obj;
  3135. }
  3136. #ifdef CONFIG_X86
  3137. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3138. #endif
  3139. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3140. return 0;
  3141. kfree_obj:
  3142. kfree(phys_obj);
  3143. return ret;
  3144. }
  3145. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3146. {
  3147. drm_i915_private_t *dev_priv = dev->dev_private;
  3148. struct drm_i915_gem_phys_object *phys_obj;
  3149. if (!dev_priv->mm.phys_objs[id - 1])
  3150. return;
  3151. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3152. if (phys_obj->cur_obj) {
  3153. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3154. }
  3155. #ifdef CONFIG_X86
  3156. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3157. #endif
  3158. drm_pci_free(dev, phys_obj->handle);
  3159. kfree(phys_obj);
  3160. dev_priv->mm.phys_objs[id - 1] = NULL;
  3161. }
  3162. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3163. {
  3164. int i;
  3165. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3166. i915_gem_free_phys_object(dev, i);
  3167. }
  3168. void i915_gem_detach_phys_object(struct drm_device *dev,
  3169. struct drm_i915_gem_object *obj)
  3170. {
  3171. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3172. char *vaddr;
  3173. int i;
  3174. int page_count;
  3175. if (!obj->phys_obj)
  3176. return;
  3177. vaddr = obj->phys_obj->handle->vaddr;
  3178. page_count = obj->base.size / PAGE_SIZE;
  3179. for (i = 0; i < page_count; i++) {
  3180. struct page *page = shmem_read_mapping_page(mapping, i);
  3181. if (!IS_ERR(page)) {
  3182. char *dst = kmap_atomic(page);
  3183. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3184. kunmap_atomic(dst);
  3185. drm_clflush_pages(&page, 1);
  3186. set_page_dirty(page);
  3187. mark_page_accessed(page);
  3188. page_cache_release(page);
  3189. }
  3190. }
  3191. intel_gtt_chipset_flush();
  3192. obj->phys_obj->cur_obj = NULL;
  3193. obj->phys_obj = NULL;
  3194. }
  3195. int
  3196. i915_gem_attach_phys_object(struct drm_device *dev,
  3197. struct drm_i915_gem_object *obj,
  3198. int id,
  3199. int align)
  3200. {
  3201. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3202. drm_i915_private_t *dev_priv = dev->dev_private;
  3203. int ret = 0;
  3204. int page_count;
  3205. int i;
  3206. if (id > I915_MAX_PHYS_OBJECT)
  3207. return -EINVAL;
  3208. if (obj->phys_obj) {
  3209. if (obj->phys_obj->id == id)
  3210. return 0;
  3211. i915_gem_detach_phys_object(dev, obj);
  3212. }
  3213. /* create a new object */
  3214. if (!dev_priv->mm.phys_objs[id - 1]) {
  3215. ret = i915_gem_init_phys_object(dev, id,
  3216. obj->base.size, align);
  3217. if (ret) {
  3218. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3219. id, obj->base.size);
  3220. return ret;
  3221. }
  3222. }
  3223. /* bind to the object */
  3224. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3225. obj->phys_obj->cur_obj = obj;
  3226. page_count = obj->base.size / PAGE_SIZE;
  3227. for (i = 0; i < page_count; i++) {
  3228. struct page *page;
  3229. char *dst, *src;
  3230. page = shmem_read_mapping_page(mapping, i);
  3231. if (IS_ERR(page))
  3232. return PTR_ERR(page);
  3233. src = kmap_atomic(page);
  3234. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3235. memcpy(dst, src, PAGE_SIZE);
  3236. kunmap_atomic(src);
  3237. mark_page_accessed(page);
  3238. page_cache_release(page);
  3239. }
  3240. return 0;
  3241. }
  3242. static int
  3243. i915_gem_phys_pwrite(struct drm_device *dev,
  3244. struct drm_i915_gem_object *obj,
  3245. struct drm_i915_gem_pwrite *args,
  3246. struct drm_file *file_priv)
  3247. {
  3248. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3249. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3250. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3251. unsigned long unwritten;
  3252. /* The physical object once assigned is fixed for the lifetime
  3253. * of the obj, so we can safely drop the lock and continue
  3254. * to access vaddr.
  3255. */
  3256. mutex_unlock(&dev->struct_mutex);
  3257. unwritten = copy_from_user(vaddr, user_data, args->size);
  3258. mutex_lock(&dev->struct_mutex);
  3259. if (unwritten)
  3260. return -EFAULT;
  3261. }
  3262. intel_gtt_chipset_flush();
  3263. return 0;
  3264. }
  3265. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3266. {
  3267. struct drm_i915_file_private *file_priv = file->driver_priv;
  3268. /* Clean up our request list when the client is going away, so that
  3269. * later retire_requests won't dereference our soon-to-be-gone
  3270. * file_priv.
  3271. */
  3272. spin_lock(&file_priv->mm.lock);
  3273. while (!list_empty(&file_priv->mm.request_list)) {
  3274. struct drm_i915_gem_request *request;
  3275. request = list_first_entry(&file_priv->mm.request_list,
  3276. struct drm_i915_gem_request,
  3277. client_list);
  3278. list_del(&request->client_list);
  3279. request->file_priv = NULL;
  3280. }
  3281. spin_unlock(&file_priv->mm.lock);
  3282. }
  3283. static int
  3284. i915_gpu_is_active(struct drm_device *dev)
  3285. {
  3286. drm_i915_private_t *dev_priv = dev->dev_private;
  3287. int lists_empty;
  3288. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3289. list_empty(&dev_priv->mm.active_list);
  3290. return !lists_empty;
  3291. }
  3292. static int
  3293. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3294. {
  3295. struct drm_i915_private *dev_priv =
  3296. container_of(shrinker,
  3297. struct drm_i915_private,
  3298. mm.inactive_shrinker);
  3299. struct drm_device *dev = dev_priv->dev;
  3300. struct drm_i915_gem_object *obj, *next;
  3301. int nr_to_scan = sc->nr_to_scan;
  3302. int cnt;
  3303. if (!mutex_trylock(&dev->struct_mutex))
  3304. return 0;
  3305. /* "fast-path" to count number of available objects */
  3306. if (nr_to_scan == 0) {
  3307. cnt = 0;
  3308. list_for_each_entry(obj,
  3309. &dev_priv->mm.inactive_list,
  3310. mm_list)
  3311. cnt++;
  3312. mutex_unlock(&dev->struct_mutex);
  3313. return cnt / 100 * sysctl_vfs_cache_pressure;
  3314. }
  3315. rescan:
  3316. /* first scan for clean buffers */
  3317. i915_gem_retire_requests(dev);
  3318. list_for_each_entry_safe(obj, next,
  3319. &dev_priv->mm.inactive_list,
  3320. mm_list) {
  3321. if (i915_gem_object_is_purgeable(obj)) {
  3322. if (i915_gem_object_unbind(obj) == 0 &&
  3323. --nr_to_scan == 0)
  3324. break;
  3325. }
  3326. }
  3327. /* second pass, evict/count anything still on the inactive list */
  3328. cnt = 0;
  3329. list_for_each_entry_safe(obj, next,
  3330. &dev_priv->mm.inactive_list,
  3331. mm_list) {
  3332. if (nr_to_scan &&
  3333. i915_gem_object_unbind(obj) == 0)
  3334. nr_to_scan--;
  3335. else
  3336. cnt++;
  3337. }
  3338. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3339. /*
  3340. * We are desperate for pages, so as a last resort, wait
  3341. * for the GPU to finish and discard whatever we can.
  3342. * This has a dramatic impact to reduce the number of
  3343. * OOM-killer events whilst running the GPU aggressively.
  3344. */
  3345. if (i915_gpu_idle(dev, true) == 0)
  3346. goto rescan;
  3347. }
  3348. mutex_unlock(&dev->struct_mutex);
  3349. return cnt / 100 * sysctl_vfs_cache_pressure;
  3350. }