core.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236
  1. /*
  2. * Copyright (C) 2006 - 2007 Ivo van Doorn
  3. * Copyright (C) 2007 Dmitry Torokhov
  4. * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the
  18. * Free Software Foundation, Inc.,
  19. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include <linux/init.h>
  24. #include <linux/workqueue.h>
  25. #include <linux/capability.h>
  26. #include <linux/list.h>
  27. #include <linux/mutex.h>
  28. #include <linux/rfkill.h>
  29. #include <linux/spinlock.h>
  30. #include <linux/miscdevice.h>
  31. #include <linux/wait.h>
  32. #include <linux/poll.h>
  33. #include <linux/fs.h>
  34. #include "rfkill.h"
  35. #define POLL_INTERVAL (5 * HZ)
  36. #define RFKILL_BLOCK_HW BIT(0)
  37. #define RFKILL_BLOCK_SW BIT(1)
  38. #define RFKILL_BLOCK_SW_PREV BIT(2)
  39. #define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
  40. RFKILL_BLOCK_SW |\
  41. RFKILL_BLOCK_SW_PREV)
  42. #define RFKILL_BLOCK_SW_SETCALL BIT(31)
  43. struct rfkill {
  44. spinlock_t lock;
  45. const char *name;
  46. enum rfkill_type type;
  47. unsigned long state;
  48. u32 idx;
  49. bool registered;
  50. bool persistent;
  51. const struct rfkill_ops *ops;
  52. void *data;
  53. #ifdef CONFIG_RFKILL_LEDS
  54. struct led_trigger led_trigger;
  55. const char *ledtrigname;
  56. #endif
  57. struct device dev;
  58. struct list_head node;
  59. struct delayed_work poll_work;
  60. struct work_struct uevent_work;
  61. struct work_struct sync_work;
  62. };
  63. #define to_rfkill(d) container_of(d, struct rfkill, dev)
  64. struct rfkill_int_event {
  65. struct list_head list;
  66. struct rfkill_event ev;
  67. };
  68. struct rfkill_data {
  69. struct list_head list;
  70. struct list_head events;
  71. struct mutex mtx;
  72. wait_queue_head_t read_wait;
  73. bool input_handler;
  74. };
  75. MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
  76. MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  77. MODULE_DESCRIPTION("RF switch support");
  78. MODULE_LICENSE("GPL");
  79. /*
  80. * The locking here should be made much smarter, we currently have
  81. * a bit of a stupid situation because drivers might want to register
  82. * the rfkill struct under their own lock, and take this lock during
  83. * rfkill method calls -- which will cause an AB-BA deadlock situation.
  84. *
  85. * To fix that, we need to rework this code here to be mostly lock-free
  86. * and only use the mutex for list manipulations, not to protect the
  87. * various other global variables. Then we can avoid holding the mutex
  88. * around driver operations, and all is happy.
  89. */
  90. static LIST_HEAD(rfkill_list); /* list of registered rf switches */
  91. static DEFINE_MUTEX(rfkill_global_mutex);
  92. static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
  93. static unsigned int rfkill_default_state = 1;
  94. module_param_named(default_state, rfkill_default_state, uint, 0444);
  95. MODULE_PARM_DESC(default_state,
  96. "Default initial state for all radio types, 0 = radio off");
  97. static struct {
  98. bool cur, sav;
  99. } rfkill_global_states[NUM_RFKILL_TYPES];
  100. static bool rfkill_epo_lock_active;
  101. #ifdef CONFIG_RFKILL_LEDS
  102. static void rfkill_led_trigger_event(struct rfkill *rfkill)
  103. {
  104. struct led_trigger *trigger;
  105. if (!rfkill->registered)
  106. return;
  107. trigger = &rfkill->led_trigger;
  108. if (rfkill->state & RFKILL_BLOCK_ANY)
  109. led_trigger_event(trigger, LED_OFF);
  110. else
  111. led_trigger_event(trigger, LED_FULL);
  112. }
  113. static void rfkill_led_trigger_activate(struct led_classdev *led)
  114. {
  115. struct rfkill *rfkill;
  116. rfkill = container_of(led->trigger, struct rfkill, led_trigger);
  117. rfkill_led_trigger_event(rfkill);
  118. }
  119. const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
  120. {
  121. return rfkill->led_trigger.name;
  122. }
  123. EXPORT_SYMBOL(rfkill_get_led_trigger_name);
  124. void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
  125. {
  126. BUG_ON(!rfkill);
  127. rfkill->ledtrigname = name;
  128. }
  129. EXPORT_SYMBOL(rfkill_set_led_trigger_name);
  130. static int rfkill_led_trigger_register(struct rfkill *rfkill)
  131. {
  132. rfkill->led_trigger.name = rfkill->ledtrigname
  133. ? : dev_name(&rfkill->dev);
  134. rfkill->led_trigger.activate = rfkill_led_trigger_activate;
  135. return led_trigger_register(&rfkill->led_trigger);
  136. }
  137. static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
  138. {
  139. led_trigger_unregister(&rfkill->led_trigger);
  140. }
  141. #else
  142. static void rfkill_led_trigger_event(struct rfkill *rfkill)
  143. {
  144. }
  145. static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
  146. {
  147. return 0;
  148. }
  149. static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
  150. {
  151. }
  152. #endif /* CONFIG_RFKILL_LEDS */
  153. static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
  154. enum rfkill_operation op)
  155. {
  156. unsigned long flags;
  157. ev->idx = rfkill->idx;
  158. ev->type = rfkill->type;
  159. ev->op = op;
  160. spin_lock_irqsave(&rfkill->lock, flags);
  161. ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
  162. ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
  163. RFKILL_BLOCK_SW_PREV));
  164. spin_unlock_irqrestore(&rfkill->lock, flags);
  165. }
  166. static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
  167. {
  168. struct rfkill_data *data;
  169. struct rfkill_int_event *ev;
  170. list_for_each_entry(data, &rfkill_fds, list) {
  171. ev = kzalloc(sizeof(*ev), GFP_KERNEL);
  172. if (!ev)
  173. continue;
  174. rfkill_fill_event(&ev->ev, rfkill, op);
  175. mutex_lock(&data->mtx);
  176. list_add_tail(&ev->list, &data->events);
  177. mutex_unlock(&data->mtx);
  178. wake_up_interruptible(&data->read_wait);
  179. }
  180. }
  181. static void rfkill_event(struct rfkill *rfkill)
  182. {
  183. if (!rfkill->registered)
  184. return;
  185. kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
  186. /* also send event to /dev/rfkill */
  187. rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
  188. }
  189. static bool __rfkill_set_hw_state(struct rfkill *rfkill,
  190. bool blocked, bool *change)
  191. {
  192. unsigned long flags;
  193. bool prev, any;
  194. BUG_ON(!rfkill);
  195. spin_lock_irqsave(&rfkill->lock, flags);
  196. prev = !!(rfkill->state & RFKILL_BLOCK_HW);
  197. if (blocked)
  198. rfkill->state |= RFKILL_BLOCK_HW;
  199. else
  200. rfkill->state &= ~RFKILL_BLOCK_HW;
  201. *change = prev != blocked;
  202. any = rfkill->state & RFKILL_BLOCK_ANY;
  203. spin_unlock_irqrestore(&rfkill->lock, flags);
  204. rfkill_led_trigger_event(rfkill);
  205. return any;
  206. }
  207. /**
  208. * rfkill_set_block - wrapper for set_block method
  209. *
  210. * @rfkill: the rfkill struct to use
  211. * @blocked: the new software state
  212. *
  213. * Calls the set_block method (when applicable) and handles notifications
  214. * etc. as well.
  215. */
  216. static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
  217. {
  218. unsigned long flags;
  219. int err;
  220. if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
  221. return;
  222. /*
  223. * Some platforms (...!) generate input events which affect the
  224. * _hard_ kill state -- whenever something tries to change the
  225. * current software state query the hardware state too.
  226. */
  227. if (rfkill->ops->query)
  228. rfkill->ops->query(rfkill, rfkill->data);
  229. spin_lock_irqsave(&rfkill->lock, flags);
  230. if (rfkill->state & RFKILL_BLOCK_SW)
  231. rfkill->state |= RFKILL_BLOCK_SW_PREV;
  232. else
  233. rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
  234. if (blocked)
  235. rfkill->state |= RFKILL_BLOCK_SW;
  236. else
  237. rfkill->state &= ~RFKILL_BLOCK_SW;
  238. rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
  239. spin_unlock_irqrestore(&rfkill->lock, flags);
  240. err = rfkill->ops->set_block(rfkill->data, blocked);
  241. spin_lock_irqsave(&rfkill->lock, flags);
  242. if (err) {
  243. /*
  244. * Failed -- reset status to _prev, this may be different
  245. * from what set set _PREV to earlier in this function
  246. * if rfkill_set_sw_state was invoked.
  247. */
  248. if (rfkill->state & RFKILL_BLOCK_SW_PREV)
  249. rfkill->state |= RFKILL_BLOCK_SW;
  250. else
  251. rfkill->state &= ~RFKILL_BLOCK_SW;
  252. }
  253. rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
  254. rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
  255. spin_unlock_irqrestore(&rfkill->lock, flags);
  256. rfkill_led_trigger_event(rfkill);
  257. rfkill_event(rfkill);
  258. }
  259. #ifdef CONFIG_RFKILL_INPUT
  260. static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
  261. /**
  262. * __rfkill_switch_all - Toggle state of all switches of given type
  263. * @type: type of interfaces to be affected
  264. * @state: the new state
  265. *
  266. * This function sets the state of all switches of given type,
  267. * unless a specific switch is claimed by userspace (in which case,
  268. * that switch is left alone) or suspended.
  269. *
  270. * Caller must have acquired rfkill_global_mutex.
  271. */
  272. static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
  273. {
  274. struct rfkill *rfkill;
  275. rfkill_global_states[type].cur = blocked;
  276. list_for_each_entry(rfkill, &rfkill_list, node) {
  277. if (rfkill->type != type)
  278. continue;
  279. rfkill_set_block(rfkill, blocked);
  280. }
  281. }
  282. /**
  283. * rfkill_switch_all - Toggle state of all switches of given type
  284. * @type: type of interfaces to be affected
  285. * @state: the new state
  286. *
  287. * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
  288. * Please refer to __rfkill_switch_all() for details.
  289. *
  290. * Does nothing if the EPO lock is active.
  291. */
  292. void rfkill_switch_all(enum rfkill_type type, bool blocked)
  293. {
  294. if (atomic_read(&rfkill_input_disabled))
  295. return;
  296. mutex_lock(&rfkill_global_mutex);
  297. if (!rfkill_epo_lock_active)
  298. __rfkill_switch_all(type, blocked);
  299. mutex_unlock(&rfkill_global_mutex);
  300. }
  301. /**
  302. * rfkill_epo - emergency power off all transmitters
  303. *
  304. * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
  305. * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
  306. *
  307. * The global state before the EPO is saved and can be restored later
  308. * using rfkill_restore_states().
  309. */
  310. void rfkill_epo(void)
  311. {
  312. struct rfkill *rfkill;
  313. int i;
  314. if (atomic_read(&rfkill_input_disabled))
  315. return;
  316. mutex_lock(&rfkill_global_mutex);
  317. rfkill_epo_lock_active = true;
  318. list_for_each_entry(rfkill, &rfkill_list, node)
  319. rfkill_set_block(rfkill, true);
  320. for (i = 0; i < NUM_RFKILL_TYPES; i++) {
  321. rfkill_global_states[i].sav = rfkill_global_states[i].cur;
  322. rfkill_global_states[i].cur = true;
  323. }
  324. mutex_unlock(&rfkill_global_mutex);
  325. }
  326. /**
  327. * rfkill_restore_states - restore global states
  328. *
  329. * Restore (and sync switches to) the global state from the
  330. * states in rfkill_default_states. This can undo the effects of
  331. * a call to rfkill_epo().
  332. */
  333. void rfkill_restore_states(void)
  334. {
  335. int i;
  336. if (atomic_read(&rfkill_input_disabled))
  337. return;
  338. mutex_lock(&rfkill_global_mutex);
  339. rfkill_epo_lock_active = false;
  340. for (i = 0; i < NUM_RFKILL_TYPES; i++)
  341. __rfkill_switch_all(i, rfkill_global_states[i].sav);
  342. mutex_unlock(&rfkill_global_mutex);
  343. }
  344. /**
  345. * rfkill_remove_epo_lock - unlock state changes
  346. *
  347. * Used by rfkill-input manually unlock state changes, when
  348. * the EPO switch is deactivated.
  349. */
  350. void rfkill_remove_epo_lock(void)
  351. {
  352. if (atomic_read(&rfkill_input_disabled))
  353. return;
  354. mutex_lock(&rfkill_global_mutex);
  355. rfkill_epo_lock_active = false;
  356. mutex_unlock(&rfkill_global_mutex);
  357. }
  358. /**
  359. * rfkill_is_epo_lock_active - returns true EPO is active
  360. *
  361. * Returns 0 (false) if there is NOT an active EPO contidion,
  362. * and 1 (true) if there is an active EPO contition, which
  363. * locks all radios in one of the BLOCKED states.
  364. *
  365. * Can be called in atomic context.
  366. */
  367. bool rfkill_is_epo_lock_active(void)
  368. {
  369. return rfkill_epo_lock_active;
  370. }
  371. /**
  372. * rfkill_get_global_sw_state - returns global state for a type
  373. * @type: the type to get the global state of
  374. *
  375. * Returns the current global state for a given wireless
  376. * device type.
  377. */
  378. bool rfkill_get_global_sw_state(const enum rfkill_type type)
  379. {
  380. return rfkill_global_states[type].cur;
  381. }
  382. #endif
  383. bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
  384. {
  385. bool ret, change;
  386. ret = __rfkill_set_hw_state(rfkill, blocked, &change);
  387. if (!rfkill->registered)
  388. return ret;
  389. if (change)
  390. schedule_work(&rfkill->uevent_work);
  391. return ret;
  392. }
  393. EXPORT_SYMBOL(rfkill_set_hw_state);
  394. static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
  395. {
  396. u32 bit = RFKILL_BLOCK_SW;
  397. /* if in a ops->set_block right now, use other bit */
  398. if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
  399. bit = RFKILL_BLOCK_SW_PREV;
  400. if (blocked)
  401. rfkill->state |= bit;
  402. else
  403. rfkill->state &= ~bit;
  404. }
  405. bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
  406. {
  407. unsigned long flags;
  408. bool prev, hwblock;
  409. BUG_ON(!rfkill);
  410. spin_lock_irqsave(&rfkill->lock, flags);
  411. prev = !!(rfkill->state & RFKILL_BLOCK_SW);
  412. __rfkill_set_sw_state(rfkill, blocked);
  413. hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
  414. blocked = blocked || hwblock;
  415. spin_unlock_irqrestore(&rfkill->lock, flags);
  416. if (!rfkill->registered)
  417. return blocked;
  418. if (prev != blocked && !hwblock)
  419. schedule_work(&rfkill->uevent_work);
  420. rfkill_led_trigger_event(rfkill);
  421. return blocked;
  422. }
  423. EXPORT_SYMBOL(rfkill_set_sw_state);
  424. void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
  425. {
  426. unsigned long flags;
  427. BUG_ON(!rfkill);
  428. BUG_ON(rfkill->registered);
  429. spin_lock_irqsave(&rfkill->lock, flags);
  430. __rfkill_set_sw_state(rfkill, blocked);
  431. rfkill->persistent = true;
  432. spin_unlock_irqrestore(&rfkill->lock, flags);
  433. }
  434. EXPORT_SYMBOL(rfkill_init_sw_state);
  435. void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
  436. {
  437. unsigned long flags;
  438. bool swprev, hwprev;
  439. BUG_ON(!rfkill);
  440. spin_lock_irqsave(&rfkill->lock, flags);
  441. /*
  442. * No need to care about prev/setblock ... this is for uevent only
  443. * and that will get triggered by rfkill_set_block anyway.
  444. */
  445. swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
  446. hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
  447. __rfkill_set_sw_state(rfkill, sw);
  448. spin_unlock_irqrestore(&rfkill->lock, flags);
  449. if (!rfkill->registered) {
  450. rfkill->persistent = true;
  451. } else {
  452. if (swprev != sw || hwprev != hw)
  453. schedule_work(&rfkill->uevent_work);
  454. rfkill_led_trigger_event(rfkill);
  455. }
  456. }
  457. EXPORT_SYMBOL(rfkill_set_states);
  458. static ssize_t rfkill_name_show(struct device *dev,
  459. struct device_attribute *attr,
  460. char *buf)
  461. {
  462. struct rfkill *rfkill = to_rfkill(dev);
  463. return sprintf(buf, "%s\n", rfkill->name);
  464. }
  465. static const char *rfkill_get_type_str(enum rfkill_type type)
  466. {
  467. switch (type) {
  468. case RFKILL_TYPE_WLAN:
  469. return "wlan";
  470. case RFKILL_TYPE_BLUETOOTH:
  471. return "bluetooth";
  472. case RFKILL_TYPE_UWB:
  473. return "ultrawideband";
  474. case RFKILL_TYPE_WIMAX:
  475. return "wimax";
  476. case RFKILL_TYPE_WWAN:
  477. return "wwan";
  478. default:
  479. BUG();
  480. }
  481. BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_WWAN + 1);
  482. }
  483. static ssize_t rfkill_type_show(struct device *dev,
  484. struct device_attribute *attr,
  485. char *buf)
  486. {
  487. struct rfkill *rfkill = to_rfkill(dev);
  488. return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
  489. }
  490. static ssize_t rfkill_idx_show(struct device *dev,
  491. struct device_attribute *attr,
  492. char *buf)
  493. {
  494. struct rfkill *rfkill = to_rfkill(dev);
  495. return sprintf(buf, "%d\n", rfkill->idx);
  496. }
  497. static ssize_t rfkill_persistent_show(struct device *dev,
  498. struct device_attribute *attr,
  499. char *buf)
  500. {
  501. struct rfkill *rfkill = to_rfkill(dev);
  502. return sprintf(buf, "%d\n", rfkill->persistent);
  503. }
  504. static u8 user_state_from_blocked(unsigned long state)
  505. {
  506. if (state & RFKILL_BLOCK_HW)
  507. return RFKILL_USER_STATE_HARD_BLOCKED;
  508. if (state & RFKILL_BLOCK_SW)
  509. return RFKILL_USER_STATE_SOFT_BLOCKED;
  510. return RFKILL_USER_STATE_UNBLOCKED;
  511. }
  512. static ssize_t rfkill_state_show(struct device *dev,
  513. struct device_attribute *attr,
  514. char *buf)
  515. {
  516. struct rfkill *rfkill = to_rfkill(dev);
  517. unsigned long flags;
  518. u32 state;
  519. spin_lock_irqsave(&rfkill->lock, flags);
  520. state = rfkill->state;
  521. spin_unlock_irqrestore(&rfkill->lock, flags);
  522. return sprintf(buf, "%d\n", user_state_from_blocked(state));
  523. }
  524. static ssize_t rfkill_state_store(struct device *dev,
  525. struct device_attribute *attr,
  526. const char *buf, size_t count)
  527. {
  528. struct rfkill *rfkill = to_rfkill(dev);
  529. unsigned long state;
  530. int err;
  531. if (!capable(CAP_NET_ADMIN))
  532. return -EPERM;
  533. err = strict_strtoul(buf, 0, &state);
  534. if (err)
  535. return err;
  536. if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
  537. state != RFKILL_USER_STATE_UNBLOCKED)
  538. return -EINVAL;
  539. mutex_lock(&rfkill_global_mutex);
  540. rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
  541. mutex_unlock(&rfkill_global_mutex);
  542. return err ?: count;
  543. }
  544. static ssize_t rfkill_claim_show(struct device *dev,
  545. struct device_attribute *attr,
  546. char *buf)
  547. {
  548. return sprintf(buf, "%d\n", 0);
  549. }
  550. static ssize_t rfkill_claim_store(struct device *dev,
  551. struct device_attribute *attr,
  552. const char *buf, size_t count)
  553. {
  554. return -EOPNOTSUPP;
  555. }
  556. static struct device_attribute rfkill_dev_attrs[] = {
  557. __ATTR(name, S_IRUGO, rfkill_name_show, NULL),
  558. __ATTR(type, S_IRUGO, rfkill_type_show, NULL),
  559. __ATTR(index, S_IRUGO, rfkill_idx_show, NULL),
  560. __ATTR(persistent, S_IRUGO, rfkill_persistent_show, NULL),
  561. __ATTR(state, S_IRUGO|S_IWUSR, rfkill_state_show, rfkill_state_store),
  562. __ATTR(claim, S_IRUGO|S_IWUSR, rfkill_claim_show, rfkill_claim_store),
  563. __ATTR_NULL
  564. };
  565. static void rfkill_release(struct device *dev)
  566. {
  567. struct rfkill *rfkill = to_rfkill(dev);
  568. kfree(rfkill);
  569. }
  570. static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
  571. {
  572. struct rfkill *rfkill = to_rfkill(dev);
  573. unsigned long flags;
  574. u32 state;
  575. int error;
  576. error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
  577. if (error)
  578. return error;
  579. error = add_uevent_var(env, "RFKILL_TYPE=%s",
  580. rfkill_get_type_str(rfkill->type));
  581. if (error)
  582. return error;
  583. spin_lock_irqsave(&rfkill->lock, flags);
  584. state = rfkill->state;
  585. spin_unlock_irqrestore(&rfkill->lock, flags);
  586. error = add_uevent_var(env, "RFKILL_STATE=%d",
  587. user_state_from_blocked(state));
  588. return error;
  589. }
  590. void rfkill_pause_polling(struct rfkill *rfkill)
  591. {
  592. BUG_ON(!rfkill);
  593. if (!rfkill->ops->poll)
  594. return;
  595. cancel_delayed_work_sync(&rfkill->poll_work);
  596. }
  597. EXPORT_SYMBOL(rfkill_pause_polling);
  598. void rfkill_resume_polling(struct rfkill *rfkill)
  599. {
  600. BUG_ON(!rfkill);
  601. if (!rfkill->ops->poll)
  602. return;
  603. schedule_work(&rfkill->poll_work.work);
  604. }
  605. EXPORT_SYMBOL(rfkill_resume_polling);
  606. static int rfkill_suspend(struct device *dev, pm_message_t state)
  607. {
  608. struct rfkill *rfkill = to_rfkill(dev);
  609. rfkill_pause_polling(rfkill);
  610. return 0;
  611. }
  612. static int rfkill_resume(struct device *dev)
  613. {
  614. struct rfkill *rfkill = to_rfkill(dev);
  615. bool cur;
  616. if (!rfkill->persistent) {
  617. cur = !!(rfkill->state & RFKILL_BLOCK_SW);
  618. rfkill_set_block(rfkill, cur);
  619. }
  620. rfkill_resume_polling(rfkill);
  621. return 0;
  622. }
  623. static struct class rfkill_class = {
  624. .name = "rfkill",
  625. .dev_release = rfkill_release,
  626. .dev_attrs = rfkill_dev_attrs,
  627. .dev_uevent = rfkill_dev_uevent,
  628. .suspend = rfkill_suspend,
  629. .resume = rfkill_resume,
  630. };
  631. bool rfkill_blocked(struct rfkill *rfkill)
  632. {
  633. unsigned long flags;
  634. u32 state;
  635. spin_lock_irqsave(&rfkill->lock, flags);
  636. state = rfkill->state;
  637. spin_unlock_irqrestore(&rfkill->lock, flags);
  638. return !!(state & RFKILL_BLOCK_ANY);
  639. }
  640. EXPORT_SYMBOL(rfkill_blocked);
  641. struct rfkill * __must_check rfkill_alloc(const char *name,
  642. struct device *parent,
  643. const enum rfkill_type type,
  644. const struct rfkill_ops *ops,
  645. void *ops_data)
  646. {
  647. struct rfkill *rfkill;
  648. struct device *dev;
  649. if (WARN_ON(!ops))
  650. return NULL;
  651. if (WARN_ON(!ops->set_block))
  652. return NULL;
  653. if (WARN_ON(!name))
  654. return NULL;
  655. if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
  656. return NULL;
  657. rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL);
  658. if (!rfkill)
  659. return NULL;
  660. spin_lock_init(&rfkill->lock);
  661. INIT_LIST_HEAD(&rfkill->node);
  662. rfkill->type = type;
  663. rfkill->name = name;
  664. rfkill->ops = ops;
  665. rfkill->data = ops_data;
  666. dev = &rfkill->dev;
  667. dev->class = &rfkill_class;
  668. dev->parent = parent;
  669. device_initialize(dev);
  670. return rfkill;
  671. }
  672. EXPORT_SYMBOL(rfkill_alloc);
  673. static void rfkill_poll(struct work_struct *work)
  674. {
  675. struct rfkill *rfkill;
  676. rfkill = container_of(work, struct rfkill, poll_work.work);
  677. /*
  678. * Poll hardware state -- driver will use one of the
  679. * rfkill_set{,_hw,_sw}_state functions and use its
  680. * return value to update the current status.
  681. */
  682. rfkill->ops->poll(rfkill, rfkill->data);
  683. schedule_delayed_work(&rfkill->poll_work,
  684. round_jiffies_relative(POLL_INTERVAL));
  685. }
  686. static void rfkill_uevent_work(struct work_struct *work)
  687. {
  688. struct rfkill *rfkill;
  689. rfkill = container_of(work, struct rfkill, uevent_work);
  690. mutex_lock(&rfkill_global_mutex);
  691. rfkill_event(rfkill);
  692. mutex_unlock(&rfkill_global_mutex);
  693. }
  694. static void rfkill_sync_work(struct work_struct *work)
  695. {
  696. struct rfkill *rfkill;
  697. bool cur;
  698. rfkill = container_of(work, struct rfkill, sync_work);
  699. mutex_lock(&rfkill_global_mutex);
  700. cur = rfkill_global_states[rfkill->type].cur;
  701. rfkill_set_block(rfkill, cur);
  702. mutex_unlock(&rfkill_global_mutex);
  703. }
  704. int __must_check rfkill_register(struct rfkill *rfkill)
  705. {
  706. static unsigned long rfkill_no;
  707. struct device *dev = &rfkill->dev;
  708. int error;
  709. BUG_ON(!rfkill);
  710. mutex_lock(&rfkill_global_mutex);
  711. if (rfkill->registered) {
  712. error = -EALREADY;
  713. goto unlock;
  714. }
  715. rfkill->idx = rfkill_no;
  716. dev_set_name(dev, "rfkill%lu", rfkill_no);
  717. rfkill_no++;
  718. list_add_tail(&rfkill->node, &rfkill_list);
  719. error = device_add(dev);
  720. if (error)
  721. goto remove;
  722. error = rfkill_led_trigger_register(rfkill);
  723. if (error)
  724. goto devdel;
  725. rfkill->registered = true;
  726. INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
  727. INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
  728. INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
  729. if (rfkill->ops->poll)
  730. schedule_delayed_work(&rfkill->poll_work,
  731. round_jiffies_relative(POLL_INTERVAL));
  732. if (!rfkill->persistent || rfkill_epo_lock_active) {
  733. schedule_work(&rfkill->sync_work);
  734. } else {
  735. #ifdef CONFIG_RFKILL_INPUT
  736. bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
  737. if (!atomic_read(&rfkill_input_disabled))
  738. __rfkill_switch_all(rfkill->type, soft_blocked);
  739. #endif
  740. }
  741. rfkill_send_events(rfkill, RFKILL_OP_ADD);
  742. mutex_unlock(&rfkill_global_mutex);
  743. return 0;
  744. devdel:
  745. device_del(&rfkill->dev);
  746. remove:
  747. list_del_init(&rfkill->node);
  748. unlock:
  749. mutex_unlock(&rfkill_global_mutex);
  750. return error;
  751. }
  752. EXPORT_SYMBOL(rfkill_register);
  753. void rfkill_unregister(struct rfkill *rfkill)
  754. {
  755. BUG_ON(!rfkill);
  756. if (rfkill->ops->poll)
  757. cancel_delayed_work_sync(&rfkill->poll_work);
  758. cancel_work_sync(&rfkill->uevent_work);
  759. cancel_work_sync(&rfkill->sync_work);
  760. rfkill->registered = false;
  761. device_del(&rfkill->dev);
  762. mutex_lock(&rfkill_global_mutex);
  763. rfkill_send_events(rfkill, RFKILL_OP_DEL);
  764. list_del_init(&rfkill->node);
  765. mutex_unlock(&rfkill_global_mutex);
  766. rfkill_led_trigger_unregister(rfkill);
  767. }
  768. EXPORT_SYMBOL(rfkill_unregister);
  769. void rfkill_destroy(struct rfkill *rfkill)
  770. {
  771. if (rfkill)
  772. put_device(&rfkill->dev);
  773. }
  774. EXPORT_SYMBOL(rfkill_destroy);
  775. static int rfkill_fop_open(struct inode *inode, struct file *file)
  776. {
  777. struct rfkill_data *data;
  778. struct rfkill *rfkill;
  779. struct rfkill_int_event *ev, *tmp;
  780. data = kzalloc(sizeof(*data), GFP_KERNEL);
  781. if (!data)
  782. return -ENOMEM;
  783. INIT_LIST_HEAD(&data->events);
  784. mutex_init(&data->mtx);
  785. init_waitqueue_head(&data->read_wait);
  786. mutex_lock(&rfkill_global_mutex);
  787. mutex_lock(&data->mtx);
  788. /*
  789. * start getting events from elsewhere but hold mtx to get
  790. * startup events added first
  791. */
  792. list_add(&data->list, &rfkill_fds);
  793. list_for_each_entry(rfkill, &rfkill_list, node) {
  794. ev = kzalloc(sizeof(*ev), GFP_KERNEL);
  795. if (!ev)
  796. goto free;
  797. rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
  798. list_add_tail(&ev->list, &data->events);
  799. }
  800. mutex_unlock(&data->mtx);
  801. mutex_unlock(&rfkill_global_mutex);
  802. file->private_data = data;
  803. return nonseekable_open(inode, file);
  804. free:
  805. mutex_unlock(&data->mtx);
  806. mutex_unlock(&rfkill_global_mutex);
  807. mutex_destroy(&data->mtx);
  808. list_for_each_entry_safe(ev, tmp, &data->events, list)
  809. kfree(ev);
  810. kfree(data);
  811. return -ENOMEM;
  812. }
  813. static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
  814. {
  815. struct rfkill_data *data = file->private_data;
  816. unsigned int res = POLLOUT | POLLWRNORM;
  817. poll_wait(file, &data->read_wait, wait);
  818. mutex_lock(&data->mtx);
  819. if (!list_empty(&data->events))
  820. res = POLLIN | POLLRDNORM;
  821. mutex_unlock(&data->mtx);
  822. return res;
  823. }
  824. static bool rfkill_readable(struct rfkill_data *data)
  825. {
  826. bool r;
  827. mutex_lock(&data->mtx);
  828. r = !list_empty(&data->events);
  829. mutex_unlock(&data->mtx);
  830. return r;
  831. }
  832. static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
  833. size_t count, loff_t *pos)
  834. {
  835. struct rfkill_data *data = file->private_data;
  836. struct rfkill_int_event *ev;
  837. unsigned long sz;
  838. int ret;
  839. mutex_lock(&data->mtx);
  840. while (list_empty(&data->events)) {
  841. if (file->f_flags & O_NONBLOCK) {
  842. ret = -EAGAIN;
  843. goto out;
  844. }
  845. mutex_unlock(&data->mtx);
  846. ret = wait_event_interruptible(data->read_wait,
  847. rfkill_readable(data));
  848. mutex_lock(&data->mtx);
  849. if (ret)
  850. goto out;
  851. }
  852. ev = list_first_entry(&data->events, struct rfkill_int_event,
  853. list);
  854. sz = min_t(unsigned long, sizeof(ev->ev), count);
  855. ret = sz;
  856. if (copy_to_user(buf, &ev->ev, sz))
  857. ret = -EFAULT;
  858. list_del(&ev->list);
  859. kfree(ev);
  860. out:
  861. mutex_unlock(&data->mtx);
  862. return ret;
  863. }
  864. static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
  865. size_t count, loff_t *pos)
  866. {
  867. struct rfkill *rfkill;
  868. struct rfkill_event ev;
  869. /* we don't need the 'hard' variable but accept it */
  870. if (count < sizeof(ev) - 1)
  871. return -EINVAL;
  872. if (copy_from_user(&ev, buf, sizeof(ev) - 1))
  873. return -EFAULT;
  874. if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
  875. return -EINVAL;
  876. if (ev.type >= NUM_RFKILL_TYPES)
  877. return -EINVAL;
  878. mutex_lock(&rfkill_global_mutex);
  879. if (ev.op == RFKILL_OP_CHANGE_ALL) {
  880. if (ev.type == RFKILL_TYPE_ALL) {
  881. enum rfkill_type i;
  882. for (i = 0; i < NUM_RFKILL_TYPES; i++)
  883. rfkill_global_states[i].cur = ev.soft;
  884. } else {
  885. rfkill_global_states[ev.type].cur = ev.soft;
  886. }
  887. }
  888. list_for_each_entry(rfkill, &rfkill_list, node) {
  889. if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
  890. continue;
  891. if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
  892. continue;
  893. rfkill_set_block(rfkill, ev.soft);
  894. }
  895. mutex_unlock(&rfkill_global_mutex);
  896. return count;
  897. }
  898. static int rfkill_fop_release(struct inode *inode, struct file *file)
  899. {
  900. struct rfkill_data *data = file->private_data;
  901. struct rfkill_int_event *ev, *tmp;
  902. mutex_lock(&rfkill_global_mutex);
  903. list_del(&data->list);
  904. mutex_unlock(&rfkill_global_mutex);
  905. mutex_destroy(&data->mtx);
  906. list_for_each_entry_safe(ev, tmp, &data->events, list)
  907. kfree(ev);
  908. #ifdef CONFIG_RFKILL_INPUT
  909. if (data->input_handler)
  910. if (atomic_dec_return(&rfkill_input_disabled) == 0)
  911. printk(KERN_DEBUG "rfkill: input handler enabled\n");
  912. #endif
  913. kfree(data);
  914. return 0;
  915. }
  916. #ifdef CONFIG_RFKILL_INPUT
  917. static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
  918. unsigned long arg)
  919. {
  920. struct rfkill_data *data = file->private_data;
  921. if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
  922. return -ENOSYS;
  923. if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
  924. return -ENOSYS;
  925. mutex_lock(&data->mtx);
  926. if (!data->input_handler) {
  927. if (atomic_inc_return(&rfkill_input_disabled) == 1)
  928. printk(KERN_DEBUG "rfkill: input handler disabled\n");
  929. data->input_handler = true;
  930. }
  931. mutex_unlock(&data->mtx);
  932. return 0;
  933. }
  934. #endif
  935. static const struct file_operations rfkill_fops = {
  936. .open = rfkill_fop_open,
  937. .read = rfkill_fop_read,
  938. .write = rfkill_fop_write,
  939. .poll = rfkill_fop_poll,
  940. .release = rfkill_fop_release,
  941. #ifdef CONFIG_RFKILL_INPUT
  942. .unlocked_ioctl = rfkill_fop_ioctl,
  943. .compat_ioctl = rfkill_fop_ioctl,
  944. #endif
  945. };
  946. static struct miscdevice rfkill_miscdev = {
  947. .name = "rfkill",
  948. .fops = &rfkill_fops,
  949. .minor = MISC_DYNAMIC_MINOR,
  950. };
  951. static int __init rfkill_init(void)
  952. {
  953. int error;
  954. int i;
  955. for (i = 0; i < NUM_RFKILL_TYPES; i++)
  956. rfkill_global_states[i].cur = !rfkill_default_state;
  957. error = class_register(&rfkill_class);
  958. if (error)
  959. goto out;
  960. error = misc_register(&rfkill_miscdev);
  961. if (error) {
  962. class_unregister(&rfkill_class);
  963. goto out;
  964. }
  965. #ifdef CONFIG_RFKILL_INPUT
  966. error = rfkill_handler_init();
  967. if (error) {
  968. misc_deregister(&rfkill_miscdev);
  969. class_unregister(&rfkill_class);
  970. goto out;
  971. }
  972. #endif
  973. out:
  974. return error;
  975. }
  976. subsys_initcall(rfkill_init);
  977. static void __exit rfkill_exit(void)
  978. {
  979. #ifdef CONFIG_RFKILL_INPUT
  980. rfkill_handler_exit();
  981. #endif
  982. misc_deregister(&rfkill_miscdev);
  983. class_unregister(&rfkill_class);
  984. }
  985. module_exit(rfkill_exit);