raid1.c 80 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017
  1. /*
  2. * raid1.c : Multiple Devices driver for Linux
  3. *
  4. * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
  5. *
  6. * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
  7. *
  8. * RAID-1 management functions.
  9. *
  10. * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11. *
  12. * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13. * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14. *
  15. * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16. * bitmapped intelligence in resync:
  17. *
  18. * - bitmap marked during normal i/o
  19. * - bitmap used to skip nondirty blocks during sync
  20. *
  21. * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22. * - persistent bitmap code
  23. *
  24. * This program is free software; you can redistribute it and/or modify
  25. * it under the terms of the GNU General Public License as published by
  26. * the Free Software Foundation; either version 2, or (at your option)
  27. * any later version.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * (for example /usr/src/linux/COPYING); if not, write to the Free
  31. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32. */
  33. #include <linux/slab.h>
  34. #include <linux/delay.h>
  35. #include <linux/blkdev.h>
  36. #include <linux/module.h>
  37. #include <linux/seq_file.h>
  38. #include <linux/ratelimit.h>
  39. #include "md.h"
  40. #include "raid1.h"
  41. #include "bitmap.h"
  42. /*
  43. * Number of guaranteed r1bios in case of extreme VM load:
  44. */
  45. #define NR_RAID1_BIOS 256
  46. /* When there are this many requests queue to be written by
  47. * the raid1 thread, we become 'congested' to provide back-pressure
  48. * for writeback.
  49. */
  50. static int max_queued_requests = 1024;
  51. static void allow_barrier(struct r1conf *conf);
  52. static void lower_barrier(struct r1conf *conf);
  53. static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  54. {
  55. struct pool_info *pi = data;
  56. int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  57. /* allocate a r1bio with room for raid_disks entries in the bios array */
  58. return kzalloc(size, gfp_flags);
  59. }
  60. static void r1bio_pool_free(void *r1_bio, void *data)
  61. {
  62. kfree(r1_bio);
  63. }
  64. #define RESYNC_BLOCK_SIZE (64*1024)
  65. //#define RESYNC_BLOCK_SIZE PAGE_SIZE
  66. #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  67. #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  68. #define RESYNC_WINDOW (2048*1024)
  69. static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  70. {
  71. struct pool_info *pi = data;
  72. struct page *page;
  73. struct r1bio *r1_bio;
  74. struct bio *bio;
  75. int i, j;
  76. r1_bio = r1bio_pool_alloc(gfp_flags, pi);
  77. if (!r1_bio)
  78. return NULL;
  79. /*
  80. * Allocate bios : 1 for reading, n-1 for writing
  81. */
  82. for (j = pi->raid_disks ; j-- ; ) {
  83. bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
  84. if (!bio)
  85. goto out_free_bio;
  86. r1_bio->bios[j] = bio;
  87. }
  88. /*
  89. * Allocate RESYNC_PAGES data pages and attach them to
  90. * the first bio.
  91. * If this is a user-requested check/repair, allocate
  92. * RESYNC_PAGES for each bio.
  93. */
  94. if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
  95. j = pi->raid_disks;
  96. else
  97. j = 1;
  98. while(j--) {
  99. bio = r1_bio->bios[j];
  100. for (i = 0; i < RESYNC_PAGES; i++) {
  101. page = alloc_page(gfp_flags);
  102. if (unlikely(!page))
  103. goto out_free_pages;
  104. bio->bi_io_vec[i].bv_page = page;
  105. bio->bi_vcnt = i+1;
  106. }
  107. }
  108. /* If not user-requests, copy the page pointers to all bios */
  109. if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
  110. for (i=0; i<RESYNC_PAGES ; i++)
  111. for (j=1; j<pi->raid_disks; j++)
  112. r1_bio->bios[j]->bi_io_vec[i].bv_page =
  113. r1_bio->bios[0]->bi_io_vec[i].bv_page;
  114. }
  115. r1_bio->master_bio = NULL;
  116. return r1_bio;
  117. out_free_pages:
  118. for (j=0 ; j < pi->raid_disks; j++)
  119. for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
  120. put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
  121. j = -1;
  122. out_free_bio:
  123. while (++j < pi->raid_disks)
  124. bio_put(r1_bio->bios[j]);
  125. r1bio_pool_free(r1_bio, data);
  126. return NULL;
  127. }
  128. static void r1buf_pool_free(void *__r1_bio, void *data)
  129. {
  130. struct pool_info *pi = data;
  131. int i,j;
  132. struct r1bio *r1bio = __r1_bio;
  133. for (i = 0; i < RESYNC_PAGES; i++)
  134. for (j = pi->raid_disks; j-- ;) {
  135. if (j == 0 ||
  136. r1bio->bios[j]->bi_io_vec[i].bv_page !=
  137. r1bio->bios[0]->bi_io_vec[i].bv_page)
  138. safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
  139. }
  140. for (i=0 ; i < pi->raid_disks; i++)
  141. bio_put(r1bio->bios[i]);
  142. r1bio_pool_free(r1bio, data);
  143. }
  144. static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
  145. {
  146. int i;
  147. for (i = 0; i < conf->raid_disks * 2; i++) {
  148. struct bio **bio = r1_bio->bios + i;
  149. if (!BIO_SPECIAL(*bio))
  150. bio_put(*bio);
  151. *bio = NULL;
  152. }
  153. }
  154. static void free_r1bio(struct r1bio *r1_bio)
  155. {
  156. struct r1conf *conf = r1_bio->mddev->private;
  157. put_all_bios(conf, r1_bio);
  158. mempool_free(r1_bio, conf->r1bio_pool);
  159. }
  160. static void put_buf(struct r1bio *r1_bio)
  161. {
  162. struct r1conf *conf = r1_bio->mddev->private;
  163. int i;
  164. for (i = 0; i < conf->raid_disks * 2; i++) {
  165. struct bio *bio = r1_bio->bios[i];
  166. if (bio->bi_end_io)
  167. rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
  168. }
  169. mempool_free(r1_bio, conf->r1buf_pool);
  170. lower_barrier(conf);
  171. }
  172. static void reschedule_retry(struct r1bio *r1_bio)
  173. {
  174. unsigned long flags;
  175. struct mddev *mddev = r1_bio->mddev;
  176. struct r1conf *conf = mddev->private;
  177. spin_lock_irqsave(&conf->device_lock, flags);
  178. list_add(&r1_bio->retry_list, &conf->retry_list);
  179. conf->nr_queued ++;
  180. spin_unlock_irqrestore(&conf->device_lock, flags);
  181. wake_up(&conf->wait_barrier);
  182. md_wakeup_thread(mddev->thread);
  183. }
  184. /*
  185. * raid_end_bio_io() is called when we have finished servicing a mirrored
  186. * operation and are ready to return a success/failure code to the buffer
  187. * cache layer.
  188. */
  189. static void call_bio_endio(struct r1bio *r1_bio)
  190. {
  191. struct bio *bio = r1_bio->master_bio;
  192. int done;
  193. struct r1conf *conf = r1_bio->mddev->private;
  194. if (bio->bi_phys_segments) {
  195. unsigned long flags;
  196. spin_lock_irqsave(&conf->device_lock, flags);
  197. bio->bi_phys_segments--;
  198. done = (bio->bi_phys_segments == 0);
  199. spin_unlock_irqrestore(&conf->device_lock, flags);
  200. } else
  201. done = 1;
  202. if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
  203. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  204. if (done) {
  205. bio_endio(bio, 0);
  206. /*
  207. * Wake up any possible resync thread that waits for the device
  208. * to go idle.
  209. */
  210. allow_barrier(conf);
  211. }
  212. }
  213. static void raid_end_bio_io(struct r1bio *r1_bio)
  214. {
  215. struct bio *bio = r1_bio->master_bio;
  216. /* if nobody has done the final endio yet, do it now */
  217. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  218. pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
  219. (bio_data_dir(bio) == WRITE) ? "write" : "read",
  220. (unsigned long long) bio->bi_sector,
  221. (unsigned long long) bio->bi_sector +
  222. (bio->bi_size >> 9) - 1);
  223. call_bio_endio(r1_bio);
  224. }
  225. free_r1bio(r1_bio);
  226. }
  227. /*
  228. * Update disk head position estimator based on IRQ completion info.
  229. */
  230. static inline void update_head_pos(int disk, struct r1bio *r1_bio)
  231. {
  232. struct r1conf *conf = r1_bio->mddev->private;
  233. conf->mirrors[disk].head_position =
  234. r1_bio->sector + (r1_bio->sectors);
  235. }
  236. /*
  237. * Find the disk number which triggered given bio
  238. */
  239. static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
  240. {
  241. int mirror;
  242. struct r1conf *conf = r1_bio->mddev->private;
  243. int raid_disks = conf->raid_disks;
  244. for (mirror = 0; mirror < raid_disks * 2; mirror++)
  245. if (r1_bio->bios[mirror] == bio)
  246. break;
  247. BUG_ON(mirror == raid_disks * 2);
  248. update_head_pos(mirror, r1_bio);
  249. return mirror;
  250. }
  251. static void raid1_end_read_request(struct bio *bio, int error)
  252. {
  253. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  254. struct r1bio *r1_bio = bio->bi_private;
  255. int mirror;
  256. struct r1conf *conf = r1_bio->mddev->private;
  257. mirror = r1_bio->read_disk;
  258. /*
  259. * this branch is our 'one mirror IO has finished' event handler:
  260. */
  261. update_head_pos(mirror, r1_bio);
  262. if (uptodate)
  263. set_bit(R1BIO_Uptodate, &r1_bio->state);
  264. else {
  265. /* If all other devices have failed, we want to return
  266. * the error upwards rather than fail the last device.
  267. * Here we redefine "uptodate" to mean "Don't want to retry"
  268. */
  269. unsigned long flags;
  270. spin_lock_irqsave(&conf->device_lock, flags);
  271. if (r1_bio->mddev->degraded == conf->raid_disks ||
  272. (r1_bio->mddev->degraded == conf->raid_disks-1 &&
  273. !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
  274. uptodate = 1;
  275. spin_unlock_irqrestore(&conf->device_lock, flags);
  276. }
  277. if (uptodate)
  278. raid_end_bio_io(r1_bio);
  279. else {
  280. /*
  281. * oops, read error:
  282. */
  283. char b[BDEVNAME_SIZE];
  284. printk_ratelimited(
  285. KERN_ERR "md/raid1:%s: %s: "
  286. "rescheduling sector %llu\n",
  287. mdname(conf->mddev),
  288. bdevname(conf->mirrors[mirror].rdev->bdev,
  289. b),
  290. (unsigned long long)r1_bio->sector);
  291. set_bit(R1BIO_ReadError, &r1_bio->state);
  292. reschedule_retry(r1_bio);
  293. }
  294. rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
  295. }
  296. static void close_write(struct r1bio *r1_bio)
  297. {
  298. /* it really is the end of this request */
  299. if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
  300. /* free extra copy of the data pages */
  301. int i = r1_bio->behind_page_count;
  302. while (i--)
  303. safe_put_page(r1_bio->behind_bvecs[i].bv_page);
  304. kfree(r1_bio->behind_bvecs);
  305. r1_bio->behind_bvecs = NULL;
  306. }
  307. /* clear the bitmap if all writes complete successfully */
  308. bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
  309. r1_bio->sectors,
  310. !test_bit(R1BIO_Degraded, &r1_bio->state),
  311. test_bit(R1BIO_BehindIO, &r1_bio->state));
  312. md_write_end(r1_bio->mddev);
  313. }
  314. static void r1_bio_write_done(struct r1bio *r1_bio)
  315. {
  316. if (!atomic_dec_and_test(&r1_bio->remaining))
  317. return;
  318. if (test_bit(R1BIO_WriteError, &r1_bio->state))
  319. reschedule_retry(r1_bio);
  320. else {
  321. close_write(r1_bio);
  322. if (test_bit(R1BIO_MadeGood, &r1_bio->state))
  323. reschedule_retry(r1_bio);
  324. else
  325. raid_end_bio_io(r1_bio);
  326. }
  327. }
  328. static void raid1_end_write_request(struct bio *bio, int error)
  329. {
  330. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  331. struct r1bio *r1_bio = bio->bi_private;
  332. int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
  333. struct r1conf *conf = r1_bio->mddev->private;
  334. struct bio *to_put = NULL;
  335. mirror = find_bio_disk(r1_bio, bio);
  336. /*
  337. * 'one mirror IO has finished' event handler:
  338. */
  339. if (!uptodate) {
  340. set_bit(WriteErrorSeen,
  341. &conf->mirrors[mirror].rdev->flags);
  342. if (!test_and_set_bit(WantReplacement,
  343. &conf->mirrors[mirror].rdev->flags))
  344. set_bit(MD_RECOVERY_NEEDED, &
  345. conf->mddev->recovery);
  346. set_bit(R1BIO_WriteError, &r1_bio->state);
  347. } else {
  348. /*
  349. * Set R1BIO_Uptodate in our master bio, so that we
  350. * will return a good error code for to the higher
  351. * levels even if IO on some other mirrored buffer
  352. * fails.
  353. *
  354. * The 'master' represents the composite IO operation
  355. * to user-side. So if something waits for IO, then it
  356. * will wait for the 'master' bio.
  357. */
  358. sector_t first_bad;
  359. int bad_sectors;
  360. r1_bio->bios[mirror] = NULL;
  361. to_put = bio;
  362. set_bit(R1BIO_Uptodate, &r1_bio->state);
  363. /* Maybe we can clear some bad blocks. */
  364. if (is_badblock(conf->mirrors[mirror].rdev,
  365. r1_bio->sector, r1_bio->sectors,
  366. &first_bad, &bad_sectors)) {
  367. r1_bio->bios[mirror] = IO_MADE_GOOD;
  368. set_bit(R1BIO_MadeGood, &r1_bio->state);
  369. }
  370. }
  371. if (behind) {
  372. if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
  373. atomic_dec(&r1_bio->behind_remaining);
  374. /*
  375. * In behind mode, we ACK the master bio once the I/O
  376. * has safely reached all non-writemostly
  377. * disks. Setting the Returned bit ensures that this
  378. * gets done only once -- we don't ever want to return
  379. * -EIO here, instead we'll wait
  380. */
  381. if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
  382. test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  383. /* Maybe we can return now */
  384. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  385. struct bio *mbio = r1_bio->master_bio;
  386. pr_debug("raid1: behind end write sectors"
  387. " %llu-%llu\n",
  388. (unsigned long long) mbio->bi_sector,
  389. (unsigned long long) mbio->bi_sector +
  390. (mbio->bi_size >> 9) - 1);
  391. call_bio_endio(r1_bio);
  392. }
  393. }
  394. }
  395. if (r1_bio->bios[mirror] == NULL)
  396. rdev_dec_pending(conf->mirrors[mirror].rdev,
  397. conf->mddev);
  398. /*
  399. * Let's see if all mirrored write operations have finished
  400. * already.
  401. */
  402. r1_bio_write_done(r1_bio);
  403. if (to_put)
  404. bio_put(to_put);
  405. }
  406. /*
  407. * This routine returns the disk from which the requested read should
  408. * be done. There is a per-array 'next expected sequential IO' sector
  409. * number - if this matches on the next IO then we use the last disk.
  410. * There is also a per-disk 'last know head position' sector that is
  411. * maintained from IRQ contexts, both the normal and the resync IO
  412. * completion handlers update this position correctly. If there is no
  413. * perfect sequential match then we pick the disk whose head is closest.
  414. *
  415. * If there are 2 mirrors in the same 2 devices, performance degrades
  416. * because position is mirror, not device based.
  417. *
  418. * The rdev for the device selected will have nr_pending incremented.
  419. */
  420. static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
  421. {
  422. const sector_t this_sector = r1_bio->sector;
  423. int sectors;
  424. int best_good_sectors;
  425. int start_disk;
  426. int best_disk;
  427. int i;
  428. sector_t best_dist;
  429. struct md_rdev *rdev;
  430. int choose_first;
  431. rcu_read_lock();
  432. /*
  433. * Check if we can balance. We can balance on the whole
  434. * device if no resync is going on, or below the resync window.
  435. * We take the first readable disk when above the resync window.
  436. */
  437. retry:
  438. sectors = r1_bio->sectors;
  439. best_disk = -1;
  440. best_dist = MaxSector;
  441. best_good_sectors = 0;
  442. if (conf->mddev->recovery_cp < MaxSector &&
  443. (this_sector + sectors >= conf->next_resync)) {
  444. choose_first = 1;
  445. start_disk = 0;
  446. } else {
  447. choose_first = 0;
  448. start_disk = conf->last_used;
  449. }
  450. for (i = 0 ; i < conf->raid_disks * 2 ; i++) {
  451. sector_t dist;
  452. sector_t first_bad;
  453. int bad_sectors;
  454. int disk = start_disk + i;
  455. if (disk >= conf->raid_disks * 2)
  456. disk -= conf->raid_disks * 2;
  457. rdev = rcu_dereference(conf->mirrors[disk].rdev);
  458. if (r1_bio->bios[disk] == IO_BLOCKED
  459. || rdev == NULL
  460. || test_bit(Unmerged, &rdev->flags)
  461. || test_bit(Faulty, &rdev->flags))
  462. continue;
  463. if (!test_bit(In_sync, &rdev->flags) &&
  464. rdev->recovery_offset < this_sector + sectors)
  465. continue;
  466. if (test_bit(WriteMostly, &rdev->flags)) {
  467. /* Don't balance among write-mostly, just
  468. * use the first as a last resort */
  469. if (best_disk < 0) {
  470. if (is_badblock(rdev, this_sector, sectors,
  471. &first_bad, &bad_sectors)) {
  472. if (first_bad < this_sector)
  473. /* Cannot use this */
  474. continue;
  475. best_good_sectors = first_bad - this_sector;
  476. } else
  477. best_good_sectors = sectors;
  478. best_disk = disk;
  479. }
  480. continue;
  481. }
  482. /* This is a reasonable device to use. It might
  483. * even be best.
  484. */
  485. if (is_badblock(rdev, this_sector, sectors,
  486. &first_bad, &bad_sectors)) {
  487. if (best_dist < MaxSector)
  488. /* already have a better device */
  489. continue;
  490. if (first_bad <= this_sector) {
  491. /* cannot read here. If this is the 'primary'
  492. * device, then we must not read beyond
  493. * bad_sectors from another device..
  494. */
  495. bad_sectors -= (this_sector - first_bad);
  496. if (choose_first && sectors > bad_sectors)
  497. sectors = bad_sectors;
  498. if (best_good_sectors > sectors)
  499. best_good_sectors = sectors;
  500. } else {
  501. sector_t good_sectors = first_bad - this_sector;
  502. if (good_sectors > best_good_sectors) {
  503. best_good_sectors = good_sectors;
  504. best_disk = disk;
  505. }
  506. if (choose_first)
  507. break;
  508. }
  509. continue;
  510. } else
  511. best_good_sectors = sectors;
  512. dist = abs(this_sector - conf->mirrors[disk].head_position);
  513. if (choose_first
  514. /* Don't change to another disk for sequential reads */
  515. || conf->next_seq_sect == this_sector
  516. || dist == 0
  517. /* If device is idle, use it */
  518. || atomic_read(&rdev->nr_pending) == 0) {
  519. best_disk = disk;
  520. break;
  521. }
  522. if (dist < best_dist) {
  523. best_dist = dist;
  524. best_disk = disk;
  525. }
  526. }
  527. if (best_disk >= 0) {
  528. rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
  529. if (!rdev)
  530. goto retry;
  531. atomic_inc(&rdev->nr_pending);
  532. if (test_bit(Faulty, &rdev->flags)) {
  533. /* cannot risk returning a device that failed
  534. * before we inc'ed nr_pending
  535. */
  536. rdev_dec_pending(rdev, conf->mddev);
  537. goto retry;
  538. }
  539. sectors = best_good_sectors;
  540. conf->next_seq_sect = this_sector + sectors;
  541. conf->last_used = best_disk;
  542. }
  543. rcu_read_unlock();
  544. *max_sectors = sectors;
  545. return best_disk;
  546. }
  547. static int raid1_mergeable_bvec(struct request_queue *q,
  548. struct bvec_merge_data *bvm,
  549. struct bio_vec *biovec)
  550. {
  551. struct mddev *mddev = q->queuedata;
  552. struct r1conf *conf = mddev->private;
  553. sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
  554. int max = biovec->bv_len;
  555. if (mddev->merge_check_needed) {
  556. int disk;
  557. rcu_read_lock();
  558. for (disk = 0; disk < conf->raid_disks * 2; disk++) {
  559. struct md_rdev *rdev = rcu_dereference(
  560. conf->mirrors[disk].rdev);
  561. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  562. struct request_queue *q =
  563. bdev_get_queue(rdev->bdev);
  564. if (q->merge_bvec_fn) {
  565. bvm->bi_sector = sector +
  566. rdev->data_offset;
  567. bvm->bi_bdev = rdev->bdev;
  568. max = min(max, q->merge_bvec_fn(
  569. q, bvm, biovec));
  570. }
  571. }
  572. }
  573. rcu_read_unlock();
  574. }
  575. return max;
  576. }
  577. int md_raid1_congested(struct mddev *mddev, int bits)
  578. {
  579. struct r1conf *conf = mddev->private;
  580. int i, ret = 0;
  581. if ((bits & (1 << BDI_async_congested)) &&
  582. conf->pending_count >= max_queued_requests)
  583. return 1;
  584. rcu_read_lock();
  585. for (i = 0; i < conf->raid_disks * 2; i++) {
  586. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  587. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  588. struct request_queue *q = bdev_get_queue(rdev->bdev);
  589. BUG_ON(!q);
  590. /* Note the '|| 1' - when read_balance prefers
  591. * non-congested targets, it can be removed
  592. */
  593. if ((bits & (1<<BDI_async_congested)) || 1)
  594. ret |= bdi_congested(&q->backing_dev_info, bits);
  595. else
  596. ret &= bdi_congested(&q->backing_dev_info, bits);
  597. }
  598. }
  599. rcu_read_unlock();
  600. return ret;
  601. }
  602. EXPORT_SYMBOL_GPL(md_raid1_congested);
  603. static int raid1_congested(void *data, int bits)
  604. {
  605. struct mddev *mddev = data;
  606. return mddev_congested(mddev, bits) ||
  607. md_raid1_congested(mddev, bits);
  608. }
  609. static void flush_pending_writes(struct r1conf *conf)
  610. {
  611. /* Any writes that have been queued but are awaiting
  612. * bitmap updates get flushed here.
  613. */
  614. spin_lock_irq(&conf->device_lock);
  615. if (conf->pending_bio_list.head) {
  616. struct bio *bio;
  617. bio = bio_list_get(&conf->pending_bio_list);
  618. conf->pending_count = 0;
  619. spin_unlock_irq(&conf->device_lock);
  620. /* flush any pending bitmap writes to
  621. * disk before proceeding w/ I/O */
  622. bitmap_unplug(conf->mddev->bitmap);
  623. wake_up(&conf->wait_barrier);
  624. while (bio) { /* submit pending writes */
  625. struct bio *next = bio->bi_next;
  626. bio->bi_next = NULL;
  627. generic_make_request(bio);
  628. bio = next;
  629. }
  630. } else
  631. spin_unlock_irq(&conf->device_lock);
  632. }
  633. /* Barriers....
  634. * Sometimes we need to suspend IO while we do something else,
  635. * either some resync/recovery, or reconfigure the array.
  636. * To do this we raise a 'barrier'.
  637. * The 'barrier' is a counter that can be raised multiple times
  638. * to count how many activities are happening which preclude
  639. * normal IO.
  640. * We can only raise the barrier if there is no pending IO.
  641. * i.e. if nr_pending == 0.
  642. * We choose only to raise the barrier if no-one is waiting for the
  643. * barrier to go down. This means that as soon as an IO request
  644. * is ready, no other operations which require a barrier will start
  645. * until the IO request has had a chance.
  646. *
  647. * So: regular IO calls 'wait_barrier'. When that returns there
  648. * is no backgroup IO happening, It must arrange to call
  649. * allow_barrier when it has finished its IO.
  650. * backgroup IO calls must call raise_barrier. Once that returns
  651. * there is no normal IO happeing. It must arrange to call
  652. * lower_barrier when the particular background IO completes.
  653. */
  654. #define RESYNC_DEPTH 32
  655. static void raise_barrier(struct r1conf *conf)
  656. {
  657. spin_lock_irq(&conf->resync_lock);
  658. /* Wait until no block IO is waiting */
  659. wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
  660. conf->resync_lock, );
  661. /* block any new IO from starting */
  662. conf->barrier++;
  663. /* Now wait for all pending IO to complete */
  664. wait_event_lock_irq(conf->wait_barrier,
  665. !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
  666. conf->resync_lock, );
  667. spin_unlock_irq(&conf->resync_lock);
  668. }
  669. static void lower_barrier(struct r1conf *conf)
  670. {
  671. unsigned long flags;
  672. BUG_ON(conf->barrier <= 0);
  673. spin_lock_irqsave(&conf->resync_lock, flags);
  674. conf->barrier--;
  675. spin_unlock_irqrestore(&conf->resync_lock, flags);
  676. wake_up(&conf->wait_barrier);
  677. }
  678. static void wait_barrier(struct r1conf *conf)
  679. {
  680. spin_lock_irq(&conf->resync_lock);
  681. if (conf->barrier) {
  682. conf->nr_waiting++;
  683. /* Wait for the barrier to drop.
  684. * However if there are already pending
  685. * requests (preventing the barrier from
  686. * rising completely), and the
  687. * pre-process bio queue isn't empty,
  688. * then don't wait, as we need to empty
  689. * that queue to get the nr_pending
  690. * count down.
  691. */
  692. wait_event_lock_irq(conf->wait_barrier,
  693. !conf->barrier ||
  694. (conf->nr_pending &&
  695. current->bio_list &&
  696. !bio_list_empty(current->bio_list)),
  697. conf->resync_lock,
  698. );
  699. conf->nr_waiting--;
  700. }
  701. conf->nr_pending++;
  702. spin_unlock_irq(&conf->resync_lock);
  703. }
  704. static void allow_barrier(struct r1conf *conf)
  705. {
  706. unsigned long flags;
  707. spin_lock_irqsave(&conf->resync_lock, flags);
  708. conf->nr_pending--;
  709. spin_unlock_irqrestore(&conf->resync_lock, flags);
  710. wake_up(&conf->wait_barrier);
  711. }
  712. static void freeze_array(struct r1conf *conf)
  713. {
  714. /* stop syncio and normal IO and wait for everything to
  715. * go quite.
  716. * We increment barrier and nr_waiting, and then
  717. * wait until nr_pending match nr_queued+1
  718. * This is called in the context of one normal IO request
  719. * that has failed. Thus any sync request that might be pending
  720. * will be blocked by nr_pending, and we need to wait for
  721. * pending IO requests to complete or be queued for re-try.
  722. * Thus the number queued (nr_queued) plus this request (1)
  723. * must match the number of pending IOs (nr_pending) before
  724. * we continue.
  725. */
  726. spin_lock_irq(&conf->resync_lock);
  727. conf->barrier++;
  728. conf->nr_waiting++;
  729. wait_event_lock_irq(conf->wait_barrier,
  730. conf->nr_pending == conf->nr_queued+1,
  731. conf->resync_lock,
  732. flush_pending_writes(conf));
  733. spin_unlock_irq(&conf->resync_lock);
  734. }
  735. static void unfreeze_array(struct r1conf *conf)
  736. {
  737. /* reverse the effect of the freeze */
  738. spin_lock_irq(&conf->resync_lock);
  739. conf->barrier--;
  740. conf->nr_waiting--;
  741. wake_up(&conf->wait_barrier);
  742. spin_unlock_irq(&conf->resync_lock);
  743. }
  744. /* duplicate the data pages for behind I/O
  745. */
  746. static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
  747. {
  748. int i;
  749. struct bio_vec *bvec;
  750. struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
  751. GFP_NOIO);
  752. if (unlikely(!bvecs))
  753. return;
  754. bio_for_each_segment(bvec, bio, i) {
  755. bvecs[i] = *bvec;
  756. bvecs[i].bv_page = alloc_page(GFP_NOIO);
  757. if (unlikely(!bvecs[i].bv_page))
  758. goto do_sync_io;
  759. memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
  760. kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
  761. kunmap(bvecs[i].bv_page);
  762. kunmap(bvec->bv_page);
  763. }
  764. r1_bio->behind_bvecs = bvecs;
  765. r1_bio->behind_page_count = bio->bi_vcnt;
  766. set_bit(R1BIO_BehindIO, &r1_bio->state);
  767. return;
  768. do_sync_io:
  769. for (i = 0; i < bio->bi_vcnt; i++)
  770. if (bvecs[i].bv_page)
  771. put_page(bvecs[i].bv_page);
  772. kfree(bvecs);
  773. pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
  774. }
  775. struct raid1_plug_cb {
  776. struct blk_plug_cb cb;
  777. struct bio_list pending;
  778. int pending_cnt;
  779. };
  780. static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
  781. {
  782. struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
  783. cb);
  784. struct mddev *mddev = plug->cb.data;
  785. struct r1conf *conf = mddev->private;
  786. struct bio *bio;
  787. if (from_schedule) {
  788. spin_lock_irq(&conf->device_lock);
  789. bio_list_merge(&conf->pending_bio_list, &plug->pending);
  790. conf->pending_count += plug->pending_cnt;
  791. spin_unlock_irq(&conf->device_lock);
  792. md_wakeup_thread(mddev->thread);
  793. kfree(plug);
  794. return;
  795. }
  796. /* we aren't scheduling, so we can do the write-out directly. */
  797. bio = bio_list_get(&plug->pending);
  798. bitmap_unplug(mddev->bitmap);
  799. wake_up(&conf->wait_barrier);
  800. while (bio) { /* submit pending writes */
  801. struct bio *next = bio->bi_next;
  802. bio->bi_next = NULL;
  803. generic_make_request(bio);
  804. bio = next;
  805. }
  806. kfree(plug);
  807. }
  808. static void make_request(struct mddev *mddev, struct bio * bio)
  809. {
  810. struct r1conf *conf = mddev->private;
  811. struct mirror_info *mirror;
  812. struct r1bio *r1_bio;
  813. struct bio *read_bio;
  814. int i, disks;
  815. struct bitmap *bitmap;
  816. unsigned long flags;
  817. const int rw = bio_data_dir(bio);
  818. const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
  819. const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
  820. struct md_rdev *blocked_rdev;
  821. struct blk_plug_cb *cb;
  822. struct raid1_plug_cb *plug = NULL;
  823. int first_clone;
  824. int sectors_handled;
  825. int max_sectors;
  826. /*
  827. * Register the new request and wait if the reconstruction
  828. * thread has put up a bar for new requests.
  829. * Continue immediately if no resync is active currently.
  830. */
  831. md_write_start(mddev, bio); /* wait on superblock update early */
  832. if (bio_data_dir(bio) == WRITE &&
  833. bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
  834. bio->bi_sector < mddev->suspend_hi) {
  835. /* As the suspend_* range is controlled by
  836. * userspace, we want an interruptible
  837. * wait.
  838. */
  839. DEFINE_WAIT(w);
  840. for (;;) {
  841. flush_signals(current);
  842. prepare_to_wait(&conf->wait_barrier,
  843. &w, TASK_INTERRUPTIBLE);
  844. if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
  845. bio->bi_sector >= mddev->suspend_hi)
  846. break;
  847. schedule();
  848. }
  849. finish_wait(&conf->wait_barrier, &w);
  850. }
  851. wait_barrier(conf);
  852. bitmap = mddev->bitmap;
  853. /*
  854. * make_request() can abort the operation when READA is being
  855. * used and no empty request is available.
  856. *
  857. */
  858. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  859. r1_bio->master_bio = bio;
  860. r1_bio->sectors = bio->bi_size >> 9;
  861. r1_bio->state = 0;
  862. r1_bio->mddev = mddev;
  863. r1_bio->sector = bio->bi_sector;
  864. /* We might need to issue multiple reads to different
  865. * devices if there are bad blocks around, so we keep
  866. * track of the number of reads in bio->bi_phys_segments.
  867. * If this is 0, there is only one r1_bio and no locking
  868. * will be needed when requests complete. If it is
  869. * non-zero, then it is the number of not-completed requests.
  870. */
  871. bio->bi_phys_segments = 0;
  872. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  873. if (rw == READ) {
  874. /*
  875. * read balancing logic:
  876. */
  877. int rdisk;
  878. read_again:
  879. rdisk = read_balance(conf, r1_bio, &max_sectors);
  880. if (rdisk < 0) {
  881. /* couldn't find anywhere to read from */
  882. raid_end_bio_io(r1_bio);
  883. return;
  884. }
  885. mirror = conf->mirrors + rdisk;
  886. if (test_bit(WriteMostly, &mirror->rdev->flags) &&
  887. bitmap) {
  888. /* Reading from a write-mostly device must
  889. * take care not to over-take any writes
  890. * that are 'behind'
  891. */
  892. wait_event(bitmap->behind_wait,
  893. atomic_read(&bitmap->behind_writes) == 0);
  894. }
  895. r1_bio->read_disk = rdisk;
  896. read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  897. md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
  898. max_sectors);
  899. r1_bio->bios[rdisk] = read_bio;
  900. read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
  901. read_bio->bi_bdev = mirror->rdev->bdev;
  902. read_bio->bi_end_io = raid1_end_read_request;
  903. read_bio->bi_rw = READ | do_sync;
  904. read_bio->bi_private = r1_bio;
  905. if (max_sectors < r1_bio->sectors) {
  906. /* could not read all from this device, so we will
  907. * need another r1_bio.
  908. */
  909. sectors_handled = (r1_bio->sector + max_sectors
  910. - bio->bi_sector);
  911. r1_bio->sectors = max_sectors;
  912. spin_lock_irq(&conf->device_lock);
  913. if (bio->bi_phys_segments == 0)
  914. bio->bi_phys_segments = 2;
  915. else
  916. bio->bi_phys_segments++;
  917. spin_unlock_irq(&conf->device_lock);
  918. /* Cannot call generic_make_request directly
  919. * as that will be queued in __make_request
  920. * and subsequent mempool_alloc might block waiting
  921. * for it. So hand bio over to raid1d.
  922. */
  923. reschedule_retry(r1_bio);
  924. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  925. r1_bio->master_bio = bio;
  926. r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
  927. r1_bio->state = 0;
  928. r1_bio->mddev = mddev;
  929. r1_bio->sector = bio->bi_sector + sectors_handled;
  930. goto read_again;
  931. } else
  932. generic_make_request(read_bio);
  933. return;
  934. }
  935. /*
  936. * WRITE:
  937. */
  938. if (conf->pending_count >= max_queued_requests) {
  939. md_wakeup_thread(mddev->thread);
  940. wait_event(conf->wait_barrier,
  941. conf->pending_count < max_queued_requests);
  942. }
  943. /* first select target devices under rcu_lock and
  944. * inc refcount on their rdev. Record them by setting
  945. * bios[x] to bio
  946. * If there are known/acknowledged bad blocks on any device on
  947. * which we have seen a write error, we want to avoid writing those
  948. * blocks.
  949. * This potentially requires several writes to write around
  950. * the bad blocks. Each set of writes gets it's own r1bio
  951. * with a set of bios attached.
  952. */
  953. disks = conf->raid_disks * 2;
  954. retry_write:
  955. blocked_rdev = NULL;
  956. rcu_read_lock();
  957. max_sectors = r1_bio->sectors;
  958. for (i = 0; i < disks; i++) {
  959. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  960. if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
  961. atomic_inc(&rdev->nr_pending);
  962. blocked_rdev = rdev;
  963. break;
  964. }
  965. r1_bio->bios[i] = NULL;
  966. if (!rdev || test_bit(Faulty, &rdev->flags)
  967. || test_bit(Unmerged, &rdev->flags)) {
  968. if (i < conf->raid_disks)
  969. set_bit(R1BIO_Degraded, &r1_bio->state);
  970. continue;
  971. }
  972. atomic_inc(&rdev->nr_pending);
  973. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  974. sector_t first_bad;
  975. int bad_sectors;
  976. int is_bad;
  977. is_bad = is_badblock(rdev, r1_bio->sector,
  978. max_sectors,
  979. &first_bad, &bad_sectors);
  980. if (is_bad < 0) {
  981. /* mustn't write here until the bad block is
  982. * acknowledged*/
  983. set_bit(BlockedBadBlocks, &rdev->flags);
  984. blocked_rdev = rdev;
  985. break;
  986. }
  987. if (is_bad && first_bad <= r1_bio->sector) {
  988. /* Cannot write here at all */
  989. bad_sectors -= (r1_bio->sector - first_bad);
  990. if (bad_sectors < max_sectors)
  991. /* mustn't write more than bad_sectors
  992. * to other devices yet
  993. */
  994. max_sectors = bad_sectors;
  995. rdev_dec_pending(rdev, mddev);
  996. /* We don't set R1BIO_Degraded as that
  997. * only applies if the disk is
  998. * missing, so it might be re-added,
  999. * and we want to know to recover this
  1000. * chunk.
  1001. * In this case the device is here,
  1002. * and the fact that this chunk is not
  1003. * in-sync is recorded in the bad
  1004. * block log
  1005. */
  1006. continue;
  1007. }
  1008. if (is_bad) {
  1009. int good_sectors = first_bad - r1_bio->sector;
  1010. if (good_sectors < max_sectors)
  1011. max_sectors = good_sectors;
  1012. }
  1013. }
  1014. r1_bio->bios[i] = bio;
  1015. }
  1016. rcu_read_unlock();
  1017. if (unlikely(blocked_rdev)) {
  1018. /* Wait for this device to become unblocked */
  1019. int j;
  1020. for (j = 0; j < i; j++)
  1021. if (r1_bio->bios[j])
  1022. rdev_dec_pending(conf->mirrors[j].rdev, mddev);
  1023. r1_bio->state = 0;
  1024. allow_barrier(conf);
  1025. md_wait_for_blocked_rdev(blocked_rdev, mddev);
  1026. wait_barrier(conf);
  1027. goto retry_write;
  1028. }
  1029. if (max_sectors < r1_bio->sectors) {
  1030. /* We are splitting this write into multiple parts, so
  1031. * we need to prepare for allocating another r1_bio.
  1032. */
  1033. r1_bio->sectors = max_sectors;
  1034. spin_lock_irq(&conf->device_lock);
  1035. if (bio->bi_phys_segments == 0)
  1036. bio->bi_phys_segments = 2;
  1037. else
  1038. bio->bi_phys_segments++;
  1039. spin_unlock_irq(&conf->device_lock);
  1040. }
  1041. sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
  1042. atomic_set(&r1_bio->remaining, 1);
  1043. atomic_set(&r1_bio->behind_remaining, 0);
  1044. first_clone = 1;
  1045. for (i = 0; i < disks; i++) {
  1046. struct bio *mbio;
  1047. if (!r1_bio->bios[i])
  1048. continue;
  1049. mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  1050. md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
  1051. if (first_clone) {
  1052. /* do behind I/O ?
  1053. * Not if there are too many, or cannot
  1054. * allocate memory, or a reader on WriteMostly
  1055. * is waiting for behind writes to flush */
  1056. if (bitmap &&
  1057. (atomic_read(&bitmap->behind_writes)
  1058. < mddev->bitmap_info.max_write_behind) &&
  1059. !waitqueue_active(&bitmap->behind_wait))
  1060. alloc_behind_pages(mbio, r1_bio);
  1061. bitmap_startwrite(bitmap, r1_bio->sector,
  1062. r1_bio->sectors,
  1063. test_bit(R1BIO_BehindIO,
  1064. &r1_bio->state));
  1065. first_clone = 0;
  1066. }
  1067. if (r1_bio->behind_bvecs) {
  1068. struct bio_vec *bvec;
  1069. int j;
  1070. /* Yes, I really want the '__' version so that
  1071. * we clear any unused pointer in the io_vec, rather
  1072. * than leave them unchanged. This is important
  1073. * because when we come to free the pages, we won't
  1074. * know the original bi_idx, so we just free
  1075. * them all
  1076. */
  1077. __bio_for_each_segment(bvec, mbio, j, 0)
  1078. bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
  1079. if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
  1080. atomic_inc(&r1_bio->behind_remaining);
  1081. }
  1082. r1_bio->bios[i] = mbio;
  1083. mbio->bi_sector = (r1_bio->sector +
  1084. conf->mirrors[i].rdev->data_offset);
  1085. mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  1086. mbio->bi_end_io = raid1_end_write_request;
  1087. mbio->bi_rw = WRITE | do_flush_fua | do_sync;
  1088. mbio->bi_private = r1_bio;
  1089. atomic_inc(&r1_bio->remaining);
  1090. cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
  1091. if (cb)
  1092. plug = container_of(cb, struct raid1_plug_cb, cb);
  1093. else
  1094. plug = NULL;
  1095. spin_lock_irqsave(&conf->device_lock, flags);
  1096. if (plug) {
  1097. bio_list_add(&plug->pending, mbio);
  1098. plug->pending_cnt++;
  1099. } else {
  1100. bio_list_add(&conf->pending_bio_list, mbio);
  1101. conf->pending_count++;
  1102. }
  1103. spin_unlock_irqrestore(&conf->device_lock, flags);
  1104. if (!plug)
  1105. md_wakeup_thread(mddev->thread);
  1106. }
  1107. /* Mustn't call r1_bio_write_done before this next test,
  1108. * as it could result in the bio being freed.
  1109. */
  1110. if (sectors_handled < (bio->bi_size >> 9)) {
  1111. r1_bio_write_done(r1_bio);
  1112. /* We need another r1_bio. It has already been counted
  1113. * in bio->bi_phys_segments
  1114. */
  1115. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  1116. r1_bio->master_bio = bio;
  1117. r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
  1118. r1_bio->state = 0;
  1119. r1_bio->mddev = mddev;
  1120. r1_bio->sector = bio->bi_sector + sectors_handled;
  1121. goto retry_write;
  1122. }
  1123. r1_bio_write_done(r1_bio);
  1124. /* In case raid1d snuck in to freeze_array */
  1125. wake_up(&conf->wait_barrier);
  1126. }
  1127. static void status(struct seq_file *seq, struct mddev *mddev)
  1128. {
  1129. struct r1conf *conf = mddev->private;
  1130. int i;
  1131. seq_printf(seq, " [%d/%d] [", conf->raid_disks,
  1132. conf->raid_disks - mddev->degraded);
  1133. rcu_read_lock();
  1134. for (i = 0; i < conf->raid_disks; i++) {
  1135. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  1136. seq_printf(seq, "%s",
  1137. rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
  1138. }
  1139. rcu_read_unlock();
  1140. seq_printf(seq, "]");
  1141. }
  1142. static void error(struct mddev *mddev, struct md_rdev *rdev)
  1143. {
  1144. char b[BDEVNAME_SIZE];
  1145. struct r1conf *conf = mddev->private;
  1146. /*
  1147. * If it is not operational, then we have already marked it as dead
  1148. * else if it is the last working disks, ignore the error, let the
  1149. * next level up know.
  1150. * else mark the drive as failed
  1151. */
  1152. if (test_bit(In_sync, &rdev->flags)
  1153. && (conf->raid_disks - mddev->degraded) == 1) {
  1154. /*
  1155. * Don't fail the drive, act as though we were just a
  1156. * normal single drive.
  1157. * However don't try a recovery from this drive as
  1158. * it is very likely to fail.
  1159. */
  1160. conf->recovery_disabled = mddev->recovery_disabled;
  1161. return;
  1162. }
  1163. set_bit(Blocked, &rdev->flags);
  1164. if (test_and_clear_bit(In_sync, &rdev->flags)) {
  1165. unsigned long flags;
  1166. spin_lock_irqsave(&conf->device_lock, flags);
  1167. mddev->degraded++;
  1168. set_bit(Faulty, &rdev->flags);
  1169. spin_unlock_irqrestore(&conf->device_lock, flags);
  1170. /*
  1171. * if recovery is running, make sure it aborts.
  1172. */
  1173. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1174. } else
  1175. set_bit(Faulty, &rdev->flags);
  1176. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  1177. printk(KERN_ALERT
  1178. "md/raid1:%s: Disk failure on %s, disabling device.\n"
  1179. "md/raid1:%s: Operation continuing on %d devices.\n",
  1180. mdname(mddev), bdevname(rdev->bdev, b),
  1181. mdname(mddev), conf->raid_disks - mddev->degraded);
  1182. }
  1183. static void print_conf(struct r1conf *conf)
  1184. {
  1185. int i;
  1186. printk(KERN_DEBUG "RAID1 conf printout:\n");
  1187. if (!conf) {
  1188. printk(KERN_DEBUG "(!conf)\n");
  1189. return;
  1190. }
  1191. printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
  1192. conf->raid_disks);
  1193. rcu_read_lock();
  1194. for (i = 0; i < conf->raid_disks; i++) {
  1195. char b[BDEVNAME_SIZE];
  1196. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  1197. if (rdev)
  1198. printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
  1199. i, !test_bit(In_sync, &rdev->flags),
  1200. !test_bit(Faulty, &rdev->flags),
  1201. bdevname(rdev->bdev,b));
  1202. }
  1203. rcu_read_unlock();
  1204. }
  1205. static void close_sync(struct r1conf *conf)
  1206. {
  1207. wait_barrier(conf);
  1208. allow_barrier(conf);
  1209. mempool_destroy(conf->r1buf_pool);
  1210. conf->r1buf_pool = NULL;
  1211. }
  1212. static int raid1_spare_active(struct mddev *mddev)
  1213. {
  1214. int i;
  1215. struct r1conf *conf = mddev->private;
  1216. int count = 0;
  1217. unsigned long flags;
  1218. /*
  1219. * Find all failed disks within the RAID1 configuration
  1220. * and mark them readable.
  1221. * Called under mddev lock, so rcu protection not needed.
  1222. */
  1223. for (i = 0; i < conf->raid_disks; i++) {
  1224. struct md_rdev *rdev = conf->mirrors[i].rdev;
  1225. struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
  1226. if (repl
  1227. && repl->recovery_offset == MaxSector
  1228. && !test_bit(Faulty, &repl->flags)
  1229. && !test_and_set_bit(In_sync, &repl->flags)) {
  1230. /* replacement has just become active */
  1231. if (!rdev ||
  1232. !test_and_clear_bit(In_sync, &rdev->flags))
  1233. count++;
  1234. if (rdev) {
  1235. /* Replaced device not technically
  1236. * faulty, but we need to be sure
  1237. * it gets removed and never re-added
  1238. */
  1239. set_bit(Faulty, &rdev->flags);
  1240. sysfs_notify_dirent_safe(
  1241. rdev->sysfs_state);
  1242. }
  1243. }
  1244. if (rdev
  1245. && !test_bit(Faulty, &rdev->flags)
  1246. && !test_and_set_bit(In_sync, &rdev->flags)) {
  1247. count++;
  1248. sysfs_notify_dirent_safe(rdev->sysfs_state);
  1249. }
  1250. }
  1251. spin_lock_irqsave(&conf->device_lock, flags);
  1252. mddev->degraded -= count;
  1253. spin_unlock_irqrestore(&conf->device_lock, flags);
  1254. print_conf(conf);
  1255. return count;
  1256. }
  1257. static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
  1258. {
  1259. struct r1conf *conf = mddev->private;
  1260. int err = -EEXIST;
  1261. int mirror = 0;
  1262. struct mirror_info *p;
  1263. int first = 0;
  1264. int last = conf->raid_disks - 1;
  1265. struct request_queue *q = bdev_get_queue(rdev->bdev);
  1266. if (mddev->recovery_disabled == conf->recovery_disabled)
  1267. return -EBUSY;
  1268. if (rdev->raid_disk >= 0)
  1269. first = last = rdev->raid_disk;
  1270. if (q->merge_bvec_fn) {
  1271. set_bit(Unmerged, &rdev->flags);
  1272. mddev->merge_check_needed = 1;
  1273. }
  1274. for (mirror = first; mirror <= last; mirror++) {
  1275. p = conf->mirrors+mirror;
  1276. if (!p->rdev) {
  1277. disk_stack_limits(mddev->gendisk, rdev->bdev,
  1278. rdev->data_offset << 9);
  1279. p->head_position = 0;
  1280. rdev->raid_disk = mirror;
  1281. err = 0;
  1282. /* As all devices are equivalent, we don't need a full recovery
  1283. * if this was recently any drive of the array
  1284. */
  1285. if (rdev->saved_raid_disk < 0)
  1286. conf->fullsync = 1;
  1287. rcu_assign_pointer(p->rdev, rdev);
  1288. break;
  1289. }
  1290. if (test_bit(WantReplacement, &p->rdev->flags) &&
  1291. p[conf->raid_disks].rdev == NULL) {
  1292. /* Add this device as a replacement */
  1293. clear_bit(In_sync, &rdev->flags);
  1294. set_bit(Replacement, &rdev->flags);
  1295. rdev->raid_disk = mirror;
  1296. err = 0;
  1297. conf->fullsync = 1;
  1298. rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
  1299. break;
  1300. }
  1301. }
  1302. if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
  1303. /* Some requests might not have seen this new
  1304. * merge_bvec_fn. We must wait for them to complete
  1305. * before merging the device fully.
  1306. * First we make sure any code which has tested
  1307. * our function has submitted the request, then
  1308. * we wait for all outstanding requests to complete.
  1309. */
  1310. synchronize_sched();
  1311. raise_barrier(conf);
  1312. lower_barrier(conf);
  1313. clear_bit(Unmerged, &rdev->flags);
  1314. }
  1315. md_integrity_add_rdev(rdev, mddev);
  1316. print_conf(conf);
  1317. return err;
  1318. }
  1319. static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
  1320. {
  1321. struct r1conf *conf = mddev->private;
  1322. int err = 0;
  1323. int number = rdev->raid_disk;
  1324. struct mirror_info *p = conf->mirrors+ number;
  1325. if (rdev != p->rdev)
  1326. p = conf->mirrors + conf->raid_disks + number;
  1327. print_conf(conf);
  1328. if (rdev == p->rdev) {
  1329. if (test_bit(In_sync, &rdev->flags) ||
  1330. atomic_read(&rdev->nr_pending)) {
  1331. err = -EBUSY;
  1332. goto abort;
  1333. }
  1334. /* Only remove non-faulty devices if recovery
  1335. * is not possible.
  1336. */
  1337. if (!test_bit(Faulty, &rdev->flags) &&
  1338. mddev->recovery_disabled != conf->recovery_disabled &&
  1339. mddev->degraded < conf->raid_disks) {
  1340. err = -EBUSY;
  1341. goto abort;
  1342. }
  1343. p->rdev = NULL;
  1344. synchronize_rcu();
  1345. if (atomic_read(&rdev->nr_pending)) {
  1346. /* lost the race, try later */
  1347. err = -EBUSY;
  1348. p->rdev = rdev;
  1349. goto abort;
  1350. } else if (conf->mirrors[conf->raid_disks + number].rdev) {
  1351. /* We just removed a device that is being replaced.
  1352. * Move down the replacement. We drain all IO before
  1353. * doing this to avoid confusion.
  1354. */
  1355. struct md_rdev *repl =
  1356. conf->mirrors[conf->raid_disks + number].rdev;
  1357. raise_barrier(conf);
  1358. clear_bit(Replacement, &repl->flags);
  1359. p->rdev = repl;
  1360. conf->mirrors[conf->raid_disks + number].rdev = NULL;
  1361. lower_barrier(conf);
  1362. clear_bit(WantReplacement, &rdev->flags);
  1363. } else
  1364. clear_bit(WantReplacement, &rdev->flags);
  1365. err = md_integrity_register(mddev);
  1366. }
  1367. abort:
  1368. print_conf(conf);
  1369. return err;
  1370. }
  1371. static void end_sync_read(struct bio *bio, int error)
  1372. {
  1373. struct r1bio *r1_bio = bio->bi_private;
  1374. update_head_pos(r1_bio->read_disk, r1_bio);
  1375. /*
  1376. * we have read a block, now it needs to be re-written,
  1377. * or re-read if the read failed.
  1378. * We don't do much here, just schedule handling by raid1d
  1379. */
  1380. if (test_bit(BIO_UPTODATE, &bio->bi_flags))
  1381. set_bit(R1BIO_Uptodate, &r1_bio->state);
  1382. if (atomic_dec_and_test(&r1_bio->remaining))
  1383. reschedule_retry(r1_bio);
  1384. }
  1385. static void end_sync_write(struct bio *bio, int error)
  1386. {
  1387. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  1388. struct r1bio *r1_bio = bio->bi_private;
  1389. struct mddev *mddev = r1_bio->mddev;
  1390. struct r1conf *conf = mddev->private;
  1391. int mirror=0;
  1392. sector_t first_bad;
  1393. int bad_sectors;
  1394. mirror = find_bio_disk(r1_bio, bio);
  1395. if (!uptodate) {
  1396. sector_t sync_blocks = 0;
  1397. sector_t s = r1_bio->sector;
  1398. long sectors_to_go = r1_bio->sectors;
  1399. /* make sure these bits doesn't get cleared. */
  1400. do {
  1401. bitmap_end_sync(mddev->bitmap, s,
  1402. &sync_blocks, 1);
  1403. s += sync_blocks;
  1404. sectors_to_go -= sync_blocks;
  1405. } while (sectors_to_go > 0);
  1406. set_bit(WriteErrorSeen,
  1407. &conf->mirrors[mirror].rdev->flags);
  1408. if (!test_and_set_bit(WantReplacement,
  1409. &conf->mirrors[mirror].rdev->flags))
  1410. set_bit(MD_RECOVERY_NEEDED, &
  1411. mddev->recovery);
  1412. set_bit(R1BIO_WriteError, &r1_bio->state);
  1413. } else if (is_badblock(conf->mirrors[mirror].rdev,
  1414. r1_bio->sector,
  1415. r1_bio->sectors,
  1416. &first_bad, &bad_sectors) &&
  1417. !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
  1418. r1_bio->sector,
  1419. r1_bio->sectors,
  1420. &first_bad, &bad_sectors)
  1421. )
  1422. set_bit(R1BIO_MadeGood, &r1_bio->state);
  1423. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1424. int s = r1_bio->sectors;
  1425. if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
  1426. test_bit(R1BIO_WriteError, &r1_bio->state))
  1427. reschedule_retry(r1_bio);
  1428. else {
  1429. put_buf(r1_bio);
  1430. md_done_sync(mddev, s, uptodate);
  1431. }
  1432. }
  1433. }
  1434. static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
  1435. int sectors, struct page *page, int rw)
  1436. {
  1437. if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
  1438. /* success */
  1439. return 1;
  1440. if (rw == WRITE) {
  1441. set_bit(WriteErrorSeen, &rdev->flags);
  1442. if (!test_and_set_bit(WantReplacement,
  1443. &rdev->flags))
  1444. set_bit(MD_RECOVERY_NEEDED, &
  1445. rdev->mddev->recovery);
  1446. }
  1447. /* need to record an error - either for the block or the device */
  1448. if (!rdev_set_badblocks(rdev, sector, sectors, 0))
  1449. md_error(rdev->mddev, rdev);
  1450. return 0;
  1451. }
  1452. static int fix_sync_read_error(struct r1bio *r1_bio)
  1453. {
  1454. /* Try some synchronous reads of other devices to get
  1455. * good data, much like with normal read errors. Only
  1456. * read into the pages we already have so we don't
  1457. * need to re-issue the read request.
  1458. * We don't need to freeze the array, because being in an
  1459. * active sync request, there is no normal IO, and
  1460. * no overlapping syncs.
  1461. * We don't need to check is_badblock() again as we
  1462. * made sure that anything with a bad block in range
  1463. * will have bi_end_io clear.
  1464. */
  1465. struct mddev *mddev = r1_bio->mddev;
  1466. struct r1conf *conf = mddev->private;
  1467. struct bio *bio = r1_bio->bios[r1_bio->read_disk];
  1468. sector_t sect = r1_bio->sector;
  1469. int sectors = r1_bio->sectors;
  1470. int idx = 0;
  1471. while(sectors) {
  1472. int s = sectors;
  1473. int d = r1_bio->read_disk;
  1474. int success = 0;
  1475. struct md_rdev *rdev;
  1476. int start;
  1477. if (s > (PAGE_SIZE>>9))
  1478. s = PAGE_SIZE >> 9;
  1479. do {
  1480. if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
  1481. /* No rcu protection needed here devices
  1482. * can only be removed when no resync is
  1483. * active, and resync is currently active
  1484. */
  1485. rdev = conf->mirrors[d].rdev;
  1486. if (sync_page_io(rdev, sect, s<<9,
  1487. bio->bi_io_vec[idx].bv_page,
  1488. READ, false)) {
  1489. success = 1;
  1490. break;
  1491. }
  1492. }
  1493. d++;
  1494. if (d == conf->raid_disks * 2)
  1495. d = 0;
  1496. } while (!success && d != r1_bio->read_disk);
  1497. if (!success) {
  1498. char b[BDEVNAME_SIZE];
  1499. int abort = 0;
  1500. /* Cannot read from anywhere, this block is lost.
  1501. * Record a bad block on each device. If that doesn't
  1502. * work just disable and interrupt the recovery.
  1503. * Don't fail devices as that won't really help.
  1504. */
  1505. printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
  1506. " for block %llu\n",
  1507. mdname(mddev),
  1508. bdevname(bio->bi_bdev, b),
  1509. (unsigned long long)r1_bio->sector);
  1510. for (d = 0; d < conf->raid_disks * 2; d++) {
  1511. rdev = conf->mirrors[d].rdev;
  1512. if (!rdev || test_bit(Faulty, &rdev->flags))
  1513. continue;
  1514. if (!rdev_set_badblocks(rdev, sect, s, 0))
  1515. abort = 1;
  1516. }
  1517. if (abort) {
  1518. conf->recovery_disabled =
  1519. mddev->recovery_disabled;
  1520. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1521. md_done_sync(mddev, r1_bio->sectors, 0);
  1522. put_buf(r1_bio);
  1523. return 0;
  1524. }
  1525. /* Try next page */
  1526. sectors -= s;
  1527. sect += s;
  1528. idx++;
  1529. continue;
  1530. }
  1531. start = d;
  1532. /* write it back and re-read */
  1533. while (d != r1_bio->read_disk) {
  1534. if (d == 0)
  1535. d = conf->raid_disks * 2;
  1536. d--;
  1537. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1538. continue;
  1539. rdev = conf->mirrors[d].rdev;
  1540. if (r1_sync_page_io(rdev, sect, s,
  1541. bio->bi_io_vec[idx].bv_page,
  1542. WRITE) == 0) {
  1543. r1_bio->bios[d]->bi_end_io = NULL;
  1544. rdev_dec_pending(rdev, mddev);
  1545. }
  1546. }
  1547. d = start;
  1548. while (d != r1_bio->read_disk) {
  1549. if (d == 0)
  1550. d = conf->raid_disks * 2;
  1551. d--;
  1552. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1553. continue;
  1554. rdev = conf->mirrors[d].rdev;
  1555. if (r1_sync_page_io(rdev, sect, s,
  1556. bio->bi_io_vec[idx].bv_page,
  1557. READ) != 0)
  1558. atomic_add(s, &rdev->corrected_errors);
  1559. }
  1560. sectors -= s;
  1561. sect += s;
  1562. idx ++;
  1563. }
  1564. set_bit(R1BIO_Uptodate, &r1_bio->state);
  1565. set_bit(BIO_UPTODATE, &bio->bi_flags);
  1566. return 1;
  1567. }
  1568. static int process_checks(struct r1bio *r1_bio)
  1569. {
  1570. /* We have read all readable devices. If we haven't
  1571. * got the block, then there is no hope left.
  1572. * If we have, then we want to do a comparison
  1573. * and skip the write if everything is the same.
  1574. * If any blocks failed to read, then we need to
  1575. * attempt an over-write
  1576. */
  1577. struct mddev *mddev = r1_bio->mddev;
  1578. struct r1conf *conf = mddev->private;
  1579. int primary;
  1580. int i;
  1581. int vcnt;
  1582. for (primary = 0; primary < conf->raid_disks * 2; primary++)
  1583. if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
  1584. test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
  1585. r1_bio->bios[primary]->bi_end_io = NULL;
  1586. rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
  1587. break;
  1588. }
  1589. r1_bio->read_disk = primary;
  1590. vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
  1591. for (i = 0; i < conf->raid_disks * 2; i++) {
  1592. int j;
  1593. struct bio *pbio = r1_bio->bios[primary];
  1594. struct bio *sbio = r1_bio->bios[i];
  1595. int size;
  1596. if (r1_bio->bios[i]->bi_end_io != end_sync_read)
  1597. continue;
  1598. if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
  1599. for (j = vcnt; j-- ; ) {
  1600. struct page *p, *s;
  1601. p = pbio->bi_io_vec[j].bv_page;
  1602. s = sbio->bi_io_vec[j].bv_page;
  1603. if (memcmp(page_address(p),
  1604. page_address(s),
  1605. sbio->bi_io_vec[j].bv_len))
  1606. break;
  1607. }
  1608. } else
  1609. j = 0;
  1610. if (j >= 0)
  1611. mddev->resync_mismatches += r1_bio->sectors;
  1612. if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
  1613. && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
  1614. /* No need to write to this device. */
  1615. sbio->bi_end_io = NULL;
  1616. rdev_dec_pending(conf->mirrors[i].rdev, mddev);
  1617. continue;
  1618. }
  1619. /* fixup the bio for reuse */
  1620. sbio->bi_vcnt = vcnt;
  1621. sbio->bi_size = r1_bio->sectors << 9;
  1622. sbio->bi_idx = 0;
  1623. sbio->bi_phys_segments = 0;
  1624. sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
  1625. sbio->bi_flags |= 1 << BIO_UPTODATE;
  1626. sbio->bi_next = NULL;
  1627. sbio->bi_sector = r1_bio->sector +
  1628. conf->mirrors[i].rdev->data_offset;
  1629. sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  1630. size = sbio->bi_size;
  1631. for (j = 0; j < vcnt ; j++) {
  1632. struct bio_vec *bi;
  1633. bi = &sbio->bi_io_vec[j];
  1634. bi->bv_offset = 0;
  1635. if (size > PAGE_SIZE)
  1636. bi->bv_len = PAGE_SIZE;
  1637. else
  1638. bi->bv_len = size;
  1639. size -= PAGE_SIZE;
  1640. memcpy(page_address(bi->bv_page),
  1641. page_address(pbio->bi_io_vec[j].bv_page),
  1642. PAGE_SIZE);
  1643. }
  1644. }
  1645. return 0;
  1646. }
  1647. static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
  1648. {
  1649. struct r1conf *conf = mddev->private;
  1650. int i;
  1651. int disks = conf->raid_disks * 2;
  1652. struct bio *bio, *wbio;
  1653. bio = r1_bio->bios[r1_bio->read_disk];
  1654. if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
  1655. /* ouch - failed to read all of that. */
  1656. if (!fix_sync_read_error(r1_bio))
  1657. return;
  1658. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  1659. if (process_checks(r1_bio) < 0)
  1660. return;
  1661. /*
  1662. * schedule writes
  1663. */
  1664. atomic_set(&r1_bio->remaining, 1);
  1665. for (i = 0; i < disks ; i++) {
  1666. wbio = r1_bio->bios[i];
  1667. if (wbio->bi_end_io == NULL ||
  1668. (wbio->bi_end_io == end_sync_read &&
  1669. (i == r1_bio->read_disk ||
  1670. !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
  1671. continue;
  1672. wbio->bi_rw = WRITE;
  1673. wbio->bi_end_io = end_sync_write;
  1674. atomic_inc(&r1_bio->remaining);
  1675. md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
  1676. generic_make_request(wbio);
  1677. }
  1678. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1679. /* if we're here, all write(s) have completed, so clean up */
  1680. int s = r1_bio->sectors;
  1681. if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
  1682. test_bit(R1BIO_WriteError, &r1_bio->state))
  1683. reschedule_retry(r1_bio);
  1684. else {
  1685. put_buf(r1_bio);
  1686. md_done_sync(mddev, s, 1);
  1687. }
  1688. }
  1689. }
  1690. /*
  1691. * This is a kernel thread which:
  1692. *
  1693. * 1. Retries failed read operations on working mirrors.
  1694. * 2. Updates the raid superblock when problems encounter.
  1695. * 3. Performs writes following reads for array synchronising.
  1696. */
  1697. static void fix_read_error(struct r1conf *conf, int read_disk,
  1698. sector_t sect, int sectors)
  1699. {
  1700. struct mddev *mddev = conf->mddev;
  1701. while(sectors) {
  1702. int s = sectors;
  1703. int d = read_disk;
  1704. int success = 0;
  1705. int start;
  1706. struct md_rdev *rdev;
  1707. if (s > (PAGE_SIZE>>9))
  1708. s = PAGE_SIZE >> 9;
  1709. do {
  1710. /* Note: no rcu protection needed here
  1711. * as this is synchronous in the raid1d thread
  1712. * which is the thread that might remove
  1713. * a device. If raid1d ever becomes multi-threaded....
  1714. */
  1715. sector_t first_bad;
  1716. int bad_sectors;
  1717. rdev = conf->mirrors[d].rdev;
  1718. if (rdev &&
  1719. (test_bit(In_sync, &rdev->flags) ||
  1720. (!test_bit(Faulty, &rdev->flags) &&
  1721. rdev->recovery_offset >= sect + s)) &&
  1722. is_badblock(rdev, sect, s,
  1723. &first_bad, &bad_sectors) == 0 &&
  1724. sync_page_io(rdev, sect, s<<9,
  1725. conf->tmppage, READ, false))
  1726. success = 1;
  1727. else {
  1728. d++;
  1729. if (d == conf->raid_disks * 2)
  1730. d = 0;
  1731. }
  1732. } while (!success && d != read_disk);
  1733. if (!success) {
  1734. /* Cannot read from anywhere - mark it bad */
  1735. struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
  1736. if (!rdev_set_badblocks(rdev, sect, s, 0))
  1737. md_error(mddev, rdev);
  1738. break;
  1739. }
  1740. /* write it back and re-read */
  1741. start = d;
  1742. while (d != read_disk) {
  1743. if (d==0)
  1744. d = conf->raid_disks * 2;
  1745. d--;
  1746. rdev = conf->mirrors[d].rdev;
  1747. if (rdev &&
  1748. test_bit(In_sync, &rdev->flags))
  1749. r1_sync_page_io(rdev, sect, s,
  1750. conf->tmppage, WRITE);
  1751. }
  1752. d = start;
  1753. while (d != read_disk) {
  1754. char b[BDEVNAME_SIZE];
  1755. if (d==0)
  1756. d = conf->raid_disks * 2;
  1757. d--;
  1758. rdev = conf->mirrors[d].rdev;
  1759. if (rdev &&
  1760. test_bit(In_sync, &rdev->flags)) {
  1761. if (r1_sync_page_io(rdev, sect, s,
  1762. conf->tmppage, READ)) {
  1763. atomic_add(s, &rdev->corrected_errors);
  1764. printk(KERN_INFO
  1765. "md/raid1:%s: read error corrected "
  1766. "(%d sectors at %llu on %s)\n",
  1767. mdname(mddev), s,
  1768. (unsigned long long)(sect +
  1769. rdev->data_offset),
  1770. bdevname(rdev->bdev, b));
  1771. }
  1772. }
  1773. }
  1774. sectors -= s;
  1775. sect += s;
  1776. }
  1777. }
  1778. static void bi_complete(struct bio *bio, int error)
  1779. {
  1780. complete((struct completion *)bio->bi_private);
  1781. }
  1782. static int submit_bio_wait(int rw, struct bio *bio)
  1783. {
  1784. struct completion event;
  1785. rw |= REQ_SYNC;
  1786. init_completion(&event);
  1787. bio->bi_private = &event;
  1788. bio->bi_end_io = bi_complete;
  1789. submit_bio(rw, bio);
  1790. wait_for_completion(&event);
  1791. return test_bit(BIO_UPTODATE, &bio->bi_flags);
  1792. }
  1793. static int narrow_write_error(struct r1bio *r1_bio, int i)
  1794. {
  1795. struct mddev *mddev = r1_bio->mddev;
  1796. struct r1conf *conf = mddev->private;
  1797. struct md_rdev *rdev = conf->mirrors[i].rdev;
  1798. int vcnt, idx;
  1799. struct bio_vec *vec;
  1800. /* bio has the data to be written to device 'i' where
  1801. * we just recently had a write error.
  1802. * We repeatedly clone the bio and trim down to one block,
  1803. * then try the write. Where the write fails we record
  1804. * a bad block.
  1805. * It is conceivable that the bio doesn't exactly align with
  1806. * blocks. We must handle this somehow.
  1807. *
  1808. * We currently own a reference on the rdev.
  1809. */
  1810. int block_sectors;
  1811. sector_t sector;
  1812. int sectors;
  1813. int sect_to_write = r1_bio->sectors;
  1814. int ok = 1;
  1815. if (rdev->badblocks.shift < 0)
  1816. return 0;
  1817. block_sectors = 1 << rdev->badblocks.shift;
  1818. sector = r1_bio->sector;
  1819. sectors = ((sector + block_sectors)
  1820. & ~(sector_t)(block_sectors - 1))
  1821. - sector;
  1822. if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
  1823. vcnt = r1_bio->behind_page_count;
  1824. vec = r1_bio->behind_bvecs;
  1825. idx = 0;
  1826. while (vec[idx].bv_page == NULL)
  1827. idx++;
  1828. } else {
  1829. vcnt = r1_bio->master_bio->bi_vcnt;
  1830. vec = r1_bio->master_bio->bi_io_vec;
  1831. idx = r1_bio->master_bio->bi_idx;
  1832. }
  1833. while (sect_to_write) {
  1834. struct bio *wbio;
  1835. if (sectors > sect_to_write)
  1836. sectors = sect_to_write;
  1837. /* Write at 'sector' for 'sectors'*/
  1838. wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
  1839. memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
  1840. wbio->bi_sector = r1_bio->sector;
  1841. wbio->bi_rw = WRITE;
  1842. wbio->bi_vcnt = vcnt;
  1843. wbio->bi_size = r1_bio->sectors << 9;
  1844. wbio->bi_idx = idx;
  1845. md_trim_bio(wbio, sector - r1_bio->sector, sectors);
  1846. wbio->bi_sector += rdev->data_offset;
  1847. wbio->bi_bdev = rdev->bdev;
  1848. if (submit_bio_wait(WRITE, wbio) == 0)
  1849. /* failure! */
  1850. ok = rdev_set_badblocks(rdev, sector,
  1851. sectors, 0)
  1852. && ok;
  1853. bio_put(wbio);
  1854. sect_to_write -= sectors;
  1855. sector += sectors;
  1856. sectors = block_sectors;
  1857. }
  1858. return ok;
  1859. }
  1860. static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
  1861. {
  1862. int m;
  1863. int s = r1_bio->sectors;
  1864. for (m = 0; m < conf->raid_disks * 2 ; m++) {
  1865. struct md_rdev *rdev = conf->mirrors[m].rdev;
  1866. struct bio *bio = r1_bio->bios[m];
  1867. if (bio->bi_end_io == NULL)
  1868. continue;
  1869. if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  1870. test_bit(R1BIO_MadeGood, &r1_bio->state)) {
  1871. rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
  1872. }
  1873. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  1874. test_bit(R1BIO_WriteError, &r1_bio->state)) {
  1875. if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
  1876. md_error(conf->mddev, rdev);
  1877. }
  1878. }
  1879. put_buf(r1_bio);
  1880. md_done_sync(conf->mddev, s, 1);
  1881. }
  1882. static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
  1883. {
  1884. int m;
  1885. for (m = 0; m < conf->raid_disks * 2 ; m++)
  1886. if (r1_bio->bios[m] == IO_MADE_GOOD) {
  1887. struct md_rdev *rdev = conf->mirrors[m].rdev;
  1888. rdev_clear_badblocks(rdev,
  1889. r1_bio->sector,
  1890. r1_bio->sectors, 0);
  1891. rdev_dec_pending(rdev, conf->mddev);
  1892. } else if (r1_bio->bios[m] != NULL) {
  1893. /* This drive got a write error. We need to
  1894. * narrow down and record precise write
  1895. * errors.
  1896. */
  1897. if (!narrow_write_error(r1_bio, m)) {
  1898. md_error(conf->mddev,
  1899. conf->mirrors[m].rdev);
  1900. /* an I/O failed, we can't clear the bitmap */
  1901. set_bit(R1BIO_Degraded, &r1_bio->state);
  1902. }
  1903. rdev_dec_pending(conf->mirrors[m].rdev,
  1904. conf->mddev);
  1905. }
  1906. if (test_bit(R1BIO_WriteError, &r1_bio->state))
  1907. close_write(r1_bio);
  1908. raid_end_bio_io(r1_bio);
  1909. }
  1910. static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
  1911. {
  1912. int disk;
  1913. int max_sectors;
  1914. struct mddev *mddev = conf->mddev;
  1915. struct bio *bio;
  1916. char b[BDEVNAME_SIZE];
  1917. struct md_rdev *rdev;
  1918. clear_bit(R1BIO_ReadError, &r1_bio->state);
  1919. /* we got a read error. Maybe the drive is bad. Maybe just
  1920. * the block and we can fix it.
  1921. * We freeze all other IO, and try reading the block from
  1922. * other devices. When we find one, we re-write
  1923. * and check it that fixes the read error.
  1924. * This is all done synchronously while the array is
  1925. * frozen
  1926. */
  1927. if (mddev->ro == 0) {
  1928. freeze_array(conf);
  1929. fix_read_error(conf, r1_bio->read_disk,
  1930. r1_bio->sector, r1_bio->sectors);
  1931. unfreeze_array(conf);
  1932. } else
  1933. md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
  1934. bio = r1_bio->bios[r1_bio->read_disk];
  1935. bdevname(bio->bi_bdev, b);
  1936. read_more:
  1937. disk = read_balance(conf, r1_bio, &max_sectors);
  1938. if (disk == -1) {
  1939. printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
  1940. " read error for block %llu\n",
  1941. mdname(mddev), b, (unsigned long long)r1_bio->sector);
  1942. raid_end_bio_io(r1_bio);
  1943. } else {
  1944. const unsigned long do_sync
  1945. = r1_bio->master_bio->bi_rw & REQ_SYNC;
  1946. if (bio) {
  1947. r1_bio->bios[r1_bio->read_disk] =
  1948. mddev->ro ? IO_BLOCKED : NULL;
  1949. bio_put(bio);
  1950. }
  1951. r1_bio->read_disk = disk;
  1952. bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
  1953. md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
  1954. r1_bio->bios[r1_bio->read_disk] = bio;
  1955. rdev = conf->mirrors[disk].rdev;
  1956. printk_ratelimited(KERN_ERR
  1957. "md/raid1:%s: redirecting sector %llu"
  1958. " to other mirror: %s\n",
  1959. mdname(mddev),
  1960. (unsigned long long)r1_bio->sector,
  1961. bdevname(rdev->bdev, b));
  1962. bio->bi_sector = r1_bio->sector + rdev->data_offset;
  1963. bio->bi_bdev = rdev->bdev;
  1964. bio->bi_end_io = raid1_end_read_request;
  1965. bio->bi_rw = READ | do_sync;
  1966. bio->bi_private = r1_bio;
  1967. if (max_sectors < r1_bio->sectors) {
  1968. /* Drat - have to split this up more */
  1969. struct bio *mbio = r1_bio->master_bio;
  1970. int sectors_handled = (r1_bio->sector + max_sectors
  1971. - mbio->bi_sector);
  1972. r1_bio->sectors = max_sectors;
  1973. spin_lock_irq(&conf->device_lock);
  1974. if (mbio->bi_phys_segments == 0)
  1975. mbio->bi_phys_segments = 2;
  1976. else
  1977. mbio->bi_phys_segments++;
  1978. spin_unlock_irq(&conf->device_lock);
  1979. generic_make_request(bio);
  1980. bio = NULL;
  1981. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  1982. r1_bio->master_bio = mbio;
  1983. r1_bio->sectors = (mbio->bi_size >> 9)
  1984. - sectors_handled;
  1985. r1_bio->state = 0;
  1986. set_bit(R1BIO_ReadError, &r1_bio->state);
  1987. r1_bio->mddev = mddev;
  1988. r1_bio->sector = mbio->bi_sector + sectors_handled;
  1989. goto read_more;
  1990. } else
  1991. generic_make_request(bio);
  1992. }
  1993. }
  1994. static void raid1d(struct mddev *mddev)
  1995. {
  1996. struct r1bio *r1_bio;
  1997. unsigned long flags;
  1998. struct r1conf *conf = mddev->private;
  1999. struct list_head *head = &conf->retry_list;
  2000. struct blk_plug plug;
  2001. md_check_recovery(mddev);
  2002. blk_start_plug(&plug);
  2003. for (;;) {
  2004. flush_pending_writes(conf);
  2005. spin_lock_irqsave(&conf->device_lock, flags);
  2006. if (list_empty(head)) {
  2007. spin_unlock_irqrestore(&conf->device_lock, flags);
  2008. break;
  2009. }
  2010. r1_bio = list_entry(head->prev, struct r1bio, retry_list);
  2011. list_del(head->prev);
  2012. conf->nr_queued--;
  2013. spin_unlock_irqrestore(&conf->device_lock, flags);
  2014. mddev = r1_bio->mddev;
  2015. conf = mddev->private;
  2016. if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
  2017. if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
  2018. test_bit(R1BIO_WriteError, &r1_bio->state))
  2019. handle_sync_write_finished(conf, r1_bio);
  2020. else
  2021. sync_request_write(mddev, r1_bio);
  2022. } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
  2023. test_bit(R1BIO_WriteError, &r1_bio->state))
  2024. handle_write_finished(conf, r1_bio);
  2025. else if (test_bit(R1BIO_ReadError, &r1_bio->state))
  2026. handle_read_error(conf, r1_bio);
  2027. else
  2028. /* just a partial read to be scheduled from separate
  2029. * context
  2030. */
  2031. generic_make_request(r1_bio->bios[r1_bio->read_disk]);
  2032. cond_resched();
  2033. if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
  2034. md_check_recovery(mddev);
  2035. }
  2036. blk_finish_plug(&plug);
  2037. }
  2038. static int init_resync(struct r1conf *conf)
  2039. {
  2040. int buffs;
  2041. buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
  2042. BUG_ON(conf->r1buf_pool);
  2043. conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
  2044. conf->poolinfo);
  2045. if (!conf->r1buf_pool)
  2046. return -ENOMEM;
  2047. conf->next_resync = 0;
  2048. return 0;
  2049. }
  2050. /*
  2051. * perform a "sync" on one "block"
  2052. *
  2053. * We need to make sure that no normal I/O request - particularly write
  2054. * requests - conflict with active sync requests.
  2055. *
  2056. * This is achieved by tracking pending requests and a 'barrier' concept
  2057. * that can be installed to exclude normal IO requests.
  2058. */
  2059. static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
  2060. {
  2061. struct r1conf *conf = mddev->private;
  2062. struct r1bio *r1_bio;
  2063. struct bio *bio;
  2064. sector_t max_sector, nr_sectors;
  2065. int disk = -1;
  2066. int i;
  2067. int wonly = -1;
  2068. int write_targets = 0, read_targets = 0;
  2069. sector_t sync_blocks;
  2070. int still_degraded = 0;
  2071. int good_sectors = RESYNC_SECTORS;
  2072. int min_bad = 0; /* number of sectors that are bad in all devices */
  2073. if (!conf->r1buf_pool)
  2074. if (init_resync(conf))
  2075. return 0;
  2076. max_sector = mddev->dev_sectors;
  2077. if (sector_nr >= max_sector) {
  2078. /* If we aborted, we need to abort the
  2079. * sync on the 'current' bitmap chunk (there will
  2080. * only be one in raid1 resync.
  2081. * We can find the current addess in mddev->curr_resync
  2082. */
  2083. if (mddev->curr_resync < max_sector) /* aborted */
  2084. bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
  2085. &sync_blocks, 1);
  2086. else /* completed sync */
  2087. conf->fullsync = 0;
  2088. bitmap_close_sync(mddev->bitmap);
  2089. close_sync(conf);
  2090. return 0;
  2091. }
  2092. if (mddev->bitmap == NULL &&
  2093. mddev->recovery_cp == MaxSector &&
  2094. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
  2095. conf->fullsync == 0) {
  2096. *skipped = 1;
  2097. return max_sector - sector_nr;
  2098. }
  2099. /* before building a request, check if we can skip these blocks..
  2100. * This call the bitmap_start_sync doesn't actually record anything
  2101. */
  2102. if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
  2103. !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  2104. /* We can skip this block, and probably several more */
  2105. *skipped = 1;
  2106. return sync_blocks;
  2107. }
  2108. /*
  2109. * If there is non-resync activity waiting for a turn,
  2110. * and resync is going fast enough,
  2111. * then let it though before starting on this new sync request.
  2112. */
  2113. if (!go_faster && conf->nr_waiting)
  2114. msleep_interruptible(1000);
  2115. bitmap_cond_end_sync(mddev->bitmap, sector_nr);
  2116. r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
  2117. raise_barrier(conf);
  2118. conf->next_resync = sector_nr;
  2119. rcu_read_lock();
  2120. /*
  2121. * If we get a correctably read error during resync or recovery,
  2122. * we might want to read from a different device. So we
  2123. * flag all drives that could conceivably be read from for READ,
  2124. * and any others (which will be non-In_sync devices) for WRITE.
  2125. * If a read fails, we try reading from something else for which READ
  2126. * is OK.
  2127. */
  2128. r1_bio->mddev = mddev;
  2129. r1_bio->sector = sector_nr;
  2130. r1_bio->state = 0;
  2131. set_bit(R1BIO_IsSync, &r1_bio->state);
  2132. for (i = 0; i < conf->raid_disks * 2; i++) {
  2133. struct md_rdev *rdev;
  2134. bio = r1_bio->bios[i];
  2135. /* take from bio_init */
  2136. bio->bi_next = NULL;
  2137. bio->bi_flags &= ~(BIO_POOL_MASK-1);
  2138. bio->bi_flags |= 1 << BIO_UPTODATE;
  2139. bio->bi_rw = READ;
  2140. bio->bi_vcnt = 0;
  2141. bio->bi_idx = 0;
  2142. bio->bi_phys_segments = 0;
  2143. bio->bi_size = 0;
  2144. bio->bi_end_io = NULL;
  2145. bio->bi_private = NULL;
  2146. rdev = rcu_dereference(conf->mirrors[i].rdev);
  2147. if (rdev == NULL ||
  2148. test_bit(Faulty, &rdev->flags)) {
  2149. if (i < conf->raid_disks)
  2150. still_degraded = 1;
  2151. } else if (!test_bit(In_sync, &rdev->flags)) {
  2152. bio->bi_rw = WRITE;
  2153. bio->bi_end_io = end_sync_write;
  2154. write_targets ++;
  2155. } else {
  2156. /* may need to read from here */
  2157. sector_t first_bad = MaxSector;
  2158. int bad_sectors;
  2159. if (is_badblock(rdev, sector_nr, good_sectors,
  2160. &first_bad, &bad_sectors)) {
  2161. if (first_bad > sector_nr)
  2162. good_sectors = first_bad - sector_nr;
  2163. else {
  2164. bad_sectors -= (sector_nr - first_bad);
  2165. if (min_bad == 0 ||
  2166. min_bad > bad_sectors)
  2167. min_bad = bad_sectors;
  2168. }
  2169. }
  2170. if (sector_nr < first_bad) {
  2171. if (test_bit(WriteMostly, &rdev->flags)) {
  2172. if (wonly < 0)
  2173. wonly = i;
  2174. } else {
  2175. if (disk < 0)
  2176. disk = i;
  2177. }
  2178. bio->bi_rw = READ;
  2179. bio->bi_end_io = end_sync_read;
  2180. read_targets++;
  2181. }
  2182. }
  2183. if (bio->bi_end_io) {
  2184. atomic_inc(&rdev->nr_pending);
  2185. bio->bi_sector = sector_nr + rdev->data_offset;
  2186. bio->bi_bdev = rdev->bdev;
  2187. bio->bi_private = r1_bio;
  2188. }
  2189. }
  2190. rcu_read_unlock();
  2191. if (disk < 0)
  2192. disk = wonly;
  2193. r1_bio->read_disk = disk;
  2194. if (read_targets == 0 && min_bad > 0) {
  2195. /* These sectors are bad on all InSync devices, so we
  2196. * need to mark them bad on all write targets
  2197. */
  2198. int ok = 1;
  2199. for (i = 0 ; i < conf->raid_disks * 2 ; i++)
  2200. if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
  2201. struct md_rdev *rdev = conf->mirrors[i].rdev;
  2202. ok = rdev_set_badblocks(rdev, sector_nr,
  2203. min_bad, 0
  2204. ) && ok;
  2205. }
  2206. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2207. *skipped = 1;
  2208. put_buf(r1_bio);
  2209. if (!ok) {
  2210. /* Cannot record the badblocks, so need to
  2211. * abort the resync.
  2212. * If there are multiple read targets, could just
  2213. * fail the really bad ones ???
  2214. */
  2215. conf->recovery_disabled = mddev->recovery_disabled;
  2216. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2217. return 0;
  2218. } else
  2219. return min_bad;
  2220. }
  2221. if (min_bad > 0 && min_bad < good_sectors) {
  2222. /* only resync enough to reach the next bad->good
  2223. * transition */
  2224. good_sectors = min_bad;
  2225. }
  2226. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
  2227. /* extra read targets are also write targets */
  2228. write_targets += read_targets-1;
  2229. if (write_targets == 0 || read_targets == 0) {
  2230. /* There is nowhere to write, so all non-sync
  2231. * drives must be failed - so we are finished
  2232. */
  2233. sector_t rv = max_sector - sector_nr;
  2234. *skipped = 1;
  2235. put_buf(r1_bio);
  2236. return rv;
  2237. }
  2238. if (max_sector > mddev->resync_max)
  2239. max_sector = mddev->resync_max; /* Don't do IO beyond here */
  2240. if (max_sector > sector_nr + good_sectors)
  2241. max_sector = sector_nr + good_sectors;
  2242. nr_sectors = 0;
  2243. sync_blocks = 0;
  2244. do {
  2245. struct page *page;
  2246. int len = PAGE_SIZE;
  2247. if (sector_nr + (len>>9) > max_sector)
  2248. len = (max_sector - sector_nr) << 9;
  2249. if (len == 0)
  2250. break;
  2251. if (sync_blocks == 0) {
  2252. if (!bitmap_start_sync(mddev->bitmap, sector_nr,
  2253. &sync_blocks, still_degraded) &&
  2254. !conf->fullsync &&
  2255. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  2256. break;
  2257. BUG_ON(sync_blocks < (PAGE_SIZE>>9));
  2258. if ((len >> 9) > sync_blocks)
  2259. len = sync_blocks<<9;
  2260. }
  2261. for (i = 0 ; i < conf->raid_disks * 2; i++) {
  2262. bio = r1_bio->bios[i];
  2263. if (bio->bi_end_io) {
  2264. page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
  2265. if (bio_add_page(bio, page, len, 0) == 0) {
  2266. /* stop here */
  2267. bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
  2268. while (i > 0) {
  2269. i--;
  2270. bio = r1_bio->bios[i];
  2271. if (bio->bi_end_io==NULL)
  2272. continue;
  2273. /* remove last page from this bio */
  2274. bio->bi_vcnt--;
  2275. bio->bi_size -= len;
  2276. bio->bi_flags &= ~(1<< BIO_SEG_VALID);
  2277. }
  2278. goto bio_full;
  2279. }
  2280. }
  2281. }
  2282. nr_sectors += len>>9;
  2283. sector_nr += len>>9;
  2284. sync_blocks -= (len>>9);
  2285. } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
  2286. bio_full:
  2287. r1_bio->sectors = nr_sectors;
  2288. /* For a user-requested sync, we read all readable devices and do a
  2289. * compare
  2290. */
  2291. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  2292. atomic_set(&r1_bio->remaining, read_targets);
  2293. for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
  2294. bio = r1_bio->bios[i];
  2295. if (bio->bi_end_io == end_sync_read) {
  2296. read_targets--;
  2297. md_sync_acct(bio->bi_bdev, nr_sectors);
  2298. generic_make_request(bio);
  2299. }
  2300. }
  2301. } else {
  2302. atomic_set(&r1_bio->remaining, 1);
  2303. bio = r1_bio->bios[r1_bio->read_disk];
  2304. md_sync_acct(bio->bi_bdev, nr_sectors);
  2305. generic_make_request(bio);
  2306. }
  2307. return nr_sectors;
  2308. }
  2309. static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
  2310. {
  2311. if (sectors)
  2312. return sectors;
  2313. return mddev->dev_sectors;
  2314. }
  2315. static struct r1conf *setup_conf(struct mddev *mddev)
  2316. {
  2317. struct r1conf *conf;
  2318. int i;
  2319. struct mirror_info *disk;
  2320. struct md_rdev *rdev;
  2321. int err = -ENOMEM;
  2322. conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
  2323. if (!conf)
  2324. goto abort;
  2325. conf->mirrors = kzalloc(sizeof(struct mirror_info)
  2326. * mddev->raid_disks * 2,
  2327. GFP_KERNEL);
  2328. if (!conf->mirrors)
  2329. goto abort;
  2330. conf->tmppage = alloc_page(GFP_KERNEL);
  2331. if (!conf->tmppage)
  2332. goto abort;
  2333. conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
  2334. if (!conf->poolinfo)
  2335. goto abort;
  2336. conf->poolinfo->raid_disks = mddev->raid_disks * 2;
  2337. conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  2338. r1bio_pool_free,
  2339. conf->poolinfo);
  2340. if (!conf->r1bio_pool)
  2341. goto abort;
  2342. conf->poolinfo->mddev = mddev;
  2343. err = -EINVAL;
  2344. spin_lock_init(&conf->device_lock);
  2345. rdev_for_each(rdev, mddev) {
  2346. struct request_queue *q;
  2347. int disk_idx = rdev->raid_disk;
  2348. if (disk_idx >= mddev->raid_disks
  2349. || disk_idx < 0)
  2350. continue;
  2351. if (test_bit(Replacement, &rdev->flags))
  2352. disk = conf->mirrors + conf->raid_disks + disk_idx;
  2353. else
  2354. disk = conf->mirrors + disk_idx;
  2355. if (disk->rdev)
  2356. goto abort;
  2357. disk->rdev = rdev;
  2358. q = bdev_get_queue(rdev->bdev);
  2359. if (q->merge_bvec_fn)
  2360. mddev->merge_check_needed = 1;
  2361. disk->head_position = 0;
  2362. }
  2363. conf->raid_disks = mddev->raid_disks;
  2364. conf->mddev = mddev;
  2365. INIT_LIST_HEAD(&conf->retry_list);
  2366. spin_lock_init(&conf->resync_lock);
  2367. init_waitqueue_head(&conf->wait_barrier);
  2368. bio_list_init(&conf->pending_bio_list);
  2369. conf->pending_count = 0;
  2370. conf->recovery_disabled = mddev->recovery_disabled - 1;
  2371. err = -EIO;
  2372. conf->last_used = -1;
  2373. for (i = 0; i < conf->raid_disks * 2; i++) {
  2374. disk = conf->mirrors + i;
  2375. if (i < conf->raid_disks &&
  2376. disk[conf->raid_disks].rdev) {
  2377. /* This slot has a replacement. */
  2378. if (!disk->rdev) {
  2379. /* No original, just make the replacement
  2380. * a recovering spare
  2381. */
  2382. disk->rdev =
  2383. disk[conf->raid_disks].rdev;
  2384. disk[conf->raid_disks].rdev = NULL;
  2385. } else if (!test_bit(In_sync, &disk->rdev->flags))
  2386. /* Original is not in_sync - bad */
  2387. goto abort;
  2388. }
  2389. if (!disk->rdev ||
  2390. !test_bit(In_sync, &disk->rdev->flags)) {
  2391. disk->head_position = 0;
  2392. if (disk->rdev &&
  2393. (disk->rdev->saved_raid_disk < 0))
  2394. conf->fullsync = 1;
  2395. } else if (conf->last_used < 0)
  2396. /*
  2397. * The first working device is used as a
  2398. * starting point to read balancing.
  2399. */
  2400. conf->last_used = i;
  2401. }
  2402. if (conf->last_used < 0) {
  2403. printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
  2404. mdname(mddev));
  2405. goto abort;
  2406. }
  2407. err = -ENOMEM;
  2408. conf->thread = md_register_thread(raid1d, mddev, "raid1");
  2409. if (!conf->thread) {
  2410. printk(KERN_ERR
  2411. "md/raid1:%s: couldn't allocate thread\n",
  2412. mdname(mddev));
  2413. goto abort;
  2414. }
  2415. return conf;
  2416. abort:
  2417. if (conf) {
  2418. if (conf->r1bio_pool)
  2419. mempool_destroy(conf->r1bio_pool);
  2420. kfree(conf->mirrors);
  2421. safe_put_page(conf->tmppage);
  2422. kfree(conf->poolinfo);
  2423. kfree(conf);
  2424. }
  2425. return ERR_PTR(err);
  2426. }
  2427. static int stop(struct mddev *mddev);
  2428. static int run(struct mddev *mddev)
  2429. {
  2430. struct r1conf *conf;
  2431. int i;
  2432. struct md_rdev *rdev;
  2433. int ret;
  2434. if (mddev->level != 1) {
  2435. printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
  2436. mdname(mddev), mddev->level);
  2437. return -EIO;
  2438. }
  2439. if (mddev->reshape_position != MaxSector) {
  2440. printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
  2441. mdname(mddev));
  2442. return -EIO;
  2443. }
  2444. /*
  2445. * copy the already verified devices into our private RAID1
  2446. * bookkeeping area. [whatever we allocate in run(),
  2447. * should be freed in stop()]
  2448. */
  2449. if (mddev->private == NULL)
  2450. conf = setup_conf(mddev);
  2451. else
  2452. conf = mddev->private;
  2453. if (IS_ERR(conf))
  2454. return PTR_ERR(conf);
  2455. rdev_for_each(rdev, mddev) {
  2456. if (!mddev->gendisk)
  2457. continue;
  2458. disk_stack_limits(mddev->gendisk, rdev->bdev,
  2459. rdev->data_offset << 9);
  2460. }
  2461. mddev->degraded = 0;
  2462. for (i=0; i < conf->raid_disks; i++)
  2463. if (conf->mirrors[i].rdev == NULL ||
  2464. !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
  2465. test_bit(Faulty, &conf->mirrors[i].rdev->flags))
  2466. mddev->degraded++;
  2467. if (conf->raid_disks - mddev->degraded == 1)
  2468. mddev->recovery_cp = MaxSector;
  2469. if (mddev->recovery_cp != MaxSector)
  2470. printk(KERN_NOTICE "md/raid1:%s: not clean"
  2471. " -- starting background reconstruction\n",
  2472. mdname(mddev));
  2473. printk(KERN_INFO
  2474. "md/raid1:%s: active with %d out of %d mirrors\n",
  2475. mdname(mddev), mddev->raid_disks - mddev->degraded,
  2476. mddev->raid_disks);
  2477. /*
  2478. * Ok, everything is just fine now
  2479. */
  2480. mddev->thread = conf->thread;
  2481. conf->thread = NULL;
  2482. mddev->private = conf;
  2483. md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
  2484. if (mddev->queue) {
  2485. mddev->queue->backing_dev_info.congested_fn = raid1_congested;
  2486. mddev->queue->backing_dev_info.congested_data = mddev;
  2487. blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
  2488. }
  2489. ret = md_integrity_register(mddev);
  2490. if (ret)
  2491. stop(mddev);
  2492. return ret;
  2493. }
  2494. static int stop(struct mddev *mddev)
  2495. {
  2496. struct r1conf *conf = mddev->private;
  2497. struct bitmap *bitmap = mddev->bitmap;
  2498. /* wait for behind writes to complete */
  2499. if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
  2500. printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
  2501. mdname(mddev));
  2502. /* need to kick something here to make sure I/O goes? */
  2503. wait_event(bitmap->behind_wait,
  2504. atomic_read(&bitmap->behind_writes) == 0);
  2505. }
  2506. raise_barrier(conf);
  2507. lower_barrier(conf);
  2508. md_unregister_thread(&mddev->thread);
  2509. if (conf->r1bio_pool)
  2510. mempool_destroy(conf->r1bio_pool);
  2511. kfree(conf->mirrors);
  2512. kfree(conf->poolinfo);
  2513. kfree(conf);
  2514. mddev->private = NULL;
  2515. return 0;
  2516. }
  2517. static int raid1_resize(struct mddev *mddev, sector_t sectors)
  2518. {
  2519. /* no resync is happening, and there is enough space
  2520. * on all devices, so we can resize.
  2521. * We need to make sure resync covers any new space.
  2522. * If the array is shrinking we should possibly wait until
  2523. * any io in the removed space completes, but it hardly seems
  2524. * worth it.
  2525. */
  2526. sector_t newsize = raid1_size(mddev, sectors, 0);
  2527. if (mddev->external_size &&
  2528. mddev->array_sectors > newsize)
  2529. return -EINVAL;
  2530. if (mddev->bitmap) {
  2531. int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
  2532. if (ret)
  2533. return ret;
  2534. }
  2535. md_set_array_sectors(mddev, newsize);
  2536. set_capacity(mddev->gendisk, mddev->array_sectors);
  2537. revalidate_disk(mddev->gendisk);
  2538. if (sectors > mddev->dev_sectors &&
  2539. mddev->recovery_cp > mddev->dev_sectors) {
  2540. mddev->recovery_cp = mddev->dev_sectors;
  2541. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2542. }
  2543. mddev->dev_sectors = sectors;
  2544. mddev->resync_max_sectors = sectors;
  2545. return 0;
  2546. }
  2547. static int raid1_reshape(struct mddev *mddev)
  2548. {
  2549. /* We need to:
  2550. * 1/ resize the r1bio_pool
  2551. * 2/ resize conf->mirrors
  2552. *
  2553. * We allocate a new r1bio_pool if we can.
  2554. * Then raise a device barrier and wait until all IO stops.
  2555. * Then resize conf->mirrors and swap in the new r1bio pool.
  2556. *
  2557. * At the same time, we "pack" the devices so that all the missing
  2558. * devices have the higher raid_disk numbers.
  2559. */
  2560. mempool_t *newpool, *oldpool;
  2561. struct pool_info *newpoolinfo;
  2562. struct mirror_info *newmirrors;
  2563. struct r1conf *conf = mddev->private;
  2564. int cnt, raid_disks;
  2565. unsigned long flags;
  2566. int d, d2, err;
  2567. /* Cannot change chunk_size, layout, or level */
  2568. if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
  2569. mddev->layout != mddev->new_layout ||
  2570. mddev->level != mddev->new_level) {
  2571. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2572. mddev->new_layout = mddev->layout;
  2573. mddev->new_level = mddev->level;
  2574. return -EINVAL;
  2575. }
  2576. err = md_allow_write(mddev);
  2577. if (err)
  2578. return err;
  2579. raid_disks = mddev->raid_disks + mddev->delta_disks;
  2580. if (raid_disks < conf->raid_disks) {
  2581. cnt=0;
  2582. for (d= 0; d < conf->raid_disks; d++)
  2583. if (conf->mirrors[d].rdev)
  2584. cnt++;
  2585. if (cnt > raid_disks)
  2586. return -EBUSY;
  2587. }
  2588. newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
  2589. if (!newpoolinfo)
  2590. return -ENOMEM;
  2591. newpoolinfo->mddev = mddev;
  2592. newpoolinfo->raid_disks = raid_disks * 2;
  2593. newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  2594. r1bio_pool_free, newpoolinfo);
  2595. if (!newpool) {
  2596. kfree(newpoolinfo);
  2597. return -ENOMEM;
  2598. }
  2599. newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks * 2,
  2600. GFP_KERNEL);
  2601. if (!newmirrors) {
  2602. kfree(newpoolinfo);
  2603. mempool_destroy(newpool);
  2604. return -ENOMEM;
  2605. }
  2606. raise_barrier(conf);
  2607. /* ok, everything is stopped */
  2608. oldpool = conf->r1bio_pool;
  2609. conf->r1bio_pool = newpool;
  2610. for (d = d2 = 0; d < conf->raid_disks; d++) {
  2611. struct md_rdev *rdev = conf->mirrors[d].rdev;
  2612. if (rdev && rdev->raid_disk != d2) {
  2613. sysfs_unlink_rdev(mddev, rdev);
  2614. rdev->raid_disk = d2;
  2615. sysfs_unlink_rdev(mddev, rdev);
  2616. if (sysfs_link_rdev(mddev, rdev))
  2617. printk(KERN_WARNING
  2618. "md/raid1:%s: cannot register rd%d\n",
  2619. mdname(mddev), rdev->raid_disk);
  2620. }
  2621. if (rdev)
  2622. newmirrors[d2++].rdev = rdev;
  2623. }
  2624. kfree(conf->mirrors);
  2625. conf->mirrors = newmirrors;
  2626. kfree(conf->poolinfo);
  2627. conf->poolinfo = newpoolinfo;
  2628. spin_lock_irqsave(&conf->device_lock, flags);
  2629. mddev->degraded += (raid_disks - conf->raid_disks);
  2630. spin_unlock_irqrestore(&conf->device_lock, flags);
  2631. conf->raid_disks = mddev->raid_disks = raid_disks;
  2632. mddev->delta_disks = 0;
  2633. conf->last_used = 0; /* just make sure it is in-range */
  2634. lower_barrier(conf);
  2635. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2636. md_wakeup_thread(mddev->thread);
  2637. mempool_destroy(oldpool);
  2638. return 0;
  2639. }
  2640. static void raid1_quiesce(struct mddev *mddev, int state)
  2641. {
  2642. struct r1conf *conf = mddev->private;
  2643. switch(state) {
  2644. case 2: /* wake for suspend */
  2645. wake_up(&conf->wait_barrier);
  2646. break;
  2647. case 1:
  2648. raise_barrier(conf);
  2649. break;
  2650. case 0:
  2651. lower_barrier(conf);
  2652. break;
  2653. }
  2654. }
  2655. static void *raid1_takeover(struct mddev *mddev)
  2656. {
  2657. /* raid1 can take over:
  2658. * raid5 with 2 devices, any layout or chunk size
  2659. */
  2660. if (mddev->level == 5 && mddev->raid_disks == 2) {
  2661. struct r1conf *conf;
  2662. mddev->new_level = 1;
  2663. mddev->new_layout = 0;
  2664. mddev->new_chunk_sectors = 0;
  2665. conf = setup_conf(mddev);
  2666. if (!IS_ERR(conf))
  2667. conf->barrier = 1;
  2668. return conf;
  2669. }
  2670. return ERR_PTR(-EINVAL);
  2671. }
  2672. static struct md_personality raid1_personality =
  2673. {
  2674. .name = "raid1",
  2675. .level = 1,
  2676. .owner = THIS_MODULE,
  2677. .make_request = make_request,
  2678. .run = run,
  2679. .stop = stop,
  2680. .status = status,
  2681. .error_handler = error,
  2682. .hot_add_disk = raid1_add_disk,
  2683. .hot_remove_disk= raid1_remove_disk,
  2684. .spare_active = raid1_spare_active,
  2685. .sync_request = sync_request,
  2686. .resize = raid1_resize,
  2687. .size = raid1_size,
  2688. .check_reshape = raid1_reshape,
  2689. .quiesce = raid1_quiesce,
  2690. .takeover = raid1_takeover,
  2691. };
  2692. static int __init raid_init(void)
  2693. {
  2694. return register_md_personality(&raid1_personality);
  2695. }
  2696. static void raid_exit(void)
  2697. {
  2698. unregister_md_personality(&raid1_personality);
  2699. }
  2700. module_init(raid_init);
  2701. module_exit(raid_exit);
  2702. MODULE_LICENSE("GPL");
  2703. MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
  2704. MODULE_ALIAS("md-personality-3"); /* RAID1 */
  2705. MODULE_ALIAS("md-raid1");
  2706. MODULE_ALIAS("md-level-1");
  2707. module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);