sched.c 166 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/smp.h>
  47. #include <linux/threads.h>
  48. #include <linux/timer.h>
  49. #include <linux/rcupdate.h>
  50. #include <linux/cpu.h>
  51. #include <linux/cpuset.h>
  52. #include <linux/percpu.h>
  53. #include <linux/kthread.h>
  54. #include <linux/seq_file.h>
  55. #include <linux/sysctl.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/times.h>
  58. #include <linux/tsacct_kern.h>
  59. #include <linux/kprobes.h>
  60. #include <linux/delayacct.h>
  61. #include <linux/reciprocal_div.h>
  62. #include <linux/unistd.h>
  63. #include <asm/tlb.h>
  64. /*
  65. * Scheduler clock - returns current time in nanosec units.
  66. * This is default implementation.
  67. * Architectures and sub-architectures can override this.
  68. */
  69. unsigned long long __attribute__((weak)) sched_clock(void)
  70. {
  71. return (unsigned long long)jiffies * (1000000000 / HZ);
  72. }
  73. /*
  74. * Convert user-nice values [ -20 ... 0 ... 19 ]
  75. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  76. * and back.
  77. */
  78. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  79. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  80. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  81. /*
  82. * 'User priority' is the nice value converted to something we
  83. * can work with better when scaling various scheduler parameters,
  84. * it's a [ 0 ... 39 ] range.
  85. */
  86. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  87. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  88. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  89. /*
  90. * Some helpers for converting nanosecond timing to jiffy resolution
  91. */
  92. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  93. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  94. #define NICE_0_LOAD SCHED_LOAD_SCALE
  95. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  96. /*
  97. * These are the 'tuning knobs' of the scheduler:
  98. *
  99. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  100. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  101. * Timeslices get refilled after they expire.
  102. */
  103. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  104. #define DEF_TIMESLICE (100 * HZ / 1000)
  105. #ifdef CONFIG_SMP
  106. /*
  107. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  108. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  109. */
  110. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  111. {
  112. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  113. }
  114. /*
  115. * Each time a sched group cpu_power is changed,
  116. * we must compute its reciprocal value
  117. */
  118. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  119. {
  120. sg->__cpu_power += val;
  121. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  122. }
  123. #endif
  124. #define SCALE_PRIO(x, prio) \
  125. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  126. /*
  127. * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  128. * to time slice values: [800ms ... 100ms ... 5ms]
  129. */
  130. static unsigned int static_prio_timeslice(int static_prio)
  131. {
  132. if (static_prio == NICE_TO_PRIO(19))
  133. return 1;
  134. if (static_prio < NICE_TO_PRIO(0))
  135. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  136. else
  137. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  138. }
  139. static inline int rt_policy(int policy)
  140. {
  141. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  142. return 1;
  143. return 0;
  144. }
  145. static inline int task_has_rt_policy(struct task_struct *p)
  146. {
  147. return rt_policy(p->policy);
  148. }
  149. /*
  150. * This is the priority-queue data structure of the RT scheduling class:
  151. */
  152. struct rt_prio_array {
  153. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  154. struct list_head queue[MAX_RT_PRIO];
  155. };
  156. struct load_stat {
  157. struct load_weight load;
  158. u64 load_update_start, load_update_last;
  159. unsigned long delta_fair, delta_exec, delta_stat;
  160. };
  161. /* CFS-related fields in a runqueue */
  162. struct cfs_rq {
  163. struct load_weight load;
  164. unsigned long nr_running;
  165. s64 fair_clock;
  166. u64 exec_clock;
  167. s64 wait_runtime;
  168. u64 sleeper_bonus;
  169. unsigned long wait_runtime_overruns, wait_runtime_underruns;
  170. struct rb_root tasks_timeline;
  171. struct rb_node *rb_leftmost;
  172. struct rb_node *rb_load_balance_curr;
  173. #ifdef CONFIG_FAIR_GROUP_SCHED
  174. /* 'curr' points to currently running entity on this cfs_rq.
  175. * It is set to NULL otherwise (i.e when none are currently running).
  176. */
  177. struct sched_entity *curr;
  178. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  179. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  180. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  181. * (like users, containers etc.)
  182. *
  183. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  184. * list is used during load balance.
  185. */
  186. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  187. #endif
  188. };
  189. /* Real-Time classes' related field in a runqueue: */
  190. struct rt_rq {
  191. struct rt_prio_array active;
  192. int rt_load_balance_idx;
  193. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  194. };
  195. /*
  196. * This is the main, per-CPU runqueue data structure.
  197. *
  198. * Locking rule: those places that want to lock multiple runqueues
  199. * (such as the load balancing or the thread migration code), lock
  200. * acquire operations must be ordered by ascending &runqueue.
  201. */
  202. struct rq {
  203. spinlock_t lock; /* runqueue lock */
  204. /*
  205. * nr_running and cpu_load should be in the same cacheline because
  206. * remote CPUs use both these fields when doing load calculation.
  207. */
  208. unsigned long nr_running;
  209. #define CPU_LOAD_IDX_MAX 5
  210. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  211. unsigned char idle_at_tick;
  212. #ifdef CONFIG_NO_HZ
  213. unsigned char in_nohz_recently;
  214. #endif
  215. struct load_stat ls; /* capture load from *all* tasks on this cpu */
  216. unsigned long nr_load_updates;
  217. u64 nr_switches;
  218. struct cfs_rq cfs;
  219. #ifdef CONFIG_FAIR_GROUP_SCHED
  220. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  221. #endif
  222. struct rt_rq rt;
  223. /*
  224. * This is part of a global counter where only the total sum
  225. * over all CPUs matters. A task can increase this counter on
  226. * one CPU and if it got migrated afterwards it may decrease
  227. * it on another CPU. Always updated under the runqueue lock:
  228. */
  229. unsigned long nr_uninterruptible;
  230. struct task_struct *curr, *idle;
  231. unsigned long next_balance;
  232. struct mm_struct *prev_mm;
  233. u64 clock, prev_clock_raw;
  234. s64 clock_max_delta;
  235. unsigned int clock_warps, clock_overflows;
  236. u64 idle_clock;
  237. unsigned int clock_deep_idle_events;
  238. u64 tick_timestamp;
  239. atomic_t nr_iowait;
  240. #ifdef CONFIG_SMP
  241. struct sched_domain *sd;
  242. /* For active balancing */
  243. int active_balance;
  244. int push_cpu;
  245. int cpu; /* cpu of this runqueue */
  246. struct task_struct *migration_thread;
  247. struct list_head migration_queue;
  248. #endif
  249. #ifdef CONFIG_SCHEDSTATS
  250. /* latency stats */
  251. struct sched_info rq_sched_info;
  252. /* sys_sched_yield() stats */
  253. unsigned long yld_exp_empty;
  254. unsigned long yld_act_empty;
  255. unsigned long yld_both_empty;
  256. unsigned long yld_cnt;
  257. /* schedule() stats */
  258. unsigned long sched_switch;
  259. unsigned long sched_cnt;
  260. unsigned long sched_goidle;
  261. /* try_to_wake_up() stats */
  262. unsigned long ttwu_cnt;
  263. unsigned long ttwu_local;
  264. #endif
  265. struct lock_class_key rq_lock_key;
  266. };
  267. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  268. static DEFINE_MUTEX(sched_hotcpu_mutex);
  269. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  270. {
  271. rq->curr->sched_class->check_preempt_curr(rq, p);
  272. }
  273. static inline int cpu_of(struct rq *rq)
  274. {
  275. #ifdef CONFIG_SMP
  276. return rq->cpu;
  277. #else
  278. return 0;
  279. #endif
  280. }
  281. /*
  282. * Update the per-runqueue clock, as finegrained as the platform can give
  283. * us, but without assuming monotonicity, etc.:
  284. */
  285. static void __update_rq_clock(struct rq *rq)
  286. {
  287. u64 prev_raw = rq->prev_clock_raw;
  288. u64 now = sched_clock();
  289. s64 delta = now - prev_raw;
  290. u64 clock = rq->clock;
  291. #ifdef CONFIG_SCHED_DEBUG
  292. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  293. #endif
  294. /*
  295. * Protect against sched_clock() occasionally going backwards:
  296. */
  297. if (unlikely(delta < 0)) {
  298. clock++;
  299. rq->clock_warps++;
  300. } else {
  301. /*
  302. * Catch too large forward jumps too:
  303. */
  304. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  305. if (clock < rq->tick_timestamp + TICK_NSEC)
  306. clock = rq->tick_timestamp + TICK_NSEC;
  307. else
  308. clock++;
  309. rq->clock_overflows++;
  310. } else {
  311. if (unlikely(delta > rq->clock_max_delta))
  312. rq->clock_max_delta = delta;
  313. clock += delta;
  314. }
  315. }
  316. rq->prev_clock_raw = now;
  317. rq->clock = clock;
  318. }
  319. static void update_rq_clock(struct rq *rq)
  320. {
  321. if (likely(smp_processor_id() == cpu_of(rq)))
  322. __update_rq_clock(rq);
  323. }
  324. /*
  325. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  326. * See detach_destroy_domains: synchronize_sched for details.
  327. *
  328. * The domain tree of any CPU may only be accessed from within
  329. * preempt-disabled sections.
  330. */
  331. #define for_each_domain(cpu, __sd) \
  332. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  333. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  334. #define this_rq() (&__get_cpu_var(runqueues))
  335. #define task_rq(p) cpu_rq(task_cpu(p))
  336. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  337. /*
  338. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  339. * clock constructed from sched_clock():
  340. */
  341. unsigned long long cpu_clock(int cpu)
  342. {
  343. unsigned long long now;
  344. unsigned long flags;
  345. struct rq *rq;
  346. local_irq_save(flags);
  347. rq = cpu_rq(cpu);
  348. update_rq_clock(rq);
  349. now = rq->clock;
  350. local_irq_restore(flags);
  351. return now;
  352. }
  353. #ifdef CONFIG_FAIR_GROUP_SCHED
  354. /* Change a task's ->cfs_rq if it moves across CPUs */
  355. static inline void set_task_cfs_rq(struct task_struct *p)
  356. {
  357. p->se.cfs_rq = &task_rq(p)->cfs;
  358. }
  359. #else
  360. static inline void set_task_cfs_rq(struct task_struct *p)
  361. {
  362. }
  363. #endif
  364. #ifndef prepare_arch_switch
  365. # define prepare_arch_switch(next) do { } while (0)
  366. #endif
  367. #ifndef finish_arch_switch
  368. # define finish_arch_switch(prev) do { } while (0)
  369. #endif
  370. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  371. static inline int task_running(struct rq *rq, struct task_struct *p)
  372. {
  373. return rq->curr == p;
  374. }
  375. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  376. {
  377. }
  378. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  379. {
  380. #ifdef CONFIG_DEBUG_SPINLOCK
  381. /* this is a valid case when another task releases the spinlock */
  382. rq->lock.owner = current;
  383. #endif
  384. /*
  385. * If we are tracking spinlock dependencies then we have to
  386. * fix up the runqueue lock - which gets 'carried over' from
  387. * prev into current:
  388. */
  389. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  390. spin_unlock_irq(&rq->lock);
  391. }
  392. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  393. static inline int task_running(struct rq *rq, struct task_struct *p)
  394. {
  395. #ifdef CONFIG_SMP
  396. return p->oncpu;
  397. #else
  398. return rq->curr == p;
  399. #endif
  400. }
  401. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  402. {
  403. #ifdef CONFIG_SMP
  404. /*
  405. * We can optimise this out completely for !SMP, because the
  406. * SMP rebalancing from interrupt is the only thing that cares
  407. * here.
  408. */
  409. next->oncpu = 1;
  410. #endif
  411. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  412. spin_unlock_irq(&rq->lock);
  413. #else
  414. spin_unlock(&rq->lock);
  415. #endif
  416. }
  417. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  418. {
  419. #ifdef CONFIG_SMP
  420. /*
  421. * After ->oncpu is cleared, the task can be moved to a different CPU.
  422. * We must ensure this doesn't happen until the switch is completely
  423. * finished.
  424. */
  425. smp_wmb();
  426. prev->oncpu = 0;
  427. #endif
  428. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  429. local_irq_enable();
  430. #endif
  431. }
  432. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  433. /*
  434. * __task_rq_lock - lock the runqueue a given task resides on.
  435. * Must be called interrupts disabled.
  436. */
  437. static inline struct rq *__task_rq_lock(struct task_struct *p)
  438. __acquires(rq->lock)
  439. {
  440. struct rq *rq;
  441. repeat_lock_task:
  442. rq = task_rq(p);
  443. spin_lock(&rq->lock);
  444. if (unlikely(rq != task_rq(p))) {
  445. spin_unlock(&rq->lock);
  446. goto repeat_lock_task;
  447. }
  448. return rq;
  449. }
  450. /*
  451. * task_rq_lock - lock the runqueue a given task resides on and disable
  452. * interrupts. Note the ordering: we can safely lookup the task_rq without
  453. * explicitly disabling preemption.
  454. */
  455. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  456. __acquires(rq->lock)
  457. {
  458. struct rq *rq;
  459. repeat_lock_task:
  460. local_irq_save(*flags);
  461. rq = task_rq(p);
  462. spin_lock(&rq->lock);
  463. if (unlikely(rq != task_rq(p))) {
  464. spin_unlock_irqrestore(&rq->lock, *flags);
  465. goto repeat_lock_task;
  466. }
  467. return rq;
  468. }
  469. static inline void __task_rq_unlock(struct rq *rq)
  470. __releases(rq->lock)
  471. {
  472. spin_unlock(&rq->lock);
  473. }
  474. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  475. __releases(rq->lock)
  476. {
  477. spin_unlock_irqrestore(&rq->lock, *flags);
  478. }
  479. /*
  480. * this_rq_lock - lock this runqueue and disable interrupts.
  481. */
  482. static inline struct rq *this_rq_lock(void)
  483. __acquires(rq->lock)
  484. {
  485. struct rq *rq;
  486. local_irq_disable();
  487. rq = this_rq();
  488. spin_lock(&rq->lock);
  489. return rq;
  490. }
  491. /*
  492. * We are going deep-idle (irqs are disabled):
  493. */
  494. void sched_clock_idle_sleep_event(void)
  495. {
  496. struct rq *rq = cpu_rq(smp_processor_id());
  497. spin_lock(&rq->lock);
  498. __update_rq_clock(rq);
  499. spin_unlock(&rq->lock);
  500. rq->clock_deep_idle_events++;
  501. }
  502. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  503. /*
  504. * We just idled delta nanoseconds (called with irqs disabled):
  505. */
  506. void sched_clock_idle_wakeup_event(u64 delta_ns)
  507. {
  508. struct rq *rq = cpu_rq(smp_processor_id());
  509. u64 now = sched_clock();
  510. rq->idle_clock += delta_ns;
  511. /*
  512. * Override the previous timestamp and ignore all
  513. * sched_clock() deltas that occured while we idled,
  514. * and use the PM-provided delta_ns to advance the
  515. * rq clock:
  516. */
  517. spin_lock(&rq->lock);
  518. rq->prev_clock_raw = now;
  519. rq->clock += delta_ns;
  520. spin_unlock(&rq->lock);
  521. }
  522. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  523. /*
  524. * resched_task - mark a task 'to be rescheduled now'.
  525. *
  526. * On UP this means the setting of the need_resched flag, on SMP it
  527. * might also involve a cross-CPU call to trigger the scheduler on
  528. * the target CPU.
  529. */
  530. #ifdef CONFIG_SMP
  531. #ifndef tsk_is_polling
  532. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  533. #endif
  534. static void resched_task(struct task_struct *p)
  535. {
  536. int cpu;
  537. assert_spin_locked(&task_rq(p)->lock);
  538. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  539. return;
  540. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  541. cpu = task_cpu(p);
  542. if (cpu == smp_processor_id())
  543. return;
  544. /* NEED_RESCHED must be visible before we test polling */
  545. smp_mb();
  546. if (!tsk_is_polling(p))
  547. smp_send_reschedule(cpu);
  548. }
  549. static void resched_cpu(int cpu)
  550. {
  551. struct rq *rq = cpu_rq(cpu);
  552. unsigned long flags;
  553. if (!spin_trylock_irqsave(&rq->lock, flags))
  554. return;
  555. resched_task(cpu_curr(cpu));
  556. spin_unlock_irqrestore(&rq->lock, flags);
  557. }
  558. #else
  559. static inline void resched_task(struct task_struct *p)
  560. {
  561. assert_spin_locked(&task_rq(p)->lock);
  562. set_tsk_need_resched(p);
  563. }
  564. #endif
  565. static u64 div64_likely32(u64 divident, unsigned long divisor)
  566. {
  567. #if BITS_PER_LONG == 32
  568. if (likely(divident <= 0xffffffffULL))
  569. return (u32)divident / divisor;
  570. do_div(divident, divisor);
  571. return divident;
  572. #else
  573. return divident / divisor;
  574. #endif
  575. }
  576. #if BITS_PER_LONG == 32
  577. # define WMULT_CONST (~0UL)
  578. #else
  579. # define WMULT_CONST (1UL << 32)
  580. #endif
  581. #define WMULT_SHIFT 32
  582. /*
  583. * Shift right and round:
  584. */
  585. #define RSR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  586. static unsigned long
  587. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  588. struct load_weight *lw)
  589. {
  590. u64 tmp;
  591. if (unlikely(!lw->inv_weight))
  592. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  593. tmp = (u64)delta_exec * weight;
  594. /*
  595. * Check whether we'd overflow the 64-bit multiplication:
  596. */
  597. if (unlikely(tmp > WMULT_CONST))
  598. tmp = RSR(RSR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  599. WMULT_SHIFT/2);
  600. else
  601. tmp = RSR(tmp * lw->inv_weight, WMULT_SHIFT);
  602. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  603. }
  604. static inline unsigned long
  605. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  606. {
  607. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  608. }
  609. static void update_load_add(struct load_weight *lw, unsigned long inc)
  610. {
  611. lw->weight += inc;
  612. lw->inv_weight = 0;
  613. }
  614. static void update_load_sub(struct load_weight *lw, unsigned long dec)
  615. {
  616. lw->weight -= dec;
  617. lw->inv_weight = 0;
  618. }
  619. /*
  620. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  621. * of tasks with abnormal "nice" values across CPUs the contribution that
  622. * each task makes to its run queue's load is weighted according to its
  623. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  624. * scaled version of the new time slice allocation that they receive on time
  625. * slice expiry etc.
  626. */
  627. #define WEIGHT_IDLEPRIO 2
  628. #define WMULT_IDLEPRIO (1 << 31)
  629. /*
  630. * Nice levels are multiplicative, with a gentle 10% change for every
  631. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  632. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  633. * that remained on nice 0.
  634. *
  635. * The "10% effect" is relative and cumulative: from _any_ nice level,
  636. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  637. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  638. * If a task goes up by ~10% and another task goes down by ~10% then
  639. * the relative distance between them is ~25%.)
  640. */
  641. static const int prio_to_weight[40] = {
  642. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  643. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  644. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  645. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  646. /* 0 */ 1024, 820, 655, 526, 423,
  647. /* 5 */ 335, 272, 215, 172, 137,
  648. /* 10 */ 110, 87, 70, 56, 45,
  649. /* 15 */ 36, 29, 23, 18, 15,
  650. };
  651. /*
  652. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  653. *
  654. * In cases where the weight does not change often, we can use the
  655. * precalculated inverse to speed up arithmetics by turning divisions
  656. * into multiplications:
  657. */
  658. static const u32 prio_to_wmult[40] = {
  659. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  660. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  661. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  662. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  663. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  664. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  665. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  666. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  667. };
  668. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  669. /*
  670. * runqueue iterator, to support SMP load-balancing between different
  671. * scheduling classes, without having to expose their internal data
  672. * structures to the load-balancing proper:
  673. */
  674. struct rq_iterator {
  675. void *arg;
  676. struct task_struct *(*start)(void *);
  677. struct task_struct *(*next)(void *);
  678. };
  679. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  680. unsigned long max_nr_move, unsigned long max_load_move,
  681. struct sched_domain *sd, enum cpu_idle_type idle,
  682. int *all_pinned, unsigned long *load_moved,
  683. int *this_best_prio, struct rq_iterator *iterator);
  684. #include "sched_stats.h"
  685. #include "sched_rt.c"
  686. #include "sched_fair.c"
  687. #include "sched_idletask.c"
  688. #ifdef CONFIG_SCHED_DEBUG
  689. # include "sched_debug.c"
  690. #endif
  691. #define sched_class_highest (&rt_sched_class)
  692. static void __update_curr_load(struct rq *rq, struct load_stat *ls)
  693. {
  694. if (rq->curr != rq->idle && ls->load.weight) {
  695. ls->delta_exec += ls->delta_stat;
  696. ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
  697. ls->delta_stat = 0;
  698. }
  699. }
  700. /*
  701. * Update delta_exec, delta_fair fields for rq.
  702. *
  703. * delta_fair clock advances at a rate inversely proportional to
  704. * total load (rq->ls.load.weight) on the runqueue, while
  705. * delta_exec advances at the same rate as wall-clock (provided
  706. * cpu is not idle).
  707. *
  708. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  709. * runqueue over any given interval. This (smoothened) load is used
  710. * during load balance.
  711. *
  712. * This function is called /before/ updating rq->ls.load
  713. * and when switching tasks.
  714. */
  715. static void update_curr_load(struct rq *rq)
  716. {
  717. struct load_stat *ls = &rq->ls;
  718. u64 start;
  719. start = ls->load_update_start;
  720. ls->load_update_start = rq->clock;
  721. ls->delta_stat += rq->clock - start;
  722. /*
  723. * Stagger updates to ls->delta_fair. Very frequent updates
  724. * can be expensive.
  725. */
  726. if (ls->delta_stat >= sysctl_sched_stat_granularity)
  727. __update_curr_load(rq, ls);
  728. }
  729. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  730. {
  731. update_curr_load(rq);
  732. update_load_add(&rq->ls.load, p->se.load.weight);
  733. }
  734. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  735. {
  736. update_curr_load(rq);
  737. update_load_sub(&rq->ls.load, p->se.load.weight);
  738. }
  739. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  740. {
  741. rq->nr_running++;
  742. inc_load(rq, p);
  743. }
  744. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  745. {
  746. rq->nr_running--;
  747. dec_load(rq, p);
  748. }
  749. static void set_load_weight(struct task_struct *p)
  750. {
  751. task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
  752. p->se.wait_runtime = 0;
  753. if (task_has_rt_policy(p)) {
  754. p->se.load.weight = prio_to_weight[0] * 2;
  755. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  756. return;
  757. }
  758. /*
  759. * SCHED_IDLE tasks get minimal weight:
  760. */
  761. if (p->policy == SCHED_IDLE) {
  762. p->se.load.weight = WEIGHT_IDLEPRIO;
  763. p->se.load.inv_weight = WMULT_IDLEPRIO;
  764. return;
  765. }
  766. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  767. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  768. }
  769. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  770. {
  771. sched_info_queued(p);
  772. p->sched_class->enqueue_task(rq, p, wakeup);
  773. p->se.on_rq = 1;
  774. }
  775. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  776. {
  777. p->sched_class->dequeue_task(rq, p, sleep);
  778. p->se.on_rq = 0;
  779. }
  780. /*
  781. * __normal_prio - return the priority that is based on the static prio
  782. */
  783. static inline int __normal_prio(struct task_struct *p)
  784. {
  785. return p->static_prio;
  786. }
  787. /*
  788. * Calculate the expected normal priority: i.e. priority
  789. * without taking RT-inheritance into account. Might be
  790. * boosted by interactivity modifiers. Changes upon fork,
  791. * setprio syscalls, and whenever the interactivity
  792. * estimator recalculates.
  793. */
  794. static inline int normal_prio(struct task_struct *p)
  795. {
  796. int prio;
  797. if (task_has_rt_policy(p))
  798. prio = MAX_RT_PRIO-1 - p->rt_priority;
  799. else
  800. prio = __normal_prio(p);
  801. return prio;
  802. }
  803. /*
  804. * Calculate the current priority, i.e. the priority
  805. * taken into account by the scheduler. This value might
  806. * be boosted by RT tasks, or might be boosted by
  807. * interactivity modifiers. Will be RT if the task got
  808. * RT-boosted. If not then it returns p->normal_prio.
  809. */
  810. static int effective_prio(struct task_struct *p)
  811. {
  812. p->normal_prio = normal_prio(p);
  813. /*
  814. * If we are RT tasks or we were boosted to RT priority,
  815. * keep the priority unchanged. Otherwise, update priority
  816. * to the normal priority:
  817. */
  818. if (!rt_prio(p->prio))
  819. return p->normal_prio;
  820. return p->prio;
  821. }
  822. /*
  823. * activate_task - move a task to the runqueue.
  824. */
  825. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  826. {
  827. if (p->state == TASK_UNINTERRUPTIBLE)
  828. rq->nr_uninterruptible--;
  829. enqueue_task(rq, p, wakeup);
  830. inc_nr_running(p, rq);
  831. }
  832. /*
  833. * activate_idle_task - move idle task to the _front_ of runqueue.
  834. */
  835. static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
  836. {
  837. update_rq_clock(rq);
  838. if (p->state == TASK_UNINTERRUPTIBLE)
  839. rq->nr_uninterruptible--;
  840. enqueue_task(rq, p, 0);
  841. inc_nr_running(p, rq);
  842. }
  843. /*
  844. * deactivate_task - remove a task from the runqueue.
  845. */
  846. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  847. {
  848. if (p->state == TASK_UNINTERRUPTIBLE)
  849. rq->nr_uninterruptible++;
  850. dequeue_task(rq, p, sleep);
  851. dec_nr_running(p, rq);
  852. }
  853. /**
  854. * task_curr - is this task currently executing on a CPU?
  855. * @p: the task in question.
  856. */
  857. inline int task_curr(const struct task_struct *p)
  858. {
  859. return cpu_curr(task_cpu(p)) == p;
  860. }
  861. /* Used instead of source_load when we know the type == 0 */
  862. unsigned long weighted_cpuload(const int cpu)
  863. {
  864. return cpu_rq(cpu)->ls.load.weight;
  865. }
  866. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  867. {
  868. #ifdef CONFIG_SMP
  869. task_thread_info(p)->cpu = cpu;
  870. set_task_cfs_rq(p);
  871. #endif
  872. }
  873. #ifdef CONFIG_SMP
  874. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  875. {
  876. int old_cpu = task_cpu(p);
  877. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  878. u64 clock_offset, fair_clock_offset;
  879. clock_offset = old_rq->clock - new_rq->clock;
  880. fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
  881. if (p->se.wait_start_fair)
  882. p->se.wait_start_fair -= fair_clock_offset;
  883. if (p->se.sleep_start_fair)
  884. p->se.sleep_start_fair -= fair_clock_offset;
  885. #ifdef CONFIG_SCHEDSTATS
  886. if (p->se.wait_start)
  887. p->se.wait_start -= clock_offset;
  888. if (p->se.sleep_start)
  889. p->se.sleep_start -= clock_offset;
  890. if (p->se.block_start)
  891. p->se.block_start -= clock_offset;
  892. #endif
  893. __set_task_cpu(p, new_cpu);
  894. }
  895. struct migration_req {
  896. struct list_head list;
  897. struct task_struct *task;
  898. int dest_cpu;
  899. struct completion done;
  900. };
  901. /*
  902. * The task's runqueue lock must be held.
  903. * Returns true if you have to wait for migration thread.
  904. */
  905. static int
  906. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  907. {
  908. struct rq *rq = task_rq(p);
  909. /*
  910. * If the task is not on a runqueue (and not running), then
  911. * it is sufficient to simply update the task's cpu field.
  912. */
  913. if (!p->se.on_rq && !task_running(rq, p)) {
  914. set_task_cpu(p, dest_cpu);
  915. return 0;
  916. }
  917. init_completion(&req->done);
  918. req->task = p;
  919. req->dest_cpu = dest_cpu;
  920. list_add(&req->list, &rq->migration_queue);
  921. return 1;
  922. }
  923. /*
  924. * wait_task_inactive - wait for a thread to unschedule.
  925. *
  926. * The caller must ensure that the task *will* unschedule sometime soon,
  927. * else this function might spin for a *long* time. This function can't
  928. * be called with interrupts off, or it may introduce deadlock with
  929. * smp_call_function() if an IPI is sent by the same process we are
  930. * waiting to become inactive.
  931. */
  932. void wait_task_inactive(struct task_struct *p)
  933. {
  934. unsigned long flags;
  935. int running, on_rq;
  936. struct rq *rq;
  937. repeat:
  938. /*
  939. * We do the initial early heuristics without holding
  940. * any task-queue locks at all. We'll only try to get
  941. * the runqueue lock when things look like they will
  942. * work out!
  943. */
  944. rq = task_rq(p);
  945. /*
  946. * If the task is actively running on another CPU
  947. * still, just relax and busy-wait without holding
  948. * any locks.
  949. *
  950. * NOTE! Since we don't hold any locks, it's not
  951. * even sure that "rq" stays as the right runqueue!
  952. * But we don't care, since "task_running()" will
  953. * return false if the runqueue has changed and p
  954. * is actually now running somewhere else!
  955. */
  956. while (task_running(rq, p))
  957. cpu_relax();
  958. /*
  959. * Ok, time to look more closely! We need the rq
  960. * lock now, to be *sure*. If we're wrong, we'll
  961. * just go back and repeat.
  962. */
  963. rq = task_rq_lock(p, &flags);
  964. running = task_running(rq, p);
  965. on_rq = p->se.on_rq;
  966. task_rq_unlock(rq, &flags);
  967. /*
  968. * Was it really running after all now that we
  969. * checked with the proper locks actually held?
  970. *
  971. * Oops. Go back and try again..
  972. */
  973. if (unlikely(running)) {
  974. cpu_relax();
  975. goto repeat;
  976. }
  977. /*
  978. * It's not enough that it's not actively running,
  979. * it must be off the runqueue _entirely_, and not
  980. * preempted!
  981. *
  982. * So if it wa still runnable (but just not actively
  983. * running right now), it's preempted, and we should
  984. * yield - it could be a while.
  985. */
  986. if (unlikely(on_rq)) {
  987. yield();
  988. goto repeat;
  989. }
  990. /*
  991. * Ahh, all good. It wasn't running, and it wasn't
  992. * runnable, which means that it will never become
  993. * running in the future either. We're all done!
  994. */
  995. }
  996. /***
  997. * kick_process - kick a running thread to enter/exit the kernel
  998. * @p: the to-be-kicked thread
  999. *
  1000. * Cause a process which is running on another CPU to enter
  1001. * kernel-mode, without any delay. (to get signals handled.)
  1002. *
  1003. * NOTE: this function doesnt have to take the runqueue lock,
  1004. * because all it wants to ensure is that the remote task enters
  1005. * the kernel. If the IPI races and the task has been migrated
  1006. * to another CPU then no harm is done and the purpose has been
  1007. * achieved as well.
  1008. */
  1009. void kick_process(struct task_struct *p)
  1010. {
  1011. int cpu;
  1012. preempt_disable();
  1013. cpu = task_cpu(p);
  1014. if ((cpu != smp_processor_id()) && task_curr(p))
  1015. smp_send_reschedule(cpu);
  1016. preempt_enable();
  1017. }
  1018. /*
  1019. * Return a low guess at the load of a migration-source cpu weighted
  1020. * according to the scheduling class and "nice" value.
  1021. *
  1022. * We want to under-estimate the load of migration sources, to
  1023. * balance conservatively.
  1024. */
  1025. static inline unsigned long source_load(int cpu, int type)
  1026. {
  1027. struct rq *rq = cpu_rq(cpu);
  1028. unsigned long total = weighted_cpuload(cpu);
  1029. if (type == 0)
  1030. return total;
  1031. return min(rq->cpu_load[type-1], total);
  1032. }
  1033. /*
  1034. * Return a high guess at the load of a migration-target cpu weighted
  1035. * according to the scheduling class and "nice" value.
  1036. */
  1037. static inline unsigned long target_load(int cpu, int type)
  1038. {
  1039. struct rq *rq = cpu_rq(cpu);
  1040. unsigned long total = weighted_cpuload(cpu);
  1041. if (type == 0)
  1042. return total;
  1043. return max(rq->cpu_load[type-1], total);
  1044. }
  1045. /*
  1046. * Return the average load per task on the cpu's run queue
  1047. */
  1048. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1049. {
  1050. struct rq *rq = cpu_rq(cpu);
  1051. unsigned long total = weighted_cpuload(cpu);
  1052. unsigned long n = rq->nr_running;
  1053. return n ? total / n : SCHED_LOAD_SCALE;
  1054. }
  1055. /*
  1056. * find_idlest_group finds and returns the least busy CPU group within the
  1057. * domain.
  1058. */
  1059. static struct sched_group *
  1060. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1061. {
  1062. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1063. unsigned long min_load = ULONG_MAX, this_load = 0;
  1064. int load_idx = sd->forkexec_idx;
  1065. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1066. do {
  1067. unsigned long load, avg_load;
  1068. int local_group;
  1069. int i;
  1070. /* Skip over this group if it has no CPUs allowed */
  1071. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1072. goto nextgroup;
  1073. local_group = cpu_isset(this_cpu, group->cpumask);
  1074. /* Tally up the load of all CPUs in the group */
  1075. avg_load = 0;
  1076. for_each_cpu_mask(i, group->cpumask) {
  1077. /* Bias balancing toward cpus of our domain */
  1078. if (local_group)
  1079. load = source_load(i, load_idx);
  1080. else
  1081. load = target_load(i, load_idx);
  1082. avg_load += load;
  1083. }
  1084. /* Adjust by relative CPU power of the group */
  1085. avg_load = sg_div_cpu_power(group,
  1086. avg_load * SCHED_LOAD_SCALE);
  1087. if (local_group) {
  1088. this_load = avg_load;
  1089. this = group;
  1090. } else if (avg_load < min_load) {
  1091. min_load = avg_load;
  1092. idlest = group;
  1093. }
  1094. nextgroup:
  1095. group = group->next;
  1096. } while (group != sd->groups);
  1097. if (!idlest || 100*this_load < imbalance*min_load)
  1098. return NULL;
  1099. return idlest;
  1100. }
  1101. /*
  1102. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1103. */
  1104. static int
  1105. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1106. {
  1107. cpumask_t tmp;
  1108. unsigned long load, min_load = ULONG_MAX;
  1109. int idlest = -1;
  1110. int i;
  1111. /* Traverse only the allowed CPUs */
  1112. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1113. for_each_cpu_mask(i, tmp) {
  1114. load = weighted_cpuload(i);
  1115. if (load < min_load || (load == min_load && i == this_cpu)) {
  1116. min_load = load;
  1117. idlest = i;
  1118. }
  1119. }
  1120. return idlest;
  1121. }
  1122. /*
  1123. * sched_balance_self: balance the current task (running on cpu) in domains
  1124. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1125. * SD_BALANCE_EXEC.
  1126. *
  1127. * Balance, ie. select the least loaded group.
  1128. *
  1129. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1130. *
  1131. * preempt must be disabled.
  1132. */
  1133. static int sched_balance_self(int cpu, int flag)
  1134. {
  1135. struct task_struct *t = current;
  1136. struct sched_domain *tmp, *sd = NULL;
  1137. for_each_domain(cpu, tmp) {
  1138. /*
  1139. * If power savings logic is enabled for a domain, stop there.
  1140. */
  1141. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1142. break;
  1143. if (tmp->flags & flag)
  1144. sd = tmp;
  1145. }
  1146. while (sd) {
  1147. cpumask_t span;
  1148. struct sched_group *group;
  1149. int new_cpu, weight;
  1150. if (!(sd->flags & flag)) {
  1151. sd = sd->child;
  1152. continue;
  1153. }
  1154. span = sd->span;
  1155. group = find_idlest_group(sd, t, cpu);
  1156. if (!group) {
  1157. sd = sd->child;
  1158. continue;
  1159. }
  1160. new_cpu = find_idlest_cpu(group, t, cpu);
  1161. if (new_cpu == -1 || new_cpu == cpu) {
  1162. /* Now try balancing at a lower domain level of cpu */
  1163. sd = sd->child;
  1164. continue;
  1165. }
  1166. /* Now try balancing at a lower domain level of new_cpu */
  1167. cpu = new_cpu;
  1168. sd = NULL;
  1169. weight = cpus_weight(span);
  1170. for_each_domain(cpu, tmp) {
  1171. if (weight <= cpus_weight(tmp->span))
  1172. break;
  1173. if (tmp->flags & flag)
  1174. sd = tmp;
  1175. }
  1176. /* while loop will break here if sd == NULL */
  1177. }
  1178. return cpu;
  1179. }
  1180. #endif /* CONFIG_SMP */
  1181. /*
  1182. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1183. * not idle and an idle cpu is available. The span of cpus to
  1184. * search starts with cpus closest then further out as needed,
  1185. * so we always favor a closer, idle cpu.
  1186. *
  1187. * Returns the CPU we should wake onto.
  1188. */
  1189. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1190. static int wake_idle(int cpu, struct task_struct *p)
  1191. {
  1192. cpumask_t tmp;
  1193. struct sched_domain *sd;
  1194. int i;
  1195. /*
  1196. * If it is idle, then it is the best cpu to run this task.
  1197. *
  1198. * This cpu is also the best, if it has more than one task already.
  1199. * Siblings must be also busy(in most cases) as they didn't already
  1200. * pickup the extra load from this cpu and hence we need not check
  1201. * sibling runqueue info. This will avoid the checks and cache miss
  1202. * penalities associated with that.
  1203. */
  1204. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1205. return cpu;
  1206. for_each_domain(cpu, sd) {
  1207. if (sd->flags & SD_WAKE_IDLE) {
  1208. cpus_and(tmp, sd->span, p->cpus_allowed);
  1209. for_each_cpu_mask(i, tmp) {
  1210. if (idle_cpu(i))
  1211. return i;
  1212. }
  1213. } else {
  1214. break;
  1215. }
  1216. }
  1217. return cpu;
  1218. }
  1219. #else
  1220. static inline int wake_idle(int cpu, struct task_struct *p)
  1221. {
  1222. return cpu;
  1223. }
  1224. #endif
  1225. /***
  1226. * try_to_wake_up - wake up a thread
  1227. * @p: the to-be-woken-up thread
  1228. * @state: the mask of task states that can be woken
  1229. * @sync: do a synchronous wakeup?
  1230. *
  1231. * Put it on the run-queue if it's not already there. The "current"
  1232. * thread is always on the run-queue (except when the actual
  1233. * re-schedule is in progress), and as such you're allowed to do
  1234. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1235. * runnable without the overhead of this.
  1236. *
  1237. * returns failure only if the task is already active.
  1238. */
  1239. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1240. {
  1241. int cpu, this_cpu, success = 0;
  1242. unsigned long flags;
  1243. long old_state;
  1244. struct rq *rq;
  1245. #ifdef CONFIG_SMP
  1246. struct sched_domain *sd, *this_sd = NULL;
  1247. unsigned long load, this_load;
  1248. int new_cpu;
  1249. #endif
  1250. rq = task_rq_lock(p, &flags);
  1251. old_state = p->state;
  1252. if (!(old_state & state))
  1253. goto out;
  1254. if (p->se.on_rq)
  1255. goto out_running;
  1256. cpu = task_cpu(p);
  1257. this_cpu = smp_processor_id();
  1258. #ifdef CONFIG_SMP
  1259. if (unlikely(task_running(rq, p)))
  1260. goto out_activate;
  1261. new_cpu = cpu;
  1262. schedstat_inc(rq, ttwu_cnt);
  1263. if (cpu == this_cpu) {
  1264. schedstat_inc(rq, ttwu_local);
  1265. goto out_set_cpu;
  1266. }
  1267. for_each_domain(this_cpu, sd) {
  1268. if (cpu_isset(cpu, sd->span)) {
  1269. schedstat_inc(sd, ttwu_wake_remote);
  1270. this_sd = sd;
  1271. break;
  1272. }
  1273. }
  1274. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1275. goto out_set_cpu;
  1276. /*
  1277. * Check for affine wakeup and passive balancing possibilities.
  1278. */
  1279. if (this_sd) {
  1280. int idx = this_sd->wake_idx;
  1281. unsigned int imbalance;
  1282. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1283. load = source_load(cpu, idx);
  1284. this_load = target_load(this_cpu, idx);
  1285. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1286. if (this_sd->flags & SD_WAKE_AFFINE) {
  1287. unsigned long tl = this_load;
  1288. unsigned long tl_per_task;
  1289. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1290. /*
  1291. * If sync wakeup then subtract the (maximum possible)
  1292. * effect of the currently running task from the load
  1293. * of the current CPU:
  1294. */
  1295. if (sync)
  1296. tl -= current->se.load.weight;
  1297. if ((tl <= load &&
  1298. tl + target_load(cpu, idx) <= tl_per_task) ||
  1299. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1300. /*
  1301. * This domain has SD_WAKE_AFFINE and
  1302. * p is cache cold in this domain, and
  1303. * there is no bad imbalance.
  1304. */
  1305. schedstat_inc(this_sd, ttwu_move_affine);
  1306. goto out_set_cpu;
  1307. }
  1308. }
  1309. /*
  1310. * Start passive balancing when half the imbalance_pct
  1311. * limit is reached.
  1312. */
  1313. if (this_sd->flags & SD_WAKE_BALANCE) {
  1314. if (imbalance*this_load <= 100*load) {
  1315. schedstat_inc(this_sd, ttwu_move_balance);
  1316. goto out_set_cpu;
  1317. }
  1318. }
  1319. }
  1320. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1321. out_set_cpu:
  1322. new_cpu = wake_idle(new_cpu, p);
  1323. if (new_cpu != cpu) {
  1324. set_task_cpu(p, new_cpu);
  1325. task_rq_unlock(rq, &flags);
  1326. /* might preempt at this point */
  1327. rq = task_rq_lock(p, &flags);
  1328. old_state = p->state;
  1329. if (!(old_state & state))
  1330. goto out;
  1331. if (p->se.on_rq)
  1332. goto out_running;
  1333. this_cpu = smp_processor_id();
  1334. cpu = task_cpu(p);
  1335. }
  1336. out_activate:
  1337. #endif /* CONFIG_SMP */
  1338. update_rq_clock(rq);
  1339. activate_task(rq, p, 1);
  1340. /*
  1341. * Sync wakeups (i.e. those types of wakeups where the waker
  1342. * has indicated that it will leave the CPU in short order)
  1343. * don't trigger a preemption, if the woken up task will run on
  1344. * this cpu. (in this case the 'I will reschedule' promise of
  1345. * the waker guarantees that the freshly woken up task is going
  1346. * to be considered on this CPU.)
  1347. */
  1348. if (!sync || cpu != this_cpu)
  1349. check_preempt_curr(rq, p);
  1350. success = 1;
  1351. out_running:
  1352. p->state = TASK_RUNNING;
  1353. out:
  1354. task_rq_unlock(rq, &flags);
  1355. return success;
  1356. }
  1357. int fastcall wake_up_process(struct task_struct *p)
  1358. {
  1359. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1360. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1361. }
  1362. EXPORT_SYMBOL(wake_up_process);
  1363. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1364. {
  1365. return try_to_wake_up(p, state, 0);
  1366. }
  1367. /*
  1368. * Perform scheduler related setup for a newly forked process p.
  1369. * p is forked by current.
  1370. *
  1371. * __sched_fork() is basic setup used by init_idle() too:
  1372. */
  1373. static void __sched_fork(struct task_struct *p)
  1374. {
  1375. p->se.wait_start_fair = 0;
  1376. p->se.exec_start = 0;
  1377. p->se.sum_exec_runtime = 0;
  1378. p->se.delta_exec = 0;
  1379. p->se.delta_fair_run = 0;
  1380. p->se.delta_fair_sleep = 0;
  1381. p->se.wait_runtime = 0;
  1382. p->se.sleep_start_fair = 0;
  1383. #ifdef CONFIG_SCHEDSTATS
  1384. p->se.wait_start = 0;
  1385. p->se.sum_wait_runtime = 0;
  1386. p->se.sum_sleep_runtime = 0;
  1387. p->se.sleep_start = 0;
  1388. p->se.block_start = 0;
  1389. p->se.sleep_max = 0;
  1390. p->se.block_max = 0;
  1391. p->se.exec_max = 0;
  1392. p->se.wait_max = 0;
  1393. p->se.wait_runtime_overruns = 0;
  1394. p->se.wait_runtime_underruns = 0;
  1395. #endif
  1396. INIT_LIST_HEAD(&p->run_list);
  1397. p->se.on_rq = 0;
  1398. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1399. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1400. #endif
  1401. /*
  1402. * We mark the process as running here, but have not actually
  1403. * inserted it onto the runqueue yet. This guarantees that
  1404. * nobody will actually run it, and a signal or other external
  1405. * event cannot wake it up and insert it on the runqueue either.
  1406. */
  1407. p->state = TASK_RUNNING;
  1408. }
  1409. /*
  1410. * fork()/clone()-time setup:
  1411. */
  1412. void sched_fork(struct task_struct *p, int clone_flags)
  1413. {
  1414. int cpu = get_cpu();
  1415. __sched_fork(p);
  1416. #ifdef CONFIG_SMP
  1417. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1418. #endif
  1419. __set_task_cpu(p, cpu);
  1420. /*
  1421. * Make sure we do not leak PI boosting priority to the child:
  1422. */
  1423. p->prio = current->normal_prio;
  1424. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1425. if (likely(sched_info_on()))
  1426. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1427. #endif
  1428. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1429. p->oncpu = 0;
  1430. #endif
  1431. #ifdef CONFIG_PREEMPT
  1432. /* Want to start with kernel preemption disabled. */
  1433. task_thread_info(p)->preempt_count = 1;
  1434. #endif
  1435. put_cpu();
  1436. }
  1437. /*
  1438. * After fork, child runs first. (default) If set to 0 then
  1439. * parent will (try to) run first.
  1440. */
  1441. unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
  1442. /*
  1443. * wake_up_new_task - wake up a newly created task for the first time.
  1444. *
  1445. * This function will do some initial scheduler statistics housekeeping
  1446. * that must be done for every newly created context, then puts the task
  1447. * on the runqueue and wakes it.
  1448. */
  1449. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1450. {
  1451. unsigned long flags;
  1452. struct rq *rq;
  1453. int this_cpu;
  1454. rq = task_rq_lock(p, &flags);
  1455. BUG_ON(p->state != TASK_RUNNING);
  1456. this_cpu = smp_processor_id(); /* parent's CPU */
  1457. update_rq_clock(rq);
  1458. p->prio = effective_prio(p);
  1459. if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
  1460. (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
  1461. !current->se.on_rq) {
  1462. activate_task(rq, p, 0);
  1463. } else {
  1464. /*
  1465. * Let the scheduling class do new task startup
  1466. * management (if any):
  1467. */
  1468. p->sched_class->task_new(rq, p);
  1469. inc_nr_running(p, rq);
  1470. }
  1471. check_preempt_curr(rq, p);
  1472. task_rq_unlock(rq, &flags);
  1473. }
  1474. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1475. /**
  1476. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1477. * @notifier: notifier struct to register
  1478. */
  1479. void preempt_notifier_register(struct preempt_notifier *notifier)
  1480. {
  1481. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1482. }
  1483. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1484. /**
  1485. * preempt_notifier_unregister - no longer interested in preemption notifications
  1486. * @notifier: notifier struct to unregister
  1487. *
  1488. * This is safe to call from within a preemption notifier.
  1489. */
  1490. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1491. {
  1492. hlist_del(&notifier->link);
  1493. }
  1494. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1495. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1496. {
  1497. struct preempt_notifier *notifier;
  1498. struct hlist_node *node;
  1499. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1500. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1501. }
  1502. static void
  1503. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1504. struct task_struct *next)
  1505. {
  1506. struct preempt_notifier *notifier;
  1507. struct hlist_node *node;
  1508. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1509. notifier->ops->sched_out(notifier, next);
  1510. }
  1511. #else
  1512. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1513. {
  1514. }
  1515. static void
  1516. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1517. struct task_struct *next)
  1518. {
  1519. }
  1520. #endif
  1521. /**
  1522. * prepare_task_switch - prepare to switch tasks
  1523. * @rq: the runqueue preparing to switch
  1524. * @prev: the current task that is being switched out
  1525. * @next: the task we are going to switch to.
  1526. *
  1527. * This is called with the rq lock held and interrupts off. It must
  1528. * be paired with a subsequent finish_task_switch after the context
  1529. * switch.
  1530. *
  1531. * prepare_task_switch sets up locking and calls architecture specific
  1532. * hooks.
  1533. */
  1534. static inline void
  1535. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1536. struct task_struct *next)
  1537. {
  1538. fire_sched_out_preempt_notifiers(prev, next);
  1539. prepare_lock_switch(rq, next);
  1540. prepare_arch_switch(next);
  1541. }
  1542. /**
  1543. * finish_task_switch - clean up after a task-switch
  1544. * @rq: runqueue associated with task-switch
  1545. * @prev: the thread we just switched away from.
  1546. *
  1547. * finish_task_switch must be called after the context switch, paired
  1548. * with a prepare_task_switch call before the context switch.
  1549. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1550. * and do any other architecture-specific cleanup actions.
  1551. *
  1552. * Note that we may have delayed dropping an mm in context_switch(). If
  1553. * so, we finish that here outside of the runqueue lock. (Doing it
  1554. * with the lock held can cause deadlocks; see schedule() for
  1555. * details.)
  1556. */
  1557. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1558. __releases(rq->lock)
  1559. {
  1560. struct mm_struct *mm = rq->prev_mm;
  1561. long prev_state;
  1562. rq->prev_mm = NULL;
  1563. /*
  1564. * A task struct has one reference for the use as "current".
  1565. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1566. * schedule one last time. The schedule call will never return, and
  1567. * the scheduled task must drop that reference.
  1568. * The test for TASK_DEAD must occur while the runqueue locks are
  1569. * still held, otherwise prev could be scheduled on another cpu, die
  1570. * there before we look at prev->state, and then the reference would
  1571. * be dropped twice.
  1572. * Manfred Spraul <manfred@colorfullife.com>
  1573. */
  1574. prev_state = prev->state;
  1575. finish_arch_switch(prev);
  1576. finish_lock_switch(rq, prev);
  1577. fire_sched_in_preempt_notifiers(current);
  1578. if (mm)
  1579. mmdrop(mm);
  1580. if (unlikely(prev_state == TASK_DEAD)) {
  1581. /*
  1582. * Remove function-return probe instances associated with this
  1583. * task and put them back on the free list.
  1584. */
  1585. kprobe_flush_task(prev);
  1586. put_task_struct(prev);
  1587. }
  1588. }
  1589. /**
  1590. * schedule_tail - first thing a freshly forked thread must call.
  1591. * @prev: the thread we just switched away from.
  1592. */
  1593. asmlinkage void schedule_tail(struct task_struct *prev)
  1594. __releases(rq->lock)
  1595. {
  1596. struct rq *rq = this_rq();
  1597. finish_task_switch(rq, prev);
  1598. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1599. /* In this case, finish_task_switch does not reenable preemption */
  1600. preempt_enable();
  1601. #endif
  1602. if (current->set_child_tid)
  1603. put_user(current->pid, current->set_child_tid);
  1604. }
  1605. /*
  1606. * context_switch - switch to the new MM and the new
  1607. * thread's register state.
  1608. */
  1609. static inline void
  1610. context_switch(struct rq *rq, struct task_struct *prev,
  1611. struct task_struct *next)
  1612. {
  1613. struct mm_struct *mm, *oldmm;
  1614. prepare_task_switch(rq, prev, next);
  1615. mm = next->mm;
  1616. oldmm = prev->active_mm;
  1617. /*
  1618. * For paravirt, this is coupled with an exit in switch_to to
  1619. * combine the page table reload and the switch backend into
  1620. * one hypercall.
  1621. */
  1622. arch_enter_lazy_cpu_mode();
  1623. if (unlikely(!mm)) {
  1624. next->active_mm = oldmm;
  1625. atomic_inc(&oldmm->mm_count);
  1626. enter_lazy_tlb(oldmm, next);
  1627. } else
  1628. switch_mm(oldmm, mm, next);
  1629. if (unlikely(!prev->mm)) {
  1630. prev->active_mm = NULL;
  1631. rq->prev_mm = oldmm;
  1632. }
  1633. /*
  1634. * Since the runqueue lock will be released by the next
  1635. * task (which is an invalid locking op but in the case
  1636. * of the scheduler it's an obvious special-case), so we
  1637. * do an early lockdep release here:
  1638. */
  1639. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1640. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1641. #endif
  1642. /* Here we just switch the register state and the stack. */
  1643. switch_to(prev, next, prev);
  1644. barrier();
  1645. /*
  1646. * this_rq must be evaluated again because prev may have moved
  1647. * CPUs since it called schedule(), thus the 'rq' on its stack
  1648. * frame will be invalid.
  1649. */
  1650. finish_task_switch(this_rq(), prev);
  1651. }
  1652. /*
  1653. * nr_running, nr_uninterruptible and nr_context_switches:
  1654. *
  1655. * externally visible scheduler statistics: current number of runnable
  1656. * threads, current number of uninterruptible-sleeping threads, total
  1657. * number of context switches performed since bootup.
  1658. */
  1659. unsigned long nr_running(void)
  1660. {
  1661. unsigned long i, sum = 0;
  1662. for_each_online_cpu(i)
  1663. sum += cpu_rq(i)->nr_running;
  1664. return sum;
  1665. }
  1666. unsigned long nr_uninterruptible(void)
  1667. {
  1668. unsigned long i, sum = 0;
  1669. for_each_possible_cpu(i)
  1670. sum += cpu_rq(i)->nr_uninterruptible;
  1671. /*
  1672. * Since we read the counters lockless, it might be slightly
  1673. * inaccurate. Do not allow it to go below zero though:
  1674. */
  1675. if (unlikely((long)sum < 0))
  1676. sum = 0;
  1677. return sum;
  1678. }
  1679. unsigned long long nr_context_switches(void)
  1680. {
  1681. int i;
  1682. unsigned long long sum = 0;
  1683. for_each_possible_cpu(i)
  1684. sum += cpu_rq(i)->nr_switches;
  1685. return sum;
  1686. }
  1687. unsigned long nr_iowait(void)
  1688. {
  1689. unsigned long i, sum = 0;
  1690. for_each_possible_cpu(i)
  1691. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1692. return sum;
  1693. }
  1694. unsigned long nr_active(void)
  1695. {
  1696. unsigned long i, running = 0, uninterruptible = 0;
  1697. for_each_online_cpu(i) {
  1698. running += cpu_rq(i)->nr_running;
  1699. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1700. }
  1701. if (unlikely((long)uninterruptible < 0))
  1702. uninterruptible = 0;
  1703. return running + uninterruptible;
  1704. }
  1705. /*
  1706. * Update rq->cpu_load[] statistics. This function is usually called every
  1707. * scheduler tick (TICK_NSEC).
  1708. */
  1709. static void update_cpu_load(struct rq *this_rq)
  1710. {
  1711. u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
  1712. unsigned long total_load = this_rq->ls.load.weight;
  1713. unsigned long this_load = total_load;
  1714. struct load_stat *ls = &this_rq->ls;
  1715. int i, scale;
  1716. this_rq->nr_load_updates++;
  1717. if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
  1718. goto do_avg;
  1719. /* Update delta_fair/delta_exec fields first */
  1720. update_curr_load(this_rq);
  1721. fair_delta64 = ls->delta_fair + 1;
  1722. ls->delta_fair = 0;
  1723. exec_delta64 = ls->delta_exec + 1;
  1724. ls->delta_exec = 0;
  1725. sample_interval64 = this_rq->clock - ls->load_update_last;
  1726. ls->load_update_last = this_rq->clock;
  1727. if ((s64)sample_interval64 < (s64)TICK_NSEC)
  1728. sample_interval64 = TICK_NSEC;
  1729. if (exec_delta64 > sample_interval64)
  1730. exec_delta64 = sample_interval64;
  1731. idle_delta64 = sample_interval64 - exec_delta64;
  1732. tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
  1733. tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
  1734. this_load = (unsigned long)tmp64;
  1735. do_avg:
  1736. /* Update our load: */
  1737. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1738. unsigned long old_load, new_load;
  1739. /* scale is effectively 1 << i now, and >> i divides by scale */
  1740. old_load = this_rq->cpu_load[i];
  1741. new_load = this_load;
  1742. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1743. }
  1744. }
  1745. #ifdef CONFIG_SMP
  1746. /*
  1747. * double_rq_lock - safely lock two runqueues
  1748. *
  1749. * Note this does not disable interrupts like task_rq_lock,
  1750. * you need to do so manually before calling.
  1751. */
  1752. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1753. __acquires(rq1->lock)
  1754. __acquires(rq2->lock)
  1755. {
  1756. BUG_ON(!irqs_disabled());
  1757. if (rq1 == rq2) {
  1758. spin_lock(&rq1->lock);
  1759. __acquire(rq2->lock); /* Fake it out ;) */
  1760. } else {
  1761. if (rq1 < rq2) {
  1762. spin_lock(&rq1->lock);
  1763. spin_lock(&rq2->lock);
  1764. } else {
  1765. spin_lock(&rq2->lock);
  1766. spin_lock(&rq1->lock);
  1767. }
  1768. }
  1769. update_rq_clock(rq1);
  1770. update_rq_clock(rq2);
  1771. }
  1772. /*
  1773. * double_rq_unlock - safely unlock two runqueues
  1774. *
  1775. * Note this does not restore interrupts like task_rq_unlock,
  1776. * you need to do so manually after calling.
  1777. */
  1778. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1779. __releases(rq1->lock)
  1780. __releases(rq2->lock)
  1781. {
  1782. spin_unlock(&rq1->lock);
  1783. if (rq1 != rq2)
  1784. spin_unlock(&rq2->lock);
  1785. else
  1786. __release(rq2->lock);
  1787. }
  1788. /*
  1789. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1790. */
  1791. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1792. __releases(this_rq->lock)
  1793. __acquires(busiest->lock)
  1794. __acquires(this_rq->lock)
  1795. {
  1796. if (unlikely(!irqs_disabled())) {
  1797. /* printk() doesn't work good under rq->lock */
  1798. spin_unlock(&this_rq->lock);
  1799. BUG_ON(1);
  1800. }
  1801. if (unlikely(!spin_trylock(&busiest->lock))) {
  1802. if (busiest < this_rq) {
  1803. spin_unlock(&this_rq->lock);
  1804. spin_lock(&busiest->lock);
  1805. spin_lock(&this_rq->lock);
  1806. } else
  1807. spin_lock(&busiest->lock);
  1808. }
  1809. }
  1810. /*
  1811. * If dest_cpu is allowed for this process, migrate the task to it.
  1812. * This is accomplished by forcing the cpu_allowed mask to only
  1813. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1814. * the cpu_allowed mask is restored.
  1815. */
  1816. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1817. {
  1818. struct migration_req req;
  1819. unsigned long flags;
  1820. struct rq *rq;
  1821. rq = task_rq_lock(p, &flags);
  1822. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1823. || unlikely(cpu_is_offline(dest_cpu)))
  1824. goto out;
  1825. /* force the process onto the specified CPU */
  1826. if (migrate_task(p, dest_cpu, &req)) {
  1827. /* Need to wait for migration thread (might exit: take ref). */
  1828. struct task_struct *mt = rq->migration_thread;
  1829. get_task_struct(mt);
  1830. task_rq_unlock(rq, &flags);
  1831. wake_up_process(mt);
  1832. put_task_struct(mt);
  1833. wait_for_completion(&req.done);
  1834. return;
  1835. }
  1836. out:
  1837. task_rq_unlock(rq, &flags);
  1838. }
  1839. /*
  1840. * sched_exec - execve() is a valuable balancing opportunity, because at
  1841. * this point the task has the smallest effective memory and cache footprint.
  1842. */
  1843. void sched_exec(void)
  1844. {
  1845. int new_cpu, this_cpu = get_cpu();
  1846. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1847. put_cpu();
  1848. if (new_cpu != this_cpu)
  1849. sched_migrate_task(current, new_cpu);
  1850. }
  1851. /*
  1852. * pull_task - move a task from a remote runqueue to the local runqueue.
  1853. * Both runqueues must be locked.
  1854. */
  1855. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1856. struct rq *this_rq, int this_cpu)
  1857. {
  1858. deactivate_task(src_rq, p, 0);
  1859. set_task_cpu(p, this_cpu);
  1860. activate_task(this_rq, p, 0);
  1861. /*
  1862. * Note that idle threads have a prio of MAX_PRIO, for this test
  1863. * to be always true for them.
  1864. */
  1865. check_preempt_curr(this_rq, p);
  1866. }
  1867. /*
  1868. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1869. */
  1870. static
  1871. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1872. struct sched_domain *sd, enum cpu_idle_type idle,
  1873. int *all_pinned)
  1874. {
  1875. /*
  1876. * We do not migrate tasks that are:
  1877. * 1) running (obviously), or
  1878. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1879. * 3) are cache-hot on their current CPU.
  1880. */
  1881. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1882. return 0;
  1883. *all_pinned = 0;
  1884. if (task_running(rq, p))
  1885. return 0;
  1886. /*
  1887. * Aggressive migration if too many balance attempts have failed:
  1888. */
  1889. if (sd->nr_balance_failed > sd->cache_nice_tries)
  1890. return 1;
  1891. return 1;
  1892. }
  1893. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1894. unsigned long max_nr_move, unsigned long max_load_move,
  1895. struct sched_domain *sd, enum cpu_idle_type idle,
  1896. int *all_pinned, unsigned long *load_moved,
  1897. int *this_best_prio, struct rq_iterator *iterator)
  1898. {
  1899. int pulled = 0, pinned = 0, skip_for_load;
  1900. struct task_struct *p;
  1901. long rem_load_move = max_load_move;
  1902. if (max_nr_move == 0 || max_load_move == 0)
  1903. goto out;
  1904. pinned = 1;
  1905. /*
  1906. * Start the load-balancing iterator:
  1907. */
  1908. p = iterator->start(iterator->arg);
  1909. next:
  1910. if (!p)
  1911. goto out;
  1912. /*
  1913. * To help distribute high priority tasks accross CPUs we don't
  1914. * skip a task if it will be the highest priority task (i.e. smallest
  1915. * prio value) on its new queue regardless of its load weight
  1916. */
  1917. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1918. SCHED_LOAD_SCALE_FUZZ;
  1919. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1920. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1921. p = iterator->next(iterator->arg);
  1922. goto next;
  1923. }
  1924. pull_task(busiest, p, this_rq, this_cpu);
  1925. pulled++;
  1926. rem_load_move -= p->se.load.weight;
  1927. /*
  1928. * We only want to steal up to the prescribed number of tasks
  1929. * and the prescribed amount of weighted load.
  1930. */
  1931. if (pulled < max_nr_move && rem_load_move > 0) {
  1932. if (p->prio < *this_best_prio)
  1933. *this_best_prio = p->prio;
  1934. p = iterator->next(iterator->arg);
  1935. goto next;
  1936. }
  1937. out:
  1938. /*
  1939. * Right now, this is the only place pull_task() is called,
  1940. * so we can safely collect pull_task() stats here rather than
  1941. * inside pull_task().
  1942. */
  1943. schedstat_add(sd, lb_gained[idle], pulled);
  1944. if (all_pinned)
  1945. *all_pinned = pinned;
  1946. *load_moved = max_load_move - rem_load_move;
  1947. return pulled;
  1948. }
  1949. /*
  1950. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1951. * this_rq, as part of a balancing operation within domain "sd".
  1952. * Returns 1 if successful and 0 otherwise.
  1953. *
  1954. * Called with both runqueues locked.
  1955. */
  1956. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1957. unsigned long max_load_move,
  1958. struct sched_domain *sd, enum cpu_idle_type idle,
  1959. int *all_pinned)
  1960. {
  1961. struct sched_class *class = sched_class_highest;
  1962. unsigned long total_load_moved = 0;
  1963. int this_best_prio = this_rq->curr->prio;
  1964. do {
  1965. total_load_moved +=
  1966. class->load_balance(this_rq, this_cpu, busiest,
  1967. ULONG_MAX, max_load_move - total_load_moved,
  1968. sd, idle, all_pinned, &this_best_prio);
  1969. class = class->next;
  1970. } while (class && max_load_move > total_load_moved);
  1971. return total_load_moved > 0;
  1972. }
  1973. /*
  1974. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1975. * part of active balancing operations within "domain".
  1976. * Returns 1 if successful and 0 otherwise.
  1977. *
  1978. * Called with both runqueues locked.
  1979. */
  1980. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1981. struct sched_domain *sd, enum cpu_idle_type idle)
  1982. {
  1983. struct sched_class *class;
  1984. int this_best_prio = MAX_PRIO;
  1985. for (class = sched_class_highest; class; class = class->next)
  1986. if (class->load_balance(this_rq, this_cpu, busiest,
  1987. 1, ULONG_MAX, sd, idle, NULL,
  1988. &this_best_prio))
  1989. return 1;
  1990. return 0;
  1991. }
  1992. /*
  1993. * find_busiest_group finds and returns the busiest CPU group within the
  1994. * domain. It calculates and returns the amount of weighted load which
  1995. * should be moved to restore balance via the imbalance parameter.
  1996. */
  1997. static struct sched_group *
  1998. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1999. unsigned long *imbalance, enum cpu_idle_type idle,
  2000. int *sd_idle, cpumask_t *cpus, int *balance)
  2001. {
  2002. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2003. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2004. unsigned long max_pull;
  2005. unsigned long busiest_load_per_task, busiest_nr_running;
  2006. unsigned long this_load_per_task, this_nr_running;
  2007. int load_idx;
  2008. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2009. int power_savings_balance = 1;
  2010. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2011. unsigned long min_nr_running = ULONG_MAX;
  2012. struct sched_group *group_min = NULL, *group_leader = NULL;
  2013. #endif
  2014. max_load = this_load = total_load = total_pwr = 0;
  2015. busiest_load_per_task = busiest_nr_running = 0;
  2016. this_load_per_task = this_nr_running = 0;
  2017. if (idle == CPU_NOT_IDLE)
  2018. load_idx = sd->busy_idx;
  2019. else if (idle == CPU_NEWLY_IDLE)
  2020. load_idx = sd->newidle_idx;
  2021. else
  2022. load_idx = sd->idle_idx;
  2023. do {
  2024. unsigned long load, group_capacity;
  2025. int local_group;
  2026. int i;
  2027. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2028. unsigned long sum_nr_running, sum_weighted_load;
  2029. local_group = cpu_isset(this_cpu, group->cpumask);
  2030. if (local_group)
  2031. balance_cpu = first_cpu(group->cpumask);
  2032. /* Tally up the load of all CPUs in the group */
  2033. sum_weighted_load = sum_nr_running = avg_load = 0;
  2034. for_each_cpu_mask(i, group->cpumask) {
  2035. struct rq *rq;
  2036. if (!cpu_isset(i, *cpus))
  2037. continue;
  2038. rq = cpu_rq(i);
  2039. if (*sd_idle && rq->nr_running)
  2040. *sd_idle = 0;
  2041. /* Bias balancing toward cpus of our domain */
  2042. if (local_group) {
  2043. if (idle_cpu(i) && !first_idle_cpu) {
  2044. first_idle_cpu = 1;
  2045. balance_cpu = i;
  2046. }
  2047. load = target_load(i, load_idx);
  2048. } else
  2049. load = source_load(i, load_idx);
  2050. avg_load += load;
  2051. sum_nr_running += rq->nr_running;
  2052. sum_weighted_load += weighted_cpuload(i);
  2053. }
  2054. /*
  2055. * First idle cpu or the first cpu(busiest) in this sched group
  2056. * is eligible for doing load balancing at this and above
  2057. * domains. In the newly idle case, we will allow all the cpu's
  2058. * to do the newly idle load balance.
  2059. */
  2060. if (idle != CPU_NEWLY_IDLE && local_group &&
  2061. balance_cpu != this_cpu && balance) {
  2062. *balance = 0;
  2063. goto ret;
  2064. }
  2065. total_load += avg_load;
  2066. total_pwr += group->__cpu_power;
  2067. /* Adjust by relative CPU power of the group */
  2068. avg_load = sg_div_cpu_power(group,
  2069. avg_load * SCHED_LOAD_SCALE);
  2070. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2071. if (local_group) {
  2072. this_load = avg_load;
  2073. this = group;
  2074. this_nr_running = sum_nr_running;
  2075. this_load_per_task = sum_weighted_load;
  2076. } else if (avg_load > max_load &&
  2077. sum_nr_running > group_capacity) {
  2078. max_load = avg_load;
  2079. busiest = group;
  2080. busiest_nr_running = sum_nr_running;
  2081. busiest_load_per_task = sum_weighted_load;
  2082. }
  2083. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2084. /*
  2085. * Busy processors will not participate in power savings
  2086. * balance.
  2087. */
  2088. if (idle == CPU_NOT_IDLE ||
  2089. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2090. goto group_next;
  2091. /*
  2092. * If the local group is idle or completely loaded
  2093. * no need to do power savings balance at this domain
  2094. */
  2095. if (local_group && (this_nr_running >= group_capacity ||
  2096. !this_nr_running))
  2097. power_savings_balance = 0;
  2098. /*
  2099. * If a group is already running at full capacity or idle,
  2100. * don't include that group in power savings calculations
  2101. */
  2102. if (!power_savings_balance || sum_nr_running >= group_capacity
  2103. || !sum_nr_running)
  2104. goto group_next;
  2105. /*
  2106. * Calculate the group which has the least non-idle load.
  2107. * This is the group from where we need to pick up the load
  2108. * for saving power
  2109. */
  2110. if ((sum_nr_running < min_nr_running) ||
  2111. (sum_nr_running == min_nr_running &&
  2112. first_cpu(group->cpumask) <
  2113. first_cpu(group_min->cpumask))) {
  2114. group_min = group;
  2115. min_nr_running = sum_nr_running;
  2116. min_load_per_task = sum_weighted_load /
  2117. sum_nr_running;
  2118. }
  2119. /*
  2120. * Calculate the group which is almost near its
  2121. * capacity but still has some space to pick up some load
  2122. * from other group and save more power
  2123. */
  2124. if (sum_nr_running <= group_capacity - 1) {
  2125. if (sum_nr_running > leader_nr_running ||
  2126. (sum_nr_running == leader_nr_running &&
  2127. first_cpu(group->cpumask) >
  2128. first_cpu(group_leader->cpumask))) {
  2129. group_leader = group;
  2130. leader_nr_running = sum_nr_running;
  2131. }
  2132. }
  2133. group_next:
  2134. #endif
  2135. group = group->next;
  2136. } while (group != sd->groups);
  2137. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2138. goto out_balanced;
  2139. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2140. if (this_load >= avg_load ||
  2141. 100*max_load <= sd->imbalance_pct*this_load)
  2142. goto out_balanced;
  2143. busiest_load_per_task /= busiest_nr_running;
  2144. /*
  2145. * We're trying to get all the cpus to the average_load, so we don't
  2146. * want to push ourselves above the average load, nor do we wish to
  2147. * reduce the max loaded cpu below the average load, as either of these
  2148. * actions would just result in more rebalancing later, and ping-pong
  2149. * tasks around. Thus we look for the minimum possible imbalance.
  2150. * Negative imbalances (*we* are more loaded than anyone else) will
  2151. * be counted as no imbalance for these purposes -- we can't fix that
  2152. * by pulling tasks to us. Be careful of negative numbers as they'll
  2153. * appear as very large values with unsigned longs.
  2154. */
  2155. if (max_load <= busiest_load_per_task)
  2156. goto out_balanced;
  2157. /*
  2158. * In the presence of smp nice balancing, certain scenarios can have
  2159. * max load less than avg load(as we skip the groups at or below
  2160. * its cpu_power, while calculating max_load..)
  2161. */
  2162. if (max_load < avg_load) {
  2163. *imbalance = 0;
  2164. goto small_imbalance;
  2165. }
  2166. /* Don't want to pull so many tasks that a group would go idle */
  2167. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2168. /* How much load to actually move to equalise the imbalance */
  2169. *imbalance = min(max_pull * busiest->__cpu_power,
  2170. (avg_load - this_load) * this->__cpu_power)
  2171. / SCHED_LOAD_SCALE;
  2172. /*
  2173. * if *imbalance is less than the average load per runnable task
  2174. * there is no gaurantee that any tasks will be moved so we'll have
  2175. * a think about bumping its value to force at least one task to be
  2176. * moved
  2177. */
  2178. if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task) {
  2179. unsigned long tmp, pwr_now, pwr_move;
  2180. unsigned int imbn;
  2181. small_imbalance:
  2182. pwr_move = pwr_now = 0;
  2183. imbn = 2;
  2184. if (this_nr_running) {
  2185. this_load_per_task /= this_nr_running;
  2186. if (busiest_load_per_task > this_load_per_task)
  2187. imbn = 1;
  2188. } else
  2189. this_load_per_task = SCHED_LOAD_SCALE;
  2190. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2191. busiest_load_per_task * imbn) {
  2192. *imbalance = busiest_load_per_task;
  2193. return busiest;
  2194. }
  2195. /*
  2196. * OK, we don't have enough imbalance to justify moving tasks,
  2197. * however we may be able to increase total CPU power used by
  2198. * moving them.
  2199. */
  2200. pwr_now += busiest->__cpu_power *
  2201. min(busiest_load_per_task, max_load);
  2202. pwr_now += this->__cpu_power *
  2203. min(this_load_per_task, this_load);
  2204. pwr_now /= SCHED_LOAD_SCALE;
  2205. /* Amount of load we'd subtract */
  2206. tmp = sg_div_cpu_power(busiest,
  2207. busiest_load_per_task * SCHED_LOAD_SCALE);
  2208. if (max_load > tmp)
  2209. pwr_move += busiest->__cpu_power *
  2210. min(busiest_load_per_task, max_load - tmp);
  2211. /* Amount of load we'd add */
  2212. if (max_load * busiest->__cpu_power <
  2213. busiest_load_per_task * SCHED_LOAD_SCALE)
  2214. tmp = sg_div_cpu_power(this,
  2215. max_load * busiest->__cpu_power);
  2216. else
  2217. tmp = sg_div_cpu_power(this,
  2218. busiest_load_per_task * SCHED_LOAD_SCALE);
  2219. pwr_move += this->__cpu_power *
  2220. min(this_load_per_task, this_load + tmp);
  2221. pwr_move /= SCHED_LOAD_SCALE;
  2222. /* Move if we gain throughput */
  2223. if (pwr_move <= pwr_now)
  2224. goto out_balanced;
  2225. *imbalance = busiest_load_per_task;
  2226. }
  2227. return busiest;
  2228. out_balanced:
  2229. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2230. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2231. goto ret;
  2232. if (this == group_leader && group_leader != group_min) {
  2233. *imbalance = min_load_per_task;
  2234. return group_min;
  2235. }
  2236. #endif
  2237. ret:
  2238. *imbalance = 0;
  2239. return NULL;
  2240. }
  2241. /*
  2242. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2243. */
  2244. static struct rq *
  2245. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2246. unsigned long imbalance, cpumask_t *cpus)
  2247. {
  2248. struct rq *busiest = NULL, *rq;
  2249. unsigned long max_load = 0;
  2250. int i;
  2251. for_each_cpu_mask(i, group->cpumask) {
  2252. unsigned long wl;
  2253. if (!cpu_isset(i, *cpus))
  2254. continue;
  2255. rq = cpu_rq(i);
  2256. wl = weighted_cpuload(i);
  2257. if (rq->nr_running == 1 && wl > imbalance)
  2258. continue;
  2259. if (wl > max_load) {
  2260. max_load = wl;
  2261. busiest = rq;
  2262. }
  2263. }
  2264. return busiest;
  2265. }
  2266. /*
  2267. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2268. * so long as it is large enough.
  2269. */
  2270. #define MAX_PINNED_INTERVAL 512
  2271. /*
  2272. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2273. * tasks if there is an imbalance.
  2274. */
  2275. static int load_balance(int this_cpu, struct rq *this_rq,
  2276. struct sched_domain *sd, enum cpu_idle_type idle,
  2277. int *balance)
  2278. {
  2279. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2280. struct sched_group *group;
  2281. unsigned long imbalance;
  2282. struct rq *busiest;
  2283. cpumask_t cpus = CPU_MASK_ALL;
  2284. unsigned long flags;
  2285. /*
  2286. * When power savings policy is enabled for the parent domain, idle
  2287. * sibling can pick up load irrespective of busy siblings. In this case,
  2288. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2289. * portraying it as CPU_NOT_IDLE.
  2290. */
  2291. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2292. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2293. sd_idle = 1;
  2294. schedstat_inc(sd, lb_cnt[idle]);
  2295. redo:
  2296. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2297. &cpus, balance);
  2298. if (*balance == 0)
  2299. goto out_balanced;
  2300. if (!group) {
  2301. schedstat_inc(sd, lb_nobusyg[idle]);
  2302. goto out_balanced;
  2303. }
  2304. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2305. if (!busiest) {
  2306. schedstat_inc(sd, lb_nobusyq[idle]);
  2307. goto out_balanced;
  2308. }
  2309. BUG_ON(busiest == this_rq);
  2310. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2311. ld_moved = 0;
  2312. if (busiest->nr_running > 1) {
  2313. /*
  2314. * Attempt to move tasks. If find_busiest_group has found
  2315. * an imbalance but busiest->nr_running <= 1, the group is
  2316. * still unbalanced. ld_moved simply stays zero, so it is
  2317. * correctly treated as an imbalance.
  2318. */
  2319. local_irq_save(flags);
  2320. double_rq_lock(this_rq, busiest);
  2321. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2322. imbalance, sd, idle, &all_pinned);
  2323. double_rq_unlock(this_rq, busiest);
  2324. local_irq_restore(flags);
  2325. /*
  2326. * some other cpu did the load balance for us.
  2327. */
  2328. if (ld_moved && this_cpu != smp_processor_id())
  2329. resched_cpu(this_cpu);
  2330. /* All tasks on this runqueue were pinned by CPU affinity */
  2331. if (unlikely(all_pinned)) {
  2332. cpu_clear(cpu_of(busiest), cpus);
  2333. if (!cpus_empty(cpus))
  2334. goto redo;
  2335. goto out_balanced;
  2336. }
  2337. }
  2338. if (!ld_moved) {
  2339. schedstat_inc(sd, lb_failed[idle]);
  2340. sd->nr_balance_failed++;
  2341. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2342. spin_lock_irqsave(&busiest->lock, flags);
  2343. /* don't kick the migration_thread, if the curr
  2344. * task on busiest cpu can't be moved to this_cpu
  2345. */
  2346. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2347. spin_unlock_irqrestore(&busiest->lock, flags);
  2348. all_pinned = 1;
  2349. goto out_one_pinned;
  2350. }
  2351. if (!busiest->active_balance) {
  2352. busiest->active_balance = 1;
  2353. busiest->push_cpu = this_cpu;
  2354. active_balance = 1;
  2355. }
  2356. spin_unlock_irqrestore(&busiest->lock, flags);
  2357. if (active_balance)
  2358. wake_up_process(busiest->migration_thread);
  2359. /*
  2360. * We've kicked active balancing, reset the failure
  2361. * counter.
  2362. */
  2363. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2364. }
  2365. } else
  2366. sd->nr_balance_failed = 0;
  2367. if (likely(!active_balance)) {
  2368. /* We were unbalanced, so reset the balancing interval */
  2369. sd->balance_interval = sd->min_interval;
  2370. } else {
  2371. /*
  2372. * If we've begun active balancing, start to back off. This
  2373. * case may not be covered by the all_pinned logic if there
  2374. * is only 1 task on the busy runqueue (because we don't call
  2375. * move_tasks).
  2376. */
  2377. if (sd->balance_interval < sd->max_interval)
  2378. sd->balance_interval *= 2;
  2379. }
  2380. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2381. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2382. return -1;
  2383. return ld_moved;
  2384. out_balanced:
  2385. schedstat_inc(sd, lb_balanced[idle]);
  2386. sd->nr_balance_failed = 0;
  2387. out_one_pinned:
  2388. /* tune up the balancing interval */
  2389. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2390. (sd->balance_interval < sd->max_interval))
  2391. sd->balance_interval *= 2;
  2392. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2393. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2394. return -1;
  2395. return 0;
  2396. }
  2397. /*
  2398. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2399. * tasks if there is an imbalance.
  2400. *
  2401. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2402. * this_rq is locked.
  2403. */
  2404. static int
  2405. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2406. {
  2407. struct sched_group *group;
  2408. struct rq *busiest = NULL;
  2409. unsigned long imbalance;
  2410. int ld_moved = 0;
  2411. int sd_idle = 0;
  2412. int all_pinned = 0;
  2413. cpumask_t cpus = CPU_MASK_ALL;
  2414. /*
  2415. * When power savings policy is enabled for the parent domain, idle
  2416. * sibling can pick up load irrespective of busy siblings. In this case,
  2417. * let the state of idle sibling percolate up as IDLE, instead of
  2418. * portraying it as CPU_NOT_IDLE.
  2419. */
  2420. if (sd->flags & SD_SHARE_CPUPOWER &&
  2421. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2422. sd_idle = 1;
  2423. schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
  2424. redo:
  2425. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2426. &sd_idle, &cpus, NULL);
  2427. if (!group) {
  2428. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2429. goto out_balanced;
  2430. }
  2431. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2432. &cpus);
  2433. if (!busiest) {
  2434. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2435. goto out_balanced;
  2436. }
  2437. BUG_ON(busiest == this_rq);
  2438. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2439. ld_moved = 0;
  2440. if (busiest->nr_running > 1) {
  2441. /* Attempt to move tasks */
  2442. double_lock_balance(this_rq, busiest);
  2443. /* this_rq->clock is already updated */
  2444. update_rq_clock(busiest);
  2445. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2446. imbalance, sd, CPU_NEWLY_IDLE,
  2447. &all_pinned);
  2448. spin_unlock(&busiest->lock);
  2449. if (unlikely(all_pinned)) {
  2450. cpu_clear(cpu_of(busiest), cpus);
  2451. if (!cpus_empty(cpus))
  2452. goto redo;
  2453. }
  2454. }
  2455. if (!ld_moved) {
  2456. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2457. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2458. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2459. return -1;
  2460. } else
  2461. sd->nr_balance_failed = 0;
  2462. return ld_moved;
  2463. out_balanced:
  2464. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2465. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2466. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2467. return -1;
  2468. sd->nr_balance_failed = 0;
  2469. return 0;
  2470. }
  2471. /*
  2472. * idle_balance is called by schedule() if this_cpu is about to become
  2473. * idle. Attempts to pull tasks from other CPUs.
  2474. */
  2475. static void idle_balance(int this_cpu, struct rq *this_rq)
  2476. {
  2477. struct sched_domain *sd;
  2478. int pulled_task = -1;
  2479. unsigned long next_balance = jiffies + HZ;
  2480. for_each_domain(this_cpu, sd) {
  2481. unsigned long interval;
  2482. if (!(sd->flags & SD_LOAD_BALANCE))
  2483. continue;
  2484. if (sd->flags & SD_BALANCE_NEWIDLE)
  2485. /* If we've pulled tasks over stop searching: */
  2486. pulled_task = load_balance_newidle(this_cpu,
  2487. this_rq, sd);
  2488. interval = msecs_to_jiffies(sd->balance_interval);
  2489. if (time_after(next_balance, sd->last_balance + interval))
  2490. next_balance = sd->last_balance + interval;
  2491. if (pulled_task)
  2492. break;
  2493. }
  2494. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2495. /*
  2496. * We are going idle. next_balance may be set based on
  2497. * a busy processor. So reset next_balance.
  2498. */
  2499. this_rq->next_balance = next_balance;
  2500. }
  2501. }
  2502. /*
  2503. * active_load_balance is run by migration threads. It pushes running tasks
  2504. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2505. * running on each physical CPU where possible, and avoids physical /
  2506. * logical imbalances.
  2507. *
  2508. * Called with busiest_rq locked.
  2509. */
  2510. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2511. {
  2512. int target_cpu = busiest_rq->push_cpu;
  2513. struct sched_domain *sd;
  2514. struct rq *target_rq;
  2515. /* Is there any task to move? */
  2516. if (busiest_rq->nr_running <= 1)
  2517. return;
  2518. target_rq = cpu_rq(target_cpu);
  2519. /*
  2520. * This condition is "impossible", if it occurs
  2521. * we need to fix it. Originally reported by
  2522. * Bjorn Helgaas on a 128-cpu setup.
  2523. */
  2524. BUG_ON(busiest_rq == target_rq);
  2525. /* move a task from busiest_rq to target_rq */
  2526. double_lock_balance(busiest_rq, target_rq);
  2527. update_rq_clock(busiest_rq);
  2528. update_rq_clock(target_rq);
  2529. /* Search for an sd spanning us and the target CPU. */
  2530. for_each_domain(target_cpu, sd) {
  2531. if ((sd->flags & SD_LOAD_BALANCE) &&
  2532. cpu_isset(busiest_cpu, sd->span))
  2533. break;
  2534. }
  2535. if (likely(sd)) {
  2536. schedstat_inc(sd, alb_cnt);
  2537. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2538. sd, CPU_IDLE))
  2539. schedstat_inc(sd, alb_pushed);
  2540. else
  2541. schedstat_inc(sd, alb_failed);
  2542. }
  2543. spin_unlock(&target_rq->lock);
  2544. }
  2545. #ifdef CONFIG_NO_HZ
  2546. static struct {
  2547. atomic_t load_balancer;
  2548. cpumask_t cpu_mask;
  2549. } nohz ____cacheline_aligned = {
  2550. .load_balancer = ATOMIC_INIT(-1),
  2551. .cpu_mask = CPU_MASK_NONE,
  2552. };
  2553. /*
  2554. * This routine will try to nominate the ilb (idle load balancing)
  2555. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2556. * load balancing on behalf of all those cpus. If all the cpus in the system
  2557. * go into this tickless mode, then there will be no ilb owner (as there is
  2558. * no need for one) and all the cpus will sleep till the next wakeup event
  2559. * arrives...
  2560. *
  2561. * For the ilb owner, tick is not stopped. And this tick will be used
  2562. * for idle load balancing. ilb owner will still be part of
  2563. * nohz.cpu_mask..
  2564. *
  2565. * While stopping the tick, this cpu will become the ilb owner if there
  2566. * is no other owner. And will be the owner till that cpu becomes busy
  2567. * or if all cpus in the system stop their ticks at which point
  2568. * there is no need for ilb owner.
  2569. *
  2570. * When the ilb owner becomes busy, it nominates another owner, during the
  2571. * next busy scheduler_tick()
  2572. */
  2573. int select_nohz_load_balancer(int stop_tick)
  2574. {
  2575. int cpu = smp_processor_id();
  2576. if (stop_tick) {
  2577. cpu_set(cpu, nohz.cpu_mask);
  2578. cpu_rq(cpu)->in_nohz_recently = 1;
  2579. /*
  2580. * If we are going offline and still the leader, give up!
  2581. */
  2582. if (cpu_is_offline(cpu) &&
  2583. atomic_read(&nohz.load_balancer) == cpu) {
  2584. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2585. BUG();
  2586. return 0;
  2587. }
  2588. /* time for ilb owner also to sleep */
  2589. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2590. if (atomic_read(&nohz.load_balancer) == cpu)
  2591. atomic_set(&nohz.load_balancer, -1);
  2592. return 0;
  2593. }
  2594. if (atomic_read(&nohz.load_balancer) == -1) {
  2595. /* make me the ilb owner */
  2596. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2597. return 1;
  2598. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2599. return 1;
  2600. } else {
  2601. if (!cpu_isset(cpu, nohz.cpu_mask))
  2602. return 0;
  2603. cpu_clear(cpu, nohz.cpu_mask);
  2604. if (atomic_read(&nohz.load_balancer) == cpu)
  2605. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2606. BUG();
  2607. }
  2608. return 0;
  2609. }
  2610. #endif
  2611. static DEFINE_SPINLOCK(balancing);
  2612. /*
  2613. * It checks each scheduling domain to see if it is due to be balanced,
  2614. * and initiates a balancing operation if so.
  2615. *
  2616. * Balancing parameters are set up in arch_init_sched_domains.
  2617. */
  2618. static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2619. {
  2620. int balance = 1;
  2621. struct rq *rq = cpu_rq(cpu);
  2622. unsigned long interval;
  2623. struct sched_domain *sd;
  2624. /* Earliest time when we have to do rebalance again */
  2625. unsigned long next_balance = jiffies + 60*HZ;
  2626. int update_next_balance = 0;
  2627. for_each_domain(cpu, sd) {
  2628. if (!(sd->flags & SD_LOAD_BALANCE))
  2629. continue;
  2630. interval = sd->balance_interval;
  2631. if (idle != CPU_IDLE)
  2632. interval *= sd->busy_factor;
  2633. /* scale ms to jiffies */
  2634. interval = msecs_to_jiffies(interval);
  2635. if (unlikely(!interval))
  2636. interval = 1;
  2637. if (interval > HZ*NR_CPUS/10)
  2638. interval = HZ*NR_CPUS/10;
  2639. if (sd->flags & SD_SERIALIZE) {
  2640. if (!spin_trylock(&balancing))
  2641. goto out;
  2642. }
  2643. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2644. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2645. /*
  2646. * We've pulled tasks over so either we're no
  2647. * longer idle, or one of our SMT siblings is
  2648. * not idle.
  2649. */
  2650. idle = CPU_NOT_IDLE;
  2651. }
  2652. sd->last_balance = jiffies;
  2653. }
  2654. if (sd->flags & SD_SERIALIZE)
  2655. spin_unlock(&balancing);
  2656. out:
  2657. if (time_after(next_balance, sd->last_balance + interval)) {
  2658. next_balance = sd->last_balance + interval;
  2659. update_next_balance = 1;
  2660. }
  2661. /*
  2662. * Stop the load balance at this level. There is another
  2663. * CPU in our sched group which is doing load balancing more
  2664. * actively.
  2665. */
  2666. if (!balance)
  2667. break;
  2668. }
  2669. /*
  2670. * next_balance will be updated only when there is a need.
  2671. * When the cpu is attached to null domain for ex, it will not be
  2672. * updated.
  2673. */
  2674. if (likely(update_next_balance))
  2675. rq->next_balance = next_balance;
  2676. }
  2677. /*
  2678. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2679. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2680. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2681. */
  2682. static void run_rebalance_domains(struct softirq_action *h)
  2683. {
  2684. int this_cpu = smp_processor_id();
  2685. struct rq *this_rq = cpu_rq(this_cpu);
  2686. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2687. CPU_IDLE : CPU_NOT_IDLE;
  2688. rebalance_domains(this_cpu, idle);
  2689. #ifdef CONFIG_NO_HZ
  2690. /*
  2691. * If this cpu is the owner for idle load balancing, then do the
  2692. * balancing on behalf of the other idle cpus whose ticks are
  2693. * stopped.
  2694. */
  2695. if (this_rq->idle_at_tick &&
  2696. atomic_read(&nohz.load_balancer) == this_cpu) {
  2697. cpumask_t cpus = nohz.cpu_mask;
  2698. struct rq *rq;
  2699. int balance_cpu;
  2700. cpu_clear(this_cpu, cpus);
  2701. for_each_cpu_mask(balance_cpu, cpus) {
  2702. /*
  2703. * If this cpu gets work to do, stop the load balancing
  2704. * work being done for other cpus. Next load
  2705. * balancing owner will pick it up.
  2706. */
  2707. if (need_resched())
  2708. break;
  2709. rebalance_domains(balance_cpu, CPU_IDLE);
  2710. rq = cpu_rq(balance_cpu);
  2711. if (time_after(this_rq->next_balance, rq->next_balance))
  2712. this_rq->next_balance = rq->next_balance;
  2713. }
  2714. }
  2715. #endif
  2716. }
  2717. /*
  2718. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2719. *
  2720. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2721. * idle load balancing owner or decide to stop the periodic load balancing,
  2722. * if the whole system is idle.
  2723. */
  2724. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2725. {
  2726. #ifdef CONFIG_NO_HZ
  2727. /*
  2728. * If we were in the nohz mode recently and busy at the current
  2729. * scheduler tick, then check if we need to nominate new idle
  2730. * load balancer.
  2731. */
  2732. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2733. rq->in_nohz_recently = 0;
  2734. if (atomic_read(&nohz.load_balancer) == cpu) {
  2735. cpu_clear(cpu, nohz.cpu_mask);
  2736. atomic_set(&nohz.load_balancer, -1);
  2737. }
  2738. if (atomic_read(&nohz.load_balancer) == -1) {
  2739. /*
  2740. * simple selection for now: Nominate the
  2741. * first cpu in the nohz list to be the next
  2742. * ilb owner.
  2743. *
  2744. * TBD: Traverse the sched domains and nominate
  2745. * the nearest cpu in the nohz.cpu_mask.
  2746. */
  2747. int ilb = first_cpu(nohz.cpu_mask);
  2748. if (ilb != NR_CPUS)
  2749. resched_cpu(ilb);
  2750. }
  2751. }
  2752. /*
  2753. * If this cpu is idle and doing idle load balancing for all the
  2754. * cpus with ticks stopped, is it time for that to stop?
  2755. */
  2756. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2757. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2758. resched_cpu(cpu);
  2759. return;
  2760. }
  2761. /*
  2762. * If this cpu is idle and the idle load balancing is done by
  2763. * someone else, then no need raise the SCHED_SOFTIRQ
  2764. */
  2765. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2766. cpu_isset(cpu, nohz.cpu_mask))
  2767. return;
  2768. #endif
  2769. if (time_after_eq(jiffies, rq->next_balance))
  2770. raise_softirq(SCHED_SOFTIRQ);
  2771. }
  2772. #else /* CONFIG_SMP */
  2773. /*
  2774. * on UP we do not need to balance between CPUs:
  2775. */
  2776. static inline void idle_balance(int cpu, struct rq *rq)
  2777. {
  2778. }
  2779. /* Avoid "used but not defined" warning on UP */
  2780. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2781. unsigned long max_nr_move, unsigned long max_load_move,
  2782. struct sched_domain *sd, enum cpu_idle_type idle,
  2783. int *all_pinned, unsigned long *load_moved,
  2784. int *this_best_prio, struct rq_iterator *iterator)
  2785. {
  2786. *load_moved = 0;
  2787. return 0;
  2788. }
  2789. #endif
  2790. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2791. EXPORT_PER_CPU_SYMBOL(kstat);
  2792. /*
  2793. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2794. * that have not yet been banked in case the task is currently running.
  2795. */
  2796. unsigned long long task_sched_runtime(struct task_struct *p)
  2797. {
  2798. unsigned long flags;
  2799. u64 ns, delta_exec;
  2800. struct rq *rq;
  2801. rq = task_rq_lock(p, &flags);
  2802. ns = p->se.sum_exec_runtime;
  2803. if (rq->curr == p) {
  2804. update_rq_clock(rq);
  2805. delta_exec = rq->clock - p->se.exec_start;
  2806. if ((s64)delta_exec > 0)
  2807. ns += delta_exec;
  2808. }
  2809. task_rq_unlock(rq, &flags);
  2810. return ns;
  2811. }
  2812. /*
  2813. * Account user cpu time to a process.
  2814. * @p: the process that the cpu time gets accounted to
  2815. * @hardirq_offset: the offset to subtract from hardirq_count()
  2816. * @cputime: the cpu time spent in user space since the last update
  2817. */
  2818. void account_user_time(struct task_struct *p, cputime_t cputime)
  2819. {
  2820. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2821. cputime64_t tmp;
  2822. p->utime = cputime_add(p->utime, cputime);
  2823. /* Add user time to cpustat. */
  2824. tmp = cputime_to_cputime64(cputime);
  2825. if (TASK_NICE(p) > 0)
  2826. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2827. else
  2828. cpustat->user = cputime64_add(cpustat->user, tmp);
  2829. }
  2830. /*
  2831. * Account system cpu time to a process.
  2832. * @p: the process that the cpu time gets accounted to
  2833. * @hardirq_offset: the offset to subtract from hardirq_count()
  2834. * @cputime: the cpu time spent in kernel space since the last update
  2835. */
  2836. void account_system_time(struct task_struct *p, int hardirq_offset,
  2837. cputime_t cputime)
  2838. {
  2839. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2840. struct rq *rq = this_rq();
  2841. cputime64_t tmp;
  2842. p->stime = cputime_add(p->stime, cputime);
  2843. /* Add system time to cpustat. */
  2844. tmp = cputime_to_cputime64(cputime);
  2845. if (hardirq_count() - hardirq_offset)
  2846. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2847. else if (softirq_count())
  2848. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2849. else if (p != rq->idle)
  2850. cpustat->system = cputime64_add(cpustat->system, tmp);
  2851. else if (atomic_read(&rq->nr_iowait) > 0)
  2852. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2853. else
  2854. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2855. /* Account for system time used */
  2856. acct_update_integrals(p);
  2857. }
  2858. /*
  2859. * Account for involuntary wait time.
  2860. * @p: the process from which the cpu time has been stolen
  2861. * @steal: the cpu time spent in involuntary wait
  2862. */
  2863. void account_steal_time(struct task_struct *p, cputime_t steal)
  2864. {
  2865. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2866. cputime64_t tmp = cputime_to_cputime64(steal);
  2867. struct rq *rq = this_rq();
  2868. if (p == rq->idle) {
  2869. p->stime = cputime_add(p->stime, steal);
  2870. if (atomic_read(&rq->nr_iowait) > 0)
  2871. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2872. else
  2873. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2874. } else
  2875. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2876. }
  2877. /*
  2878. * This function gets called by the timer code, with HZ frequency.
  2879. * We call it with interrupts disabled.
  2880. *
  2881. * It also gets called by the fork code, when changing the parent's
  2882. * timeslices.
  2883. */
  2884. void scheduler_tick(void)
  2885. {
  2886. int cpu = smp_processor_id();
  2887. struct rq *rq = cpu_rq(cpu);
  2888. struct task_struct *curr = rq->curr;
  2889. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  2890. spin_lock(&rq->lock);
  2891. __update_rq_clock(rq);
  2892. /*
  2893. * Let rq->clock advance by at least TICK_NSEC:
  2894. */
  2895. if (unlikely(rq->clock < next_tick))
  2896. rq->clock = next_tick;
  2897. rq->tick_timestamp = rq->clock;
  2898. update_cpu_load(rq);
  2899. if (curr != rq->idle) /* FIXME: needed? */
  2900. curr->sched_class->task_tick(rq, curr);
  2901. spin_unlock(&rq->lock);
  2902. #ifdef CONFIG_SMP
  2903. rq->idle_at_tick = idle_cpu(cpu);
  2904. trigger_load_balance(rq, cpu);
  2905. #endif
  2906. }
  2907. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2908. void fastcall add_preempt_count(int val)
  2909. {
  2910. /*
  2911. * Underflow?
  2912. */
  2913. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2914. return;
  2915. preempt_count() += val;
  2916. /*
  2917. * Spinlock count overflowing soon?
  2918. */
  2919. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2920. PREEMPT_MASK - 10);
  2921. }
  2922. EXPORT_SYMBOL(add_preempt_count);
  2923. void fastcall sub_preempt_count(int val)
  2924. {
  2925. /*
  2926. * Underflow?
  2927. */
  2928. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2929. return;
  2930. /*
  2931. * Is the spinlock portion underflowing?
  2932. */
  2933. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2934. !(preempt_count() & PREEMPT_MASK)))
  2935. return;
  2936. preempt_count() -= val;
  2937. }
  2938. EXPORT_SYMBOL(sub_preempt_count);
  2939. #endif
  2940. /*
  2941. * Print scheduling while atomic bug:
  2942. */
  2943. static noinline void __schedule_bug(struct task_struct *prev)
  2944. {
  2945. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  2946. prev->comm, preempt_count(), prev->pid);
  2947. debug_show_held_locks(prev);
  2948. if (irqs_disabled())
  2949. print_irqtrace_events(prev);
  2950. dump_stack();
  2951. }
  2952. /*
  2953. * Various schedule()-time debugging checks and statistics:
  2954. */
  2955. static inline void schedule_debug(struct task_struct *prev)
  2956. {
  2957. /*
  2958. * Test if we are atomic. Since do_exit() needs to call into
  2959. * schedule() atomically, we ignore that path for now.
  2960. * Otherwise, whine if we are scheduling when we should not be.
  2961. */
  2962. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  2963. __schedule_bug(prev);
  2964. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2965. schedstat_inc(this_rq(), sched_cnt);
  2966. }
  2967. /*
  2968. * Pick up the highest-prio task:
  2969. */
  2970. static inline struct task_struct *
  2971. pick_next_task(struct rq *rq, struct task_struct *prev)
  2972. {
  2973. struct sched_class *class;
  2974. struct task_struct *p;
  2975. /*
  2976. * Optimization: we know that if all tasks are in
  2977. * the fair class we can call that function directly:
  2978. */
  2979. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  2980. p = fair_sched_class.pick_next_task(rq);
  2981. if (likely(p))
  2982. return p;
  2983. }
  2984. class = sched_class_highest;
  2985. for ( ; ; ) {
  2986. p = class->pick_next_task(rq);
  2987. if (p)
  2988. return p;
  2989. /*
  2990. * Will never be NULL as the idle class always
  2991. * returns a non-NULL p:
  2992. */
  2993. class = class->next;
  2994. }
  2995. }
  2996. /*
  2997. * schedule() is the main scheduler function.
  2998. */
  2999. asmlinkage void __sched schedule(void)
  3000. {
  3001. struct task_struct *prev, *next;
  3002. long *switch_count;
  3003. struct rq *rq;
  3004. int cpu;
  3005. need_resched:
  3006. preempt_disable();
  3007. cpu = smp_processor_id();
  3008. rq = cpu_rq(cpu);
  3009. rcu_qsctr_inc(cpu);
  3010. prev = rq->curr;
  3011. switch_count = &prev->nivcsw;
  3012. release_kernel_lock(prev);
  3013. need_resched_nonpreemptible:
  3014. schedule_debug(prev);
  3015. spin_lock_irq(&rq->lock);
  3016. clear_tsk_need_resched(prev);
  3017. __update_rq_clock(rq);
  3018. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3019. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3020. unlikely(signal_pending(prev)))) {
  3021. prev->state = TASK_RUNNING;
  3022. } else {
  3023. deactivate_task(rq, prev, 1);
  3024. }
  3025. switch_count = &prev->nvcsw;
  3026. }
  3027. if (unlikely(!rq->nr_running))
  3028. idle_balance(cpu, rq);
  3029. prev->sched_class->put_prev_task(rq, prev);
  3030. next = pick_next_task(rq, prev);
  3031. sched_info_switch(prev, next);
  3032. if (likely(prev != next)) {
  3033. rq->nr_switches++;
  3034. rq->curr = next;
  3035. ++*switch_count;
  3036. context_switch(rq, prev, next); /* unlocks the rq */
  3037. } else
  3038. spin_unlock_irq(&rq->lock);
  3039. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3040. cpu = smp_processor_id();
  3041. rq = cpu_rq(cpu);
  3042. goto need_resched_nonpreemptible;
  3043. }
  3044. preempt_enable_no_resched();
  3045. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3046. goto need_resched;
  3047. }
  3048. EXPORT_SYMBOL(schedule);
  3049. #ifdef CONFIG_PREEMPT
  3050. /*
  3051. * this is the entry point to schedule() from in-kernel preemption
  3052. * off of preempt_enable. Kernel preemptions off return from interrupt
  3053. * occur there and call schedule directly.
  3054. */
  3055. asmlinkage void __sched preempt_schedule(void)
  3056. {
  3057. struct thread_info *ti = current_thread_info();
  3058. #ifdef CONFIG_PREEMPT_BKL
  3059. struct task_struct *task = current;
  3060. int saved_lock_depth;
  3061. #endif
  3062. /*
  3063. * If there is a non-zero preempt_count or interrupts are disabled,
  3064. * we do not want to preempt the current task. Just return..
  3065. */
  3066. if (likely(ti->preempt_count || irqs_disabled()))
  3067. return;
  3068. need_resched:
  3069. add_preempt_count(PREEMPT_ACTIVE);
  3070. /*
  3071. * We keep the big kernel semaphore locked, but we
  3072. * clear ->lock_depth so that schedule() doesnt
  3073. * auto-release the semaphore:
  3074. */
  3075. #ifdef CONFIG_PREEMPT_BKL
  3076. saved_lock_depth = task->lock_depth;
  3077. task->lock_depth = -1;
  3078. #endif
  3079. schedule();
  3080. #ifdef CONFIG_PREEMPT_BKL
  3081. task->lock_depth = saved_lock_depth;
  3082. #endif
  3083. sub_preempt_count(PREEMPT_ACTIVE);
  3084. /* we could miss a preemption opportunity between schedule and now */
  3085. barrier();
  3086. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3087. goto need_resched;
  3088. }
  3089. EXPORT_SYMBOL(preempt_schedule);
  3090. /*
  3091. * this is the entry point to schedule() from kernel preemption
  3092. * off of irq context.
  3093. * Note, that this is called and return with irqs disabled. This will
  3094. * protect us against recursive calling from irq.
  3095. */
  3096. asmlinkage void __sched preempt_schedule_irq(void)
  3097. {
  3098. struct thread_info *ti = current_thread_info();
  3099. #ifdef CONFIG_PREEMPT_BKL
  3100. struct task_struct *task = current;
  3101. int saved_lock_depth;
  3102. #endif
  3103. /* Catch callers which need to be fixed */
  3104. BUG_ON(ti->preempt_count || !irqs_disabled());
  3105. need_resched:
  3106. add_preempt_count(PREEMPT_ACTIVE);
  3107. /*
  3108. * We keep the big kernel semaphore locked, but we
  3109. * clear ->lock_depth so that schedule() doesnt
  3110. * auto-release the semaphore:
  3111. */
  3112. #ifdef CONFIG_PREEMPT_BKL
  3113. saved_lock_depth = task->lock_depth;
  3114. task->lock_depth = -1;
  3115. #endif
  3116. local_irq_enable();
  3117. schedule();
  3118. local_irq_disable();
  3119. #ifdef CONFIG_PREEMPT_BKL
  3120. task->lock_depth = saved_lock_depth;
  3121. #endif
  3122. sub_preempt_count(PREEMPT_ACTIVE);
  3123. /* we could miss a preemption opportunity between schedule and now */
  3124. barrier();
  3125. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3126. goto need_resched;
  3127. }
  3128. #endif /* CONFIG_PREEMPT */
  3129. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3130. void *key)
  3131. {
  3132. return try_to_wake_up(curr->private, mode, sync);
  3133. }
  3134. EXPORT_SYMBOL(default_wake_function);
  3135. /*
  3136. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3137. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3138. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3139. *
  3140. * There are circumstances in which we can try to wake a task which has already
  3141. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3142. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3143. */
  3144. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3145. int nr_exclusive, int sync, void *key)
  3146. {
  3147. struct list_head *tmp, *next;
  3148. list_for_each_safe(tmp, next, &q->task_list) {
  3149. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3150. unsigned flags = curr->flags;
  3151. if (curr->func(curr, mode, sync, key) &&
  3152. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3153. break;
  3154. }
  3155. }
  3156. /**
  3157. * __wake_up - wake up threads blocked on a waitqueue.
  3158. * @q: the waitqueue
  3159. * @mode: which threads
  3160. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3161. * @key: is directly passed to the wakeup function
  3162. */
  3163. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3164. int nr_exclusive, void *key)
  3165. {
  3166. unsigned long flags;
  3167. spin_lock_irqsave(&q->lock, flags);
  3168. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3169. spin_unlock_irqrestore(&q->lock, flags);
  3170. }
  3171. EXPORT_SYMBOL(__wake_up);
  3172. /*
  3173. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3174. */
  3175. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3176. {
  3177. __wake_up_common(q, mode, 1, 0, NULL);
  3178. }
  3179. /**
  3180. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3181. * @q: the waitqueue
  3182. * @mode: which threads
  3183. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3184. *
  3185. * The sync wakeup differs that the waker knows that it will schedule
  3186. * away soon, so while the target thread will be woken up, it will not
  3187. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3188. * with each other. This can prevent needless bouncing between CPUs.
  3189. *
  3190. * On UP it can prevent extra preemption.
  3191. */
  3192. void fastcall
  3193. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3194. {
  3195. unsigned long flags;
  3196. int sync = 1;
  3197. if (unlikely(!q))
  3198. return;
  3199. if (unlikely(!nr_exclusive))
  3200. sync = 0;
  3201. spin_lock_irqsave(&q->lock, flags);
  3202. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3203. spin_unlock_irqrestore(&q->lock, flags);
  3204. }
  3205. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3206. void fastcall complete(struct completion *x)
  3207. {
  3208. unsigned long flags;
  3209. spin_lock_irqsave(&x->wait.lock, flags);
  3210. x->done++;
  3211. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3212. 1, 0, NULL);
  3213. spin_unlock_irqrestore(&x->wait.lock, flags);
  3214. }
  3215. EXPORT_SYMBOL(complete);
  3216. void fastcall complete_all(struct completion *x)
  3217. {
  3218. unsigned long flags;
  3219. spin_lock_irqsave(&x->wait.lock, flags);
  3220. x->done += UINT_MAX/2;
  3221. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3222. 0, 0, NULL);
  3223. spin_unlock_irqrestore(&x->wait.lock, flags);
  3224. }
  3225. EXPORT_SYMBOL(complete_all);
  3226. void fastcall __sched wait_for_completion(struct completion *x)
  3227. {
  3228. might_sleep();
  3229. spin_lock_irq(&x->wait.lock);
  3230. if (!x->done) {
  3231. DECLARE_WAITQUEUE(wait, current);
  3232. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3233. __add_wait_queue_tail(&x->wait, &wait);
  3234. do {
  3235. __set_current_state(TASK_UNINTERRUPTIBLE);
  3236. spin_unlock_irq(&x->wait.lock);
  3237. schedule();
  3238. spin_lock_irq(&x->wait.lock);
  3239. } while (!x->done);
  3240. __remove_wait_queue(&x->wait, &wait);
  3241. }
  3242. x->done--;
  3243. spin_unlock_irq(&x->wait.lock);
  3244. }
  3245. EXPORT_SYMBOL(wait_for_completion);
  3246. unsigned long fastcall __sched
  3247. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3248. {
  3249. might_sleep();
  3250. spin_lock_irq(&x->wait.lock);
  3251. if (!x->done) {
  3252. DECLARE_WAITQUEUE(wait, current);
  3253. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3254. __add_wait_queue_tail(&x->wait, &wait);
  3255. do {
  3256. __set_current_state(TASK_UNINTERRUPTIBLE);
  3257. spin_unlock_irq(&x->wait.lock);
  3258. timeout = schedule_timeout(timeout);
  3259. spin_lock_irq(&x->wait.lock);
  3260. if (!timeout) {
  3261. __remove_wait_queue(&x->wait, &wait);
  3262. goto out;
  3263. }
  3264. } while (!x->done);
  3265. __remove_wait_queue(&x->wait, &wait);
  3266. }
  3267. x->done--;
  3268. out:
  3269. spin_unlock_irq(&x->wait.lock);
  3270. return timeout;
  3271. }
  3272. EXPORT_SYMBOL(wait_for_completion_timeout);
  3273. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3274. {
  3275. int ret = 0;
  3276. might_sleep();
  3277. spin_lock_irq(&x->wait.lock);
  3278. if (!x->done) {
  3279. DECLARE_WAITQUEUE(wait, current);
  3280. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3281. __add_wait_queue_tail(&x->wait, &wait);
  3282. do {
  3283. if (signal_pending(current)) {
  3284. ret = -ERESTARTSYS;
  3285. __remove_wait_queue(&x->wait, &wait);
  3286. goto out;
  3287. }
  3288. __set_current_state(TASK_INTERRUPTIBLE);
  3289. spin_unlock_irq(&x->wait.lock);
  3290. schedule();
  3291. spin_lock_irq(&x->wait.lock);
  3292. } while (!x->done);
  3293. __remove_wait_queue(&x->wait, &wait);
  3294. }
  3295. x->done--;
  3296. out:
  3297. spin_unlock_irq(&x->wait.lock);
  3298. return ret;
  3299. }
  3300. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3301. unsigned long fastcall __sched
  3302. wait_for_completion_interruptible_timeout(struct completion *x,
  3303. unsigned long timeout)
  3304. {
  3305. might_sleep();
  3306. spin_lock_irq(&x->wait.lock);
  3307. if (!x->done) {
  3308. DECLARE_WAITQUEUE(wait, current);
  3309. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3310. __add_wait_queue_tail(&x->wait, &wait);
  3311. do {
  3312. if (signal_pending(current)) {
  3313. timeout = -ERESTARTSYS;
  3314. __remove_wait_queue(&x->wait, &wait);
  3315. goto out;
  3316. }
  3317. __set_current_state(TASK_INTERRUPTIBLE);
  3318. spin_unlock_irq(&x->wait.lock);
  3319. timeout = schedule_timeout(timeout);
  3320. spin_lock_irq(&x->wait.lock);
  3321. if (!timeout) {
  3322. __remove_wait_queue(&x->wait, &wait);
  3323. goto out;
  3324. }
  3325. } while (!x->done);
  3326. __remove_wait_queue(&x->wait, &wait);
  3327. }
  3328. x->done--;
  3329. out:
  3330. spin_unlock_irq(&x->wait.lock);
  3331. return timeout;
  3332. }
  3333. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3334. static inline void
  3335. sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3336. {
  3337. spin_lock_irqsave(&q->lock, *flags);
  3338. __add_wait_queue(q, wait);
  3339. spin_unlock(&q->lock);
  3340. }
  3341. static inline void
  3342. sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3343. {
  3344. spin_lock_irq(&q->lock);
  3345. __remove_wait_queue(q, wait);
  3346. spin_unlock_irqrestore(&q->lock, *flags);
  3347. }
  3348. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3349. {
  3350. unsigned long flags;
  3351. wait_queue_t wait;
  3352. init_waitqueue_entry(&wait, current);
  3353. current->state = TASK_INTERRUPTIBLE;
  3354. sleep_on_head(q, &wait, &flags);
  3355. schedule();
  3356. sleep_on_tail(q, &wait, &flags);
  3357. }
  3358. EXPORT_SYMBOL(interruptible_sleep_on);
  3359. long __sched
  3360. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3361. {
  3362. unsigned long flags;
  3363. wait_queue_t wait;
  3364. init_waitqueue_entry(&wait, current);
  3365. current->state = TASK_INTERRUPTIBLE;
  3366. sleep_on_head(q, &wait, &flags);
  3367. timeout = schedule_timeout(timeout);
  3368. sleep_on_tail(q, &wait, &flags);
  3369. return timeout;
  3370. }
  3371. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3372. void __sched sleep_on(wait_queue_head_t *q)
  3373. {
  3374. unsigned long flags;
  3375. wait_queue_t wait;
  3376. init_waitqueue_entry(&wait, current);
  3377. current->state = TASK_UNINTERRUPTIBLE;
  3378. sleep_on_head(q, &wait, &flags);
  3379. schedule();
  3380. sleep_on_tail(q, &wait, &flags);
  3381. }
  3382. EXPORT_SYMBOL(sleep_on);
  3383. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3384. {
  3385. unsigned long flags;
  3386. wait_queue_t wait;
  3387. init_waitqueue_entry(&wait, current);
  3388. current->state = TASK_UNINTERRUPTIBLE;
  3389. sleep_on_head(q, &wait, &flags);
  3390. timeout = schedule_timeout(timeout);
  3391. sleep_on_tail(q, &wait, &flags);
  3392. return timeout;
  3393. }
  3394. EXPORT_SYMBOL(sleep_on_timeout);
  3395. #ifdef CONFIG_RT_MUTEXES
  3396. /*
  3397. * rt_mutex_setprio - set the current priority of a task
  3398. * @p: task
  3399. * @prio: prio value (kernel-internal form)
  3400. *
  3401. * This function changes the 'effective' priority of a task. It does
  3402. * not touch ->normal_prio like __setscheduler().
  3403. *
  3404. * Used by the rt_mutex code to implement priority inheritance logic.
  3405. */
  3406. void rt_mutex_setprio(struct task_struct *p, int prio)
  3407. {
  3408. unsigned long flags;
  3409. int oldprio, on_rq;
  3410. struct rq *rq;
  3411. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3412. rq = task_rq_lock(p, &flags);
  3413. update_rq_clock(rq);
  3414. oldprio = p->prio;
  3415. on_rq = p->se.on_rq;
  3416. if (on_rq)
  3417. dequeue_task(rq, p, 0);
  3418. if (rt_prio(prio))
  3419. p->sched_class = &rt_sched_class;
  3420. else
  3421. p->sched_class = &fair_sched_class;
  3422. p->prio = prio;
  3423. if (on_rq) {
  3424. enqueue_task(rq, p, 0);
  3425. /*
  3426. * Reschedule if we are currently running on this runqueue and
  3427. * our priority decreased, or if we are not currently running on
  3428. * this runqueue and our priority is higher than the current's
  3429. */
  3430. if (task_running(rq, p)) {
  3431. if (p->prio > oldprio)
  3432. resched_task(rq->curr);
  3433. } else {
  3434. check_preempt_curr(rq, p);
  3435. }
  3436. }
  3437. task_rq_unlock(rq, &flags);
  3438. }
  3439. #endif
  3440. void set_user_nice(struct task_struct *p, long nice)
  3441. {
  3442. int old_prio, delta, on_rq;
  3443. unsigned long flags;
  3444. struct rq *rq;
  3445. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3446. return;
  3447. /*
  3448. * We have to be careful, if called from sys_setpriority(),
  3449. * the task might be in the middle of scheduling on another CPU.
  3450. */
  3451. rq = task_rq_lock(p, &flags);
  3452. update_rq_clock(rq);
  3453. /*
  3454. * The RT priorities are set via sched_setscheduler(), but we still
  3455. * allow the 'normal' nice value to be set - but as expected
  3456. * it wont have any effect on scheduling until the task is
  3457. * SCHED_FIFO/SCHED_RR:
  3458. */
  3459. if (task_has_rt_policy(p)) {
  3460. p->static_prio = NICE_TO_PRIO(nice);
  3461. goto out_unlock;
  3462. }
  3463. on_rq = p->se.on_rq;
  3464. if (on_rq) {
  3465. dequeue_task(rq, p, 0);
  3466. dec_load(rq, p);
  3467. }
  3468. p->static_prio = NICE_TO_PRIO(nice);
  3469. set_load_weight(p);
  3470. old_prio = p->prio;
  3471. p->prio = effective_prio(p);
  3472. delta = p->prio - old_prio;
  3473. if (on_rq) {
  3474. enqueue_task(rq, p, 0);
  3475. inc_load(rq, p);
  3476. /*
  3477. * If the task increased its priority or is running and
  3478. * lowered its priority, then reschedule its CPU:
  3479. */
  3480. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3481. resched_task(rq->curr);
  3482. }
  3483. out_unlock:
  3484. task_rq_unlock(rq, &flags);
  3485. }
  3486. EXPORT_SYMBOL(set_user_nice);
  3487. /*
  3488. * can_nice - check if a task can reduce its nice value
  3489. * @p: task
  3490. * @nice: nice value
  3491. */
  3492. int can_nice(const struct task_struct *p, const int nice)
  3493. {
  3494. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3495. int nice_rlim = 20 - nice;
  3496. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3497. capable(CAP_SYS_NICE));
  3498. }
  3499. #ifdef __ARCH_WANT_SYS_NICE
  3500. /*
  3501. * sys_nice - change the priority of the current process.
  3502. * @increment: priority increment
  3503. *
  3504. * sys_setpriority is a more generic, but much slower function that
  3505. * does similar things.
  3506. */
  3507. asmlinkage long sys_nice(int increment)
  3508. {
  3509. long nice, retval;
  3510. /*
  3511. * Setpriority might change our priority at the same moment.
  3512. * We don't have to worry. Conceptually one call occurs first
  3513. * and we have a single winner.
  3514. */
  3515. if (increment < -40)
  3516. increment = -40;
  3517. if (increment > 40)
  3518. increment = 40;
  3519. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3520. if (nice < -20)
  3521. nice = -20;
  3522. if (nice > 19)
  3523. nice = 19;
  3524. if (increment < 0 && !can_nice(current, nice))
  3525. return -EPERM;
  3526. retval = security_task_setnice(current, nice);
  3527. if (retval)
  3528. return retval;
  3529. set_user_nice(current, nice);
  3530. return 0;
  3531. }
  3532. #endif
  3533. /**
  3534. * task_prio - return the priority value of a given task.
  3535. * @p: the task in question.
  3536. *
  3537. * This is the priority value as seen by users in /proc.
  3538. * RT tasks are offset by -200. Normal tasks are centered
  3539. * around 0, value goes from -16 to +15.
  3540. */
  3541. int task_prio(const struct task_struct *p)
  3542. {
  3543. return p->prio - MAX_RT_PRIO;
  3544. }
  3545. /**
  3546. * task_nice - return the nice value of a given task.
  3547. * @p: the task in question.
  3548. */
  3549. int task_nice(const struct task_struct *p)
  3550. {
  3551. return TASK_NICE(p);
  3552. }
  3553. EXPORT_SYMBOL_GPL(task_nice);
  3554. /**
  3555. * idle_cpu - is a given cpu idle currently?
  3556. * @cpu: the processor in question.
  3557. */
  3558. int idle_cpu(int cpu)
  3559. {
  3560. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3561. }
  3562. /**
  3563. * idle_task - return the idle task for a given cpu.
  3564. * @cpu: the processor in question.
  3565. */
  3566. struct task_struct *idle_task(int cpu)
  3567. {
  3568. return cpu_rq(cpu)->idle;
  3569. }
  3570. /**
  3571. * find_process_by_pid - find a process with a matching PID value.
  3572. * @pid: the pid in question.
  3573. */
  3574. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3575. {
  3576. return pid ? find_task_by_pid(pid) : current;
  3577. }
  3578. /* Actually do priority change: must hold rq lock. */
  3579. static void
  3580. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3581. {
  3582. BUG_ON(p->se.on_rq);
  3583. p->policy = policy;
  3584. switch (p->policy) {
  3585. case SCHED_NORMAL:
  3586. case SCHED_BATCH:
  3587. case SCHED_IDLE:
  3588. p->sched_class = &fair_sched_class;
  3589. break;
  3590. case SCHED_FIFO:
  3591. case SCHED_RR:
  3592. p->sched_class = &rt_sched_class;
  3593. break;
  3594. }
  3595. p->rt_priority = prio;
  3596. p->normal_prio = normal_prio(p);
  3597. /* we are holding p->pi_lock already */
  3598. p->prio = rt_mutex_getprio(p);
  3599. set_load_weight(p);
  3600. }
  3601. /**
  3602. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3603. * @p: the task in question.
  3604. * @policy: new policy.
  3605. * @param: structure containing the new RT priority.
  3606. *
  3607. * NOTE that the task may be already dead.
  3608. */
  3609. int sched_setscheduler(struct task_struct *p, int policy,
  3610. struct sched_param *param)
  3611. {
  3612. int retval, oldprio, oldpolicy = -1, on_rq;
  3613. unsigned long flags;
  3614. struct rq *rq;
  3615. /* may grab non-irq protected spin_locks */
  3616. BUG_ON(in_interrupt());
  3617. recheck:
  3618. /* double check policy once rq lock held */
  3619. if (policy < 0)
  3620. policy = oldpolicy = p->policy;
  3621. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3622. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3623. policy != SCHED_IDLE)
  3624. return -EINVAL;
  3625. /*
  3626. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3627. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3628. * SCHED_BATCH and SCHED_IDLE is 0.
  3629. */
  3630. if (param->sched_priority < 0 ||
  3631. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3632. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3633. return -EINVAL;
  3634. if (rt_policy(policy) != (param->sched_priority != 0))
  3635. return -EINVAL;
  3636. /*
  3637. * Allow unprivileged RT tasks to decrease priority:
  3638. */
  3639. if (!capable(CAP_SYS_NICE)) {
  3640. if (rt_policy(policy)) {
  3641. unsigned long rlim_rtprio;
  3642. if (!lock_task_sighand(p, &flags))
  3643. return -ESRCH;
  3644. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3645. unlock_task_sighand(p, &flags);
  3646. /* can't set/change the rt policy */
  3647. if (policy != p->policy && !rlim_rtprio)
  3648. return -EPERM;
  3649. /* can't increase priority */
  3650. if (param->sched_priority > p->rt_priority &&
  3651. param->sched_priority > rlim_rtprio)
  3652. return -EPERM;
  3653. }
  3654. /*
  3655. * Like positive nice levels, dont allow tasks to
  3656. * move out of SCHED_IDLE either:
  3657. */
  3658. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3659. return -EPERM;
  3660. /* can't change other user's priorities */
  3661. if ((current->euid != p->euid) &&
  3662. (current->euid != p->uid))
  3663. return -EPERM;
  3664. }
  3665. retval = security_task_setscheduler(p, policy, param);
  3666. if (retval)
  3667. return retval;
  3668. /*
  3669. * make sure no PI-waiters arrive (or leave) while we are
  3670. * changing the priority of the task:
  3671. */
  3672. spin_lock_irqsave(&p->pi_lock, flags);
  3673. /*
  3674. * To be able to change p->policy safely, the apropriate
  3675. * runqueue lock must be held.
  3676. */
  3677. rq = __task_rq_lock(p);
  3678. /* recheck policy now with rq lock held */
  3679. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3680. policy = oldpolicy = -1;
  3681. __task_rq_unlock(rq);
  3682. spin_unlock_irqrestore(&p->pi_lock, flags);
  3683. goto recheck;
  3684. }
  3685. update_rq_clock(rq);
  3686. on_rq = p->se.on_rq;
  3687. if (on_rq)
  3688. deactivate_task(rq, p, 0);
  3689. oldprio = p->prio;
  3690. __setscheduler(rq, p, policy, param->sched_priority);
  3691. if (on_rq) {
  3692. activate_task(rq, p, 0);
  3693. /*
  3694. * Reschedule if we are currently running on this runqueue and
  3695. * our priority decreased, or if we are not currently running on
  3696. * this runqueue and our priority is higher than the current's
  3697. */
  3698. if (task_running(rq, p)) {
  3699. if (p->prio > oldprio)
  3700. resched_task(rq->curr);
  3701. } else {
  3702. check_preempt_curr(rq, p);
  3703. }
  3704. }
  3705. __task_rq_unlock(rq);
  3706. spin_unlock_irqrestore(&p->pi_lock, flags);
  3707. rt_mutex_adjust_pi(p);
  3708. return 0;
  3709. }
  3710. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3711. static int
  3712. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3713. {
  3714. struct sched_param lparam;
  3715. struct task_struct *p;
  3716. int retval;
  3717. if (!param || pid < 0)
  3718. return -EINVAL;
  3719. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3720. return -EFAULT;
  3721. rcu_read_lock();
  3722. retval = -ESRCH;
  3723. p = find_process_by_pid(pid);
  3724. if (p != NULL)
  3725. retval = sched_setscheduler(p, policy, &lparam);
  3726. rcu_read_unlock();
  3727. return retval;
  3728. }
  3729. /**
  3730. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3731. * @pid: the pid in question.
  3732. * @policy: new policy.
  3733. * @param: structure containing the new RT priority.
  3734. */
  3735. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3736. struct sched_param __user *param)
  3737. {
  3738. /* negative values for policy are not valid */
  3739. if (policy < 0)
  3740. return -EINVAL;
  3741. return do_sched_setscheduler(pid, policy, param);
  3742. }
  3743. /**
  3744. * sys_sched_setparam - set/change the RT priority of a thread
  3745. * @pid: the pid in question.
  3746. * @param: structure containing the new RT priority.
  3747. */
  3748. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3749. {
  3750. return do_sched_setscheduler(pid, -1, param);
  3751. }
  3752. /**
  3753. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3754. * @pid: the pid in question.
  3755. */
  3756. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3757. {
  3758. struct task_struct *p;
  3759. int retval = -EINVAL;
  3760. if (pid < 0)
  3761. goto out_nounlock;
  3762. retval = -ESRCH;
  3763. read_lock(&tasklist_lock);
  3764. p = find_process_by_pid(pid);
  3765. if (p) {
  3766. retval = security_task_getscheduler(p);
  3767. if (!retval)
  3768. retval = p->policy;
  3769. }
  3770. read_unlock(&tasklist_lock);
  3771. out_nounlock:
  3772. return retval;
  3773. }
  3774. /**
  3775. * sys_sched_getscheduler - get the RT priority of a thread
  3776. * @pid: the pid in question.
  3777. * @param: structure containing the RT priority.
  3778. */
  3779. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3780. {
  3781. struct sched_param lp;
  3782. struct task_struct *p;
  3783. int retval = -EINVAL;
  3784. if (!param || pid < 0)
  3785. goto out_nounlock;
  3786. read_lock(&tasklist_lock);
  3787. p = find_process_by_pid(pid);
  3788. retval = -ESRCH;
  3789. if (!p)
  3790. goto out_unlock;
  3791. retval = security_task_getscheduler(p);
  3792. if (retval)
  3793. goto out_unlock;
  3794. lp.sched_priority = p->rt_priority;
  3795. read_unlock(&tasklist_lock);
  3796. /*
  3797. * This one might sleep, we cannot do it with a spinlock held ...
  3798. */
  3799. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3800. out_nounlock:
  3801. return retval;
  3802. out_unlock:
  3803. read_unlock(&tasklist_lock);
  3804. return retval;
  3805. }
  3806. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3807. {
  3808. cpumask_t cpus_allowed;
  3809. struct task_struct *p;
  3810. int retval;
  3811. mutex_lock(&sched_hotcpu_mutex);
  3812. read_lock(&tasklist_lock);
  3813. p = find_process_by_pid(pid);
  3814. if (!p) {
  3815. read_unlock(&tasklist_lock);
  3816. mutex_unlock(&sched_hotcpu_mutex);
  3817. return -ESRCH;
  3818. }
  3819. /*
  3820. * It is not safe to call set_cpus_allowed with the
  3821. * tasklist_lock held. We will bump the task_struct's
  3822. * usage count and then drop tasklist_lock.
  3823. */
  3824. get_task_struct(p);
  3825. read_unlock(&tasklist_lock);
  3826. retval = -EPERM;
  3827. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3828. !capable(CAP_SYS_NICE))
  3829. goto out_unlock;
  3830. retval = security_task_setscheduler(p, 0, NULL);
  3831. if (retval)
  3832. goto out_unlock;
  3833. cpus_allowed = cpuset_cpus_allowed(p);
  3834. cpus_and(new_mask, new_mask, cpus_allowed);
  3835. retval = set_cpus_allowed(p, new_mask);
  3836. out_unlock:
  3837. put_task_struct(p);
  3838. mutex_unlock(&sched_hotcpu_mutex);
  3839. return retval;
  3840. }
  3841. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3842. cpumask_t *new_mask)
  3843. {
  3844. if (len < sizeof(cpumask_t)) {
  3845. memset(new_mask, 0, sizeof(cpumask_t));
  3846. } else if (len > sizeof(cpumask_t)) {
  3847. len = sizeof(cpumask_t);
  3848. }
  3849. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3850. }
  3851. /**
  3852. * sys_sched_setaffinity - set the cpu affinity of a process
  3853. * @pid: pid of the process
  3854. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3855. * @user_mask_ptr: user-space pointer to the new cpu mask
  3856. */
  3857. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3858. unsigned long __user *user_mask_ptr)
  3859. {
  3860. cpumask_t new_mask;
  3861. int retval;
  3862. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3863. if (retval)
  3864. return retval;
  3865. return sched_setaffinity(pid, new_mask);
  3866. }
  3867. /*
  3868. * Represents all cpu's present in the system
  3869. * In systems capable of hotplug, this map could dynamically grow
  3870. * as new cpu's are detected in the system via any platform specific
  3871. * method, such as ACPI for e.g.
  3872. */
  3873. cpumask_t cpu_present_map __read_mostly;
  3874. EXPORT_SYMBOL(cpu_present_map);
  3875. #ifndef CONFIG_SMP
  3876. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3877. EXPORT_SYMBOL(cpu_online_map);
  3878. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3879. EXPORT_SYMBOL(cpu_possible_map);
  3880. #endif
  3881. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3882. {
  3883. struct task_struct *p;
  3884. int retval;
  3885. mutex_lock(&sched_hotcpu_mutex);
  3886. read_lock(&tasklist_lock);
  3887. retval = -ESRCH;
  3888. p = find_process_by_pid(pid);
  3889. if (!p)
  3890. goto out_unlock;
  3891. retval = security_task_getscheduler(p);
  3892. if (retval)
  3893. goto out_unlock;
  3894. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3895. out_unlock:
  3896. read_unlock(&tasklist_lock);
  3897. mutex_unlock(&sched_hotcpu_mutex);
  3898. return retval;
  3899. }
  3900. /**
  3901. * sys_sched_getaffinity - get the cpu affinity of a process
  3902. * @pid: pid of the process
  3903. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3904. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3905. */
  3906. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3907. unsigned long __user *user_mask_ptr)
  3908. {
  3909. int ret;
  3910. cpumask_t mask;
  3911. if (len < sizeof(cpumask_t))
  3912. return -EINVAL;
  3913. ret = sched_getaffinity(pid, &mask);
  3914. if (ret < 0)
  3915. return ret;
  3916. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3917. return -EFAULT;
  3918. return sizeof(cpumask_t);
  3919. }
  3920. /**
  3921. * sys_sched_yield - yield the current processor to other threads.
  3922. *
  3923. * This function yields the current CPU to other tasks. If there are no
  3924. * other threads running on this CPU then this function will return.
  3925. */
  3926. asmlinkage long sys_sched_yield(void)
  3927. {
  3928. struct rq *rq = this_rq_lock();
  3929. schedstat_inc(rq, yld_cnt);
  3930. if (unlikely(rq->nr_running == 1))
  3931. schedstat_inc(rq, yld_act_empty);
  3932. else
  3933. current->sched_class->yield_task(rq, current);
  3934. /*
  3935. * Since we are going to call schedule() anyway, there's
  3936. * no need to preempt or enable interrupts:
  3937. */
  3938. __release(rq->lock);
  3939. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3940. _raw_spin_unlock(&rq->lock);
  3941. preempt_enable_no_resched();
  3942. schedule();
  3943. return 0;
  3944. }
  3945. static void __cond_resched(void)
  3946. {
  3947. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3948. __might_sleep(__FILE__, __LINE__);
  3949. #endif
  3950. /*
  3951. * The BKS might be reacquired before we have dropped
  3952. * PREEMPT_ACTIVE, which could trigger a second
  3953. * cond_resched() call.
  3954. */
  3955. do {
  3956. add_preempt_count(PREEMPT_ACTIVE);
  3957. schedule();
  3958. sub_preempt_count(PREEMPT_ACTIVE);
  3959. } while (need_resched());
  3960. }
  3961. int __sched cond_resched(void)
  3962. {
  3963. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3964. system_state == SYSTEM_RUNNING) {
  3965. __cond_resched();
  3966. return 1;
  3967. }
  3968. return 0;
  3969. }
  3970. EXPORT_SYMBOL(cond_resched);
  3971. /*
  3972. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3973. * call schedule, and on return reacquire the lock.
  3974. *
  3975. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3976. * operations here to prevent schedule() from being called twice (once via
  3977. * spin_unlock(), once by hand).
  3978. */
  3979. int cond_resched_lock(spinlock_t *lock)
  3980. {
  3981. int ret = 0;
  3982. if (need_lockbreak(lock)) {
  3983. spin_unlock(lock);
  3984. cpu_relax();
  3985. ret = 1;
  3986. spin_lock(lock);
  3987. }
  3988. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3989. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3990. _raw_spin_unlock(lock);
  3991. preempt_enable_no_resched();
  3992. __cond_resched();
  3993. ret = 1;
  3994. spin_lock(lock);
  3995. }
  3996. return ret;
  3997. }
  3998. EXPORT_SYMBOL(cond_resched_lock);
  3999. int __sched cond_resched_softirq(void)
  4000. {
  4001. BUG_ON(!in_softirq());
  4002. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4003. local_bh_enable();
  4004. __cond_resched();
  4005. local_bh_disable();
  4006. return 1;
  4007. }
  4008. return 0;
  4009. }
  4010. EXPORT_SYMBOL(cond_resched_softirq);
  4011. /**
  4012. * yield - yield the current processor to other threads.
  4013. *
  4014. * This is a shortcut for kernel-space yielding - it marks the
  4015. * thread runnable and calls sys_sched_yield().
  4016. */
  4017. void __sched yield(void)
  4018. {
  4019. set_current_state(TASK_RUNNING);
  4020. sys_sched_yield();
  4021. }
  4022. EXPORT_SYMBOL(yield);
  4023. /*
  4024. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4025. * that process accounting knows that this is a task in IO wait state.
  4026. *
  4027. * But don't do that if it is a deliberate, throttling IO wait (this task
  4028. * has set its backing_dev_info: the queue against which it should throttle)
  4029. */
  4030. void __sched io_schedule(void)
  4031. {
  4032. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4033. delayacct_blkio_start();
  4034. atomic_inc(&rq->nr_iowait);
  4035. schedule();
  4036. atomic_dec(&rq->nr_iowait);
  4037. delayacct_blkio_end();
  4038. }
  4039. EXPORT_SYMBOL(io_schedule);
  4040. long __sched io_schedule_timeout(long timeout)
  4041. {
  4042. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4043. long ret;
  4044. delayacct_blkio_start();
  4045. atomic_inc(&rq->nr_iowait);
  4046. ret = schedule_timeout(timeout);
  4047. atomic_dec(&rq->nr_iowait);
  4048. delayacct_blkio_end();
  4049. return ret;
  4050. }
  4051. /**
  4052. * sys_sched_get_priority_max - return maximum RT priority.
  4053. * @policy: scheduling class.
  4054. *
  4055. * this syscall returns the maximum rt_priority that can be used
  4056. * by a given scheduling class.
  4057. */
  4058. asmlinkage long sys_sched_get_priority_max(int policy)
  4059. {
  4060. int ret = -EINVAL;
  4061. switch (policy) {
  4062. case SCHED_FIFO:
  4063. case SCHED_RR:
  4064. ret = MAX_USER_RT_PRIO-1;
  4065. break;
  4066. case SCHED_NORMAL:
  4067. case SCHED_BATCH:
  4068. case SCHED_IDLE:
  4069. ret = 0;
  4070. break;
  4071. }
  4072. return ret;
  4073. }
  4074. /**
  4075. * sys_sched_get_priority_min - return minimum RT priority.
  4076. * @policy: scheduling class.
  4077. *
  4078. * this syscall returns the minimum rt_priority that can be used
  4079. * by a given scheduling class.
  4080. */
  4081. asmlinkage long sys_sched_get_priority_min(int policy)
  4082. {
  4083. int ret = -EINVAL;
  4084. switch (policy) {
  4085. case SCHED_FIFO:
  4086. case SCHED_RR:
  4087. ret = 1;
  4088. break;
  4089. case SCHED_NORMAL:
  4090. case SCHED_BATCH:
  4091. case SCHED_IDLE:
  4092. ret = 0;
  4093. }
  4094. return ret;
  4095. }
  4096. /**
  4097. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4098. * @pid: pid of the process.
  4099. * @interval: userspace pointer to the timeslice value.
  4100. *
  4101. * this syscall writes the default timeslice value of a given process
  4102. * into the user-space timespec buffer. A value of '0' means infinity.
  4103. */
  4104. asmlinkage
  4105. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4106. {
  4107. struct task_struct *p;
  4108. int retval = -EINVAL;
  4109. struct timespec t;
  4110. if (pid < 0)
  4111. goto out_nounlock;
  4112. retval = -ESRCH;
  4113. read_lock(&tasklist_lock);
  4114. p = find_process_by_pid(pid);
  4115. if (!p)
  4116. goto out_unlock;
  4117. retval = security_task_getscheduler(p);
  4118. if (retval)
  4119. goto out_unlock;
  4120. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4121. 0 : static_prio_timeslice(p->static_prio), &t);
  4122. read_unlock(&tasklist_lock);
  4123. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4124. out_nounlock:
  4125. return retval;
  4126. out_unlock:
  4127. read_unlock(&tasklist_lock);
  4128. return retval;
  4129. }
  4130. static const char stat_nam[] = "RSDTtZX";
  4131. static void show_task(struct task_struct *p)
  4132. {
  4133. unsigned long free = 0;
  4134. unsigned state;
  4135. state = p->state ? __ffs(p->state) + 1 : 0;
  4136. printk("%-13.13s %c", p->comm,
  4137. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4138. #if BITS_PER_LONG == 32
  4139. if (state == TASK_RUNNING)
  4140. printk(" running ");
  4141. else
  4142. printk(" %08lx ", thread_saved_pc(p));
  4143. #else
  4144. if (state == TASK_RUNNING)
  4145. printk(" running task ");
  4146. else
  4147. printk(" %016lx ", thread_saved_pc(p));
  4148. #endif
  4149. #ifdef CONFIG_DEBUG_STACK_USAGE
  4150. {
  4151. unsigned long *n = end_of_stack(p);
  4152. while (!*n)
  4153. n++;
  4154. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4155. }
  4156. #endif
  4157. printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
  4158. if (state != TASK_RUNNING)
  4159. show_stack(p, NULL);
  4160. }
  4161. void show_state_filter(unsigned long state_filter)
  4162. {
  4163. struct task_struct *g, *p;
  4164. #if BITS_PER_LONG == 32
  4165. printk(KERN_INFO
  4166. " task PC stack pid father\n");
  4167. #else
  4168. printk(KERN_INFO
  4169. " task PC stack pid father\n");
  4170. #endif
  4171. read_lock(&tasklist_lock);
  4172. do_each_thread(g, p) {
  4173. /*
  4174. * reset the NMI-timeout, listing all files on a slow
  4175. * console might take alot of time:
  4176. */
  4177. touch_nmi_watchdog();
  4178. if (!state_filter || (p->state & state_filter))
  4179. show_task(p);
  4180. } while_each_thread(g, p);
  4181. touch_all_softlockup_watchdogs();
  4182. #ifdef CONFIG_SCHED_DEBUG
  4183. sysrq_sched_debug_show();
  4184. #endif
  4185. read_unlock(&tasklist_lock);
  4186. /*
  4187. * Only show locks if all tasks are dumped:
  4188. */
  4189. if (state_filter == -1)
  4190. debug_show_all_locks();
  4191. }
  4192. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4193. {
  4194. idle->sched_class = &idle_sched_class;
  4195. }
  4196. /**
  4197. * init_idle - set up an idle thread for a given CPU
  4198. * @idle: task in question
  4199. * @cpu: cpu the idle task belongs to
  4200. *
  4201. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4202. * flag, to make booting more robust.
  4203. */
  4204. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4205. {
  4206. struct rq *rq = cpu_rq(cpu);
  4207. unsigned long flags;
  4208. __sched_fork(idle);
  4209. idle->se.exec_start = sched_clock();
  4210. idle->prio = idle->normal_prio = MAX_PRIO;
  4211. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4212. __set_task_cpu(idle, cpu);
  4213. spin_lock_irqsave(&rq->lock, flags);
  4214. rq->curr = rq->idle = idle;
  4215. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4216. idle->oncpu = 1;
  4217. #endif
  4218. spin_unlock_irqrestore(&rq->lock, flags);
  4219. /* Set the preempt count _outside_ the spinlocks! */
  4220. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4221. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4222. #else
  4223. task_thread_info(idle)->preempt_count = 0;
  4224. #endif
  4225. /*
  4226. * The idle tasks have their own, simple scheduling class:
  4227. */
  4228. idle->sched_class = &idle_sched_class;
  4229. }
  4230. /*
  4231. * In a system that switches off the HZ timer nohz_cpu_mask
  4232. * indicates which cpus entered this state. This is used
  4233. * in the rcu update to wait only for active cpus. For system
  4234. * which do not switch off the HZ timer nohz_cpu_mask should
  4235. * always be CPU_MASK_NONE.
  4236. */
  4237. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4238. /*
  4239. * Increase the granularity value when there are more CPUs,
  4240. * because with more CPUs the 'effective latency' as visible
  4241. * to users decreases. But the relationship is not linear,
  4242. * so pick a second-best guess by going with the log2 of the
  4243. * number of CPUs.
  4244. *
  4245. * This idea comes from the SD scheduler of Con Kolivas:
  4246. */
  4247. static inline void sched_init_granularity(void)
  4248. {
  4249. unsigned int factor = 1 + ilog2(num_online_cpus());
  4250. const unsigned long gran_limit = 100000000;
  4251. sysctl_sched_granularity *= factor;
  4252. if (sysctl_sched_granularity > gran_limit)
  4253. sysctl_sched_granularity = gran_limit;
  4254. sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
  4255. sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
  4256. }
  4257. #ifdef CONFIG_SMP
  4258. /*
  4259. * This is how migration works:
  4260. *
  4261. * 1) we queue a struct migration_req structure in the source CPU's
  4262. * runqueue and wake up that CPU's migration thread.
  4263. * 2) we down() the locked semaphore => thread blocks.
  4264. * 3) migration thread wakes up (implicitly it forces the migrated
  4265. * thread off the CPU)
  4266. * 4) it gets the migration request and checks whether the migrated
  4267. * task is still in the wrong runqueue.
  4268. * 5) if it's in the wrong runqueue then the migration thread removes
  4269. * it and puts it into the right queue.
  4270. * 6) migration thread up()s the semaphore.
  4271. * 7) we wake up and the migration is done.
  4272. */
  4273. /*
  4274. * Change a given task's CPU affinity. Migrate the thread to a
  4275. * proper CPU and schedule it away if the CPU it's executing on
  4276. * is removed from the allowed bitmask.
  4277. *
  4278. * NOTE: the caller must have a valid reference to the task, the
  4279. * task must not exit() & deallocate itself prematurely. The
  4280. * call is not atomic; no spinlocks may be held.
  4281. */
  4282. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4283. {
  4284. struct migration_req req;
  4285. unsigned long flags;
  4286. struct rq *rq;
  4287. int ret = 0;
  4288. rq = task_rq_lock(p, &flags);
  4289. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4290. ret = -EINVAL;
  4291. goto out;
  4292. }
  4293. p->cpus_allowed = new_mask;
  4294. /* Can the task run on the task's current CPU? If so, we're done */
  4295. if (cpu_isset(task_cpu(p), new_mask))
  4296. goto out;
  4297. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4298. /* Need help from migration thread: drop lock and wait. */
  4299. task_rq_unlock(rq, &flags);
  4300. wake_up_process(rq->migration_thread);
  4301. wait_for_completion(&req.done);
  4302. tlb_migrate_finish(p->mm);
  4303. return 0;
  4304. }
  4305. out:
  4306. task_rq_unlock(rq, &flags);
  4307. return ret;
  4308. }
  4309. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4310. /*
  4311. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4312. * this because either it can't run here any more (set_cpus_allowed()
  4313. * away from this CPU, or CPU going down), or because we're
  4314. * attempting to rebalance this task on exec (sched_exec).
  4315. *
  4316. * So we race with normal scheduler movements, but that's OK, as long
  4317. * as the task is no longer on this CPU.
  4318. *
  4319. * Returns non-zero if task was successfully migrated.
  4320. */
  4321. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4322. {
  4323. struct rq *rq_dest, *rq_src;
  4324. int ret = 0, on_rq;
  4325. if (unlikely(cpu_is_offline(dest_cpu)))
  4326. return ret;
  4327. rq_src = cpu_rq(src_cpu);
  4328. rq_dest = cpu_rq(dest_cpu);
  4329. double_rq_lock(rq_src, rq_dest);
  4330. /* Already moved. */
  4331. if (task_cpu(p) != src_cpu)
  4332. goto out;
  4333. /* Affinity changed (again). */
  4334. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4335. goto out;
  4336. on_rq = p->se.on_rq;
  4337. if (on_rq)
  4338. deactivate_task(rq_src, p, 0);
  4339. set_task_cpu(p, dest_cpu);
  4340. if (on_rq) {
  4341. activate_task(rq_dest, p, 0);
  4342. check_preempt_curr(rq_dest, p);
  4343. }
  4344. ret = 1;
  4345. out:
  4346. double_rq_unlock(rq_src, rq_dest);
  4347. return ret;
  4348. }
  4349. /*
  4350. * migration_thread - this is a highprio system thread that performs
  4351. * thread migration by bumping thread off CPU then 'pushing' onto
  4352. * another runqueue.
  4353. */
  4354. static int migration_thread(void *data)
  4355. {
  4356. int cpu = (long)data;
  4357. struct rq *rq;
  4358. rq = cpu_rq(cpu);
  4359. BUG_ON(rq->migration_thread != current);
  4360. set_current_state(TASK_INTERRUPTIBLE);
  4361. while (!kthread_should_stop()) {
  4362. struct migration_req *req;
  4363. struct list_head *head;
  4364. spin_lock_irq(&rq->lock);
  4365. if (cpu_is_offline(cpu)) {
  4366. spin_unlock_irq(&rq->lock);
  4367. goto wait_to_die;
  4368. }
  4369. if (rq->active_balance) {
  4370. active_load_balance(rq, cpu);
  4371. rq->active_balance = 0;
  4372. }
  4373. head = &rq->migration_queue;
  4374. if (list_empty(head)) {
  4375. spin_unlock_irq(&rq->lock);
  4376. schedule();
  4377. set_current_state(TASK_INTERRUPTIBLE);
  4378. continue;
  4379. }
  4380. req = list_entry(head->next, struct migration_req, list);
  4381. list_del_init(head->next);
  4382. spin_unlock(&rq->lock);
  4383. __migrate_task(req->task, cpu, req->dest_cpu);
  4384. local_irq_enable();
  4385. complete(&req->done);
  4386. }
  4387. __set_current_state(TASK_RUNNING);
  4388. return 0;
  4389. wait_to_die:
  4390. /* Wait for kthread_stop */
  4391. set_current_state(TASK_INTERRUPTIBLE);
  4392. while (!kthread_should_stop()) {
  4393. schedule();
  4394. set_current_state(TASK_INTERRUPTIBLE);
  4395. }
  4396. __set_current_state(TASK_RUNNING);
  4397. return 0;
  4398. }
  4399. #ifdef CONFIG_HOTPLUG_CPU
  4400. /*
  4401. * Figure out where task on dead CPU should go, use force if neccessary.
  4402. * NOTE: interrupts should be disabled by the caller
  4403. */
  4404. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4405. {
  4406. unsigned long flags;
  4407. cpumask_t mask;
  4408. struct rq *rq;
  4409. int dest_cpu;
  4410. restart:
  4411. /* On same node? */
  4412. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4413. cpus_and(mask, mask, p->cpus_allowed);
  4414. dest_cpu = any_online_cpu(mask);
  4415. /* On any allowed CPU? */
  4416. if (dest_cpu == NR_CPUS)
  4417. dest_cpu = any_online_cpu(p->cpus_allowed);
  4418. /* No more Mr. Nice Guy. */
  4419. if (dest_cpu == NR_CPUS) {
  4420. rq = task_rq_lock(p, &flags);
  4421. cpus_setall(p->cpus_allowed);
  4422. dest_cpu = any_online_cpu(p->cpus_allowed);
  4423. task_rq_unlock(rq, &flags);
  4424. /*
  4425. * Don't tell them about moving exiting tasks or
  4426. * kernel threads (both mm NULL), since they never
  4427. * leave kernel.
  4428. */
  4429. if (p->mm && printk_ratelimit())
  4430. printk(KERN_INFO "process %d (%s) no "
  4431. "longer affine to cpu%d\n",
  4432. p->pid, p->comm, dead_cpu);
  4433. }
  4434. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4435. goto restart;
  4436. }
  4437. /*
  4438. * While a dead CPU has no uninterruptible tasks queued at this point,
  4439. * it might still have a nonzero ->nr_uninterruptible counter, because
  4440. * for performance reasons the counter is not stricly tracking tasks to
  4441. * their home CPUs. So we just add the counter to another CPU's counter,
  4442. * to keep the global sum constant after CPU-down:
  4443. */
  4444. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4445. {
  4446. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4447. unsigned long flags;
  4448. local_irq_save(flags);
  4449. double_rq_lock(rq_src, rq_dest);
  4450. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4451. rq_src->nr_uninterruptible = 0;
  4452. double_rq_unlock(rq_src, rq_dest);
  4453. local_irq_restore(flags);
  4454. }
  4455. /* Run through task list and migrate tasks from the dead cpu. */
  4456. static void migrate_live_tasks(int src_cpu)
  4457. {
  4458. struct task_struct *p, *t;
  4459. write_lock_irq(&tasklist_lock);
  4460. do_each_thread(t, p) {
  4461. if (p == current)
  4462. continue;
  4463. if (task_cpu(p) == src_cpu)
  4464. move_task_off_dead_cpu(src_cpu, p);
  4465. } while_each_thread(t, p);
  4466. write_unlock_irq(&tasklist_lock);
  4467. }
  4468. /*
  4469. * Schedules idle task to be the next runnable task on current CPU.
  4470. * It does so by boosting its priority to highest possible and adding it to
  4471. * the _front_ of the runqueue. Used by CPU offline code.
  4472. */
  4473. void sched_idle_next(void)
  4474. {
  4475. int this_cpu = smp_processor_id();
  4476. struct rq *rq = cpu_rq(this_cpu);
  4477. struct task_struct *p = rq->idle;
  4478. unsigned long flags;
  4479. /* cpu has to be offline */
  4480. BUG_ON(cpu_online(this_cpu));
  4481. /*
  4482. * Strictly not necessary since rest of the CPUs are stopped by now
  4483. * and interrupts disabled on the current cpu.
  4484. */
  4485. spin_lock_irqsave(&rq->lock, flags);
  4486. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4487. /* Add idle task to the _front_ of its priority queue: */
  4488. activate_idle_task(p, rq);
  4489. spin_unlock_irqrestore(&rq->lock, flags);
  4490. }
  4491. /*
  4492. * Ensures that the idle task is using init_mm right before its cpu goes
  4493. * offline.
  4494. */
  4495. void idle_task_exit(void)
  4496. {
  4497. struct mm_struct *mm = current->active_mm;
  4498. BUG_ON(cpu_online(smp_processor_id()));
  4499. if (mm != &init_mm)
  4500. switch_mm(mm, &init_mm, current);
  4501. mmdrop(mm);
  4502. }
  4503. /* called under rq->lock with disabled interrupts */
  4504. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4505. {
  4506. struct rq *rq = cpu_rq(dead_cpu);
  4507. /* Must be exiting, otherwise would be on tasklist. */
  4508. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4509. /* Cannot have done final schedule yet: would have vanished. */
  4510. BUG_ON(p->state == TASK_DEAD);
  4511. get_task_struct(p);
  4512. /*
  4513. * Drop lock around migration; if someone else moves it,
  4514. * that's OK. No task can be added to this CPU, so iteration is
  4515. * fine.
  4516. * NOTE: interrupts should be left disabled --dev@
  4517. */
  4518. spin_unlock(&rq->lock);
  4519. move_task_off_dead_cpu(dead_cpu, p);
  4520. spin_lock(&rq->lock);
  4521. put_task_struct(p);
  4522. }
  4523. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4524. static void migrate_dead_tasks(unsigned int dead_cpu)
  4525. {
  4526. struct rq *rq = cpu_rq(dead_cpu);
  4527. struct task_struct *next;
  4528. for ( ; ; ) {
  4529. if (!rq->nr_running)
  4530. break;
  4531. update_rq_clock(rq);
  4532. next = pick_next_task(rq, rq->curr);
  4533. if (!next)
  4534. break;
  4535. migrate_dead(dead_cpu, next);
  4536. }
  4537. }
  4538. #endif /* CONFIG_HOTPLUG_CPU */
  4539. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4540. static struct ctl_table sd_ctl_dir[] = {
  4541. {
  4542. .procname = "sched_domain",
  4543. .mode = 0555,
  4544. },
  4545. {0,},
  4546. };
  4547. static struct ctl_table sd_ctl_root[] = {
  4548. {
  4549. .ctl_name = CTL_KERN,
  4550. .procname = "kernel",
  4551. .mode = 0555,
  4552. .child = sd_ctl_dir,
  4553. },
  4554. {0,},
  4555. };
  4556. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4557. {
  4558. struct ctl_table *entry =
  4559. kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
  4560. BUG_ON(!entry);
  4561. memset(entry, 0, n * sizeof(struct ctl_table));
  4562. return entry;
  4563. }
  4564. static void
  4565. set_table_entry(struct ctl_table *entry,
  4566. const char *procname, void *data, int maxlen,
  4567. mode_t mode, proc_handler *proc_handler)
  4568. {
  4569. entry->procname = procname;
  4570. entry->data = data;
  4571. entry->maxlen = maxlen;
  4572. entry->mode = mode;
  4573. entry->proc_handler = proc_handler;
  4574. }
  4575. static struct ctl_table *
  4576. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4577. {
  4578. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4579. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4580. sizeof(long), 0644, proc_doulongvec_minmax);
  4581. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4582. sizeof(long), 0644, proc_doulongvec_minmax);
  4583. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4584. sizeof(int), 0644, proc_dointvec_minmax);
  4585. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4586. sizeof(int), 0644, proc_dointvec_minmax);
  4587. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4588. sizeof(int), 0644, proc_dointvec_minmax);
  4589. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4590. sizeof(int), 0644, proc_dointvec_minmax);
  4591. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4592. sizeof(int), 0644, proc_dointvec_minmax);
  4593. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4594. sizeof(int), 0644, proc_dointvec_minmax);
  4595. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4596. sizeof(int), 0644, proc_dointvec_minmax);
  4597. set_table_entry(&table[10], "cache_nice_tries",
  4598. &sd->cache_nice_tries,
  4599. sizeof(int), 0644, proc_dointvec_minmax);
  4600. set_table_entry(&table[12], "flags", &sd->flags,
  4601. sizeof(int), 0644, proc_dointvec_minmax);
  4602. return table;
  4603. }
  4604. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4605. {
  4606. struct ctl_table *entry, *table;
  4607. struct sched_domain *sd;
  4608. int domain_num = 0, i;
  4609. char buf[32];
  4610. for_each_domain(cpu, sd)
  4611. domain_num++;
  4612. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4613. i = 0;
  4614. for_each_domain(cpu, sd) {
  4615. snprintf(buf, 32, "domain%d", i);
  4616. entry->procname = kstrdup(buf, GFP_KERNEL);
  4617. entry->mode = 0555;
  4618. entry->child = sd_alloc_ctl_domain_table(sd);
  4619. entry++;
  4620. i++;
  4621. }
  4622. return table;
  4623. }
  4624. static struct ctl_table_header *sd_sysctl_header;
  4625. static void init_sched_domain_sysctl(void)
  4626. {
  4627. int i, cpu_num = num_online_cpus();
  4628. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4629. char buf[32];
  4630. sd_ctl_dir[0].child = entry;
  4631. for (i = 0; i < cpu_num; i++, entry++) {
  4632. snprintf(buf, 32, "cpu%d", i);
  4633. entry->procname = kstrdup(buf, GFP_KERNEL);
  4634. entry->mode = 0555;
  4635. entry->child = sd_alloc_ctl_cpu_table(i);
  4636. }
  4637. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4638. }
  4639. #else
  4640. static void init_sched_domain_sysctl(void)
  4641. {
  4642. }
  4643. #endif
  4644. /*
  4645. * migration_call - callback that gets triggered when a CPU is added.
  4646. * Here we can start up the necessary migration thread for the new CPU.
  4647. */
  4648. static int __cpuinit
  4649. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4650. {
  4651. struct task_struct *p;
  4652. int cpu = (long)hcpu;
  4653. unsigned long flags;
  4654. struct rq *rq;
  4655. switch (action) {
  4656. case CPU_LOCK_ACQUIRE:
  4657. mutex_lock(&sched_hotcpu_mutex);
  4658. break;
  4659. case CPU_UP_PREPARE:
  4660. case CPU_UP_PREPARE_FROZEN:
  4661. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4662. if (IS_ERR(p))
  4663. return NOTIFY_BAD;
  4664. kthread_bind(p, cpu);
  4665. /* Must be high prio: stop_machine expects to yield to it. */
  4666. rq = task_rq_lock(p, &flags);
  4667. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4668. task_rq_unlock(rq, &flags);
  4669. cpu_rq(cpu)->migration_thread = p;
  4670. break;
  4671. case CPU_ONLINE:
  4672. case CPU_ONLINE_FROZEN:
  4673. /* Strictly unneccessary, as first user will wake it. */
  4674. wake_up_process(cpu_rq(cpu)->migration_thread);
  4675. break;
  4676. #ifdef CONFIG_HOTPLUG_CPU
  4677. case CPU_UP_CANCELED:
  4678. case CPU_UP_CANCELED_FROZEN:
  4679. if (!cpu_rq(cpu)->migration_thread)
  4680. break;
  4681. /* Unbind it from offline cpu so it can run. Fall thru. */
  4682. kthread_bind(cpu_rq(cpu)->migration_thread,
  4683. any_online_cpu(cpu_online_map));
  4684. kthread_stop(cpu_rq(cpu)->migration_thread);
  4685. cpu_rq(cpu)->migration_thread = NULL;
  4686. break;
  4687. case CPU_DEAD:
  4688. case CPU_DEAD_FROZEN:
  4689. migrate_live_tasks(cpu);
  4690. rq = cpu_rq(cpu);
  4691. kthread_stop(rq->migration_thread);
  4692. rq->migration_thread = NULL;
  4693. /* Idle task back to normal (off runqueue, low prio) */
  4694. rq = task_rq_lock(rq->idle, &flags);
  4695. update_rq_clock(rq);
  4696. deactivate_task(rq, rq->idle, 0);
  4697. rq->idle->static_prio = MAX_PRIO;
  4698. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4699. rq->idle->sched_class = &idle_sched_class;
  4700. migrate_dead_tasks(cpu);
  4701. task_rq_unlock(rq, &flags);
  4702. migrate_nr_uninterruptible(rq);
  4703. BUG_ON(rq->nr_running != 0);
  4704. /* No need to migrate the tasks: it was best-effort if
  4705. * they didn't take sched_hotcpu_mutex. Just wake up
  4706. * the requestors. */
  4707. spin_lock_irq(&rq->lock);
  4708. while (!list_empty(&rq->migration_queue)) {
  4709. struct migration_req *req;
  4710. req = list_entry(rq->migration_queue.next,
  4711. struct migration_req, list);
  4712. list_del_init(&req->list);
  4713. complete(&req->done);
  4714. }
  4715. spin_unlock_irq(&rq->lock);
  4716. break;
  4717. #endif
  4718. case CPU_LOCK_RELEASE:
  4719. mutex_unlock(&sched_hotcpu_mutex);
  4720. break;
  4721. }
  4722. return NOTIFY_OK;
  4723. }
  4724. /* Register at highest priority so that task migration (migrate_all_tasks)
  4725. * happens before everything else.
  4726. */
  4727. static struct notifier_block __cpuinitdata migration_notifier = {
  4728. .notifier_call = migration_call,
  4729. .priority = 10
  4730. };
  4731. int __init migration_init(void)
  4732. {
  4733. void *cpu = (void *)(long)smp_processor_id();
  4734. int err;
  4735. /* Start one for the boot CPU: */
  4736. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4737. BUG_ON(err == NOTIFY_BAD);
  4738. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4739. register_cpu_notifier(&migration_notifier);
  4740. return 0;
  4741. }
  4742. #endif
  4743. #ifdef CONFIG_SMP
  4744. /* Number of possible processor ids */
  4745. int nr_cpu_ids __read_mostly = NR_CPUS;
  4746. EXPORT_SYMBOL(nr_cpu_ids);
  4747. #undef SCHED_DOMAIN_DEBUG
  4748. #ifdef SCHED_DOMAIN_DEBUG
  4749. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4750. {
  4751. int level = 0;
  4752. if (!sd) {
  4753. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4754. return;
  4755. }
  4756. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4757. do {
  4758. int i;
  4759. char str[NR_CPUS];
  4760. struct sched_group *group = sd->groups;
  4761. cpumask_t groupmask;
  4762. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4763. cpus_clear(groupmask);
  4764. printk(KERN_DEBUG);
  4765. for (i = 0; i < level + 1; i++)
  4766. printk(" ");
  4767. printk("domain %d: ", level);
  4768. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4769. printk("does not load-balance\n");
  4770. if (sd->parent)
  4771. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4772. " has parent");
  4773. break;
  4774. }
  4775. printk("span %s\n", str);
  4776. if (!cpu_isset(cpu, sd->span))
  4777. printk(KERN_ERR "ERROR: domain->span does not contain "
  4778. "CPU%d\n", cpu);
  4779. if (!cpu_isset(cpu, group->cpumask))
  4780. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4781. " CPU%d\n", cpu);
  4782. printk(KERN_DEBUG);
  4783. for (i = 0; i < level + 2; i++)
  4784. printk(" ");
  4785. printk("groups:");
  4786. do {
  4787. if (!group) {
  4788. printk("\n");
  4789. printk(KERN_ERR "ERROR: group is NULL\n");
  4790. break;
  4791. }
  4792. if (!group->__cpu_power) {
  4793. printk("\n");
  4794. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4795. "set\n");
  4796. }
  4797. if (!cpus_weight(group->cpumask)) {
  4798. printk("\n");
  4799. printk(KERN_ERR "ERROR: empty group\n");
  4800. }
  4801. if (cpus_intersects(groupmask, group->cpumask)) {
  4802. printk("\n");
  4803. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4804. }
  4805. cpus_or(groupmask, groupmask, group->cpumask);
  4806. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4807. printk(" %s", str);
  4808. group = group->next;
  4809. } while (group != sd->groups);
  4810. printk("\n");
  4811. if (!cpus_equal(sd->span, groupmask))
  4812. printk(KERN_ERR "ERROR: groups don't span "
  4813. "domain->span\n");
  4814. level++;
  4815. sd = sd->parent;
  4816. if (!sd)
  4817. continue;
  4818. if (!cpus_subset(groupmask, sd->span))
  4819. printk(KERN_ERR "ERROR: parent span is not a superset "
  4820. "of domain->span\n");
  4821. } while (sd);
  4822. }
  4823. #else
  4824. # define sched_domain_debug(sd, cpu) do { } while (0)
  4825. #endif
  4826. static int sd_degenerate(struct sched_domain *sd)
  4827. {
  4828. if (cpus_weight(sd->span) == 1)
  4829. return 1;
  4830. /* Following flags need at least 2 groups */
  4831. if (sd->flags & (SD_LOAD_BALANCE |
  4832. SD_BALANCE_NEWIDLE |
  4833. SD_BALANCE_FORK |
  4834. SD_BALANCE_EXEC |
  4835. SD_SHARE_CPUPOWER |
  4836. SD_SHARE_PKG_RESOURCES)) {
  4837. if (sd->groups != sd->groups->next)
  4838. return 0;
  4839. }
  4840. /* Following flags don't use groups */
  4841. if (sd->flags & (SD_WAKE_IDLE |
  4842. SD_WAKE_AFFINE |
  4843. SD_WAKE_BALANCE))
  4844. return 0;
  4845. return 1;
  4846. }
  4847. static int
  4848. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4849. {
  4850. unsigned long cflags = sd->flags, pflags = parent->flags;
  4851. if (sd_degenerate(parent))
  4852. return 1;
  4853. if (!cpus_equal(sd->span, parent->span))
  4854. return 0;
  4855. /* Does parent contain flags not in child? */
  4856. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4857. if (cflags & SD_WAKE_AFFINE)
  4858. pflags &= ~SD_WAKE_BALANCE;
  4859. /* Flags needing groups don't count if only 1 group in parent */
  4860. if (parent->groups == parent->groups->next) {
  4861. pflags &= ~(SD_LOAD_BALANCE |
  4862. SD_BALANCE_NEWIDLE |
  4863. SD_BALANCE_FORK |
  4864. SD_BALANCE_EXEC |
  4865. SD_SHARE_CPUPOWER |
  4866. SD_SHARE_PKG_RESOURCES);
  4867. }
  4868. if (~cflags & pflags)
  4869. return 0;
  4870. return 1;
  4871. }
  4872. /*
  4873. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4874. * hold the hotplug lock.
  4875. */
  4876. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4877. {
  4878. struct rq *rq = cpu_rq(cpu);
  4879. struct sched_domain *tmp;
  4880. /* Remove the sched domains which do not contribute to scheduling. */
  4881. for (tmp = sd; tmp; tmp = tmp->parent) {
  4882. struct sched_domain *parent = tmp->parent;
  4883. if (!parent)
  4884. break;
  4885. if (sd_parent_degenerate(tmp, parent)) {
  4886. tmp->parent = parent->parent;
  4887. if (parent->parent)
  4888. parent->parent->child = tmp;
  4889. }
  4890. }
  4891. if (sd && sd_degenerate(sd)) {
  4892. sd = sd->parent;
  4893. if (sd)
  4894. sd->child = NULL;
  4895. }
  4896. sched_domain_debug(sd, cpu);
  4897. rcu_assign_pointer(rq->sd, sd);
  4898. }
  4899. /* cpus with isolated domains */
  4900. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4901. /* Setup the mask of cpus configured for isolated domains */
  4902. static int __init isolated_cpu_setup(char *str)
  4903. {
  4904. int ints[NR_CPUS], i;
  4905. str = get_options(str, ARRAY_SIZE(ints), ints);
  4906. cpus_clear(cpu_isolated_map);
  4907. for (i = 1; i <= ints[0]; i++)
  4908. if (ints[i] < NR_CPUS)
  4909. cpu_set(ints[i], cpu_isolated_map);
  4910. return 1;
  4911. }
  4912. __setup ("isolcpus=", isolated_cpu_setup);
  4913. /*
  4914. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4915. * to a function which identifies what group(along with sched group) a CPU
  4916. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4917. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4918. *
  4919. * init_sched_build_groups will build a circular linked list of the groups
  4920. * covered by the given span, and will set each group's ->cpumask correctly,
  4921. * and ->cpu_power to 0.
  4922. */
  4923. static void
  4924. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4925. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4926. struct sched_group **sg))
  4927. {
  4928. struct sched_group *first = NULL, *last = NULL;
  4929. cpumask_t covered = CPU_MASK_NONE;
  4930. int i;
  4931. for_each_cpu_mask(i, span) {
  4932. struct sched_group *sg;
  4933. int group = group_fn(i, cpu_map, &sg);
  4934. int j;
  4935. if (cpu_isset(i, covered))
  4936. continue;
  4937. sg->cpumask = CPU_MASK_NONE;
  4938. sg->__cpu_power = 0;
  4939. for_each_cpu_mask(j, span) {
  4940. if (group_fn(j, cpu_map, NULL) != group)
  4941. continue;
  4942. cpu_set(j, covered);
  4943. cpu_set(j, sg->cpumask);
  4944. }
  4945. if (!first)
  4946. first = sg;
  4947. if (last)
  4948. last->next = sg;
  4949. last = sg;
  4950. }
  4951. last->next = first;
  4952. }
  4953. #define SD_NODES_PER_DOMAIN 16
  4954. #ifdef CONFIG_NUMA
  4955. /**
  4956. * find_next_best_node - find the next node to include in a sched_domain
  4957. * @node: node whose sched_domain we're building
  4958. * @used_nodes: nodes already in the sched_domain
  4959. *
  4960. * Find the next node to include in a given scheduling domain. Simply
  4961. * finds the closest node not already in the @used_nodes map.
  4962. *
  4963. * Should use nodemask_t.
  4964. */
  4965. static int find_next_best_node(int node, unsigned long *used_nodes)
  4966. {
  4967. int i, n, val, min_val, best_node = 0;
  4968. min_val = INT_MAX;
  4969. for (i = 0; i < MAX_NUMNODES; i++) {
  4970. /* Start at @node */
  4971. n = (node + i) % MAX_NUMNODES;
  4972. if (!nr_cpus_node(n))
  4973. continue;
  4974. /* Skip already used nodes */
  4975. if (test_bit(n, used_nodes))
  4976. continue;
  4977. /* Simple min distance search */
  4978. val = node_distance(node, n);
  4979. if (val < min_val) {
  4980. min_val = val;
  4981. best_node = n;
  4982. }
  4983. }
  4984. set_bit(best_node, used_nodes);
  4985. return best_node;
  4986. }
  4987. /**
  4988. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4989. * @node: node whose cpumask we're constructing
  4990. * @size: number of nodes to include in this span
  4991. *
  4992. * Given a node, construct a good cpumask for its sched_domain to span. It
  4993. * should be one that prevents unnecessary balancing, but also spreads tasks
  4994. * out optimally.
  4995. */
  4996. static cpumask_t sched_domain_node_span(int node)
  4997. {
  4998. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4999. cpumask_t span, nodemask;
  5000. int i;
  5001. cpus_clear(span);
  5002. bitmap_zero(used_nodes, MAX_NUMNODES);
  5003. nodemask = node_to_cpumask(node);
  5004. cpus_or(span, span, nodemask);
  5005. set_bit(node, used_nodes);
  5006. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5007. int next_node = find_next_best_node(node, used_nodes);
  5008. nodemask = node_to_cpumask(next_node);
  5009. cpus_or(span, span, nodemask);
  5010. }
  5011. return span;
  5012. }
  5013. #endif
  5014. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5015. /*
  5016. * SMT sched-domains:
  5017. */
  5018. #ifdef CONFIG_SCHED_SMT
  5019. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5020. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5021. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  5022. struct sched_group **sg)
  5023. {
  5024. if (sg)
  5025. *sg = &per_cpu(sched_group_cpus, cpu);
  5026. return cpu;
  5027. }
  5028. #endif
  5029. /*
  5030. * multi-core sched-domains:
  5031. */
  5032. #ifdef CONFIG_SCHED_MC
  5033. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5034. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5035. #endif
  5036. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5037. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5038. struct sched_group **sg)
  5039. {
  5040. int group;
  5041. cpumask_t mask = cpu_sibling_map[cpu];
  5042. cpus_and(mask, mask, *cpu_map);
  5043. group = first_cpu(mask);
  5044. if (sg)
  5045. *sg = &per_cpu(sched_group_core, group);
  5046. return group;
  5047. }
  5048. #elif defined(CONFIG_SCHED_MC)
  5049. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5050. struct sched_group **sg)
  5051. {
  5052. if (sg)
  5053. *sg = &per_cpu(sched_group_core, cpu);
  5054. return cpu;
  5055. }
  5056. #endif
  5057. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5058. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5059. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5060. struct sched_group **sg)
  5061. {
  5062. int group;
  5063. #ifdef CONFIG_SCHED_MC
  5064. cpumask_t mask = cpu_coregroup_map(cpu);
  5065. cpus_and(mask, mask, *cpu_map);
  5066. group = first_cpu(mask);
  5067. #elif defined(CONFIG_SCHED_SMT)
  5068. cpumask_t mask = cpu_sibling_map[cpu];
  5069. cpus_and(mask, mask, *cpu_map);
  5070. group = first_cpu(mask);
  5071. #else
  5072. group = cpu;
  5073. #endif
  5074. if (sg)
  5075. *sg = &per_cpu(sched_group_phys, group);
  5076. return group;
  5077. }
  5078. #ifdef CONFIG_NUMA
  5079. /*
  5080. * The init_sched_build_groups can't handle what we want to do with node
  5081. * groups, so roll our own. Now each node has its own list of groups which
  5082. * gets dynamically allocated.
  5083. */
  5084. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5085. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5086. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5087. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5088. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5089. struct sched_group **sg)
  5090. {
  5091. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5092. int group;
  5093. cpus_and(nodemask, nodemask, *cpu_map);
  5094. group = first_cpu(nodemask);
  5095. if (sg)
  5096. *sg = &per_cpu(sched_group_allnodes, group);
  5097. return group;
  5098. }
  5099. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5100. {
  5101. struct sched_group *sg = group_head;
  5102. int j;
  5103. if (!sg)
  5104. return;
  5105. next_sg:
  5106. for_each_cpu_mask(j, sg->cpumask) {
  5107. struct sched_domain *sd;
  5108. sd = &per_cpu(phys_domains, j);
  5109. if (j != first_cpu(sd->groups->cpumask)) {
  5110. /*
  5111. * Only add "power" once for each
  5112. * physical package.
  5113. */
  5114. continue;
  5115. }
  5116. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5117. }
  5118. sg = sg->next;
  5119. if (sg != group_head)
  5120. goto next_sg;
  5121. }
  5122. #endif
  5123. #ifdef CONFIG_NUMA
  5124. /* Free memory allocated for various sched_group structures */
  5125. static void free_sched_groups(const cpumask_t *cpu_map)
  5126. {
  5127. int cpu, i;
  5128. for_each_cpu_mask(cpu, *cpu_map) {
  5129. struct sched_group **sched_group_nodes
  5130. = sched_group_nodes_bycpu[cpu];
  5131. if (!sched_group_nodes)
  5132. continue;
  5133. for (i = 0; i < MAX_NUMNODES; i++) {
  5134. cpumask_t nodemask = node_to_cpumask(i);
  5135. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5136. cpus_and(nodemask, nodemask, *cpu_map);
  5137. if (cpus_empty(nodemask))
  5138. continue;
  5139. if (sg == NULL)
  5140. continue;
  5141. sg = sg->next;
  5142. next_sg:
  5143. oldsg = sg;
  5144. sg = sg->next;
  5145. kfree(oldsg);
  5146. if (oldsg != sched_group_nodes[i])
  5147. goto next_sg;
  5148. }
  5149. kfree(sched_group_nodes);
  5150. sched_group_nodes_bycpu[cpu] = NULL;
  5151. }
  5152. }
  5153. #else
  5154. static void free_sched_groups(const cpumask_t *cpu_map)
  5155. {
  5156. }
  5157. #endif
  5158. /*
  5159. * Initialize sched groups cpu_power.
  5160. *
  5161. * cpu_power indicates the capacity of sched group, which is used while
  5162. * distributing the load between different sched groups in a sched domain.
  5163. * Typically cpu_power for all the groups in a sched domain will be same unless
  5164. * there are asymmetries in the topology. If there are asymmetries, group
  5165. * having more cpu_power will pickup more load compared to the group having
  5166. * less cpu_power.
  5167. *
  5168. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5169. * the maximum number of tasks a group can handle in the presence of other idle
  5170. * or lightly loaded groups in the same sched domain.
  5171. */
  5172. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5173. {
  5174. struct sched_domain *child;
  5175. struct sched_group *group;
  5176. WARN_ON(!sd || !sd->groups);
  5177. if (cpu != first_cpu(sd->groups->cpumask))
  5178. return;
  5179. child = sd->child;
  5180. sd->groups->__cpu_power = 0;
  5181. /*
  5182. * For perf policy, if the groups in child domain share resources
  5183. * (for example cores sharing some portions of the cache hierarchy
  5184. * or SMT), then set this domain groups cpu_power such that each group
  5185. * can handle only one task, when there are other idle groups in the
  5186. * same sched domain.
  5187. */
  5188. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5189. (child->flags &
  5190. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5191. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5192. return;
  5193. }
  5194. /*
  5195. * add cpu_power of each child group to this groups cpu_power
  5196. */
  5197. group = child->groups;
  5198. do {
  5199. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5200. group = group->next;
  5201. } while (group != child->groups);
  5202. }
  5203. /*
  5204. * Build sched domains for a given set of cpus and attach the sched domains
  5205. * to the individual cpus
  5206. */
  5207. static int build_sched_domains(const cpumask_t *cpu_map)
  5208. {
  5209. int i;
  5210. #ifdef CONFIG_NUMA
  5211. struct sched_group **sched_group_nodes = NULL;
  5212. int sd_allnodes = 0;
  5213. /*
  5214. * Allocate the per-node list of sched groups
  5215. */
  5216. sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
  5217. GFP_KERNEL);
  5218. if (!sched_group_nodes) {
  5219. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5220. return -ENOMEM;
  5221. }
  5222. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5223. #endif
  5224. /*
  5225. * Set up domains for cpus specified by the cpu_map.
  5226. */
  5227. for_each_cpu_mask(i, *cpu_map) {
  5228. struct sched_domain *sd = NULL, *p;
  5229. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5230. cpus_and(nodemask, nodemask, *cpu_map);
  5231. #ifdef CONFIG_NUMA
  5232. if (cpus_weight(*cpu_map) >
  5233. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5234. sd = &per_cpu(allnodes_domains, i);
  5235. *sd = SD_ALLNODES_INIT;
  5236. sd->span = *cpu_map;
  5237. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5238. p = sd;
  5239. sd_allnodes = 1;
  5240. } else
  5241. p = NULL;
  5242. sd = &per_cpu(node_domains, i);
  5243. *sd = SD_NODE_INIT;
  5244. sd->span = sched_domain_node_span(cpu_to_node(i));
  5245. sd->parent = p;
  5246. if (p)
  5247. p->child = sd;
  5248. cpus_and(sd->span, sd->span, *cpu_map);
  5249. #endif
  5250. p = sd;
  5251. sd = &per_cpu(phys_domains, i);
  5252. *sd = SD_CPU_INIT;
  5253. sd->span = nodemask;
  5254. sd->parent = p;
  5255. if (p)
  5256. p->child = sd;
  5257. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5258. #ifdef CONFIG_SCHED_MC
  5259. p = sd;
  5260. sd = &per_cpu(core_domains, i);
  5261. *sd = SD_MC_INIT;
  5262. sd->span = cpu_coregroup_map(i);
  5263. cpus_and(sd->span, sd->span, *cpu_map);
  5264. sd->parent = p;
  5265. p->child = sd;
  5266. cpu_to_core_group(i, cpu_map, &sd->groups);
  5267. #endif
  5268. #ifdef CONFIG_SCHED_SMT
  5269. p = sd;
  5270. sd = &per_cpu(cpu_domains, i);
  5271. *sd = SD_SIBLING_INIT;
  5272. sd->span = cpu_sibling_map[i];
  5273. cpus_and(sd->span, sd->span, *cpu_map);
  5274. sd->parent = p;
  5275. p->child = sd;
  5276. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5277. #endif
  5278. }
  5279. #ifdef CONFIG_SCHED_SMT
  5280. /* Set up CPU (sibling) groups */
  5281. for_each_cpu_mask(i, *cpu_map) {
  5282. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5283. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5284. if (i != first_cpu(this_sibling_map))
  5285. continue;
  5286. init_sched_build_groups(this_sibling_map, cpu_map,
  5287. &cpu_to_cpu_group);
  5288. }
  5289. #endif
  5290. #ifdef CONFIG_SCHED_MC
  5291. /* Set up multi-core groups */
  5292. for_each_cpu_mask(i, *cpu_map) {
  5293. cpumask_t this_core_map = cpu_coregroup_map(i);
  5294. cpus_and(this_core_map, this_core_map, *cpu_map);
  5295. if (i != first_cpu(this_core_map))
  5296. continue;
  5297. init_sched_build_groups(this_core_map, cpu_map,
  5298. &cpu_to_core_group);
  5299. }
  5300. #endif
  5301. /* Set up physical groups */
  5302. for (i = 0; i < MAX_NUMNODES; i++) {
  5303. cpumask_t nodemask = node_to_cpumask(i);
  5304. cpus_and(nodemask, nodemask, *cpu_map);
  5305. if (cpus_empty(nodemask))
  5306. continue;
  5307. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5308. }
  5309. #ifdef CONFIG_NUMA
  5310. /* Set up node groups */
  5311. if (sd_allnodes)
  5312. init_sched_build_groups(*cpu_map, cpu_map,
  5313. &cpu_to_allnodes_group);
  5314. for (i = 0; i < MAX_NUMNODES; i++) {
  5315. /* Set up node groups */
  5316. struct sched_group *sg, *prev;
  5317. cpumask_t nodemask = node_to_cpumask(i);
  5318. cpumask_t domainspan;
  5319. cpumask_t covered = CPU_MASK_NONE;
  5320. int j;
  5321. cpus_and(nodemask, nodemask, *cpu_map);
  5322. if (cpus_empty(nodemask)) {
  5323. sched_group_nodes[i] = NULL;
  5324. continue;
  5325. }
  5326. domainspan = sched_domain_node_span(i);
  5327. cpus_and(domainspan, domainspan, *cpu_map);
  5328. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5329. if (!sg) {
  5330. printk(KERN_WARNING "Can not alloc domain group for "
  5331. "node %d\n", i);
  5332. goto error;
  5333. }
  5334. sched_group_nodes[i] = sg;
  5335. for_each_cpu_mask(j, nodemask) {
  5336. struct sched_domain *sd;
  5337. sd = &per_cpu(node_domains, j);
  5338. sd->groups = sg;
  5339. }
  5340. sg->__cpu_power = 0;
  5341. sg->cpumask = nodemask;
  5342. sg->next = sg;
  5343. cpus_or(covered, covered, nodemask);
  5344. prev = sg;
  5345. for (j = 0; j < MAX_NUMNODES; j++) {
  5346. cpumask_t tmp, notcovered;
  5347. int n = (i + j) % MAX_NUMNODES;
  5348. cpus_complement(notcovered, covered);
  5349. cpus_and(tmp, notcovered, *cpu_map);
  5350. cpus_and(tmp, tmp, domainspan);
  5351. if (cpus_empty(tmp))
  5352. break;
  5353. nodemask = node_to_cpumask(n);
  5354. cpus_and(tmp, tmp, nodemask);
  5355. if (cpus_empty(tmp))
  5356. continue;
  5357. sg = kmalloc_node(sizeof(struct sched_group),
  5358. GFP_KERNEL, i);
  5359. if (!sg) {
  5360. printk(KERN_WARNING
  5361. "Can not alloc domain group for node %d\n", j);
  5362. goto error;
  5363. }
  5364. sg->__cpu_power = 0;
  5365. sg->cpumask = tmp;
  5366. sg->next = prev->next;
  5367. cpus_or(covered, covered, tmp);
  5368. prev->next = sg;
  5369. prev = sg;
  5370. }
  5371. }
  5372. #endif
  5373. /* Calculate CPU power for physical packages and nodes */
  5374. #ifdef CONFIG_SCHED_SMT
  5375. for_each_cpu_mask(i, *cpu_map) {
  5376. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5377. init_sched_groups_power(i, sd);
  5378. }
  5379. #endif
  5380. #ifdef CONFIG_SCHED_MC
  5381. for_each_cpu_mask(i, *cpu_map) {
  5382. struct sched_domain *sd = &per_cpu(core_domains, i);
  5383. init_sched_groups_power(i, sd);
  5384. }
  5385. #endif
  5386. for_each_cpu_mask(i, *cpu_map) {
  5387. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5388. init_sched_groups_power(i, sd);
  5389. }
  5390. #ifdef CONFIG_NUMA
  5391. for (i = 0; i < MAX_NUMNODES; i++)
  5392. init_numa_sched_groups_power(sched_group_nodes[i]);
  5393. if (sd_allnodes) {
  5394. struct sched_group *sg;
  5395. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5396. init_numa_sched_groups_power(sg);
  5397. }
  5398. #endif
  5399. /* Attach the domains */
  5400. for_each_cpu_mask(i, *cpu_map) {
  5401. struct sched_domain *sd;
  5402. #ifdef CONFIG_SCHED_SMT
  5403. sd = &per_cpu(cpu_domains, i);
  5404. #elif defined(CONFIG_SCHED_MC)
  5405. sd = &per_cpu(core_domains, i);
  5406. #else
  5407. sd = &per_cpu(phys_domains, i);
  5408. #endif
  5409. cpu_attach_domain(sd, i);
  5410. }
  5411. return 0;
  5412. #ifdef CONFIG_NUMA
  5413. error:
  5414. free_sched_groups(cpu_map);
  5415. return -ENOMEM;
  5416. #endif
  5417. }
  5418. /*
  5419. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5420. */
  5421. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5422. {
  5423. cpumask_t cpu_default_map;
  5424. int err;
  5425. /*
  5426. * Setup mask for cpus without special case scheduling requirements.
  5427. * For now this just excludes isolated cpus, but could be used to
  5428. * exclude other special cases in the future.
  5429. */
  5430. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5431. err = build_sched_domains(&cpu_default_map);
  5432. return err;
  5433. }
  5434. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5435. {
  5436. free_sched_groups(cpu_map);
  5437. }
  5438. /*
  5439. * Detach sched domains from a group of cpus specified in cpu_map
  5440. * These cpus will now be attached to the NULL domain
  5441. */
  5442. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5443. {
  5444. int i;
  5445. for_each_cpu_mask(i, *cpu_map)
  5446. cpu_attach_domain(NULL, i);
  5447. synchronize_sched();
  5448. arch_destroy_sched_domains(cpu_map);
  5449. }
  5450. /*
  5451. * Partition sched domains as specified by the cpumasks below.
  5452. * This attaches all cpus from the cpumasks to the NULL domain,
  5453. * waits for a RCU quiescent period, recalculates sched
  5454. * domain information and then attaches them back to the
  5455. * correct sched domains
  5456. * Call with hotplug lock held
  5457. */
  5458. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5459. {
  5460. cpumask_t change_map;
  5461. int err = 0;
  5462. cpus_and(*partition1, *partition1, cpu_online_map);
  5463. cpus_and(*partition2, *partition2, cpu_online_map);
  5464. cpus_or(change_map, *partition1, *partition2);
  5465. /* Detach sched domains from all of the affected cpus */
  5466. detach_destroy_domains(&change_map);
  5467. if (!cpus_empty(*partition1))
  5468. err = build_sched_domains(partition1);
  5469. if (!err && !cpus_empty(*partition2))
  5470. err = build_sched_domains(partition2);
  5471. return err;
  5472. }
  5473. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5474. static int arch_reinit_sched_domains(void)
  5475. {
  5476. int err;
  5477. mutex_lock(&sched_hotcpu_mutex);
  5478. detach_destroy_domains(&cpu_online_map);
  5479. err = arch_init_sched_domains(&cpu_online_map);
  5480. mutex_unlock(&sched_hotcpu_mutex);
  5481. return err;
  5482. }
  5483. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5484. {
  5485. int ret;
  5486. if (buf[0] != '0' && buf[0] != '1')
  5487. return -EINVAL;
  5488. if (smt)
  5489. sched_smt_power_savings = (buf[0] == '1');
  5490. else
  5491. sched_mc_power_savings = (buf[0] == '1');
  5492. ret = arch_reinit_sched_domains();
  5493. return ret ? ret : count;
  5494. }
  5495. #ifdef CONFIG_SCHED_MC
  5496. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5497. {
  5498. return sprintf(page, "%u\n", sched_mc_power_savings);
  5499. }
  5500. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5501. const char *buf, size_t count)
  5502. {
  5503. return sched_power_savings_store(buf, count, 0);
  5504. }
  5505. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5506. sched_mc_power_savings_store);
  5507. #endif
  5508. #ifdef CONFIG_SCHED_SMT
  5509. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5510. {
  5511. return sprintf(page, "%u\n", sched_smt_power_savings);
  5512. }
  5513. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5514. const char *buf, size_t count)
  5515. {
  5516. return sched_power_savings_store(buf, count, 1);
  5517. }
  5518. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5519. sched_smt_power_savings_store);
  5520. #endif
  5521. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5522. {
  5523. int err = 0;
  5524. #ifdef CONFIG_SCHED_SMT
  5525. if (smt_capable())
  5526. err = sysfs_create_file(&cls->kset.kobj,
  5527. &attr_sched_smt_power_savings.attr);
  5528. #endif
  5529. #ifdef CONFIG_SCHED_MC
  5530. if (!err && mc_capable())
  5531. err = sysfs_create_file(&cls->kset.kobj,
  5532. &attr_sched_mc_power_savings.attr);
  5533. #endif
  5534. return err;
  5535. }
  5536. #endif
  5537. /*
  5538. * Force a reinitialization of the sched domains hierarchy. The domains
  5539. * and groups cannot be updated in place without racing with the balancing
  5540. * code, so we temporarily attach all running cpus to the NULL domain
  5541. * which will prevent rebalancing while the sched domains are recalculated.
  5542. */
  5543. static int update_sched_domains(struct notifier_block *nfb,
  5544. unsigned long action, void *hcpu)
  5545. {
  5546. switch (action) {
  5547. case CPU_UP_PREPARE:
  5548. case CPU_UP_PREPARE_FROZEN:
  5549. case CPU_DOWN_PREPARE:
  5550. case CPU_DOWN_PREPARE_FROZEN:
  5551. detach_destroy_domains(&cpu_online_map);
  5552. return NOTIFY_OK;
  5553. case CPU_UP_CANCELED:
  5554. case CPU_UP_CANCELED_FROZEN:
  5555. case CPU_DOWN_FAILED:
  5556. case CPU_DOWN_FAILED_FROZEN:
  5557. case CPU_ONLINE:
  5558. case CPU_ONLINE_FROZEN:
  5559. case CPU_DEAD:
  5560. case CPU_DEAD_FROZEN:
  5561. /*
  5562. * Fall through and re-initialise the domains.
  5563. */
  5564. break;
  5565. default:
  5566. return NOTIFY_DONE;
  5567. }
  5568. /* The hotplug lock is already held by cpu_up/cpu_down */
  5569. arch_init_sched_domains(&cpu_online_map);
  5570. return NOTIFY_OK;
  5571. }
  5572. void __init sched_init_smp(void)
  5573. {
  5574. cpumask_t non_isolated_cpus;
  5575. mutex_lock(&sched_hotcpu_mutex);
  5576. arch_init_sched_domains(&cpu_online_map);
  5577. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5578. if (cpus_empty(non_isolated_cpus))
  5579. cpu_set(smp_processor_id(), non_isolated_cpus);
  5580. mutex_unlock(&sched_hotcpu_mutex);
  5581. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5582. hotcpu_notifier(update_sched_domains, 0);
  5583. init_sched_domain_sysctl();
  5584. /* Move init over to a non-isolated CPU */
  5585. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5586. BUG();
  5587. sched_init_granularity();
  5588. }
  5589. #else
  5590. void __init sched_init_smp(void)
  5591. {
  5592. sched_init_granularity();
  5593. }
  5594. #endif /* CONFIG_SMP */
  5595. int in_sched_functions(unsigned long addr)
  5596. {
  5597. /* Linker adds these: start and end of __sched functions */
  5598. extern char __sched_text_start[], __sched_text_end[];
  5599. return in_lock_functions(addr) ||
  5600. (addr >= (unsigned long)__sched_text_start
  5601. && addr < (unsigned long)__sched_text_end);
  5602. }
  5603. static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5604. {
  5605. cfs_rq->tasks_timeline = RB_ROOT;
  5606. cfs_rq->fair_clock = 1;
  5607. #ifdef CONFIG_FAIR_GROUP_SCHED
  5608. cfs_rq->rq = rq;
  5609. #endif
  5610. }
  5611. void __init sched_init(void)
  5612. {
  5613. u64 now = sched_clock();
  5614. int highest_cpu = 0;
  5615. int i, j;
  5616. /*
  5617. * Link up the scheduling class hierarchy:
  5618. */
  5619. rt_sched_class.next = &fair_sched_class;
  5620. fair_sched_class.next = &idle_sched_class;
  5621. idle_sched_class.next = NULL;
  5622. for_each_possible_cpu(i) {
  5623. struct rt_prio_array *array;
  5624. struct rq *rq;
  5625. rq = cpu_rq(i);
  5626. spin_lock_init(&rq->lock);
  5627. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5628. rq->nr_running = 0;
  5629. rq->clock = 1;
  5630. init_cfs_rq(&rq->cfs, rq);
  5631. #ifdef CONFIG_FAIR_GROUP_SCHED
  5632. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5633. list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5634. #endif
  5635. rq->ls.load_update_last = now;
  5636. rq->ls.load_update_start = now;
  5637. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5638. rq->cpu_load[j] = 0;
  5639. #ifdef CONFIG_SMP
  5640. rq->sd = NULL;
  5641. rq->active_balance = 0;
  5642. rq->next_balance = jiffies;
  5643. rq->push_cpu = 0;
  5644. rq->cpu = i;
  5645. rq->migration_thread = NULL;
  5646. INIT_LIST_HEAD(&rq->migration_queue);
  5647. #endif
  5648. atomic_set(&rq->nr_iowait, 0);
  5649. array = &rq->rt.active;
  5650. for (j = 0; j < MAX_RT_PRIO; j++) {
  5651. INIT_LIST_HEAD(array->queue + j);
  5652. __clear_bit(j, array->bitmap);
  5653. }
  5654. highest_cpu = i;
  5655. /* delimiter for bitsearch: */
  5656. __set_bit(MAX_RT_PRIO, array->bitmap);
  5657. }
  5658. set_load_weight(&init_task);
  5659. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5660. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5661. #endif
  5662. #ifdef CONFIG_SMP
  5663. nr_cpu_ids = highest_cpu + 1;
  5664. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5665. #endif
  5666. #ifdef CONFIG_RT_MUTEXES
  5667. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5668. #endif
  5669. /*
  5670. * The boot idle thread does lazy MMU switching as well:
  5671. */
  5672. atomic_inc(&init_mm.mm_count);
  5673. enter_lazy_tlb(&init_mm, current);
  5674. /*
  5675. * Make us the idle thread. Technically, schedule() should not be
  5676. * called from this thread, however somewhere below it might be,
  5677. * but because we are the idle thread, we just pick up running again
  5678. * when this runqueue becomes "idle".
  5679. */
  5680. init_idle(current, smp_processor_id());
  5681. /*
  5682. * During early bootup we pretend to be a normal task:
  5683. */
  5684. current->sched_class = &fair_sched_class;
  5685. }
  5686. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5687. void __might_sleep(char *file, int line)
  5688. {
  5689. #ifdef in_atomic
  5690. static unsigned long prev_jiffy; /* ratelimiting */
  5691. if ((in_atomic() || irqs_disabled()) &&
  5692. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5693. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5694. return;
  5695. prev_jiffy = jiffies;
  5696. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5697. " context at %s:%d\n", file, line);
  5698. printk("in_atomic():%d, irqs_disabled():%d\n",
  5699. in_atomic(), irqs_disabled());
  5700. debug_show_held_locks(current);
  5701. if (irqs_disabled())
  5702. print_irqtrace_events(current);
  5703. dump_stack();
  5704. }
  5705. #endif
  5706. }
  5707. EXPORT_SYMBOL(__might_sleep);
  5708. #endif
  5709. #ifdef CONFIG_MAGIC_SYSRQ
  5710. void normalize_rt_tasks(void)
  5711. {
  5712. struct task_struct *g, *p;
  5713. unsigned long flags;
  5714. struct rq *rq;
  5715. int on_rq;
  5716. read_lock_irq(&tasklist_lock);
  5717. do_each_thread(g, p) {
  5718. p->se.fair_key = 0;
  5719. p->se.wait_runtime = 0;
  5720. p->se.exec_start = 0;
  5721. p->se.wait_start_fair = 0;
  5722. p->se.sleep_start_fair = 0;
  5723. #ifdef CONFIG_SCHEDSTATS
  5724. p->se.wait_start = 0;
  5725. p->se.sleep_start = 0;
  5726. p->se.block_start = 0;
  5727. #endif
  5728. task_rq(p)->cfs.fair_clock = 0;
  5729. task_rq(p)->clock = 0;
  5730. if (!rt_task(p)) {
  5731. /*
  5732. * Renice negative nice level userspace
  5733. * tasks back to 0:
  5734. */
  5735. if (TASK_NICE(p) < 0 && p->mm)
  5736. set_user_nice(p, 0);
  5737. continue;
  5738. }
  5739. spin_lock_irqsave(&p->pi_lock, flags);
  5740. rq = __task_rq_lock(p);
  5741. #ifdef CONFIG_SMP
  5742. /*
  5743. * Do not touch the migration thread:
  5744. */
  5745. if (p == rq->migration_thread)
  5746. goto out_unlock;
  5747. #endif
  5748. update_rq_clock(rq);
  5749. on_rq = p->se.on_rq;
  5750. if (on_rq)
  5751. deactivate_task(rq, p, 0);
  5752. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5753. if (on_rq) {
  5754. activate_task(rq, p, 0);
  5755. resched_task(rq->curr);
  5756. }
  5757. #ifdef CONFIG_SMP
  5758. out_unlock:
  5759. #endif
  5760. __task_rq_unlock(rq);
  5761. spin_unlock_irqrestore(&p->pi_lock, flags);
  5762. } while_each_thread(g, p);
  5763. read_unlock_irq(&tasklist_lock);
  5764. }
  5765. #endif /* CONFIG_MAGIC_SYSRQ */
  5766. #ifdef CONFIG_IA64
  5767. /*
  5768. * These functions are only useful for the IA64 MCA handling.
  5769. *
  5770. * They can only be called when the whole system has been
  5771. * stopped - every CPU needs to be quiescent, and no scheduling
  5772. * activity can take place. Using them for anything else would
  5773. * be a serious bug, and as a result, they aren't even visible
  5774. * under any other configuration.
  5775. */
  5776. /**
  5777. * curr_task - return the current task for a given cpu.
  5778. * @cpu: the processor in question.
  5779. *
  5780. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5781. */
  5782. struct task_struct *curr_task(int cpu)
  5783. {
  5784. return cpu_curr(cpu);
  5785. }
  5786. /**
  5787. * set_curr_task - set the current task for a given cpu.
  5788. * @cpu: the processor in question.
  5789. * @p: the task pointer to set.
  5790. *
  5791. * Description: This function must only be used when non-maskable interrupts
  5792. * are serviced on a separate stack. It allows the architecture to switch the
  5793. * notion of the current task on a cpu in a non-blocking manner. This function
  5794. * must be called with all CPU's synchronized, and interrupts disabled, the
  5795. * and caller must save the original value of the current task (see
  5796. * curr_task() above) and restore that value before reenabling interrupts and
  5797. * re-starting the system.
  5798. *
  5799. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5800. */
  5801. void set_curr_task(int cpu, struct task_struct *p)
  5802. {
  5803. cpu_curr(cpu) = p;
  5804. }
  5805. #endif