forcedeth.c 187 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Known bugs:
  33. * We suspect that on some hardware no TX done interrupts are generated.
  34. * This means recovery from netif_stop_queue only happens if the hw timer
  35. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  36. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  37. * If your hardware reliably generates tx done interrupts, then you can remove
  38. * DEV_NEED_TIMERIRQ from the driver_data flags.
  39. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  40. * superfluous timer interrupts from the nic.
  41. */
  42. #define FORCEDETH_VERSION "0.64"
  43. #define DRV_NAME "forcedeth"
  44. #include <linux/module.h>
  45. #include <linux/types.h>
  46. #include <linux/pci.h>
  47. #include <linux/interrupt.h>
  48. #include <linux/netdevice.h>
  49. #include <linux/etherdevice.h>
  50. #include <linux/delay.h>
  51. #include <linux/sched.h>
  52. #include <linux/spinlock.h>
  53. #include <linux/ethtool.h>
  54. #include <linux/timer.h>
  55. #include <linux/skbuff.h>
  56. #include <linux/mii.h>
  57. #include <linux/random.h>
  58. #include <linux/init.h>
  59. #include <linux/if_vlan.h>
  60. #include <linux/dma-mapping.h>
  61. #include <linux/slab.h>
  62. #include <linux/uaccess.h>
  63. #include <linux/io.h>
  64. #include <asm/irq.h>
  65. #include <asm/system.h>
  66. #define TX_WORK_PER_LOOP 64
  67. #define RX_WORK_PER_LOOP 64
  68. /*
  69. * Hardware access:
  70. */
  71. #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */
  72. #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */
  73. #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */
  74. #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */
  75. #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */
  76. #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */
  77. #define DEV_HAS_MSI 0x0000040 /* device supports MSI */
  78. #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */
  79. #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */
  80. #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */
  81. #define DEV_HAS_STATISTICS_V2 0x0000400 /* device supports hw statistics version 2 */
  82. #define DEV_HAS_STATISTICS_V3 0x0000800 /* device supports hw statistics version 3 */
  83. #define DEV_HAS_STATISTICS_V12 0x0000600 /* device supports hw statistics version 1 and 2 */
  84. #define DEV_HAS_STATISTICS_V123 0x0000e00 /* device supports hw statistics version 1, 2, and 3 */
  85. #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */
  86. #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */
  87. #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */
  88. #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */
  89. #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */
  90. #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */
  91. #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */
  92. #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */
  93. #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */
  94. #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */
  95. #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */
  96. #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */
  97. #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */
  98. enum {
  99. NvRegIrqStatus = 0x000,
  100. #define NVREG_IRQSTAT_MIIEVENT 0x040
  101. #define NVREG_IRQSTAT_MASK 0x83ff
  102. NvRegIrqMask = 0x004,
  103. #define NVREG_IRQ_RX_ERROR 0x0001
  104. #define NVREG_IRQ_RX 0x0002
  105. #define NVREG_IRQ_RX_NOBUF 0x0004
  106. #define NVREG_IRQ_TX_ERR 0x0008
  107. #define NVREG_IRQ_TX_OK 0x0010
  108. #define NVREG_IRQ_TIMER 0x0020
  109. #define NVREG_IRQ_LINK 0x0040
  110. #define NVREG_IRQ_RX_FORCED 0x0080
  111. #define NVREG_IRQ_TX_FORCED 0x0100
  112. #define NVREG_IRQ_RECOVER_ERROR 0x8200
  113. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  114. #define NVREG_IRQMASK_CPU 0x0060
  115. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  116. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  117. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  118. NvRegUnknownSetupReg6 = 0x008,
  119. #define NVREG_UNKSETUP6_VAL 3
  120. /*
  121. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  122. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  123. */
  124. NvRegPollingInterval = 0x00c,
  125. #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
  126. #define NVREG_POLL_DEFAULT_CPU 13
  127. NvRegMSIMap0 = 0x020,
  128. NvRegMSIMap1 = 0x024,
  129. NvRegMSIIrqMask = 0x030,
  130. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  131. NvRegMisc1 = 0x080,
  132. #define NVREG_MISC1_PAUSE_TX 0x01
  133. #define NVREG_MISC1_HD 0x02
  134. #define NVREG_MISC1_FORCE 0x3b0f3c
  135. NvRegMacReset = 0x34,
  136. #define NVREG_MAC_RESET_ASSERT 0x0F3
  137. NvRegTransmitterControl = 0x084,
  138. #define NVREG_XMITCTL_START 0x01
  139. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  140. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  141. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  142. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  143. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  144. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  145. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  146. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  147. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  148. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  149. #define NVREG_XMITCTL_DATA_START 0x00100000
  150. #define NVREG_XMITCTL_DATA_READY 0x00010000
  151. #define NVREG_XMITCTL_DATA_ERROR 0x00020000
  152. NvRegTransmitterStatus = 0x088,
  153. #define NVREG_XMITSTAT_BUSY 0x01
  154. NvRegPacketFilterFlags = 0x8c,
  155. #define NVREG_PFF_PAUSE_RX 0x08
  156. #define NVREG_PFF_ALWAYS 0x7F0000
  157. #define NVREG_PFF_PROMISC 0x80
  158. #define NVREG_PFF_MYADDR 0x20
  159. #define NVREG_PFF_LOOPBACK 0x10
  160. NvRegOffloadConfig = 0x90,
  161. #define NVREG_OFFLOAD_HOMEPHY 0x601
  162. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  163. NvRegReceiverControl = 0x094,
  164. #define NVREG_RCVCTL_START 0x01
  165. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  166. NvRegReceiverStatus = 0x98,
  167. #define NVREG_RCVSTAT_BUSY 0x01
  168. NvRegSlotTime = 0x9c,
  169. #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
  170. #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
  171. #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
  172. #define NVREG_SLOTTIME_HALF 0x0000ff00
  173. #define NVREG_SLOTTIME_DEFAULT 0x00007f00
  174. #define NVREG_SLOTTIME_MASK 0x000000ff
  175. NvRegTxDeferral = 0xA0,
  176. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  177. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  178. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  179. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  180. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  181. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  182. NvRegRxDeferral = 0xA4,
  183. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  184. NvRegMacAddrA = 0xA8,
  185. NvRegMacAddrB = 0xAC,
  186. NvRegMulticastAddrA = 0xB0,
  187. #define NVREG_MCASTADDRA_FORCE 0x01
  188. NvRegMulticastAddrB = 0xB4,
  189. NvRegMulticastMaskA = 0xB8,
  190. #define NVREG_MCASTMASKA_NONE 0xffffffff
  191. NvRegMulticastMaskB = 0xBC,
  192. #define NVREG_MCASTMASKB_NONE 0xffff
  193. NvRegPhyInterface = 0xC0,
  194. #define PHY_RGMII 0x10000000
  195. NvRegBackOffControl = 0xC4,
  196. #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
  197. #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
  198. #define NVREG_BKOFFCTRL_SELECT 24
  199. #define NVREG_BKOFFCTRL_GEAR 12
  200. NvRegTxRingPhysAddr = 0x100,
  201. NvRegRxRingPhysAddr = 0x104,
  202. NvRegRingSizes = 0x108,
  203. #define NVREG_RINGSZ_TXSHIFT 0
  204. #define NVREG_RINGSZ_RXSHIFT 16
  205. NvRegTransmitPoll = 0x10c,
  206. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  207. NvRegLinkSpeed = 0x110,
  208. #define NVREG_LINKSPEED_FORCE 0x10000
  209. #define NVREG_LINKSPEED_10 1000
  210. #define NVREG_LINKSPEED_100 100
  211. #define NVREG_LINKSPEED_1000 50
  212. #define NVREG_LINKSPEED_MASK (0xFFF)
  213. NvRegUnknownSetupReg5 = 0x130,
  214. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  215. NvRegTxWatermark = 0x13c,
  216. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  217. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  218. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  219. NvRegTxRxControl = 0x144,
  220. #define NVREG_TXRXCTL_KICK 0x0001
  221. #define NVREG_TXRXCTL_BIT1 0x0002
  222. #define NVREG_TXRXCTL_BIT2 0x0004
  223. #define NVREG_TXRXCTL_IDLE 0x0008
  224. #define NVREG_TXRXCTL_RESET 0x0010
  225. #define NVREG_TXRXCTL_RXCHECK 0x0400
  226. #define NVREG_TXRXCTL_DESC_1 0
  227. #define NVREG_TXRXCTL_DESC_2 0x002100
  228. #define NVREG_TXRXCTL_DESC_3 0xc02200
  229. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  230. #define NVREG_TXRXCTL_VLANINS 0x00080
  231. NvRegTxRingPhysAddrHigh = 0x148,
  232. NvRegRxRingPhysAddrHigh = 0x14C,
  233. NvRegTxPauseFrame = 0x170,
  234. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  235. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  236. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  237. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  238. NvRegTxPauseFrameLimit = 0x174,
  239. #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
  240. NvRegMIIStatus = 0x180,
  241. #define NVREG_MIISTAT_ERROR 0x0001
  242. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  243. #define NVREG_MIISTAT_MASK_RW 0x0007
  244. #define NVREG_MIISTAT_MASK_ALL 0x000f
  245. NvRegMIIMask = 0x184,
  246. #define NVREG_MII_LINKCHANGE 0x0008
  247. NvRegAdapterControl = 0x188,
  248. #define NVREG_ADAPTCTL_START 0x02
  249. #define NVREG_ADAPTCTL_LINKUP 0x04
  250. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  251. #define NVREG_ADAPTCTL_RUNNING 0x100000
  252. #define NVREG_ADAPTCTL_PHYSHIFT 24
  253. NvRegMIISpeed = 0x18c,
  254. #define NVREG_MIISPEED_BIT8 (1<<8)
  255. #define NVREG_MIIDELAY 5
  256. NvRegMIIControl = 0x190,
  257. #define NVREG_MIICTL_INUSE 0x08000
  258. #define NVREG_MIICTL_WRITE 0x00400
  259. #define NVREG_MIICTL_ADDRSHIFT 5
  260. NvRegMIIData = 0x194,
  261. NvRegTxUnicast = 0x1a0,
  262. NvRegTxMulticast = 0x1a4,
  263. NvRegTxBroadcast = 0x1a8,
  264. NvRegWakeUpFlags = 0x200,
  265. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  266. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  267. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  268. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  269. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  270. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  271. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  272. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  273. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  274. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  275. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  276. NvRegMgmtUnitGetVersion = 0x204,
  277. #define NVREG_MGMTUNITGETVERSION 0x01
  278. NvRegMgmtUnitVersion = 0x208,
  279. #define NVREG_MGMTUNITVERSION 0x08
  280. NvRegPowerCap = 0x268,
  281. #define NVREG_POWERCAP_D3SUPP (1<<30)
  282. #define NVREG_POWERCAP_D2SUPP (1<<26)
  283. #define NVREG_POWERCAP_D1SUPP (1<<25)
  284. NvRegPowerState = 0x26c,
  285. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  286. #define NVREG_POWERSTATE_VALID 0x0100
  287. #define NVREG_POWERSTATE_MASK 0x0003
  288. #define NVREG_POWERSTATE_D0 0x0000
  289. #define NVREG_POWERSTATE_D1 0x0001
  290. #define NVREG_POWERSTATE_D2 0x0002
  291. #define NVREG_POWERSTATE_D3 0x0003
  292. NvRegMgmtUnitControl = 0x278,
  293. #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
  294. NvRegTxCnt = 0x280,
  295. NvRegTxZeroReXmt = 0x284,
  296. NvRegTxOneReXmt = 0x288,
  297. NvRegTxManyReXmt = 0x28c,
  298. NvRegTxLateCol = 0x290,
  299. NvRegTxUnderflow = 0x294,
  300. NvRegTxLossCarrier = 0x298,
  301. NvRegTxExcessDef = 0x29c,
  302. NvRegTxRetryErr = 0x2a0,
  303. NvRegRxFrameErr = 0x2a4,
  304. NvRegRxExtraByte = 0x2a8,
  305. NvRegRxLateCol = 0x2ac,
  306. NvRegRxRunt = 0x2b0,
  307. NvRegRxFrameTooLong = 0x2b4,
  308. NvRegRxOverflow = 0x2b8,
  309. NvRegRxFCSErr = 0x2bc,
  310. NvRegRxFrameAlignErr = 0x2c0,
  311. NvRegRxLenErr = 0x2c4,
  312. NvRegRxUnicast = 0x2c8,
  313. NvRegRxMulticast = 0x2cc,
  314. NvRegRxBroadcast = 0x2d0,
  315. NvRegTxDef = 0x2d4,
  316. NvRegTxFrame = 0x2d8,
  317. NvRegRxCnt = 0x2dc,
  318. NvRegTxPause = 0x2e0,
  319. NvRegRxPause = 0x2e4,
  320. NvRegRxDropFrame = 0x2e8,
  321. NvRegVlanControl = 0x300,
  322. #define NVREG_VLANCONTROL_ENABLE 0x2000
  323. NvRegMSIXMap0 = 0x3e0,
  324. NvRegMSIXMap1 = 0x3e4,
  325. NvRegMSIXIrqStatus = 0x3f0,
  326. NvRegPowerState2 = 0x600,
  327. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
  328. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  329. #define NVREG_POWERSTATE2_PHY_RESET 0x0004
  330. #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00
  331. };
  332. /* Big endian: should work, but is untested */
  333. struct ring_desc {
  334. __le32 buf;
  335. __le32 flaglen;
  336. };
  337. struct ring_desc_ex {
  338. __le32 bufhigh;
  339. __le32 buflow;
  340. __le32 txvlan;
  341. __le32 flaglen;
  342. };
  343. union ring_type {
  344. struct ring_desc *orig;
  345. struct ring_desc_ex *ex;
  346. };
  347. #define FLAG_MASK_V1 0xffff0000
  348. #define FLAG_MASK_V2 0xffffc000
  349. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  350. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  351. #define NV_TX_LASTPACKET (1<<16)
  352. #define NV_TX_RETRYERROR (1<<19)
  353. #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
  354. #define NV_TX_FORCED_INTERRUPT (1<<24)
  355. #define NV_TX_DEFERRED (1<<26)
  356. #define NV_TX_CARRIERLOST (1<<27)
  357. #define NV_TX_LATECOLLISION (1<<28)
  358. #define NV_TX_UNDERFLOW (1<<29)
  359. #define NV_TX_ERROR (1<<30)
  360. #define NV_TX_VALID (1<<31)
  361. #define NV_TX2_LASTPACKET (1<<29)
  362. #define NV_TX2_RETRYERROR (1<<18)
  363. #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
  364. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  365. #define NV_TX2_DEFERRED (1<<25)
  366. #define NV_TX2_CARRIERLOST (1<<26)
  367. #define NV_TX2_LATECOLLISION (1<<27)
  368. #define NV_TX2_UNDERFLOW (1<<28)
  369. /* error and valid are the same for both */
  370. #define NV_TX2_ERROR (1<<30)
  371. #define NV_TX2_VALID (1<<31)
  372. #define NV_TX2_TSO (1<<28)
  373. #define NV_TX2_TSO_SHIFT 14
  374. #define NV_TX2_TSO_MAX_SHIFT 14
  375. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  376. #define NV_TX2_CHECKSUM_L3 (1<<27)
  377. #define NV_TX2_CHECKSUM_L4 (1<<26)
  378. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  379. #define NV_RX_DESCRIPTORVALID (1<<16)
  380. #define NV_RX_MISSEDFRAME (1<<17)
  381. #define NV_RX_SUBSTRACT1 (1<<18)
  382. #define NV_RX_ERROR1 (1<<23)
  383. #define NV_RX_ERROR2 (1<<24)
  384. #define NV_RX_ERROR3 (1<<25)
  385. #define NV_RX_ERROR4 (1<<26)
  386. #define NV_RX_CRCERR (1<<27)
  387. #define NV_RX_OVERFLOW (1<<28)
  388. #define NV_RX_FRAMINGERR (1<<29)
  389. #define NV_RX_ERROR (1<<30)
  390. #define NV_RX_AVAIL (1<<31)
  391. #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
  392. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  393. #define NV_RX2_CHECKSUM_IP (0x10000000)
  394. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  395. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  396. #define NV_RX2_DESCRIPTORVALID (1<<29)
  397. #define NV_RX2_SUBSTRACT1 (1<<25)
  398. #define NV_RX2_ERROR1 (1<<18)
  399. #define NV_RX2_ERROR2 (1<<19)
  400. #define NV_RX2_ERROR3 (1<<20)
  401. #define NV_RX2_ERROR4 (1<<21)
  402. #define NV_RX2_CRCERR (1<<22)
  403. #define NV_RX2_OVERFLOW (1<<23)
  404. #define NV_RX2_FRAMINGERR (1<<24)
  405. /* error and avail are the same for both */
  406. #define NV_RX2_ERROR (1<<30)
  407. #define NV_RX2_AVAIL (1<<31)
  408. #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
  409. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  410. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  411. /* Miscelaneous hardware related defines: */
  412. #define NV_PCI_REGSZ_VER1 0x270
  413. #define NV_PCI_REGSZ_VER2 0x2d4
  414. #define NV_PCI_REGSZ_VER3 0x604
  415. #define NV_PCI_REGSZ_MAX 0x604
  416. /* various timeout delays: all in usec */
  417. #define NV_TXRX_RESET_DELAY 4
  418. #define NV_TXSTOP_DELAY1 10
  419. #define NV_TXSTOP_DELAY1MAX 500000
  420. #define NV_TXSTOP_DELAY2 100
  421. #define NV_RXSTOP_DELAY1 10
  422. #define NV_RXSTOP_DELAY1MAX 500000
  423. #define NV_RXSTOP_DELAY2 100
  424. #define NV_SETUP5_DELAY 5
  425. #define NV_SETUP5_DELAYMAX 50000
  426. #define NV_POWERUP_DELAY 5
  427. #define NV_POWERUP_DELAYMAX 5000
  428. #define NV_MIIBUSY_DELAY 50
  429. #define NV_MIIPHY_DELAY 10
  430. #define NV_MIIPHY_DELAYMAX 10000
  431. #define NV_MAC_RESET_DELAY 64
  432. #define NV_WAKEUPPATTERNS 5
  433. #define NV_WAKEUPMASKENTRIES 4
  434. /* General driver defaults */
  435. #define NV_WATCHDOG_TIMEO (5*HZ)
  436. #define RX_RING_DEFAULT 512
  437. #define TX_RING_DEFAULT 256
  438. #define RX_RING_MIN 128
  439. #define TX_RING_MIN 64
  440. #define RING_MAX_DESC_VER_1 1024
  441. #define RING_MAX_DESC_VER_2_3 16384
  442. /* rx/tx mac addr + type + vlan + align + slack*/
  443. #define NV_RX_HEADERS (64)
  444. /* even more slack. */
  445. #define NV_RX_ALLOC_PAD (64)
  446. /* maximum mtu size */
  447. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  448. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  449. #define OOM_REFILL (1+HZ/20)
  450. #define POLL_WAIT (1+HZ/100)
  451. #define LINK_TIMEOUT (3*HZ)
  452. #define STATS_INTERVAL (10*HZ)
  453. /*
  454. * desc_ver values:
  455. * The nic supports three different descriptor types:
  456. * - DESC_VER_1: Original
  457. * - DESC_VER_2: support for jumbo frames.
  458. * - DESC_VER_3: 64-bit format.
  459. */
  460. #define DESC_VER_1 1
  461. #define DESC_VER_2 2
  462. #define DESC_VER_3 3
  463. /* PHY defines */
  464. #define PHY_OUI_MARVELL 0x5043
  465. #define PHY_OUI_CICADA 0x03f1
  466. #define PHY_OUI_VITESSE 0x01c1
  467. #define PHY_OUI_REALTEK 0x0732
  468. #define PHY_OUI_REALTEK2 0x0020
  469. #define PHYID1_OUI_MASK 0x03ff
  470. #define PHYID1_OUI_SHFT 6
  471. #define PHYID2_OUI_MASK 0xfc00
  472. #define PHYID2_OUI_SHFT 10
  473. #define PHYID2_MODEL_MASK 0x03f0
  474. #define PHY_MODEL_REALTEK_8211 0x0110
  475. #define PHY_REV_MASK 0x0001
  476. #define PHY_REV_REALTEK_8211B 0x0000
  477. #define PHY_REV_REALTEK_8211C 0x0001
  478. #define PHY_MODEL_REALTEK_8201 0x0200
  479. #define PHY_MODEL_MARVELL_E3016 0x0220
  480. #define PHY_MARVELL_E3016_INITMASK 0x0300
  481. #define PHY_CICADA_INIT1 0x0f000
  482. #define PHY_CICADA_INIT2 0x0e00
  483. #define PHY_CICADA_INIT3 0x01000
  484. #define PHY_CICADA_INIT4 0x0200
  485. #define PHY_CICADA_INIT5 0x0004
  486. #define PHY_CICADA_INIT6 0x02000
  487. #define PHY_VITESSE_INIT_REG1 0x1f
  488. #define PHY_VITESSE_INIT_REG2 0x10
  489. #define PHY_VITESSE_INIT_REG3 0x11
  490. #define PHY_VITESSE_INIT_REG4 0x12
  491. #define PHY_VITESSE_INIT_MSK1 0xc
  492. #define PHY_VITESSE_INIT_MSK2 0x0180
  493. #define PHY_VITESSE_INIT1 0x52b5
  494. #define PHY_VITESSE_INIT2 0xaf8a
  495. #define PHY_VITESSE_INIT3 0x8
  496. #define PHY_VITESSE_INIT4 0x8f8a
  497. #define PHY_VITESSE_INIT5 0xaf86
  498. #define PHY_VITESSE_INIT6 0x8f86
  499. #define PHY_VITESSE_INIT7 0xaf82
  500. #define PHY_VITESSE_INIT8 0x0100
  501. #define PHY_VITESSE_INIT9 0x8f82
  502. #define PHY_VITESSE_INIT10 0x0
  503. #define PHY_REALTEK_INIT_REG1 0x1f
  504. #define PHY_REALTEK_INIT_REG2 0x19
  505. #define PHY_REALTEK_INIT_REG3 0x13
  506. #define PHY_REALTEK_INIT_REG4 0x14
  507. #define PHY_REALTEK_INIT_REG5 0x18
  508. #define PHY_REALTEK_INIT_REG6 0x11
  509. #define PHY_REALTEK_INIT_REG7 0x01
  510. #define PHY_REALTEK_INIT1 0x0000
  511. #define PHY_REALTEK_INIT2 0x8e00
  512. #define PHY_REALTEK_INIT3 0x0001
  513. #define PHY_REALTEK_INIT4 0xad17
  514. #define PHY_REALTEK_INIT5 0xfb54
  515. #define PHY_REALTEK_INIT6 0xf5c7
  516. #define PHY_REALTEK_INIT7 0x1000
  517. #define PHY_REALTEK_INIT8 0x0003
  518. #define PHY_REALTEK_INIT9 0x0008
  519. #define PHY_REALTEK_INIT10 0x0005
  520. #define PHY_REALTEK_INIT11 0x0200
  521. #define PHY_REALTEK_INIT_MSK1 0x0003
  522. #define PHY_GIGABIT 0x0100
  523. #define PHY_TIMEOUT 0x1
  524. #define PHY_ERROR 0x2
  525. #define PHY_100 0x1
  526. #define PHY_1000 0x2
  527. #define PHY_HALF 0x100
  528. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  529. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  530. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  531. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  532. #define NV_PAUSEFRAME_RX_REQ 0x0010
  533. #define NV_PAUSEFRAME_TX_REQ 0x0020
  534. #define NV_PAUSEFRAME_AUTONEG 0x0040
  535. /* MSI/MSI-X defines */
  536. #define NV_MSI_X_MAX_VECTORS 8
  537. #define NV_MSI_X_VECTORS_MASK 0x000f
  538. #define NV_MSI_CAPABLE 0x0010
  539. #define NV_MSI_X_CAPABLE 0x0020
  540. #define NV_MSI_ENABLED 0x0040
  541. #define NV_MSI_X_ENABLED 0x0080
  542. #define NV_MSI_X_VECTOR_ALL 0x0
  543. #define NV_MSI_X_VECTOR_RX 0x0
  544. #define NV_MSI_X_VECTOR_TX 0x1
  545. #define NV_MSI_X_VECTOR_OTHER 0x2
  546. #define NV_MSI_PRIV_OFFSET 0x68
  547. #define NV_MSI_PRIV_VALUE 0xffffffff
  548. #define NV_RESTART_TX 0x1
  549. #define NV_RESTART_RX 0x2
  550. #define NV_TX_LIMIT_COUNT 16
  551. #define NV_DYNAMIC_THRESHOLD 4
  552. #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
  553. /* statistics */
  554. struct nv_ethtool_str {
  555. char name[ETH_GSTRING_LEN];
  556. };
  557. static const struct nv_ethtool_str nv_estats_str[] = {
  558. { "tx_bytes" },
  559. { "tx_zero_rexmt" },
  560. { "tx_one_rexmt" },
  561. { "tx_many_rexmt" },
  562. { "tx_late_collision" },
  563. { "tx_fifo_errors" },
  564. { "tx_carrier_errors" },
  565. { "tx_excess_deferral" },
  566. { "tx_retry_error" },
  567. { "rx_frame_error" },
  568. { "rx_extra_byte" },
  569. { "rx_late_collision" },
  570. { "rx_runt" },
  571. { "rx_frame_too_long" },
  572. { "rx_over_errors" },
  573. { "rx_crc_errors" },
  574. { "rx_frame_align_error" },
  575. { "rx_length_error" },
  576. { "rx_unicast" },
  577. { "rx_multicast" },
  578. { "rx_broadcast" },
  579. { "rx_packets" },
  580. { "rx_errors_total" },
  581. { "tx_errors_total" },
  582. /* version 2 stats */
  583. { "tx_deferral" },
  584. { "tx_packets" },
  585. { "rx_bytes" },
  586. { "tx_pause" },
  587. { "rx_pause" },
  588. { "rx_drop_frame" },
  589. /* version 3 stats */
  590. { "tx_unicast" },
  591. { "tx_multicast" },
  592. { "tx_broadcast" }
  593. };
  594. struct nv_ethtool_stats {
  595. u64 tx_bytes;
  596. u64 tx_zero_rexmt;
  597. u64 tx_one_rexmt;
  598. u64 tx_many_rexmt;
  599. u64 tx_late_collision;
  600. u64 tx_fifo_errors;
  601. u64 tx_carrier_errors;
  602. u64 tx_excess_deferral;
  603. u64 tx_retry_error;
  604. u64 rx_frame_error;
  605. u64 rx_extra_byte;
  606. u64 rx_late_collision;
  607. u64 rx_runt;
  608. u64 rx_frame_too_long;
  609. u64 rx_over_errors;
  610. u64 rx_crc_errors;
  611. u64 rx_frame_align_error;
  612. u64 rx_length_error;
  613. u64 rx_unicast;
  614. u64 rx_multicast;
  615. u64 rx_broadcast;
  616. u64 rx_packets;
  617. u64 rx_errors_total;
  618. u64 tx_errors_total;
  619. /* version 2 stats */
  620. u64 tx_deferral;
  621. u64 tx_packets;
  622. u64 rx_bytes;
  623. u64 tx_pause;
  624. u64 rx_pause;
  625. u64 rx_drop_frame;
  626. /* version 3 stats */
  627. u64 tx_unicast;
  628. u64 tx_multicast;
  629. u64 tx_broadcast;
  630. };
  631. #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  632. #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
  633. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  634. /* diagnostics */
  635. #define NV_TEST_COUNT_BASE 3
  636. #define NV_TEST_COUNT_EXTENDED 4
  637. static const struct nv_ethtool_str nv_etests_str[] = {
  638. { "link (online/offline)" },
  639. { "register (offline) " },
  640. { "interrupt (offline) " },
  641. { "loopback (offline) " }
  642. };
  643. struct register_test {
  644. __u32 reg;
  645. __u32 mask;
  646. };
  647. static const struct register_test nv_registers_test[] = {
  648. { NvRegUnknownSetupReg6, 0x01 },
  649. { NvRegMisc1, 0x03c },
  650. { NvRegOffloadConfig, 0x03ff },
  651. { NvRegMulticastAddrA, 0xffffffff },
  652. { NvRegTxWatermark, 0x0ff },
  653. { NvRegWakeUpFlags, 0x07777 },
  654. { 0, 0 }
  655. };
  656. struct nv_skb_map {
  657. struct sk_buff *skb;
  658. dma_addr_t dma;
  659. unsigned int dma_len:31;
  660. unsigned int dma_single:1;
  661. struct ring_desc_ex *first_tx_desc;
  662. struct nv_skb_map *next_tx_ctx;
  663. };
  664. /*
  665. * SMP locking:
  666. * All hardware access under netdev_priv(dev)->lock, except the performance
  667. * critical parts:
  668. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  669. * by the arch code for interrupts.
  670. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  671. * needs netdev_priv(dev)->lock :-(
  672. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  673. */
  674. /* in dev: base, irq */
  675. struct fe_priv {
  676. spinlock_t lock;
  677. struct net_device *dev;
  678. struct napi_struct napi;
  679. /* General data:
  680. * Locking: spin_lock(&np->lock); */
  681. struct nv_ethtool_stats estats;
  682. int in_shutdown;
  683. u32 linkspeed;
  684. int duplex;
  685. int autoneg;
  686. int fixed_mode;
  687. int phyaddr;
  688. int wolenabled;
  689. unsigned int phy_oui;
  690. unsigned int phy_model;
  691. unsigned int phy_rev;
  692. u16 gigabit;
  693. int intr_test;
  694. int recover_error;
  695. int quiet_count;
  696. /* General data: RO fields */
  697. dma_addr_t ring_addr;
  698. struct pci_dev *pci_dev;
  699. u32 orig_mac[2];
  700. u32 events;
  701. u32 irqmask;
  702. u32 desc_ver;
  703. u32 txrxctl_bits;
  704. u32 vlanctl_bits;
  705. u32 driver_data;
  706. u32 device_id;
  707. u32 register_size;
  708. int rx_csum;
  709. u32 mac_in_use;
  710. int mgmt_version;
  711. int mgmt_sema;
  712. void __iomem *base;
  713. /* rx specific fields.
  714. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  715. */
  716. union ring_type get_rx, put_rx, first_rx, last_rx;
  717. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  718. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  719. struct nv_skb_map *rx_skb;
  720. union ring_type rx_ring;
  721. unsigned int rx_buf_sz;
  722. unsigned int pkt_limit;
  723. struct timer_list oom_kick;
  724. struct timer_list nic_poll;
  725. struct timer_list stats_poll;
  726. u32 nic_poll_irq;
  727. int rx_ring_size;
  728. /* media detection workaround.
  729. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  730. */
  731. int need_linktimer;
  732. unsigned long link_timeout;
  733. /*
  734. * tx specific fields.
  735. */
  736. union ring_type get_tx, put_tx, first_tx, last_tx;
  737. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  738. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  739. struct nv_skb_map *tx_skb;
  740. union ring_type tx_ring;
  741. u32 tx_flags;
  742. int tx_ring_size;
  743. int tx_limit;
  744. u32 tx_pkts_in_progress;
  745. struct nv_skb_map *tx_change_owner;
  746. struct nv_skb_map *tx_end_flip;
  747. int tx_stop;
  748. /* vlan fields */
  749. struct vlan_group *vlangrp;
  750. /* msi/msi-x fields */
  751. u32 msi_flags;
  752. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  753. /* flow control */
  754. u32 pause_flags;
  755. /* power saved state */
  756. u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
  757. /* for different msi-x irq type */
  758. char name_rx[IFNAMSIZ + 3]; /* -rx */
  759. char name_tx[IFNAMSIZ + 3]; /* -tx */
  760. char name_other[IFNAMSIZ + 6]; /* -other */
  761. };
  762. /*
  763. * Maximum number of loops until we assume that a bit in the irq mask
  764. * is stuck. Overridable with module param.
  765. */
  766. static int max_interrupt_work = 4;
  767. /*
  768. * Optimization can be either throuput mode or cpu mode
  769. *
  770. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  771. * CPU Mode: Interrupts are controlled by a timer.
  772. */
  773. enum {
  774. NV_OPTIMIZATION_MODE_THROUGHPUT,
  775. NV_OPTIMIZATION_MODE_CPU,
  776. NV_OPTIMIZATION_MODE_DYNAMIC
  777. };
  778. static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
  779. /*
  780. * Poll interval for timer irq
  781. *
  782. * This interval determines how frequent an interrupt is generated.
  783. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  784. * Min = 0, and Max = 65535
  785. */
  786. static int poll_interval = -1;
  787. /*
  788. * MSI interrupts
  789. */
  790. enum {
  791. NV_MSI_INT_DISABLED,
  792. NV_MSI_INT_ENABLED
  793. };
  794. static int msi = NV_MSI_INT_ENABLED;
  795. /*
  796. * MSIX interrupts
  797. */
  798. enum {
  799. NV_MSIX_INT_DISABLED,
  800. NV_MSIX_INT_ENABLED
  801. };
  802. static int msix = NV_MSIX_INT_ENABLED;
  803. /*
  804. * DMA 64bit
  805. */
  806. enum {
  807. NV_DMA_64BIT_DISABLED,
  808. NV_DMA_64BIT_ENABLED
  809. };
  810. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  811. /*
  812. * Crossover Detection
  813. * Realtek 8201 phy + some OEM boards do not work properly.
  814. */
  815. enum {
  816. NV_CROSSOVER_DETECTION_DISABLED,
  817. NV_CROSSOVER_DETECTION_ENABLED
  818. };
  819. static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
  820. /*
  821. * Power down phy when interface is down (persists through reboot;
  822. * older Linux and other OSes may not power it up again)
  823. */
  824. static int phy_power_down;
  825. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  826. {
  827. return netdev_priv(dev);
  828. }
  829. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  830. {
  831. return ((struct fe_priv *)netdev_priv(dev))->base;
  832. }
  833. static inline void pci_push(u8 __iomem *base)
  834. {
  835. /* force out pending posted writes */
  836. readl(base);
  837. }
  838. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  839. {
  840. return le32_to_cpu(prd->flaglen)
  841. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  842. }
  843. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  844. {
  845. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  846. }
  847. static bool nv_optimized(struct fe_priv *np)
  848. {
  849. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  850. return false;
  851. return true;
  852. }
  853. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  854. int delay, int delaymax)
  855. {
  856. u8 __iomem *base = get_hwbase(dev);
  857. pci_push(base);
  858. do {
  859. udelay(delay);
  860. delaymax -= delay;
  861. if (delaymax < 0)
  862. return 1;
  863. } while ((readl(base + offset) & mask) != target);
  864. return 0;
  865. }
  866. #define NV_SETUP_RX_RING 0x01
  867. #define NV_SETUP_TX_RING 0x02
  868. static inline u32 dma_low(dma_addr_t addr)
  869. {
  870. return addr;
  871. }
  872. static inline u32 dma_high(dma_addr_t addr)
  873. {
  874. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  875. }
  876. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  877. {
  878. struct fe_priv *np = get_nvpriv(dev);
  879. u8 __iomem *base = get_hwbase(dev);
  880. if (!nv_optimized(np)) {
  881. if (rxtx_flags & NV_SETUP_RX_RING)
  882. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  883. if (rxtx_flags & NV_SETUP_TX_RING)
  884. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  885. } else {
  886. if (rxtx_flags & NV_SETUP_RX_RING) {
  887. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  888. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  889. }
  890. if (rxtx_flags & NV_SETUP_TX_RING) {
  891. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  892. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  893. }
  894. }
  895. }
  896. static void free_rings(struct net_device *dev)
  897. {
  898. struct fe_priv *np = get_nvpriv(dev);
  899. if (!nv_optimized(np)) {
  900. if (np->rx_ring.orig)
  901. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  902. np->rx_ring.orig, np->ring_addr);
  903. } else {
  904. if (np->rx_ring.ex)
  905. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  906. np->rx_ring.ex, np->ring_addr);
  907. }
  908. kfree(np->rx_skb);
  909. kfree(np->tx_skb);
  910. }
  911. static int using_multi_irqs(struct net_device *dev)
  912. {
  913. struct fe_priv *np = get_nvpriv(dev);
  914. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  915. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  916. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  917. return 0;
  918. else
  919. return 1;
  920. }
  921. static void nv_txrx_gate(struct net_device *dev, bool gate)
  922. {
  923. struct fe_priv *np = get_nvpriv(dev);
  924. u8 __iomem *base = get_hwbase(dev);
  925. u32 powerstate;
  926. if (!np->mac_in_use &&
  927. (np->driver_data & DEV_HAS_POWER_CNTRL)) {
  928. powerstate = readl(base + NvRegPowerState2);
  929. if (gate)
  930. powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS;
  931. else
  932. powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS;
  933. writel(powerstate, base + NvRegPowerState2);
  934. }
  935. }
  936. static void nv_enable_irq(struct net_device *dev)
  937. {
  938. struct fe_priv *np = get_nvpriv(dev);
  939. if (!using_multi_irqs(dev)) {
  940. if (np->msi_flags & NV_MSI_X_ENABLED)
  941. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  942. else
  943. enable_irq(np->pci_dev->irq);
  944. } else {
  945. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  946. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  947. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  948. }
  949. }
  950. static void nv_disable_irq(struct net_device *dev)
  951. {
  952. struct fe_priv *np = get_nvpriv(dev);
  953. if (!using_multi_irqs(dev)) {
  954. if (np->msi_flags & NV_MSI_X_ENABLED)
  955. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  956. else
  957. disable_irq(np->pci_dev->irq);
  958. } else {
  959. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  960. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  961. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  962. }
  963. }
  964. /* In MSIX mode, a write to irqmask behaves as XOR */
  965. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  966. {
  967. u8 __iomem *base = get_hwbase(dev);
  968. writel(mask, base + NvRegIrqMask);
  969. }
  970. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  971. {
  972. struct fe_priv *np = get_nvpriv(dev);
  973. u8 __iomem *base = get_hwbase(dev);
  974. if (np->msi_flags & NV_MSI_X_ENABLED) {
  975. writel(mask, base + NvRegIrqMask);
  976. } else {
  977. if (np->msi_flags & NV_MSI_ENABLED)
  978. writel(0, base + NvRegMSIIrqMask);
  979. writel(0, base + NvRegIrqMask);
  980. }
  981. }
  982. static void nv_napi_enable(struct net_device *dev)
  983. {
  984. struct fe_priv *np = get_nvpriv(dev);
  985. napi_enable(&np->napi);
  986. }
  987. static void nv_napi_disable(struct net_device *dev)
  988. {
  989. struct fe_priv *np = get_nvpriv(dev);
  990. napi_disable(&np->napi);
  991. }
  992. #define MII_READ (-1)
  993. /* mii_rw: read/write a register on the PHY.
  994. *
  995. * Caller must guarantee serialization
  996. */
  997. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  998. {
  999. u8 __iomem *base = get_hwbase(dev);
  1000. u32 reg;
  1001. int retval;
  1002. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  1003. reg = readl(base + NvRegMIIControl);
  1004. if (reg & NVREG_MIICTL_INUSE) {
  1005. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  1006. udelay(NV_MIIBUSY_DELAY);
  1007. }
  1008. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  1009. if (value != MII_READ) {
  1010. writel(value, base + NvRegMIIData);
  1011. reg |= NVREG_MIICTL_WRITE;
  1012. }
  1013. writel(reg, base + NvRegMIIControl);
  1014. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  1015. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX)) {
  1016. netdev_dbg(dev, "mii_rw of reg %d at PHY %d timed out\n",
  1017. miireg, addr);
  1018. retval = -1;
  1019. } else if (value != MII_READ) {
  1020. /* it was a write operation - fewer failures are detectable */
  1021. netdev_dbg(dev, "mii_rw wrote 0x%x to reg %d at PHY %d\n",
  1022. value, miireg, addr);
  1023. retval = 0;
  1024. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  1025. netdev_dbg(dev, "mii_rw of reg %d at PHY %d failed\n",
  1026. miireg, addr);
  1027. retval = -1;
  1028. } else {
  1029. retval = readl(base + NvRegMIIData);
  1030. netdev_dbg(dev, "mii_rw read from reg %d at PHY %d: 0x%x\n",
  1031. miireg, addr, retval);
  1032. }
  1033. return retval;
  1034. }
  1035. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  1036. {
  1037. struct fe_priv *np = netdev_priv(dev);
  1038. u32 miicontrol;
  1039. unsigned int tries = 0;
  1040. miicontrol = BMCR_RESET | bmcr_setup;
  1041. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol))
  1042. return -1;
  1043. /* wait for 500ms */
  1044. msleep(500);
  1045. /* must wait till reset is deasserted */
  1046. while (miicontrol & BMCR_RESET) {
  1047. usleep_range(10000, 20000);
  1048. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1049. /* FIXME: 100 tries seem excessive */
  1050. if (tries++ > 100)
  1051. return -1;
  1052. }
  1053. return 0;
  1054. }
  1055. static int phy_init(struct net_device *dev)
  1056. {
  1057. struct fe_priv *np = get_nvpriv(dev);
  1058. u8 __iomem *base = get_hwbase(dev);
  1059. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000, reg;
  1060. /* phy errata for E3016 phy */
  1061. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1062. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1063. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1064. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1065. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1066. return PHY_ERROR;
  1067. }
  1068. }
  1069. if (np->phy_oui == PHY_OUI_REALTEK) {
  1070. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1071. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1072. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1073. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1074. return PHY_ERROR;
  1075. }
  1076. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1077. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1078. return PHY_ERROR;
  1079. }
  1080. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1081. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1082. return PHY_ERROR;
  1083. }
  1084. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1085. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1086. return PHY_ERROR;
  1087. }
  1088. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1089. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1090. return PHY_ERROR;
  1091. }
  1092. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1093. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1094. return PHY_ERROR;
  1095. }
  1096. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1097. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1098. return PHY_ERROR;
  1099. }
  1100. }
  1101. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1102. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1103. u32 powerstate = readl(base + NvRegPowerState2);
  1104. /* need to perform hw phy reset */
  1105. powerstate |= NVREG_POWERSTATE2_PHY_RESET;
  1106. writel(powerstate, base + NvRegPowerState2);
  1107. msleep(25);
  1108. powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
  1109. writel(powerstate, base + NvRegPowerState2);
  1110. msleep(25);
  1111. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1112. reg |= PHY_REALTEK_INIT9;
  1113. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) {
  1114. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1115. return PHY_ERROR;
  1116. }
  1117. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) {
  1118. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1119. return PHY_ERROR;
  1120. }
  1121. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
  1122. if (!(reg & PHY_REALTEK_INIT11)) {
  1123. reg |= PHY_REALTEK_INIT11;
  1124. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) {
  1125. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1126. return PHY_ERROR;
  1127. }
  1128. }
  1129. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1130. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1131. return PHY_ERROR;
  1132. }
  1133. }
  1134. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1135. if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
  1136. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1137. phy_reserved |= PHY_REALTEK_INIT7;
  1138. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1139. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1140. return PHY_ERROR;
  1141. }
  1142. }
  1143. }
  1144. }
  1145. /* set advertise register */
  1146. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1147. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1148. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1149. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1150. return PHY_ERROR;
  1151. }
  1152. /* get phy interface type */
  1153. phyinterface = readl(base + NvRegPhyInterface);
  1154. /* see if gigabit phy */
  1155. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1156. if (mii_status & PHY_GIGABIT) {
  1157. np->gigabit = PHY_GIGABIT;
  1158. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1159. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1160. if (phyinterface & PHY_RGMII)
  1161. mii_control_1000 |= ADVERTISE_1000FULL;
  1162. else
  1163. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1164. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1165. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1166. return PHY_ERROR;
  1167. }
  1168. } else
  1169. np->gigabit = 0;
  1170. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1171. mii_control |= BMCR_ANENABLE;
  1172. if (np->phy_oui == PHY_OUI_REALTEK &&
  1173. np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1174. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1175. /* start autoneg since we already performed hw reset above */
  1176. mii_control |= BMCR_ANRESTART;
  1177. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1178. printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev));
  1179. return PHY_ERROR;
  1180. }
  1181. } else {
  1182. /* reset the phy
  1183. * (certain phys need bmcr to be setup with reset)
  1184. */
  1185. if (phy_reset(dev, mii_control)) {
  1186. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1187. return PHY_ERROR;
  1188. }
  1189. }
  1190. /* phy vendor specific configuration */
  1191. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII)) {
  1192. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1193. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1194. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1195. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1196. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1197. return PHY_ERROR;
  1198. }
  1199. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1200. phy_reserved |= PHY_CICADA_INIT5;
  1201. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1202. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1203. return PHY_ERROR;
  1204. }
  1205. }
  1206. if (np->phy_oui == PHY_OUI_CICADA) {
  1207. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1208. phy_reserved |= PHY_CICADA_INIT6;
  1209. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1210. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1211. return PHY_ERROR;
  1212. }
  1213. }
  1214. if (np->phy_oui == PHY_OUI_VITESSE) {
  1215. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1216. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1217. return PHY_ERROR;
  1218. }
  1219. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1220. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1221. return PHY_ERROR;
  1222. }
  1223. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1224. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1225. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1226. return PHY_ERROR;
  1227. }
  1228. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1229. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1230. phy_reserved |= PHY_VITESSE_INIT3;
  1231. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1232. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1233. return PHY_ERROR;
  1234. }
  1235. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1236. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1237. return PHY_ERROR;
  1238. }
  1239. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1240. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1241. return PHY_ERROR;
  1242. }
  1243. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1244. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1245. phy_reserved |= PHY_VITESSE_INIT3;
  1246. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1247. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1248. return PHY_ERROR;
  1249. }
  1250. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1251. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1252. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1253. return PHY_ERROR;
  1254. }
  1255. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1256. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1257. return PHY_ERROR;
  1258. }
  1259. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1260. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1261. return PHY_ERROR;
  1262. }
  1263. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1264. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1265. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1266. return PHY_ERROR;
  1267. }
  1268. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1269. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1270. phy_reserved |= PHY_VITESSE_INIT8;
  1271. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1272. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1273. return PHY_ERROR;
  1274. }
  1275. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1276. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1277. return PHY_ERROR;
  1278. }
  1279. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1280. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1281. return PHY_ERROR;
  1282. }
  1283. }
  1284. if (np->phy_oui == PHY_OUI_REALTEK) {
  1285. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1286. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1287. /* reset could have cleared these out, set them back */
  1288. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1289. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1290. return PHY_ERROR;
  1291. }
  1292. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1293. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1294. return PHY_ERROR;
  1295. }
  1296. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1297. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1298. return PHY_ERROR;
  1299. }
  1300. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1301. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1302. return PHY_ERROR;
  1303. }
  1304. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1305. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1306. return PHY_ERROR;
  1307. }
  1308. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1309. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1310. return PHY_ERROR;
  1311. }
  1312. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1313. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1314. return PHY_ERROR;
  1315. }
  1316. }
  1317. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1318. if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
  1319. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1320. phy_reserved |= PHY_REALTEK_INIT7;
  1321. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1322. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1323. return PHY_ERROR;
  1324. }
  1325. }
  1326. if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  1327. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1328. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1329. return PHY_ERROR;
  1330. }
  1331. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  1332. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  1333. phy_reserved |= PHY_REALTEK_INIT3;
  1334. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
  1335. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1336. return PHY_ERROR;
  1337. }
  1338. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1339. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1340. return PHY_ERROR;
  1341. }
  1342. }
  1343. }
  1344. }
  1345. /* some phys clear out pause advertisment on reset, set it back */
  1346. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1347. /* restart auto negotiation, power down phy */
  1348. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1349. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1350. if (phy_power_down)
  1351. mii_control |= BMCR_PDOWN;
  1352. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control))
  1353. return PHY_ERROR;
  1354. return 0;
  1355. }
  1356. static void nv_start_rx(struct net_device *dev)
  1357. {
  1358. struct fe_priv *np = netdev_priv(dev);
  1359. u8 __iomem *base = get_hwbase(dev);
  1360. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1361. netdev_dbg(dev, "%s\n", __func__);
  1362. /* Already running? Stop it. */
  1363. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1364. rx_ctrl &= ~NVREG_RCVCTL_START;
  1365. writel(rx_ctrl, base + NvRegReceiverControl);
  1366. pci_push(base);
  1367. }
  1368. writel(np->linkspeed, base + NvRegLinkSpeed);
  1369. pci_push(base);
  1370. rx_ctrl |= NVREG_RCVCTL_START;
  1371. if (np->mac_in_use)
  1372. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1373. writel(rx_ctrl, base + NvRegReceiverControl);
  1374. netdev_dbg(dev, "%s: duplex %d, speed 0x%08x\n",
  1375. __func__, np->duplex, np->linkspeed);
  1376. pci_push(base);
  1377. }
  1378. static void nv_stop_rx(struct net_device *dev)
  1379. {
  1380. struct fe_priv *np = netdev_priv(dev);
  1381. u8 __iomem *base = get_hwbase(dev);
  1382. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1383. netdev_dbg(dev, "%s\n", __func__);
  1384. if (!np->mac_in_use)
  1385. rx_ctrl &= ~NVREG_RCVCTL_START;
  1386. else
  1387. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1388. writel(rx_ctrl, base + NvRegReceiverControl);
  1389. if (reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1390. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX))
  1391. printk(KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1392. udelay(NV_RXSTOP_DELAY2);
  1393. if (!np->mac_in_use)
  1394. writel(0, base + NvRegLinkSpeed);
  1395. }
  1396. static void nv_start_tx(struct net_device *dev)
  1397. {
  1398. struct fe_priv *np = netdev_priv(dev);
  1399. u8 __iomem *base = get_hwbase(dev);
  1400. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1401. netdev_dbg(dev, "%s\n", __func__);
  1402. tx_ctrl |= NVREG_XMITCTL_START;
  1403. if (np->mac_in_use)
  1404. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1405. writel(tx_ctrl, base + NvRegTransmitterControl);
  1406. pci_push(base);
  1407. }
  1408. static void nv_stop_tx(struct net_device *dev)
  1409. {
  1410. struct fe_priv *np = netdev_priv(dev);
  1411. u8 __iomem *base = get_hwbase(dev);
  1412. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1413. netdev_dbg(dev, "%s\n", __func__);
  1414. if (!np->mac_in_use)
  1415. tx_ctrl &= ~NVREG_XMITCTL_START;
  1416. else
  1417. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1418. writel(tx_ctrl, base + NvRegTransmitterControl);
  1419. if (reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1420. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX))
  1421. printk(KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1422. udelay(NV_TXSTOP_DELAY2);
  1423. if (!np->mac_in_use)
  1424. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1425. base + NvRegTransmitPoll);
  1426. }
  1427. static void nv_start_rxtx(struct net_device *dev)
  1428. {
  1429. nv_start_rx(dev);
  1430. nv_start_tx(dev);
  1431. }
  1432. static void nv_stop_rxtx(struct net_device *dev)
  1433. {
  1434. nv_stop_rx(dev);
  1435. nv_stop_tx(dev);
  1436. }
  1437. static void nv_txrx_reset(struct net_device *dev)
  1438. {
  1439. struct fe_priv *np = netdev_priv(dev);
  1440. u8 __iomem *base = get_hwbase(dev);
  1441. netdev_dbg(dev, "%s\n", __func__);
  1442. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1443. pci_push(base);
  1444. udelay(NV_TXRX_RESET_DELAY);
  1445. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1446. pci_push(base);
  1447. }
  1448. static void nv_mac_reset(struct net_device *dev)
  1449. {
  1450. struct fe_priv *np = netdev_priv(dev);
  1451. u8 __iomem *base = get_hwbase(dev);
  1452. u32 temp1, temp2, temp3;
  1453. netdev_dbg(dev, "%s\n", __func__);
  1454. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1455. pci_push(base);
  1456. /* save registers since they will be cleared on reset */
  1457. temp1 = readl(base + NvRegMacAddrA);
  1458. temp2 = readl(base + NvRegMacAddrB);
  1459. temp3 = readl(base + NvRegTransmitPoll);
  1460. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1461. pci_push(base);
  1462. udelay(NV_MAC_RESET_DELAY);
  1463. writel(0, base + NvRegMacReset);
  1464. pci_push(base);
  1465. udelay(NV_MAC_RESET_DELAY);
  1466. /* restore saved registers */
  1467. writel(temp1, base + NvRegMacAddrA);
  1468. writel(temp2, base + NvRegMacAddrB);
  1469. writel(temp3, base + NvRegTransmitPoll);
  1470. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1471. pci_push(base);
  1472. }
  1473. static void nv_get_hw_stats(struct net_device *dev)
  1474. {
  1475. struct fe_priv *np = netdev_priv(dev);
  1476. u8 __iomem *base = get_hwbase(dev);
  1477. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1478. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1479. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1480. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1481. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1482. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1483. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1484. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1485. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1486. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1487. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1488. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1489. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1490. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1491. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1492. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1493. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1494. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1495. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1496. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1497. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1498. np->estats.rx_packets =
  1499. np->estats.rx_unicast +
  1500. np->estats.rx_multicast +
  1501. np->estats.rx_broadcast;
  1502. np->estats.rx_errors_total =
  1503. np->estats.rx_crc_errors +
  1504. np->estats.rx_over_errors +
  1505. np->estats.rx_frame_error +
  1506. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1507. np->estats.rx_late_collision +
  1508. np->estats.rx_runt +
  1509. np->estats.rx_frame_too_long;
  1510. np->estats.tx_errors_total =
  1511. np->estats.tx_late_collision +
  1512. np->estats.tx_fifo_errors +
  1513. np->estats.tx_carrier_errors +
  1514. np->estats.tx_excess_deferral +
  1515. np->estats.tx_retry_error;
  1516. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1517. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1518. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1519. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1520. np->estats.tx_pause += readl(base + NvRegTxPause);
  1521. np->estats.rx_pause += readl(base + NvRegRxPause);
  1522. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1523. }
  1524. if (np->driver_data & DEV_HAS_STATISTICS_V3) {
  1525. np->estats.tx_unicast += readl(base + NvRegTxUnicast);
  1526. np->estats.tx_multicast += readl(base + NvRegTxMulticast);
  1527. np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
  1528. }
  1529. }
  1530. /*
  1531. * nv_get_stats: dev->get_stats function
  1532. * Get latest stats value from the nic.
  1533. * Called with read_lock(&dev_base_lock) held for read -
  1534. * only synchronized against unregister_netdevice.
  1535. */
  1536. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1537. {
  1538. struct fe_priv *np = netdev_priv(dev);
  1539. /* If the nic supports hw counters then retrieve latest values */
  1540. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
  1541. nv_get_hw_stats(dev);
  1542. /* copy to net_device stats */
  1543. dev->stats.tx_bytes = np->estats.tx_bytes;
  1544. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1545. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1546. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1547. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1548. dev->stats.rx_errors = np->estats.rx_errors_total;
  1549. dev->stats.tx_errors = np->estats.tx_errors_total;
  1550. }
  1551. return &dev->stats;
  1552. }
  1553. /*
  1554. * nv_alloc_rx: fill rx ring entries.
  1555. * Return 1 if the allocations for the skbs failed and the
  1556. * rx engine is without Available descriptors
  1557. */
  1558. static int nv_alloc_rx(struct net_device *dev)
  1559. {
  1560. struct fe_priv *np = netdev_priv(dev);
  1561. struct ring_desc *less_rx;
  1562. less_rx = np->get_rx.orig;
  1563. if (less_rx-- == np->first_rx.orig)
  1564. less_rx = np->last_rx.orig;
  1565. while (np->put_rx.orig != less_rx) {
  1566. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1567. if (skb) {
  1568. np->put_rx_ctx->skb = skb;
  1569. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1570. skb->data,
  1571. skb_tailroom(skb),
  1572. PCI_DMA_FROMDEVICE);
  1573. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1574. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1575. wmb();
  1576. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1577. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1578. np->put_rx.orig = np->first_rx.orig;
  1579. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1580. np->put_rx_ctx = np->first_rx_ctx;
  1581. } else
  1582. return 1;
  1583. }
  1584. return 0;
  1585. }
  1586. static int nv_alloc_rx_optimized(struct net_device *dev)
  1587. {
  1588. struct fe_priv *np = netdev_priv(dev);
  1589. struct ring_desc_ex *less_rx;
  1590. less_rx = np->get_rx.ex;
  1591. if (less_rx-- == np->first_rx.ex)
  1592. less_rx = np->last_rx.ex;
  1593. while (np->put_rx.ex != less_rx) {
  1594. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1595. if (skb) {
  1596. np->put_rx_ctx->skb = skb;
  1597. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1598. skb->data,
  1599. skb_tailroom(skb),
  1600. PCI_DMA_FROMDEVICE);
  1601. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1602. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1603. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1604. wmb();
  1605. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1606. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1607. np->put_rx.ex = np->first_rx.ex;
  1608. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1609. np->put_rx_ctx = np->first_rx_ctx;
  1610. } else
  1611. return 1;
  1612. }
  1613. return 0;
  1614. }
  1615. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1616. static void nv_do_rx_refill(unsigned long data)
  1617. {
  1618. struct net_device *dev = (struct net_device *) data;
  1619. struct fe_priv *np = netdev_priv(dev);
  1620. /* Just reschedule NAPI rx processing */
  1621. napi_schedule(&np->napi);
  1622. }
  1623. static void nv_init_rx(struct net_device *dev)
  1624. {
  1625. struct fe_priv *np = netdev_priv(dev);
  1626. int i;
  1627. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1628. if (!nv_optimized(np))
  1629. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1630. else
  1631. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1632. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1633. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1634. for (i = 0; i < np->rx_ring_size; i++) {
  1635. if (!nv_optimized(np)) {
  1636. np->rx_ring.orig[i].flaglen = 0;
  1637. np->rx_ring.orig[i].buf = 0;
  1638. } else {
  1639. np->rx_ring.ex[i].flaglen = 0;
  1640. np->rx_ring.ex[i].txvlan = 0;
  1641. np->rx_ring.ex[i].bufhigh = 0;
  1642. np->rx_ring.ex[i].buflow = 0;
  1643. }
  1644. np->rx_skb[i].skb = NULL;
  1645. np->rx_skb[i].dma = 0;
  1646. }
  1647. }
  1648. static void nv_init_tx(struct net_device *dev)
  1649. {
  1650. struct fe_priv *np = netdev_priv(dev);
  1651. int i;
  1652. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1653. if (!nv_optimized(np))
  1654. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1655. else
  1656. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1657. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1658. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1659. np->tx_pkts_in_progress = 0;
  1660. np->tx_change_owner = NULL;
  1661. np->tx_end_flip = NULL;
  1662. np->tx_stop = 0;
  1663. for (i = 0; i < np->tx_ring_size; i++) {
  1664. if (!nv_optimized(np)) {
  1665. np->tx_ring.orig[i].flaglen = 0;
  1666. np->tx_ring.orig[i].buf = 0;
  1667. } else {
  1668. np->tx_ring.ex[i].flaglen = 0;
  1669. np->tx_ring.ex[i].txvlan = 0;
  1670. np->tx_ring.ex[i].bufhigh = 0;
  1671. np->tx_ring.ex[i].buflow = 0;
  1672. }
  1673. np->tx_skb[i].skb = NULL;
  1674. np->tx_skb[i].dma = 0;
  1675. np->tx_skb[i].dma_len = 0;
  1676. np->tx_skb[i].dma_single = 0;
  1677. np->tx_skb[i].first_tx_desc = NULL;
  1678. np->tx_skb[i].next_tx_ctx = NULL;
  1679. }
  1680. }
  1681. static int nv_init_ring(struct net_device *dev)
  1682. {
  1683. struct fe_priv *np = netdev_priv(dev);
  1684. nv_init_tx(dev);
  1685. nv_init_rx(dev);
  1686. if (!nv_optimized(np))
  1687. return nv_alloc_rx(dev);
  1688. else
  1689. return nv_alloc_rx_optimized(dev);
  1690. }
  1691. static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
  1692. {
  1693. if (tx_skb->dma) {
  1694. if (tx_skb->dma_single)
  1695. pci_unmap_single(np->pci_dev, tx_skb->dma,
  1696. tx_skb->dma_len,
  1697. PCI_DMA_TODEVICE);
  1698. else
  1699. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1700. tx_skb->dma_len,
  1701. PCI_DMA_TODEVICE);
  1702. tx_skb->dma = 0;
  1703. }
  1704. }
  1705. static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
  1706. {
  1707. nv_unmap_txskb(np, tx_skb);
  1708. if (tx_skb->skb) {
  1709. dev_kfree_skb_any(tx_skb->skb);
  1710. tx_skb->skb = NULL;
  1711. return 1;
  1712. }
  1713. return 0;
  1714. }
  1715. static void nv_drain_tx(struct net_device *dev)
  1716. {
  1717. struct fe_priv *np = netdev_priv(dev);
  1718. unsigned int i;
  1719. for (i = 0; i < np->tx_ring_size; i++) {
  1720. if (!nv_optimized(np)) {
  1721. np->tx_ring.orig[i].flaglen = 0;
  1722. np->tx_ring.orig[i].buf = 0;
  1723. } else {
  1724. np->tx_ring.ex[i].flaglen = 0;
  1725. np->tx_ring.ex[i].txvlan = 0;
  1726. np->tx_ring.ex[i].bufhigh = 0;
  1727. np->tx_ring.ex[i].buflow = 0;
  1728. }
  1729. if (nv_release_txskb(np, &np->tx_skb[i]))
  1730. dev->stats.tx_dropped++;
  1731. np->tx_skb[i].dma = 0;
  1732. np->tx_skb[i].dma_len = 0;
  1733. np->tx_skb[i].dma_single = 0;
  1734. np->tx_skb[i].first_tx_desc = NULL;
  1735. np->tx_skb[i].next_tx_ctx = NULL;
  1736. }
  1737. np->tx_pkts_in_progress = 0;
  1738. np->tx_change_owner = NULL;
  1739. np->tx_end_flip = NULL;
  1740. }
  1741. static void nv_drain_rx(struct net_device *dev)
  1742. {
  1743. struct fe_priv *np = netdev_priv(dev);
  1744. int i;
  1745. for (i = 0; i < np->rx_ring_size; i++) {
  1746. if (!nv_optimized(np)) {
  1747. np->rx_ring.orig[i].flaglen = 0;
  1748. np->rx_ring.orig[i].buf = 0;
  1749. } else {
  1750. np->rx_ring.ex[i].flaglen = 0;
  1751. np->rx_ring.ex[i].txvlan = 0;
  1752. np->rx_ring.ex[i].bufhigh = 0;
  1753. np->rx_ring.ex[i].buflow = 0;
  1754. }
  1755. wmb();
  1756. if (np->rx_skb[i].skb) {
  1757. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1758. (skb_end_pointer(np->rx_skb[i].skb) -
  1759. np->rx_skb[i].skb->data),
  1760. PCI_DMA_FROMDEVICE);
  1761. dev_kfree_skb(np->rx_skb[i].skb);
  1762. np->rx_skb[i].skb = NULL;
  1763. }
  1764. }
  1765. }
  1766. static void nv_drain_rxtx(struct net_device *dev)
  1767. {
  1768. nv_drain_tx(dev);
  1769. nv_drain_rx(dev);
  1770. }
  1771. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1772. {
  1773. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1774. }
  1775. static void nv_legacybackoff_reseed(struct net_device *dev)
  1776. {
  1777. u8 __iomem *base = get_hwbase(dev);
  1778. u32 reg;
  1779. u32 low;
  1780. int tx_status = 0;
  1781. reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
  1782. get_random_bytes(&low, sizeof(low));
  1783. reg |= low & NVREG_SLOTTIME_MASK;
  1784. /* Need to stop tx before change takes effect.
  1785. * Caller has already gained np->lock.
  1786. */
  1787. tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
  1788. if (tx_status)
  1789. nv_stop_tx(dev);
  1790. nv_stop_rx(dev);
  1791. writel(reg, base + NvRegSlotTime);
  1792. if (tx_status)
  1793. nv_start_tx(dev);
  1794. nv_start_rx(dev);
  1795. }
  1796. /* Gear Backoff Seeds */
  1797. #define BACKOFF_SEEDSET_ROWS 8
  1798. #define BACKOFF_SEEDSET_LFSRS 15
  1799. /* Known Good seed sets */
  1800. static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1801. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1802. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
  1803. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1804. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
  1805. {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
  1806. {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
  1807. {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
  1808. {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184} };
  1809. static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1810. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1811. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1812. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
  1813. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1814. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1815. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1816. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1817. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395} };
  1818. static void nv_gear_backoff_reseed(struct net_device *dev)
  1819. {
  1820. u8 __iomem *base = get_hwbase(dev);
  1821. u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
  1822. u32 temp, seedset, combinedSeed;
  1823. int i;
  1824. /* Setup seed for free running LFSR */
  1825. /* We are going to read the time stamp counter 3 times
  1826. and swizzle bits around to increase randomness */
  1827. get_random_bytes(&miniseed1, sizeof(miniseed1));
  1828. miniseed1 &= 0x0fff;
  1829. if (miniseed1 == 0)
  1830. miniseed1 = 0xabc;
  1831. get_random_bytes(&miniseed2, sizeof(miniseed2));
  1832. miniseed2 &= 0x0fff;
  1833. if (miniseed2 == 0)
  1834. miniseed2 = 0xabc;
  1835. miniseed2_reversed =
  1836. ((miniseed2 & 0xF00) >> 8) |
  1837. (miniseed2 & 0x0F0) |
  1838. ((miniseed2 & 0x00F) << 8);
  1839. get_random_bytes(&miniseed3, sizeof(miniseed3));
  1840. miniseed3 &= 0x0fff;
  1841. if (miniseed3 == 0)
  1842. miniseed3 = 0xabc;
  1843. miniseed3_reversed =
  1844. ((miniseed3 & 0xF00) >> 8) |
  1845. (miniseed3 & 0x0F0) |
  1846. ((miniseed3 & 0x00F) << 8);
  1847. combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
  1848. (miniseed2 ^ miniseed3_reversed);
  1849. /* Seeds can not be zero */
  1850. if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
  1851. combinedSeed |= 0x08;
  1852. if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
  1853. combinedSeed |= 0x8000;
  1854. /* No need to disable tx here */
  1855. temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
  1856. temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
  1857. temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
  1858. writel(temp, base + NvRegBackOffControl);
  1859. /* Setup seeds for all gear LFSRs. */
  1860. get_random_bytes(&seedset, sizeof(seedset));
  1861. seedset = seedset % BACKOFF_SEEDSET_ROWS;
  1862. for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++) {
  1863. temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
  1864. temp |= main_seedset[seedset][i-1] & 0x3ff;
  1865. temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
  1866. writel(temp, base + NvRegBackOffControl);
  1867. }
  1868. }
  1869. /*
  1870. * nv_start_xmit: dev->hard_start_xmit function
  1871. * Called with netif_tx_lock held.
  1872. */
  1873. static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1874. {
  1875. struct fe_priv *np = netdev_priv(dev);
  1876. u32 tx_flags = 0;
  1877. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1878. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1879. unsigned int i;
  1880. u32 offset = 0;
  1881. u32 bcnt;
  1882. u32 size = skb_headlen(skb);
  1883. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1884. u32 empty_slots;
  1885. struct ring_desc *put_tx;
  1886. struct ring_desc *start_tx;
  1887. struct ring_desc *prev_tx;
  1888. struct nv_skb_map *prev_tx_ctx;
  1889. unsigned long flags;
  1890. /* add fragments to entries count */
  1891. for (i = 0; i < fragments; i++) {
  1892. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1893. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1894. }
  1895. spin_lock_irqsave(&np->lock, flags);
  1896. empty_slots = nv_get_empty_tx_slots(np);
  1897. if (unlikely(empty_slots <= entries)) {
  1898. netif_stop_queue(dev);
  1899. np->tx_stop = 1;
  1900. spin_unlock_irqrestore(&np->lock, flags);
  1901. return NETDEV_TX_BUSY;
  1902. }
  1903. spin_unlock_irqrestore(&np->lock, flags);
  1904. start_tx = put_tx = np->put_tx.orig;
  1905. /* setup the header buffer */
  1906. do {
  1907. prev_tx = put_tx;
  1908. prev_tx_ctx = np->put_tx_ctx;
  1909. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1910. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1911. PCI_DMA_TODEVICE);
  1912. np->put_tx_ctx->dma_len = bcnt;
  1913. np->put_tx_ctx->dma_single = 1;
  1914. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1915. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1916. tx_flags = np->tx_flags;
  1917. offset += bcnt;
  1918. size -= bcnt;
  1919. if (unlikely(put_tx++ == np->last_tx.orig))
  1920. put_tx = np->first_tx.orig;
  1921. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1922. np->put_tx_ctx = np->first_tx_ctx;
  1923. } while (size);
  1924. /* setup the fragments */
  1925. for (i = 0; i < fragments; i++) {
  1926. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1927. u32 size = frag->size;
  1928. offset = 0;
  1929. do {
  1930. prev_tx = put_tx;
  1931. prev_tx_ctx = np->put_tx_ctx;
  1932. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1933. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1934. PCI_DMA_TODEVICE);
  1935. np->put_tx_ctx->dma_len = bcnt;
  1936. np->put_tx_ctx->dma_single = 0;
  1937. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1938. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1939. offset += bcnt;
  1940. size -= bcnt;
  1941. if (unlikely(put_tx++ == np->last_tx.orig))
  1942. put_tx = np->first_tx.orig;
  1943. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1944. np->put_tx_ctx = np->first_tx_ctx;
  1945. } while (size);
  1946. }
  1947. /* set last fragment flag */
  1948. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1949. /* save skb in this slot's context area */
  1950. prev_tx_ctx->skb = skb;
  1951. if (skb_is_gso(skb))
  1952. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1953. else
  1954. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1955. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1956. spin_lock_irqsave(&np->lock, flags);
  1957. /* set tx flags */
  1958. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1959. np->put_tx.orig = put_tx;
  1960. spin_unlock_irqrestore(&np->lock, flags);
  1961. netdev_dbg(dev, "%s: entries %d queued for transmission. tx_flags_extra: %x\n",
  1962. __func__, entries, tx_flags_extra);
  1963. #ifdef DEBUG
  1964. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 16, 1,
  1965. skb->data, 64, true);
  1966. #endif
  1967. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1968. return NETDEV_TX_OK;
  1969. }
  1970. static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb,
  1971. struct net_device *dev)
  1972. {
  1973. struct fe_priv *np = netdev_priv(dev);
  1974. u32 tx_flags = 0;
  1975. u32 tx_flags_extra;
  1976. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1977. unsigned int i;
  1978. u32 offset = 0;
  1979. u32 bcnt;
  1980. u32 size = skb_headlen(skb);
  1981. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1982. u32 empty_slots;
  1983. struct ring_desc_ex *put_tx;
  1984. struct ring_desc_ex *start_tx;
  1985. struct ring_desc_ex *prev_tx;
  1986. struct nv_skb_map *prev_tx_ctx;
  1987. struct nv_skb_map *start_tx_ctx;
  1988. unsigned long flags;
  1989. /* add fragments to entries count */
  1990. for (i = 0; i < fragments; i++) {
  1991. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1992. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1993. }
  1994. spin_lock_irqsave(&np->lock, flags);
  1995. empty_slots = nv_get_empty_tx_slots(np);
  1996. if (unlikely(empty_slots <= entries)) {
  1997. netif_stop_queue(dev);
  1998. np->tx_stop = 1;
  1999. spin_unlock_irqrestore(&np->lock, flags);
  2000. return NETDEV_TX_BUSY;
  2001. }
  2002. spin_unlock_irqrestore(&np->lock, flags);
  2003. start_tx = put_tx = np->put_tx.ex;
  2004. start_tx_ctx = np->put_tx_ctx;
  2005. /* setup the header buffer */
  2006. do {
  2007. prev_tx = put_tx;
  2008. prev_tx_ctx = np->put_tx_ctx;
  2009. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2010. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  2011. PCI_DMA_TODEVICE);
  2012. np->put_tx_ctx->dma_len = bcnt;
  2013. np->put_tx_ctx->dma_single = 1;
  2014. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2015. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2016. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2017. tx_flags = NV_TX2_VALID;
  2018. offset += bcnt;
  2019. size -= bcnt;
  2020. if (unlikely(put_tx++ == np->last_tx.ex))
  2021. put_tx = np->first_tx.ex;
  2022. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2023. np->put_tx_ctx = np->first_tx_ctx;
  2024. } while (size);
  2025. /* setup the fragments */
  2026. for (i = 0; i < fragments; i++) {
  2027. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2028. u32 size = frag->size;
  2029. offset = 0;
  2030. do {
  2031. prev_tx = put_tx;
  2032. prev_tx_ctx = np->put_tx_ctx;
  2033. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2034. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  2035. PCI_DMA_TODEVICE);
  2036. np->put_tx_ctx->dma_len = bcnt;
  2037. np->put_tx_ctx->dma_single = 0;
  2038. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2039. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2040. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2041. offset += bcnt;
  2042. size -= bcnt;
  2043. if (unlikely(put_tx++ == np->last_tx.ex))
  2044. put_tx = np->first_tx.ex;
  2045. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2046. np->put_tx_ctx = np->first_tx_ctx;
  2047. } while (size);
  2048. }
  2049. /* set last fragment flag */
  2050. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  2051. /* save skb in this slot's context area */
  2052. prev_tx_ctx->skb = skb;
  2053. if (skb_is_gso(skb))
  2054. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2055. else
  2056. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2057. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2058. /* vlan tag */
  2059. if (vlan_tx_tag_present(skb))
  2060. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT |
  2061. vlan_tx_tag_get(skb));
  2062. else
  2063. start_tx->txvlan = 0;
  2064. spin_lock_irqsave(&np->lock, flags);
  2065. if (np->tx_limit) {
  2066. /* Limit the number of outstanding tx. Setup all fragments, but
  2067. * do not set the VALID bit on the first descriptor. Save a pointer
  2068. * to that descriptor and also for next skb_map element.
  2069. */
  2070. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  2071. if (!np->tx_change_owner)
  2072. np->tx_change_owner = start_tx_ctx;
  2073. /* remove VALID bit */
  2074. tx_flags &= ~NV_TX2_VALID;
  2075. start_tx_ctx->first_tx_desc = start_tx;
  2076. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  2077. np->tx_end_flip = np->put_tx_ctx;
  2078. } else {
  2079. np->tx_pkts_in_progress++;
  2080. }
  2081. }
  2082. /* set tx flags */
  2083. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2084. np->put_tx.ex = put_tx;
  2085. spin_unlock_irqrestore(&np->lock, flags);
  2086. netdev_dbg(dev, "%s: entries %d queued for transmission. tx_flags_extra: %x\n",
  2087. __func__, entries, tx_flags_extra);
  2088. #ifdef DEBUG
  2089. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 16, 1,
  2090. skb->data, 64, true);
  2091. #endif
  2092. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2093. return NETDEV_TX_OK;
  2094. }
  2095. static inline void nv_tx_flip_ownership(struct net_device *dev)
  2096. {
  2097. struct fe_priv *np = netdev_priv(dev);
  2098. np->tx_pkts_in_progress--;
  2099. if (np->tx_change_owner) {
  2100. np->tx_change_owner->first_tx_desc->flaglen |=
  2101. cpu_to_le32(NV_TX2_VALID);
  2102. np->tx_pkts_in_progress++;
  2103. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  2104. if (np->tx_change_owner == np->tx_end_flip)
  2105. np->tx_change_owner = NULL;
  2106. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2107. }
  2108. }
  2109. /*
  2110. * nv_tx_done: check for completed packets, release the skbs.
  2111. *
  2112. * Caller must own np->lock.
  2113. */
  2114. static int nv_tx_done(struct net_device *dev, int limit)
  2115. {
  2116. struct fe_priv *np = netdev_priv(dev);
  2117. u32 flags;
  2118. int tx_work = 0;
  2119. struct ring_desc *orig_get_tx = np->get_tx.orig;
  2120. while ((np->get_tx.orig != np->put_tx.orig) &&
  2121. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
  2122. (tx_work < limit)) {
  2123. netdev_dbg(dev, "%s: flags 0x%x\n", __func__, flags);
  2124. nv_unmap_txskb(np, np->get_tx_ctx);
  2125. if (np->desc_ver == DESC_VER_1) {
  2126. if (flags & NV_TX_LASTPACKET) {
  2127. if (flags & NV_TX_ERROR) {
  2128. if (flags & NV_TX_UNDERFLOW)
  2129. dev->stats.tx_fifo_errors++;
  2130. if (flags & NV_TX_CARRIERLOST)
  2131. dev->stats.tx_carrier_errors++;
  2132. if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
  2133. nv_legacybackoff_reseed(dev);
  2134. dev->stats.tx_errors++;
  2135. } else {
  2136. dev->stats.tx_packets++;
  2137. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2138. }
  2139. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2140. np->get_tx_ctx->skb = NULL;
  2141. tx_work++;
  2142. }
  2143. } else {
  2144. if (flags & NV_TX2_LASTPACKET) {
  2145. if (flags & NV_TX2_ERROR) {
  2146. if (flags & NV_TX2_UNDERFLOW)
  2147. dev->stats.tx_fifo_errors++;
  2148. if (flags & NV_TX2_CARRIERLOST)
  2149. dev->stats.tx_carrier_errors++;
  2150. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
  2151. nv_legacybackoff_reseed(dev);
  2152. dev->stats.tx_errors++;
  2153. } else {
  2154. dev->stats.tx_packets++;
  2155. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2156. }
  2157. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2158. np->get_tx_ctx->skb = NULL;
  2159. tx_work++;
  2160. }
  2161. }
  2162. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  2163. np->get_tx.orig = np->first_tx.orig;
  2164. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2165. np->get_tx_ctx = np->first_tx_ctx;
  2166. }
  2167. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  2168. np->tx_stop = 0;
  2169. netif_wake_queue(dev);
  2170. }
  2171. return tx_work;
  2172. }
  2173. static int nv_tx_done_optimized(struct net_device *dev, int limit)
  2174. {
  2175. struct fe_priv *np = netdev_priv(dev);
  2176. u32 flags;
  2177. int tx_work = 0;
  2178. struct ring_desc_ex *orig_get_tx = np->get_tx.ex;
  2179. while ((np->get_tx.ex != np->put_tx.ex) &&
  2180. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX2_VALID) &&
  2181. (tx_work < limit)) {
  2182. netdev_dbg(dev, "%s: flags 0x%x\n", __func__, flags);
  2183. nv_unmap_txskb(np, np->get_tx_ctx);
  2184. if (flags & NV_TX2_LASTPACKET) {
  2185. if (!(flags & NV_TX2_ERROR))
  2186. dev->stats.tx_packets++;
  2187. else {
  2188. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
  2189. if (np->driver_data & DEV_HAS_GEAR_MODE)
  2190. nv_gear_backoff_reseed(dev);
  2191. else
  2192. nv_legacybackoff_reseed(dev);
  2193. }
  2194. }
  2195. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2196. np->get_tx_ctx->skb = NULL;
  2197. tx_work++;
  2198. if (np->tx_limit)
  2199. nv_tx_flip_ownership(dev);
  2200. }
  2201. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  2202. np->get_tx.ex = np->first_tx.ex;
  2203. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2204. np->get_tx_ctx = np->first_tx_ctx;
  2205. }
  2206. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  2207. np->tx_stop = 0;
  2208. netif_wake_queue(dev);
  2209. }
  2210. return tx_work;
  2211. }
  2212. /*
  2213. * nv_tx_timeout: dev->tx_timeout function
  2214. * Called with netif_tx_lock held.
  2215. */
  2216. static void nv_tx_timeout(struct net_device *dev)
  2217. {
  2218. struct fe_priv *np = netdev_priv(dev);
  2219. u8 __iomem *base = get_hwbase(dev);
  2220. u32 status;
  2221. union ring_type put_tx;
  2222. int saved_tx_limit;
  2223. if (np->msi_flags & NV_MSI_X_ENABLED)
  2224. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2225. else
  2226. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2227. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  2228. {
  2229. int i;
  2230. printk(KERN_INFO "%s: Ring at %lx\n",
  2231. dev->name, (unsigned long)np->ring_addr);
  2232. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  2233. for (i = 0; i <= np->register_size; i += 32) {
  2234. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  2235. i,
  2236. readl(base + i + 0), readl(base + i + 4),
  2237. readl(base + i + 8), readl(base + i + 12),
  2238. readl(base + i + 16), readl(base + i + 20),
  2239. readl(base + i + 24), readl(base + i + 28));
  2240. }
  2241. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  2242. for (i = 0; i < np->tx_ring_size; i += 4) {
  2243. if (!nv_optimized(np)) {
  2244. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  2245. i,
  2246. le32_to_cpu(np->tx_ring.orig[i].buf),
  2247. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  2248. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  2249. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  2250. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  2251. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  2252. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  2253. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  2254. } else {
  2255. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  2256. i,
  2257. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  2258. le32_to_cpu(np->tx_ring.ex[i].buflow),
  2259. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  2260. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  2261. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  2262. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  2263. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  2264. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  2265. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  2266. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  2267. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  2268. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  2269. }
  2270. }
  2271. }
  2272. spin_lock_irq(&np->lock);
  2273. /* 1) stop tx engine */
  2274. nv_stop_tx(dev);
  2275. /* 2) complete any outstanding tx and do not give HW any limited tx pkts */
  2276. saved_tx_limit = np->tx_limit;
  2277. np->tx_limit = 0; /* prevent giving HW any limited pkts */
  2278. np->tx_stop = 0; /* prevent waking tx queue */
  2279. if (!nv_optimized(np))
  2280. nv_tx_done(dev, np->tx_ring_size);
  2281. else
  2282. nv_tx_done_optimized(dev, np->tx_ring_size);
  2283. /* save current HW postion */
  2284. if (np->tx_change_owner)
  2285. put_tx.ex = np->tx_change_owner->first_tx_desc;
  2286. else
  2287. put_tx = np->put_tx;
  2288. /* 3) clear all tx state */
  2289. nv_drain_tx(dev);
  2290. nv_init_tx(dev);
  2291. /* 4) restore state to current HW position */
  2292. np->get_tx = np->put_tx = put_tx;
  2293. np->tx_limit = saved_tx_limit;
  2294. /* 5) restart tx engine */
  2295. nv_start_tx(dev);
  2296. netif_wake_queue(dev);
  2297. spin_unlock_irq(&np->lock);
  2298. }
  2299. /*
  2300. * Called when the nic notices a mismatch between the actual data len on the
  2301. * wire and the len indicated in the 802 header
  2302. */
  2303. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2304. {
  2305. int hdrlen; /* length of the 802 header */
  2306. int protolen; /* length as stored in the proto field */
  2307. /* 1) calculate len according to header */
  2308. if (((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2309. protolen = ntohs(((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto);
  2310. hdrlen = VLAN_HLEN;
  2311. } else {
  2312. protolen = ntohs(((struct ethhdr *)packet)->h_proto);
  2313. hdrlen = ETH_HLEN;
  2314. }
  2315. netdev_dbg(dev, "%s: datalen %d, protolen %d, hdrlen %d\n",
  2316. __func__, datalen, protolen, hdrlen);
  2317. if (protolen > ETH_DATA_LEN)
  2318. return datalen; /* Value in proto field not a len, no checks possible */
  2319. protolen += hdrlen;
  2320. /* consistency checks: */
  2321. if (datalen > ETH_ZLEN) {
  2322. if (datalen >= protolen) {
  2323. /* more data on wire than in 802 header, trim of
  2324. * additional data.
  2325. */
  2326. netdev_dbg(dev, "%s: accepting %d bytes\n",
  2327. __func__, protolen);
  2328. return protolen;
  2329. } else {
  2330. /* less data on wire than mentioned in header.
  2331. * Discard the packet.
  2332. */
  2333. netdev_dbg(dev, "%s: discarding long packet\n",
  2334. __func__);
  2335. return -1;
  2336. }
  2337. } else {
  2338. /* short packet. Accept only if 802 values are also short */
  2339. if (protolen > ETH_ZLEN) {
  2340. netdev_dbg(dev, "%s: discarding short packet\n",
  2341. __func__);
  2342. return -1;
  2343. }
  2344. netdev_dbg(dev, "%s: accepting %d bytes\n", __func__, datalen);
  2345. return datalen;
  2346. }
  2347. }
  2348. static int nv_rx_process(struct net_device *dev, int limit)
  2349. {
  2350. struct fe_priv *np = netdev_priv(dev);
  2351. u32 flags;
  2352. int rx_work = 0;
  2353. struct sk_buff *skb;
  2354. int len;
  2355. while ((np->get_rx.orig != np->put_rx.orig) &&
  2356. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2357. (rx_work < limit)) {
  2358. netdev_dbg(dev, "%s: flags 0x%x\n", __func__, flags);
  2359. /*
  2360. * the packet is for us - immediately tear down the pci mapping.
  2361. * TODO: check if a prefetch of the first cacheline improves
  2362. * the performance.
  2363. */
  2364. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2365. np->get_rx_ctx->dma_len,
  2366. PCI_DMA_FROMDEVICE);
  2367. skb = np->get_rx_ctx->skb;
  2368. np->get_rx_ctx->skb = NULL;
  2369. netdev_dbg(dev, "Dumping packet (flags 0x%x)\n", flags);
  2370. #ifdef DEBUG
  2371. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
  2372. 16, 1, skb->data, 64, true);
  2373. #endif
  2374. /* look at what we actually got: */
  2375. if (np->desc_ver == DESC_VER_1) {
  2376. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2377. len = flags & LEN_MASK_V1;
  2378. if (unlikely(flags & NV_RX_ERROR)) {
  2379. if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
  2380. len = nv_getlen(dev, skb->data, len);
  2381. if (len < 0) {
  2382. dev->stats.rx_errors++;
  2383. dev_kfree_skb(skb);
  2384. goto next_pkt;
  2385. }
  2386. }
  2387. /* framing errors are soft errors */
  2388. else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
  2389. if (flags & NV_RX_SUBSTRACT1)
  2390. len--;
  2391. }
  2392. /* the rest are hard errors */
  2393. else {
  2394. if (flags & NV_RX_MISSEDFRAME)
  2395. dev->stats.rx_missed_errors++;
  2396. if (flags & NV_RX_CRCERR)
  2397. dev->stats.rx_crc_errors++;
  2398. if (flags & NV_RX_OVERFLOW)
  2399. dev->stats.rx_over_errors++;
  2400. dev->stats.rx_errors++;
  2401. dev_kfree_skb(skb);
  2402. goto next_pkt;
  2403. }
  2404. }
  2405. } else {
  2406. dev_kfree_skb(skb);
  2407. goto next_pkt;
  2408. }
  2409. } else {
  2410. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2411. len = flags & LEN_MASK_V2;
  2412. if (unlikely(flags & NV_RX2_ERROR)) {
  2413. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2414. len = nv_getlen(dev, skb->data, len);
  2415. if (len < 0) {
  2416. dev->stats.rx_errors++;
  2417. dev_kfree_skb(skb);
  2418. goto next_pkt;
  2419. }
  2420. }
  2421. /* framing errors are soft errors */
  2422. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2423. if (flags & NV_RX2_SUBSTRACT1)
  2424. len--;
  2425. }
  2426. /* the rest are hard errors */
  2427. else {
  2428. if (flags & NV_RX2_CRCERR)
  2429. dev->stats.rx_crc_errors++;
  2430. if (flags & NV_RX2_OVERFLOW)
  2431. dev->stats.rx_over_errors++;
  2432. dev->stats.rx_errors++;
  2433. dev_kfree_skb(skb);
  2434. goto next_pkt;
  2435. }
  2436. }
  2437. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2438. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2439. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2440. } else {
  2441. dev_kfree_skb(skb);
  2442. goto next_pkt;
  2443. }
  2444. }
  2445. /* got a valid packet - forward it to the network core */
  2446. skb_put(skb, len);
  2447. skb->protocol = eth_type_trans(skb, dev);
  2448. netdev_dbg(dev, "%s: %d bytes, proto %d accepted\n",
  2449. __func__, len, skb->protocol);
  2450. napi_gro_receive(&np->napi, skb);
  2451. dev->stats.rx_packets++;
  2452. dev->stats.rx_bytes += len;
  2453. next_pkt:
  2454. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2455. np->get_rx.orig = np->first_rx.orig;
  2456. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2457. np->get_rx_ctx = np->first_rx_ctx;
  2458. rx_work++;
  2459. }
  2460. return rx_work;
  2461. }
  2462. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2463. {
  2464. struct fe_priv *np = netdev_priv(dev);
  2465. u32 flags;
  2466. u32 vlanflags = 0;
  2467. int rx_work = 0;
  2468. struct sk_buff *skb;
  2469. int len;
  2470. while ((np->get_rx.ex != np->put_rx.ex) &&
  2471. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2472. (rx_work < limit)) {
  2473. netdev_dbg(dev, "%s: flags 0x%x\n", __func__, flags);
  2474. /*
  2475. * the packet is for us - immediately tear down the pci mapping.
  2476. * TODO: check if a prefetch of the first cacheline improves
  2477. * the performance.
  2478. */
  2479. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2480. np->get_rx_ctx->dma_len,
  2481. PCI_DMA_FROMDEVICE);
  2482. skb = np->get_rx_ctx->skb;
  2483. np->get_rx_ctx->skb = NULL;
  2484. netdev_dbg(dev, "Dumping packet (flags 0x%x)\n", flags);
  2485. #ifdef DEBUG
  2486. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 16, 1,
  2487. skb->data, 64, true);
  2488. #endif
  2489. /* look at what we actually got: */
  2490. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2491. len = flags & LEN_MASK_V2;
  2492. if (unlikely(flags & NV_RX2_ERROR)) {
  2493. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2494. len = nv_getlen(dev, skb->data, len);
  2495. if (len < 0) {
  2496. dev_kfree_skb(skb);
  2497. goto next_pkt;
  2498. }
  2499. }
  2500. /* framing errors are soft errors */
  2501. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2502. if (flags & NV_RX2_SUBSTRACT1)
  2503. len--;
  2504. }
  2505. /* the rest are hard errors */
  2506. else {
  2507. dev_kfree_skb(skb);
  2508. goto next_pkt;
  2509. }
  2510. }
  2511. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2512. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2513. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2514. /* got a valid packet - forward it to the network core */
  2515. skb_put(skb, len);
  2516. skb->protocol = eth_type_trans(skb, dev);
  2517. prefetch(skb->data);
  2518. netdev_dbg(dev, "%s: %d bytes, proto %d accepted\n",
  2519. __func__, len, skb->protocol);
  2520. if (likely(!np->vlangrp)) {
  2521. napi_gro_receive(&np->napi, skb);
  2522. } else {
  2523. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2524. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2525. vlan_gro_receive(&np->napi, np->vlangrp,
  2526. vlanflags & NV_RX3_VLAN_TAG_MASK, skb);
  2527. } else {
  2528. napi_gro_receive(&np->napi, skb);
  2529. }
  2530. }
  2531. dev->stats.rx_packets++;
  2532. dev->stats.rx_bytes += len;
  2533. } else {
  2534. dev_kfree_skb(skb);
  2535. }
  2536. next_pkt:
  2537. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2538. np->get_rx.ex = np->first_rx.ex;
  2539. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2540. np->get_rx_ctx = np->first_rx_ctx;
  2541. rx_work++;
  2542. }
  2543. return rx_work;
  2544. }
  2545. static void set_bufsize(struct net_device *dev)
  2546. {
  2547. struct fe_priv *np = netdev_priv(dev);
  2548. if (dev->mtu <= ETH_DATA_LEN)
  2549. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2550. else
  2551. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2552. }
  2553. /*
  2554. * nv_change_mtu: dev->change_mtu function
  2555. * Called with dev_base_lock held for read.
  2556. */
  2557. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2558. {
  2559. struct fe_priv *np = netdev_priv(dev);
  2560. int old_mtu;
  2561. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2562. return -EINVAL;
  2563. old_mtu = dev->mtu;
  2564. dev->mtu = new_mtu;
  2565. /* return early if the buffer sizes will not change */
  2566. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2567. return 0;
  2568. if (old_mtu == new_mtu)
  2569. return 0;
  2570. /* synchronized against open : rtnl_lock() held by caller */
  2571. if (netif_running(dev)) {
  2572. u8 __iomem *base = get_hwbase(dev);
  2573. /*
  2574. * It seems that the nic preloads valid ring entries into an
  2575. * internal buffer. The procedure for flushing everything is
  2576. * guessed, there is probably a simpler approach.
  2577. * Changing the MTU is a rare event, it shouldn't matter.
  2578. */
  2579. nv_disable_irq(dev);
  2580. nv_napi_disable(dev);
  2581. netif_tx_lock_bh(dev);
  2582. netif_addr_lock(dev);
  2583. spin_lock(&np->lock);
  2584. /* stop engines */
  2585. nv_stop_rxtx(dev);
  2586. nv_txrx_reset(dev);
  2587. /* drain rx queue */
  2588. nv_drain_rxtx(dev);
  2589. /* reinit driver view of the rx queue */
  2590. set_bufsize(dev);
  2591. if (nv_init_ring(dev)) {
  2592. if (!np->in_shutdown)
  2593. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2594. }
  2595. /* reinit nic view of the rx queue */
  2596. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2597. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2598. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2599. base + NvRegRingSizes);
  2600. pci_push(base);
  2601. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2602. pci_push(base);
  2603. /* restart rx engine */
  2604. nv_start_rxtx(dev);
  2605. spin_unlock(&np->lock);
  2606. netif_addr_unlock(dev);
  2607. netif_tx_unlock_bh(dev);
  2608. nv_napi_enable(dev);
  2609. nv_enable_irq(dev);
  2610. }
  2611. return 0;
  2612. }
  2613. static void nv_copy_mac_to_hw(struct net_device *dev)
  2614. {
  2615. u8 __iomem *base = get_hwbase(dev);
  2616. u32 mac[2];
  2617. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2618. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2619. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2620. writel(mac[0], base + NvRegMacAddrA);
  2621. writel(mac[1], base + NvRegMacAddrB);
  2622. }
  2623. /*
  2624. * nv_set_mac_address: dev->set_mac_address function
  2625. * Called with rtnl_lock() held.
  2626. */
  2627. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2628. {
  2629. struct fe_priv *np = netdev_priv(dev);
  2630. struct sockaddr *macaddr = (struct sockaddr *)addr;
  2631. if (!is_valid_ether_addr(macaddr->sa_data))
  2632. return -EADDRNOTAVAIL;
  2633. /* synchronized against open : rtnl_lock() held by caller */
  2634. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2635. if (netif_running(dev)) {
  2636. netif_tx_lock_bh(dev);
  2637. netif_addr_lock(dev);
  2638. spin_lock_irq(&np->lock);
  2639. /* stop rx engine */
  2640. nv_stop_rx(dev);
  2641. /* set mac address */
  2642. nv_copy_mac_to_hw(dev);
  2643. /* restart rx engine */
  2644. nv_start_rx(dev);
  2645. spin_unlock_irq(&np->lock);
  2646. netif_addr_unlock(dev);
  2647. netif_tx_unlock_bh(dev);
  2648. } else {
  2649. nv_copy_mac_to_hw(dev);
  2650. }
  2651. return 0;
  2652. }
  2653. /*
  2654. * nv_set_multicast: dev->set_multicast function
  2655. * Called with netif_tx_lock held.
  2656. */
  2657. static void nv_set_multicast(struct net_device *dev)
  2658. {
  2659. struct fe_priv *np = netdev_priv(dev);
  2660. u8 __iomem *base = get_hwbase(dev);
  2661. u32 addr[2];
  2662. u32 mask[2];
  2663. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2664. memset(addr, 0, sizeof(addr));
  2665. memset(mask, 0, sizeof(mask));
  2666. if (dev->flags & IFF_PROMISC) {
  2667. pff |= NVREG_PFF_PROMISC;
  2668. } else {
  2669. pff |= NVREG_PFF_MYADDR;
  2670. if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
  2671. u32 alwaysOff[2];
  2672. u32 alwaysOn[2];
  2673. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2674. if (dev->flags & IFF_ALLMULTI) {
  2675. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2676. } else {
  2677. struct netdev_hw_addr *ha;
  2678. netdev_for_each_mc_addr(ha, dev) {
  2679. unsigned char *addr = ha->addr;
  2680. u32 a, b;
  2681. a = le32_to_cpu(*(__le32 *) addr);
  2682. b = le16_to_cpu(*(__le16 *) (&addr[4]));
  2683. alwaysOn[0] &= a;
  2684. alwaysOff[0] &= ~a;
  2685. alwaysOn[1] &= b;
  2686. alwaysOff[1] &= ~b;
  2687. }
  2688. }
  2689. addr[0] = alwaysOn[0];
  2690. addr[1] = alwaysOn[1];
  2691. mask[0] = alwaysOn[0] | alwaysOff[0];
  2692. mask[1] = alwaysOn[1] | alwaysOff[1];
  2693. } else {
  2694. mask[0] = NVREG_MCASTMASKA_NONE;
  2695. mask[1] = NVREG_MCASTMASKB_NONE;
  2696. }
  2697. }
  2698. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2699. pff |= NVREG_PFF_ALWAYS;
  2700. spin_lock_irq(&np->lock);
  2701. nv_stop_rx(dev);
  2702. writel(addr[0], base + NvRegMulticastAddrA);
  2703. writel(addr[1], base + NvRegMulticastAddrB);
  2704. writel(mask[0], base + NvRegMulticastMaskA);
  2705. writel(mask[1], base + NvRegMulticastMaskB);
  2706. writel(pff, base + NvRegPacketFilterFlags);
  2707. netdev_dbg(dev, "reconfiguration for multicast lists\n");
  2708. nv_start_rx(dev);
  2709. spin_unlock_irq(&np->lock);
  2710. }
  2711. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2712. {
  2713. struct fe_priv *np = netdev_priv(dev);
  2714. u8 __iomem *base = get_hwbase(dev);
  2715. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2716. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2717. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2718. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2719. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2720. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2721. } else {
  2722. writel(pff, base + NvRegPacketFilterFlags);
  2723. }
  2724. }
  2725. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2726. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2727. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2728. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2729. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2730. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2731. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
  2732. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2733. /* limit the number of tx pause frames to a default of 8 */
  2734. writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
  2735. }
  2736. writel(pause_enable, base + NvRegTxPauseFrame);
  2737. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2738. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2739. } else {
  2740. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2741. writel(regmisc, base + NvRegMisc1);
  2742. }
  2743. }
  2744. }
  2745. /**
  2746. * nv_update_linkspeed: Setup the MAC according to the link partner
  2747. * @dev: Network device to be configured
  2748. *
  2749. * The function queries the PHY and checks if there is a link partner.
  2750. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2751. * set to 10 MBit HD.
  2752. *
  2753. * The function returns 0 if there is no link partner and 1 if there is
  2754. * a good link partner.
  2755. */
  2756. static int nv_update_linkspeed(struct net_device *dev)
  2757. {
  2758. struct fe_priv *np = netdev_priv(dev);
  2759. u8 __iomem *base = get_hwbase(dev);
  2760. int adv = 0;
  2761. int lpa = 0;
  2762. int adv_lpa, adv_pause, lpa_pause;
  2763. int newls = np->linkspeed;
  2764. int newdup = np->duplex;
  2765. int mii_status;
  2766. int retval = 0;
  2767. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2768. u32 txrxFlags = 0;
  2769. u32 phy_exp;
  2770. /* BMSR_LSTATUS is latched, read it twice:
  2771. * we want the current value.
  2772. */
  2773. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2774. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2775. if (!(mii_status & BMSR_LSTATUS)) {
  2776. netdev_dbg(dev,
  2777. "no link detected by phy - falling back to 10HD\n");
  2778. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2779. newdup = 0;
  2780. retval = 0;
  2781. goto set_speed;
  2782. }
  2783. if (np->autoneg == 0) {
  2784. netdev_dbg(dev, "%s: autoneg off, PHY set to 0x%04x\n",
  2785. __func__, np->fixed_mode);
  2786. if (np->fixed_mode & LPA_100FULL) {
  2787. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2788. newdup = 1;
  2789. } else if (np->fixed_mode & LPA_100HALF) {
  2790. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2791. newdup = 0;
  2792. } else if (np->fixed_mode & LPA_10FULL) {
  2793. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2794. newdup = 1;
  2795. } else {
  2796. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2797. newdup = 0;
  2798. }
  2799. retval = 1;
  2800. goto set_speed;
  2801. }
  2802. /* check auto negotiation is complete */
  2803. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2804. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2805. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2806. newdup = 0;
  2807. retval = 0;
  2808. netdev_dbg(dev,
  2809. "autoneg not completed - falling back to 10HD\n");
  2810. goto set_speed;
  2811. }
  2812. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2813. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2814. netdev_dbg(dev, "%s: PHY advertises 0x%04x, lpa 0x%04x\n",
  2815. __func__, adv, lpa);
  2816. retval = 1;
  2817. if (np->gigabit == PHY_GIGABIT) {
  2818. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2819. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2820. if ((control_1000 & ADVERTISE_1000FULL) &&
  2821. (status_1000 & LPA_1000FULL)) {
  2822. netdev_dbg(dev, "%s: GBit ethernet detected\n",
  2823. __func__);
  2824. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2825. newdup = 1;
  2826. goto set_speed;
  2827. }
  2828. }
  2829. /* FIXME: handle parallel detection properly */
  2830. adv_lpa = lpa & adv;
  2831. if (adv_lpa & LPA_100FULL) {
  2832. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2833. newdup = 1;
  2834. } else if (adv_lpa & LPA_100HALF) {
  2835. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2836. newdup = 0;
  2837. } else if (adv_lpa & LPA_10FULL) {
  2838. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2839. newdup = 1;
  2840. } else if (adv_lpa & LPA_10HALF) {
  2841. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2842. newdup = 0;
  2843. } else {
  2844. netdev_dbg(dev, "bad ability %04x - falling back to 10HD\n",
  2845. adv_lpa);
  2846. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2847. newdup = 0;
  2848. }
  2849. set_speed:
  2850. if (np->duplex == newdup && np->linkspeed == newls)
  2851. return retval;
  2852. netdev_dbg(dev, "changing link setting from %d/%d to %d/%d\n",
  2853. np->linkspeed, np->duplex, newls, newdup);
  2854. np->duplex = newdup;
  2855. np->linkspeed = newls;
  2856. /* The transmitter and receiver must be restarted for safe update */
  2857. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  2858. txrxFlags |= NV_RESTART_TX;
  2859. nv_stop_tx(dev);
  2860. }
  2861. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  2862. txrxFlags |= NV_RESTART_RX;
  2863. nv_stop_rx(dev);
  2864. }
  2865. if (np->gigabit == PHY_GIGABIT) {
  2866. phyreg = readl(base + NvRegSlotTime);
  2867. phyreg &= ~(0x3FF00);
  2868. if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
  2869. ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
  2870. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2871. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2872. phyreg |= NVREG_SLOTTIME_1000_FULL;
  2873. writel(phyreg, base + NvRegSlotTime);
  2874. }
  2875. phyreg = readl(base + NvRegPhyInterface);
  2876. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2877. if (np->duplex == 0)
  2878. phyreg |= PHY_HALF;
  2879. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2880. phyreg |= PHY_100;
  2881. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2882. phyreg |= PHY_1000;
  2883. writel(phyreg, base + NvRegPhyInterface);
  2884. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  2885. if (phyreg & PHY_RGMII) {
  2886. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  2887. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2888. } else {
  2889. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  2890. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  2891. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  2892. else
  2893. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  2894. } else {
  2895. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2896. }
  2897. }
  2898. } else {
  2899. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  2900. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  2901. else
  2902. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2903. }
  2904. writel(txreg, base + NvRegTxDeferral);
  2905. if (np->desc_ver == DESC_VER_1) {
  2906. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2907. } else {
  2908. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2909. txreg = NVREG_TX_WM_DESC2_3_1000;
  2910. else
  2911. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2912. }
  2913. writel(txreg, base + NvRegTxWatermark);
  2914. writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD),
  2915. base + NvRegMisc1);
  2916. pci_push(base);
  2917. writel(np->linkspeed, base + NvRegLinkSpeed);
  2918. pci_push(base);
  2919. pause_flags = 0;
  2920. /* setup pause frame */
  2921. if (np->duplex != 0) {
  2922. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2923. adv_pause = adv & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  2924. lpa_pause = lpa & (LPA_PAUSE_CAP | LPA_PAUSE_ASYM);
  2925. switch (adv_pause) {
  2926. case ADVERTISE_PAUSE_CAP:
  2927. if (lpa_pause & LPA_PAUSE_CAP) {
  2928. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2929. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2930. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2931. }
  2932. break;
  2933. case ADVERTISE_PAUSE_ASYM:
  2934. if (lpa_pause == (LPA_PAUSE_CAP | LPA_PAUSE_ASYM))
  2935. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2936. break;
  2937. case ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM:
  2938. if (lpa_pause & LPA_PAUSE_CAP) {
  2939. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2940. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2941. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2942. }
  2943. if (lpa_pause == LPA_PAUSE_ASYM)
  2944. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2945. break;
  2946. }
  2947. } else {
  2948. pause_flags = np->pause_flags;
  2949. }
  2950. }
  2951. nv_update_pause(dev, pause_flags);
  2952. if (txrxFlags & NV_RESTART_TX)
  2953. nv_start_tx(dev);
  2954. if (txrxFlags & NV_RESTART_RX)
  2955. nv_start_rx(dev);
  2956. return retval;
  2957. }
  2958. static void nv_linkchange(struct net_device *dev)
  2959. {
  2960. if (nv_update_linkspeed(dev)) {
  2961. if (!netif_carrier_ok(dev)) {
  2962. netif_carrier_on(dev);
  2963. printk(KERN_INFO "%s: link up.\n", dev->name);
  2964. nv_txrx_gate(dev, false);
  2965. nv_start_rx(dev);
  2966. }
  2967. } else {
  2968. if (netif_carrier_ok(dev)) {
  2969. netif_carrier_off(dev);
  2970. printk(KERN_INFO "%s: link down.\n", dev->name);
  2971. nv_txrx_gate(dev, true);
  2972. nv_stop_rx(dev);
  2973. }
  2974. }
  2975. }
  2976. static void nv_link_irq(struct net_device *dev)
  2977. {
  2978. u8 __iomem *base = get_hwbase(dev);
  2979. u32 miistat;
  2980. miistat = readl(base + NvRegMIIStatus);
  2981. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  2982. netdev_dbg(dev, "link change irq, status 0x%x\n", miistat);
  2983. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  2984. nv_linkchange(dev);
  2985. netdev_dbg(dev, "link change notification done\n");
  2986. }
  2987. static void nv_msi_workaround(struct fe_priv *np)
  2988. {
  2989. /* Need to toggle the msi irq mask within the ethernet device,
  2990. * otherwise, future interrupts will not be detected.
  2991. */
  2992. if (np->msi_flags & NV_MSI_ENABLED) {
  2993. u8 __iomem *base = np->base;
  2994. writel(0, base + NvRegMSIIrqMask);
  2995. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  2996. }
  2997. }
  2998. static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
  2999. {
  3000. struct fe_priv *np = netdev_priv(dev);
  3001. if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
  3002. if (total_work > NV_DYNAMIC_THRESHOLD) {
  3003. /* transition to poll based interrupts */
  3004. np->quiet_count = 0;
  3005. if (np->irqmask != NVREG_IRQMASK_CPU) {
  3006. np->irqmask = NVREG_IRQMASK_CPU;
  3007. return 1;
  3008. }
  3009. } else {
  3010. if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
  3011. np->quiet_count++;
  3012. } else {
  3013. /* reached a period of low activity, switch
  3014. to per tx/rx packet interrupts */
  3015. if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
  3016. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  3017. return 1;
  3018. }
  3019. }
  3020. }
  3021. }
  3022. return 0;
  3023. }
  3024. static irqreturn_t nv_nic_irq(int foo, void *data)
  3025. {
  3026. struct net_device *dev = (struct net_device *) data;
  3027. struct fe_priv *np = netdev_priv(dev);
  3028. u8 __iomem *base = get_hwbase(dev);
  3029. netdev_dbg(dev, "%s\n", __func__);
  3030. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3031. np->events = readl(base + NvRegIrqStatus);
  3032. writel(np->events, base + NvRegIrqStatus);
  3033. } else {
  3034. np->events = readl(base + NvRegMSIXIrqStatus);
  3035. writel(np->events, base + NvRegMSIXIrqStatus);
  3036. }
  3037. netdev_dbg(dev, "irq: %08x\n", np->events);
  3038. if (!(np->events & np->irqmask))
  3039. return IRQ_NONE;
  3040. nv_msi_workaround(np);
  3041. if (napi_schedule_prep(&np->napi)) {
  3042. /*
  3043. * Disable further irq's (msix not enabled with napi)
  3044. */
  3045. writel(0, base + NvRegIrqMask);
  3046. __napi_schedule(&np->napi);
  3047. }
  3048. netdev_dbg(dev, "%s: completed\n", __func__);
  3049. return IRQ_HANDLED;
  3050. }
  3051. /**
  3052. * All _optimized functions are used to help increase performance
  3053. * (reduce CPU and increase throughput). They use descripter version 3,
  3054. * compiler directives, and reduce memory accesses.
  3055. */
  3056. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  3057. {
  3058. struct net_device *dev = (struct net_device *) data;
  3059. struct fe_priv *np = netdev_priv(dev);
  3060. u8 __iomem *base = get_hwbase(dev);
  3061. netdev_dbg(dev, "%s\n", __func__);
  3062. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3063. np->events = readl(base + NvRegIrqStatus);
  3064. writel(np->events, base + NvRegIrqStatus);
  3065. } else {
  3066. np->events = readl(base + NvRegMSIXIrqStatus);
  3067. writel(np->events, base + NvRegMSIXIrqStatus);
  3068. }
  3069. netdev_dbg(dev, "irq: %08x\n", np->events);
  3070. if (!(np->events & np->irqmask))
  3071. return IRQ_NONE;
  3072. nv_msi_workaround(np);
  3073. if (napi_schedule_prep(&np->napi)) {
  3074. /*
  3075. * Disable further irq's (msix not enabled with napi)
  3076. */
  3077. writel(0, base + NvRegIrqMask);
  3078. __napi_schedule(&np->napi);
  3079. }
  3080. netdev_dbg(dev, "%s: completed\n", __func__);
  3081. return IRQ_HANDLED;
  3082. }
  3083. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  3084. {
  3085. struct net_device *dev = (struct net_device *) data;
  3086. struct fe_priv *np = netdev_priv(dev);
  3087. u8 __iomem *base = get_hwbase(dev);
  3088. u32 events;
  3089. int i;
  3090. unsigned long flags;
  3091. netdev_dbg(dev, "%s\n", __func__);
  3092. for (i = 0;; i++) {
  3093. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  3094. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  3095. netdev_dbg(dev, "tx irq: %08x\n", events);
  3096. if (!(events & np->irqmask))
  3097. break;
  3098. spin_lock_irqsave(&np->lock, flags);
  3099. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3100. spin_unlock_irqrestore(&np->lock, flags);
  3101. if (unlikely(i > max_interrupt_work)) {
  3102. spin_lock_irqsave(&np->lock, flags);
  3103. /* disable interrupts on the nic */
  3104. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  3105. pci_push(base);
  3106. if (!np->in_shutdown) {
  3107. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  3108. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3109. }
  3110. spin_unlock_irqrestore(&np->lock, flags);
  3111. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  3112. break;
  3113. }
  3114. }
  3115. netdev_dbg(dev, "%s: completed\n", __func__);
  3116. return IRQ_RETVAL(i);
  3117. }
  3118. static int nv_napi_poll(struct napi_struct *napi, int budget)
  3119. {
  3120. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  3121. struct net_device *dev = np->dev;
  3122. u8 __iomem *base = get_hwbase(dev);
  3123. unsigned long flags;
  3124. int retcode;
  3125. int rx_count, tx_work = 0, rx_work = 0;
  3126. do {
  3127. if (!nv_optimized(np)) {
  3128. spin_lock_irqsave(&np->lock, flags);
  3129. tx_work += nv_tx_done(dev, np->tx_ring_size);
  3130. spin_unlock_irqrestore(&np->lock, flags);
  3131. rx_count = nv_rx_process(dev, budget - rx_work);
  3132. retcode = nv_alloc_rx(dev);
  3133. } else {
  3134. spin_lock_irqsave(&np->lock, flags);
  3135. tx_work += nv_tx_done_optimized(dev, np->tx_ring_size);
  3136. spin_unlock_irqrestore(&np->lock, flags);
  3137. rx_count = nv_rx_process_optimized(dev,
  3138. budget - rx_work);
  3139. retcode = nv_alloc_rx_optimized(dev);
  3140. }
  3141. } while (retcode == 0 &&
  3142. rx_count > 0 && (rx_work += rx_count) < budget);
  3143. if (retcode) {
  3144. spin_lock_irqsave(&np->lock, flags);
  3145. if (!np->in_shutdown)
  3146. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3147. spin_unlock_irqrestore(&np->lock, flags);
  3148. }
  3149. nv_change_interrupt_mode(dev, tx_work + rx_work);
  3150. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3151. spin_lock_irqsave(&np->lock, flags);
  3152. nv_link_irq(dev);
  3153. spin_unlock_irqrestore(&np->lock, flags);
  3154. }
  3155. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3156. spin_lock_irqsave(&np->lock, flags);
  3157. nv_linkchange(dev);
  3158. spin_unlock_irqrestore(&np->lock, flags);
  3159. np->link_timeout = jiffies + LINK_TIMEOUT;
  3160. }
  3161. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3162. spin_lock_irqsave(&np->lock, flags);
  3163. if (!np->in_shutdown) {
  3164. np->nic_poll_irq = np->irqmask;
  3165. np->recover_error = 1;
  3166. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3167. }
  3168. spin_unlock_irqrestore(&np->lock, flags);
  3169. napi_complete(napi);
  3170. return rx_work;
  3171. }
  3172. if (rx_work < budget) {
  3173. /* re-enable interrupts
  3174. (msix not enabled in napi) */
  3175. napi_complete(napi);
  3176. writel(np->irqmask, base + NvRegIrqMask);
  3177. }
  3178. return rx_work;
  3179. }
  3180. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3181. {
  3182. struct net_device *dev = (struct net_device *) data;
  3183. struct fe_priv *np = netdev_priv(dev);
  3184. u8 __iomem *base = get_hwbase(dev);
  3185. u32 events;
  3186. int i;
  3187. unsigned long flags;
  3188. netdev_dbg(dev, "%s\n", __func__);
  3189. for (i = 0;; i++) {
  3190. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3191. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3192. netdev_dbg(dev, "rx irq: %08x\n", events);
  3193. if (!(events & np->irqmask))
  3194. break;
  3195. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3196. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3197. spin_lock_irqsave(&np->lock, flags);
  3198. if (!np->in_shutdown)
  3199. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3200. spin_unlock_irqrestore(&np->lock, flags);
  3201. }
  3202. }
  3203. if (unlikely(i > max_interrupt_work)) {
  3204. spin_lock_irqsave(&np->lock, flags);
  3205. /* disable interrupts on the nic */
  3206. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3207. pci_push(base);
  3208. if (!np->in_shutdown) {
  3209. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3210. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3211. }
  3212. spin_unlock_irqrestore(&np->lock, flags);
  3213. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3214. break;
  3215. }
  3216. }
  3217. netdev_dbg(dev, "%s: completed\n", __func__);
  3218. return IRQ_RETVAL(i);
  3219. }
  3220. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3221. {
  3222. struct net_device *dev = (struct net_device *) data;
  3223. struct fe_priv *np = netdev_priv(dev);
  3224. u8 __iomem *base = get_hwbase(dev);
  3225. u32 events;
  3226. int i;
  3227. unsigned long flags;
  3228. netdev_dbg(dev, "%s\n", __func__);
  3229. for (i = 0;; i++) {
  3230. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3231. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3232. netdev_dbg(dev, "irq: %08x\n", events);
  3233. if (!(events & np->irqmask))
  3234. break;
  3235. /* check tx in case we reached max loop limit in tx isr */
  3236. spin_lock_irqsave(&np->lock, flags);
  3237. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3238. spin_unlock_irqrestore(&np->lock, flags);
  3239. if (events & NVREG_IRQ_LINK) {
  3240. spin_lock_irqsave(&np->lock, flags);
  3241. nv_link_irq(dev);
  3242. spin_unlock_irqrestore(&np->lock, flags);
  3243. }
  3244. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3245. spin_lock_irqsave(&np->lock, flags);
  3246. nv_linkchange(dev);
  3247. spin_unlock_irqrestore(&np->lock, flags);
  3248. np->link_timeout = jiffies + LINK_TIMEOUT;
  3249. }
  3250. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3251. spin_lock_irq(&np->lock);
  3252. /* disable interrupts on the nic */
  3253. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3254. pci_push(base);
  3255. if (!np->in_shutdown) {
  3256. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3257. np->recover_error = 1;
  3258. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3259. }
  3260. spin_unlock_irq(&np->lock);
  3261. break;
  3262. }
  3263. if (unlikely(i > max_interrupt_work)) {
  3264. spin_lock_irqsave(&np->lock, flags);
  3265. /* disable interrupts on the nic */
  3266. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3267. pci_push(base);
  3268. if (!np->in_shutdown) {
  3269. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3270. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3271. }
  3272. spin_unlock_irqrestore(&np->lock, flags);
  3273. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3274. break;
  3275. }
  3276. }
  3277. netdev_dbg(dev, "%s: completed\n", __func__);
  3278. return IRQ_RETVAL(i);
  3279. }
  3280. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3281. {
  3282. struct net_device *dev = (struct net_device *) data;
  3283. struct fe_priv *np = netdev_priv(dev);
  3284. u8 __iomem *base = get_hwbase(dev);
  3285. u32 events;
  3286. netdev_dbg(dev, "%s\n", __func__);
  3287. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3288. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3289. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3290. } else {
  3291. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3292. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3293. }
  3294. pci_push(base);
  3295. netdev_dbg(dev, "irq: %08x\n", events);
  3296. if (!(events & NVREG_IRQ_TIMER))
  3297. return IRQ_RETVAL(0);
  3298. nv_msi_workaround(np);
  3299. spin_lock(&np->lock);
  3300. np->intr_test = 1;
  3301. spin_unlock(&np->lock);
  3302. netdev_dbg(dev, "%s: completed\n", __func__);
  3303. return IRQ_RETVAL(1);
  3304. }
  3305. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3306. {
  3307. u8 __iomem *base = get_hwbase(dev);
  3308. int i;
  3309. u32 msixmap = 0;
  3310. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3311. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3312. * the remaining 8 interrupts.
  3313. */
  3314. for (i = 0; i < 8; i++) {
  3315. if ((irqmask >> i) & 0x1)
  3316. msixmap |= vector << (i << 2);
  3317. }
  3318. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3319. msixmap = 0;
  3320. for (i = 0; i < 8; i++) {
  3321. if ((irqmask >> (i + 8)) & 0x1)
  3322. msixmap |= vector << (i << 2);
  3323. }
  3324. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3325. }
  3326. static int nv_request_irq(struct net_device *dev, int intr_test)
  3327. {
  3328. struct fe_priv *np = get_nvpriv(dev);
  3329. u8 __iomem *base = get_hwbase(dev);
  3330. int ret = 1;
  3331. int i;
  3332. irqreturn_t (*handler)(int foo, void *data);
  3333. if (intr_test) {
  3334. handler = nv_nic_irq_test;
  3335. } else {
  3336. if (nv_optimized(np))
  3337. handler = nv_nic_irq_optimized;
  3338. else
  3339. handler = nv_nic_irq;
  3340. }
  3341. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3342. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++)
  3343. np->msi_x_entry[i].entry = i;
  3344. ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK));
  3345. if (ret == 0) {
  3346. np->msi_flags |= NV_MSI_X_ENABLED;
  3347. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3348. /* Request irq for rx handling */
  3349. sprintf(np->name_rx, "%s-rx", dev->name);
  3350. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
  3351. nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
  3352. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3353. pci_disable_msix(np->pci_dev);
  3354. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3355. goto out_err;
  3356. }
  3357. /* Request irq for tx handling */
  3358. sprintf(np->name_tx, "%s-tx", dev->name);
  3359. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
  3360. nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
  3361. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3362. pci_disable_msix(np->pci_dev);
  3363. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3364. goto out_free_rx;
  3365. }
  3366. /* Request irq for link and timer handling */
  3367. sprintf(np->name_other, "%s-other", dev->name);
  3368. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
  3369. nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
  3370. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3371. pci_disable_msix(np->pci_dev);
  3372. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3373. goto out_free_tx;
  3374. }
  3375. /* map interrupts to their respective vector */
  3376. writel(0, base + NvRegMSIXMap0);
  3377. writel(0, base + NvRegMSIXMap1);
  3378. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3379. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3380. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3381. } else {
  3382. /* Request irq for all interrupts */
  3383. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3384. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3385. pci_disable_msix(np->pci_dev);
  3386. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3387. goto out_err;
  3388. }
  3389. /* map interrupts to vector 0 */
  3390. writel(0, base + NvRegMSIXMap0);
  3391. writel(0, base + NvRegMSIXMap1);
  3392. }
  3393. }
  3394. }
  3395. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3396. ret = pci_enable_msi(np->pci_dev);
  3397. if (ret == 0) {
  3398. np->msi_flags |= NV_MSI_ENABLED;
  3399. dev->irq = np->pci_dev->irq;
  3400. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3401. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3402. pci_disable_msi(np->pci_dev);
  3403. np->msi_flags &= ~NV_MSI_ENABLED;
  3404. dev->irq = np->pci_dev->irq;
  3405. goto out_err;
  3406. }
  3407. /* map interrupts to vector 0 */
  3408. writel(0, base + NvRegMSIMap0);
  3409. writel(0, base + NvRegMSIMap1);
  3410. /* enable msi vector 0 */
  3411. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3412. }
  3413. }
  3414. if (ret != 0) {
  3415. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3416. goto out_err;
  3417. }
  3418. return 0;
  3419. out_free_tx:
  3420. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3421. out_free_rx:
  3422. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3423. out_err:
  3424. return 1;
  3425. }
  3426. static void nv_free_irq(struct net_device *dev)
  3427. {
  3428. struct fe_priv *np = get_nvpriv(dev);
  3429. int i;
  3430. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3431. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++)
  3432. free_irq(np->msi_x_entry[i].vector, dev);
  3433. pci_disable_msix(np->pci_dev);
  3434. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3435. } else {
  3436. free_irq(np->pci_dev->irq, dev);
  3437. if (np->msi_flags & NV_MSI_ENABLED) {
  3438. pci_disable_msi(np->pci_dev);
  3439. np->msi_flags &= ~NV_MSI_ENABLED;
  3440. }
  3441. }
  3442. }
  3443. static void nv_do_nic_poll(unsigned long data)
  3444. {
  3445. struct net_device *dev = (struct net_device *) data;
  3446. struct fe_priv *np = netdev_priv(dev);
  3447. u8 __iomem *base = get_hwbase(dev);
  3448. u32 mask = 0;
  3449. /*
  3450. * First disable irq(s) and then
  3451. * reenable interrupts on the nic, we have to do this before calling
  3452. * nv_nic_irq because that may decide to do otherwise
  3453. */
  3454. if (!using_multi_irqs(dev)) {
  3455. if (np->msi_flags & NV_MSI_X_ENABLED)
  3456. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3457. else
  3458. disable_irq_lockdep(np->pci_dev->irq);
  3459. mask = np->irqmask;
  3460. } else {
  3461. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3462. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3463. mask |= NVREG_IRQ_RX_ALL;
  3464. }
  3465. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3466. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3467. mask |= NVREG_IRQ_TX_ALL;
  3468. }
  3469. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3470. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3471. mask |= NVREG_IRQ_OTHER;
  3472. }
  3473. }
  3474. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3475. if (np->recover_error) {
  3476. np->recover_error = 0;
  3477. printk(KERN_INFO "%s: MAC in recoverable error state\n", dev->name);
  3478. if (netif_running(dev)) {
  3479. netif_tx_lock_bh(dev);
  3480. netif_addr_lock(dev);
  3481. spin_lock(&np->lock);
  3482. /* stop engines */
  3483. nv_stop_rxtx(dev);
  3484. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3485. nv_mac_reset(dev);
  3486. nv_txrx_reset(dev);
  3487. /* drain rx queue */
  3488. nv_drain_rxtx(dev);
  3489. /* reinit driver view of the rx queue */
  3490. set_bufsize(dev);
  3491. if (nv_init_ring(dev)) {
  3492. if (!np->in_shutdown)
  3493. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3494. }
  3495. /* reinit nic view of the rx queue */
  3496. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3497. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3498. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3499. base + NvRegRingSizes);
  3500. pci_push(base);
  3501. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3502. pci_push(base);
  3503. /* clear interrupts */
  3504. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3505. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3506. else
  3507. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3508. /* restart rx engine */
  3509. nv_start_rxtx(dev);
  3510. spin_unlock(&np->lock);
  3511. netif_addr_unlock(dev);
  3512. netif_tx_unlock_bh(dev);
  3513. }
  3514. }
  3515. writel(mask, base + NvRegIrqMask);
  3516. pci_push(base);
  3517. if (!using_multi_irqs(dev)) {
  3518. np->nic_poll_irq = 0;
  3519. if (nv_optimized(np))
  3520. nv_nic_irq_optimized(0, dev);
  3521. else
  3522. nv_nic_irq(0, dev);
  3523. if (np->msi_flags & NV_MSI_X_ENABLED)
  3524. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3525. else
  3526. enable_irq_lockdep(np->pci_dev->irq);
  3527. } else {
  3528. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3529. np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
  3530. nv_nic_irq_rx(0, dev);
  3531. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3532. }
  3533. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3534. np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
  3535. nv_nic_irq_tx(0, dev);
  3536. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3537. }
  3538. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3539. np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
  3540. nv_nic_irq_other(0, dev);
  3541. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3542. }
  3543. }
  3544. }
  3545. #ifdef CONFIG_NET_POLL_CONTROLLER
  3546. static void nv_poll_controller(struct net_device *dev)
  3547. {
  3548. nv_do_nic_poll((unsigned long) dev);
  3549. }
  3550. #endif
  3551. static void nv_do_stats_poll(unsigned long data)
  3552. {
  3553. struct net_device *dev = (struct net_device *) data;
  3554. struct fe_priv *np = netdev_priv(dev);
  3555. nv_get_hw_stats(dev);
  3556. if (!np->in_shutdown)
  3557. mod_timer(&np->stats_poll,
  3558. round_jiffies(jiffies + STATS_INTERVAL));
  3559. }
  3560. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3561. {
  3562. struct fe_priv *np = netdev_priv(dev);
  3563. strcpy(info->driver, DRV_NAME);
  3564. strcpy(info->version, FORCEDETH_VERSION);
  3565. strcpy(info->bus_info, pci_name(np->pci_dev));
  3566. }
  3567. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3568. {
  3569. struct fe_priv *np = netdev_priv(dev);
  3570. wolinfo->supported = WAKE_MAGIC;
  3571. spin_lock_irq(&np->lock);
  3572. if (np->wolenabled)
  3573. wolinfo->wolopts = WAKE_MAGIC;
  3574. spin_unlock_irq(&np->lock);
  3575. }
  3576. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3577. {
  3578. struct fe_priv *np = netdev_priv(dev);
  3579. u8 __iomem *base = get_hwbase(dev);
  3580. u32 flags = 0;
  3581. if (wolinfo->wolopts == 0) {
  3582. np->wolenabled = 0;
  3583. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3584. np->wolenabled = 1;
  3585. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3586. }
  3587. if (netif_running(dev)) {
  3588. spin_lock_irq(&np->lock);
  3589. writel(flags, base + NvRegWakeUpFlags);
  3590. spin_unlock_irq(&np->lock);
  3591. }
  3592. return 0;
  3593. }
  3594. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3595. {
  3596. struct fe_priv *np = netdev_priv(dev);
  3597. int adv;
  3598. spin_lock_irq(&np->lock);
  3599. ecmd->port = PORT_MII;
  3600. if (!netif_running(dev)) {
  3601. /* We do not track link speed / duplex setting if the
  3602. * interface is disabled. Force a link check */
  3603. if (nv_update_linkspeed(dev)) {
  3604. if (!netif_carrier_ok(dev))
  3605. netif_carrier_on(dev);
  3606. } else {
  3607. if (netif_carrier_ok(dev))
  3608. netif_carrier_off(dev);
  3609. }
  3610. }
  3611. if (netif_carrier_ok(dev)) {
  3612. switch (np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3613. case NVREG_LINKSPEED_10:
  3614. ecmd->speed = SPEED_10;
  3615. break;
  3616. case NVREG_LINKSPEED_100:
  3617. ecmd->speed = SPEED_100;
  3618. break;
  3619. case NVREG_LINKSPEED_1000:
  3620. ecmd->speed = SPEED_1000;
  3621. break;
  3622. }
  3623. ecmd->duplex = DUPLEX_HALF;
  3624. if (np->duplex)
  3625. ecmd->duplex = DUPLEX_FULL;
  3626. } else {
  3627. ecmd->speed = -1;
  3628. ecmd->duplex = -1;
  3629. }
  3630. ecmd->autoneg = np->autoneg;
  3631. ecmd->advertising = ADVERTISED_MII;
  3632. if (np->autoneg) {
  3633. ecmd->advertising |= ADVERTISED_Autoneg;
  3634. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3635. if (adv & ADVERTISE_10HALF)
  3636. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3637. if (adv & ADVERTISE_10FULL)
  3638. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3639. if (adv & ADVERTISE_100HALF)
  3640. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3641. if (adv & ADVERTISE_100FULL)
  3642. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3643. if (np->gigabit == PHY_GIGABIT) {
  3644. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3645. if (adv & ADVERTISE_1000FULL)
  3646. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3647. }
  3648. }
  3649. ecmd->supported = (SUPPORTED_Autoneg |
  3650. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3651. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3652. SUPPORTED_MII);
  3653. if (np->gigabit == PHY_GIGABIT)
  3654. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3655. ecmd->phy_address = np->phyaddr;
  3656. ecmd->transceiver = XCVR_EXTERNAL;
  3657. /* ignore maxtxpkt, maxrxpkt for now */
  3658. spin_unlock_irq(&np->lock);
  3659. return 0;
  3660. }
  3661. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3662. {
  3663. struct fe_priv *np = netdev_priv(dev);
  3664. if (ecmd->port != PORT_MII)
  3665. return -EINVAL;
  3666. if (ecmd->transceiver != XCVR_EXTERNAL)
  3667. return -EINVAL;
  3668. if (ecmd->phy_address != np->phyaddr) {
  3669. /* TODO: support switching between multiple phys. Should be
  3670. * trivial, but not enabled due to lack of test hardware. */
  3671. return -EINVAL;
  3672. }
  3673. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3674. u32 mask;
  3675. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3676. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3677. if (np->gigabit == PHY_GIGABIT)
  3678. mask |= ADVERTISED_1000baseT_Full;
  3679. if ((ecmd->advertising & mask) == 0)
  3680. return -EINVAL;
  3681. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3682. /* Note: autonegotiation disable, speed 1000 intentionally
  3683. * forbidden - noone should need that. */
  3684. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3685. return -EINVAL;
  3686. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3687. return -EINVAL;
  3688. } else {
  3689. return -EINVAL;
  3690. }
  3691. netif_carrier_off(dev);
  3692. if (netif_running(dev)) {
  3693. unsigned long flags;
  3694. nv_disable_irq(dev);
  3695. netif_tx_lock_bh(dev);
  3696. netif_addr_lock(dev);
  3697. /* with plain spinlock lockdep complains */
  3698. spin_lock_irqsave(&np->lock, flags);
  3699. /* stop engines */
  3700. /* FIXME:
  3701. * this can take some time, and interrupts are disabled
  3702. * due to spin_lock_irqsave, but let's hope no daemon
  3703. * is going to change the settings very often...
  3704. * Worst case:
  3705. * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
  3706. * + some minor delays, which is up to a second approximately
  3707. */
  3708. nv_stop_rxtx(dev);
  3709. spin_unlock_irqrestore(&np->lock, flags);
  3710. netif_addr_unlock(dev);
  3711. netif_tx_unlock_bh(dev);
  3712. }
  3713. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3714. int adv, bmcr;
  3715. np->autoneg = 1;
  3716. /* advertise only what has been requested */
  3717. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3718. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3719. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3720. adv |= ADVERTISE_10HALF;
  3721. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3722. adv |= ADVERTISE_10FULL;
  3723. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3724. adv |= ADVERTISE_100HALF;
  3725. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3726. adv |= ADVERTISE_100FULL;
  3727. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3728. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3729. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3730. adv |= ADVERTISE_PAUSE_ASYM;
  3731. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3732. if (np->gigabit == PHY_GIGABIT) {
  3733. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3734. adv &= ~ADVERTISE_1000FULL;
  3735. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3736. adv |= ADVERTISE_1000FULL;
  3737. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3738. }
  3739. if (netif_running(dev))
  3740. printk(KERN_INFO "%s: link down.\n", dev->name);
  3741. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3742. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3743. bmcr |= BMCR_ANENABLE;
  3744. /* reset the phy in order for settings to stick,
  3745. * and cause autoneg to start */
  3746. if (phy_reset(dev, bmcr)) {
  3747. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3748. return -EINVAL;
  3749. }
  3750. } else {
  3751. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3752. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3753. }
  3754. } else {
  3755. int adv, bmcr;
  3756. np->autoneg = 0;
  3757. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3758. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3759. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3760. adv |= ADVERTISE_10HALF;
  3761. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3762. adv |= ADVERTISE_10FULL;
  3763. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3764. adv |= ADVERTISE_100HALF;
  3765. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3766. adv |= ADVERTISE_100FULL;
  3767. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3768. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3769. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3770. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3771. }
  3772. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3773. adv |= ADVERTISE_PAUSE_ASYM;
  3774. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3775. }
  3776. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3777. np->fixed_mode = adv;
  3778. if (np->gigabit == PHY_GIGABIT) {
  3779. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3780. adv &= ~ADVERTISE_1000FULL;
  3781. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3782. }
  3783. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3784. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3785. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3786. bmcr |= BMCR_FULLDPLX;
  3787. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3788. bmcr |= BMCR_SPEED100;
  3789. if (np->phy_oui == PHY_OUI_MARVELL) {
  3790. /* reset the phy in order for forced mode settings to stick */
  3791. if (phy_reset(dev, bmcr)) {
  3792. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3793. return -EINVAL;
  3794. }
  3795. } else {
  3796. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3797. if (netif_running(dev)) {
  3798. /* Wait a bit and then reconfigure the nic. */
  3799. udelay(10);
  3800. nv_linkchange(dev);
  3801. }
  3802. }
  3803. }
  3804. if (netif_running(dev)) {
  3805. nv_start_rxtx(dev);
  3806. nv_enable_irq(dev);
  3807. }
  3808. return 0;
  3809. }
  3810. #define FORCEDETH_REGS_VER 1
  3811. static int nv_get_regs_len(struct net_device *dev)
  3812. {
  3813. struct fe_priv *np = netdev_priv(dev);
  3814. return np->register_size;
  3815. }
  3816. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3817. {
  3818. struct fe_priv *np = netdev_priv(dev);
  3819. u8 __iomem *base = get_hwbase(dev);
  3820. u32 *rbuf = buf;
  3821. int i;
  3822. regs->version = FORCEDETH_REGS_VER;
  3823. spin_lock_irq(&np->lock);
  3824. for (i = 0; i <= np->register_size/sizeof(u32); i++)
  3825. rbuf[i] = readl(base + i*sizeof(u32));
  3826. spin_unlock_irq(&np->lock);
  3827. }
  3828. static int nv_nway_reset(struct net_device *dev)
  3829. {
  3830. struct fe_priv *np = netdev_priv(dev);
  3831. int ret;
  3832. if (np->autoneg) {
  3833. int bmcr;
  3834. netif_carrier_off(dev);
  3835. if (netif_running(dev)) {
  3836. nv_disable_irq(dev);
  3837. netif_tx_lock_bh(dev);
  3838. netif_addr_lock(dev);
  3839. spin_lock(&np->lock);
  3840. /* stop engines */
  3841. nv_stop_rxtx(dev);
  3842. spin_unlock(&np->lock);
  3843. netif_addr_unlock(dev);
  3844. netif_tx_unlock_bh(dev);
  3845. printk(KERN_INFO "%s: link down.\n", dev->name);
  3846. }
  3847. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3848. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3849. bmcr |= BMCR_ANENABLE;
  3850. /* reset the phy in order for settings to stick*/
  3851. if (phy_reset(dev, bmcr)) {
  3852. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3853. return -EINVAL;
  3854. }
  3855. } else {
  3856. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3857. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3858. }
  3859. if (netif_running(dev)) {
  3860. nv_start_rxtx(dev);
  3861. nv_enable_irq(dev);
  3862. }
  3863. ret = 0;
  3864. } else {
  3865. ret = -EINVAL;
  3866. }
  3867. return ret;
  3868. }
  3869. static int nv_set_tso(struct net_device *dev, u32 value)
  3870. {
  3871. struct fe_priv *np = netdev_priv(dev);
  3872. if ((np->driver_data & DEV_HAS_CHECKSUM))
  3873. return ethtool_op_set_tso(dev, value);
  3874. else
  3875. return -EOPNOTSUPP;
  3876. }
  3877. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3878. {
  3879. struct fe_priv *np = netdev_priv(dev);
  3880. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3881. ring->rx_mini_max_pending = 0;
  3882. ring->rx_jumbo_max_pending = 0;
  3883. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3884. ring->rx_pending = np->rx_ring_size;
  3885. ring->rx_mini_pending = 0;
  3886. ring->rx_jumbo_pending = 0;
  3887. ring->tx_pending = np->tx_ring_size;
  3888. }
  3889. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3890. {
  3891. struct fe_priv *np = netdev_priv(dev);
  3892. u8 __iomem *base = get_hwbase(dev);
  3893. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  3894. dma_addr_t ring_addr;
  3895. if (ring->rx_pending < RX_RING_MIN ||
  3896. ring->tx_pending < TX_RING_MIN ||
  3897. ring->rx_mini_pending != 0 ||
  3898. ring->rx_jumbo_pending != 0 ||
  3899. (np->desc_ver == DESC_VER_1 &&
  3900. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  3901. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  3902. (np->desc_ver != DESC_VER_1 &&
  3903. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  3904. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  3905. return -EINVAL;
  3906. }
  3907. /* allocate new rings */
  3908. if (!nv_optimized(np)) {
  3909. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3910. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3911. &ring_addr);
  3912. } else {
  3913. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3914. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3915. &ring_addr);
  3916. }
  3917. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  3918. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  3919. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  3920. /* fall back to old rings */
  3921. if (!nv_optimized(np)) {
  3922. if (rxtx_ring)
  3923. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3924. rxtx_ring, ring_addr);
  3925. } else {
  3926. if (rxtx_ring)
  3927. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3928. rxtx_ring, ring_addr);
  3929. }
  3930. kfree(rx_skbuff);
  3931. kfree(tx_skbuff);
  3932. goto exit;
  3933. }
  3934. if (netif_running(dev)) {
  3935. nv_disable_irq(dev);
  3936. nv_napi_disable(dev);
  3937. netif_tx_lock_bh(dev);
  3938. netif_addr_lock(dev);
  3939. spin_lock(&np->lock);
  3940. /* stop engines */
  3941. nv_stop_rxtx(dev);
  3942. nv_txrx_reset(dev);
  3943. /* drain queues */
  3944. nv_drain_rxtx(dev);
  3945. /* delete queues */
  3946. free_rings(dev);
  3947. }
  3948. /* set new values */
  3949. np->rx_ring_size = ring->rx_pending;
  3950. np->tx_ring_size = ring->tx_pending;
  3951. if (!nv_optimized(np)) {
  3952. np->rx_ring.orig = (struct ring_desc *)rxtx_ring;
  3953. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3954. } else {
  3955. np->rx_ring.ex = (struct ring_desc_ex *)rxtx_ring;
  3956. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3957. }
  3958. np->rx_skb = (struct nv_skb_map *)rx_skbuff;
  3959. np->tx_skb = (struct nv_skb_map *)tx_skbuff;
  3960. np->ring_addr = ring_addr;
  3961. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  3962. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  3963. if (netif_running(dev)) {
  3964. /* reinit driver view of the queues */
  3965. set_bufsize(dev);
  3966. if (nv_init_ring(dev)) {
  3967. if (!np->in_shutdown)
  3968. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3969. }
  3970. /* reinit nic view of the queues */
  3971. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3972. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3973. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3974. base + NvRegRingSizes);
  3975. pci_push(base);
  3976. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3977. pci_push(base);
  3978. /* restart engines */
  3979. nv_start_rxtx(dev);
  3980. spin_unlock(&np->lock);
  3981. netif_addr_unlock(dev);
  3982. netif_tx_unlock_bh(dev);
  3983. nv_napi_enable(dev);
  3984. nv_enable_irq(dev);
  3985. }
  3986. return 0;
  3987. exit:
  3988. return -ENOMEM;
  3989. }
  3990. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3991. {
  3992. struct fe_priv *np = netdev_priv(dev);
  3993. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  3994. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  3995. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  3996. }
  3997. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3998. {
  3999. struct fe_priv *np = netdev_priv(dev);
  4000. int adv, bmcr;
  4001. if ((!np->autoneg && np->duplex == 0) ||
  4002. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  4003. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  4004. dev->name);
  4005. return -EINVAL;
  4006. }
  4007. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  4008. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  4009. return -EINVAL;
  4010. }
  4011. netif_carrier_off(dev);
  4012. if (netif_running(dev)) {
  4013. nv_disable_irq(dev);
  4014. netif_tx_lock_bh(dev);
  4015. netif_addr_lock(dev);
  4016. spin_lock(&np->lock);
  4017. /* stop engines */
  4018. nv_stop_rxtx(dev);
  4019. spin_unlock(&np->lock);
  4020. netif_addr_unlock(dev);
  4021. netif_tx_unlock_bh(dev);
  4022. }
  4023. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  4024. if (pause->rx_pause)
  4025. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  4026. if (pause->tx_pause)
  4027. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  4028. if (np->autoneg && pause->autoneg) {
  4029. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  4030. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  4031. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  4032. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  4033. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  4034. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  4035. adv |= ADVERTISE_PAUSE_ASYM;
  4036. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4037. if (netif_running(dev))
  4038. printk(KERN_INFO "%s: link down.\n", dev->name);
  4039. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4040. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4041. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4042. } else {
  4043. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  4044. if (pause->rx_pause)
  4045. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  4046. if (pause->tx_pause)
  4047. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4048. if (!netif_running(dev))
  4049. nv_update_linkspeed(dev);
  4050. else
  4051. nv_update_pause(dev, np->pause_flags);
  4052. }
  4053. if (netif_running(dev)) {
  4054. nv_start_rxtx(dev);
  4055. nv_enable_irq(dev);
  4056. }
  4057. return 0;
  4058. }
  4059. static u32 nv_get_rx_csum(struct net_device *dev)
  4060. {
  4061. struct fe_priv *np = netdev_priv(dev);
  4062. return np->rx_csum != 0;
  4063. }
  4064. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  4065. {
  4066. struct fe_priv *np = netdev_priv(dev);
  4067. u8 __iomem *base = get_hwbase(dev);
  4068. int retcode = 0;
  4069. if (np->driver_data & DEV_HAS_CHECKSUM) {
  4070. if (data) {
  4071. np->rx_csum = 1;
  4072. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4073. } else {
  4074. np->rx_csum = 0;
  4075. /* vlan is dependent on rx checksum offload */
  4076. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  4077. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  4078. }
  4079. if (netif_running(dev)) {
  4080. spin_lock_irq(&np->lock);
  4081. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4082. spin_unlock_irq(&np->lock);
  4083. }
  4084. } else {
  4085. return -EINVAL;
  4086. }
  4087. return retcode;
  4088. }
  4089. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  4090. {
  4091. struct fe_priv *np = netdev_priv(dev);
  4092. if (np->driver_data & DEV_HAS_CHECKSUM)
  4093. return ethtool_op_set_tx_csum(dev, data);
  4094. else
  4095. return -EOPNOTSUPP;
  4096. }
  4097. static int nv_set_sg(struct net_device *dev, u32 data)
  4098. {
  4099. struct fe_priv *np = netdev_priv(dev);
  4100. if (np->driver_data & DEV_HAS_CHECKSUM)
  4101. return ethtool_op_set_sg(dev, data);
  4102. else
  4103. return -EOPNOTSUPP;
  4104. }
  4105. static int nv_get_sset_count(struct net_device *dev, int sset)
  4106. {
  4107. struct fe_priv *np = netdev_priv(dev);
  4108. switch (sset) {
  4109. case ETH_SS_TEST:
  4110. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  4111. return NV_TEST_COUNT_EXTENDED;
  4112. else
  4113. return NV_TEST_COUNT_BASE;
  4114. case ETH_SS_STATS:
  4115. if (np->driver_data & DEV_HAS_STATISTICS_V3)
  4116. return NV_DEV_STATISTICS_V3_COUNT;
  4117. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  4118. return NV_DEV_STATISTICS_V2_COUNT;
  4119. else if (np->driver_data & DEV_HAS_STATISTICS_V1)
  4120. return NV_DEV_STATISTICS_V1_COUNT;
  4121. else
  4122. return 0;
  4123. default:
  4124. return -EOPNOTSUPP;
  4125. }
  4126. }
  4127. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  4128. {
  4129. struct fe_priv *np = netdev_priv(dev);
  4130. /* update stats */
  4131. nv_do_stats_poll((unsigned long)dev);
  4132. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  4133. }
  4134. static int nv_link_test(struct net_device *dev)
  4135. {
  4136. struct fe_priv *np = netdev_priv(dev);
  4137. int mii_status;
  4138. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4139. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4140. /* check phy link status */
  4141. if (!(mii_status & BMSR_LSTATUS))
  4142. return 0;
  4143. else
  4144. return 1;
  4145. }
  4146. static int nv_register_test(struct net_device *dev)
  4147. {
  4148. u8 __iomem *base = get_hwbase(dev);
  4149. int i = 0;
  4150. u32 orig_read, new_read;
  4151. do {
  4152. orig_read = readl(base + nv_registers_test[i].reg);
  4153. /* xor with mask to toggle bits */
  4154. orig_read ^= nv_registers_test[i].mask;
  4155. writel(orig_read, base + nv_registers_test[i].reg);
  4156. new_read = readl(base + nv_registers_test[i].reg);
  4157. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  4158. return 0;
  4159. /* restore original value */
  4160. orig_read ^= nv_registers_test[i].mask;
  4161. writel(orig_read, base + nv_registers_test[i].reg);
  4162. } while (nv_registers_test[++i].reg != 0);
  4163. return 1;
  4164. }
  4165. static int nv_interrupt_test(struct net_device *dev)
  4166. {
  4167. struct fe_priv *np = netdev_priv(dev);
  4168. u8 __iomem *base = get_hwbase(dev);
  4169. int ret = 1;
  4170. int testcnt;
  4171. u32 save_msi_flags, save_poll_interval = 0;
  4172. if (netif_running(dev)) {
  4173. /* free current irq */
  4174. nv_free_irq(dev);
  4175. save_poll_interval = readl(base+NvRegPollingInterval);
  4176. }
  4177. /* flag to test interrupt handler */
  4178. np->intr_test = 0;
  4179. /* setup test irq */
  4180. save_msi_flags = np->msi_flags;
  4181. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4182. np->msi_flags |= 0x001; /* setup 1 vector */
  4183. if (nv_request_irq(dev, 1))
  4184. return 0;
  4185. /* setup timer interrupt */
  4186. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4187. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4188. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4189. /* wait for at least one interrupt */
  4190. msleep(100);
  4191. spin_lock_irq(&np->lock);
  4192. /* flag should be set within ISR */
  4193. testcnt = np->intr_test;
  4194. if (!testcnt)
  4195. ret = 2;
  4196. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4197. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4198. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4199. else
  4200. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4201. spin_unlock_irq(&np->lock);
  4202. nv_free_irq(dev);
  4203. np->msi_flags = save_msi_flags;
  4204. if (netif_running(dev)) {
  4205. writel(save_poll_interval, base + NvRegPollingInterval);
  4206. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4207. /* restore original irq */
  4208. if (nv_request_irq(dev, 0))
  4209. return 0;
  4210. }
  4211. return ret;
  4212. }
  4213. static int nv_loopback_test(struct net_device *dev)
  4214. {
  4215. struct fe_priv *np = netdev_priv(dev);
  4216. u8 __iomem *base = get_hwbase(dev);
  4217. struct sk_buff *tx_skb, *rx_skb;
  4218. dma_addr_t test_dma_addr;
  4219. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4220. u32 flags;
  4221. int len, i, pkt_len;
  4222. u8 *pkt_data;
  4223. u32 filter_flags = 0;
  4224. u32 misc1_flags = 0;
  4225. int ret = 1;
  4226. if (netif_running(dev)) {
  4227. nv_disable_irq(dev);
  4228. filter_flags = readl(base + NvRegPacketFilterFlags);
  4229. misc1_flags = readl(base + NvRegMisc1);
  4230. } else {
  4231. nv_txrx_reset(dev);
  4232. }
  4233. /* reinit driver view of the rx queue */
  4234. set_bufsize(dev);
  4235. nv_init_ring(dev);
  4236. /* setup hardware for loopback */
  4237. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4238. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4239. /* reinit nic view of the rx queue */
  4240. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4241. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4242. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4243. base + NvRegRingSizes);
  4244. pci_push(base);
  4245. /* restart rx engine */
  4246. nv_start_rxtx(dev);
  4247. /* setup packet for tx */
  4248. pkt_len = ETH_DATA_LEN;
  4249. tx_skb = dev_alloc_skb(pkt_len);
  4250. if (!tx_skb) {
  4251. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4252. " of %s\n", dev->name);
  4253. ret = 0;
  4254. goto out;
  4255. }
  4256. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4257. skb_tailroom(tx_skb),
  4258. PCI_DMA_FROMDEVICE);
  4259. pkt_data = skb_put(tx_skb, pkt_len);
  4260. for (i = 0; i < pkt_len; i++)
  4261. pkt_data[i] = (u8)(i & 0xff);
  4262. if (!nv_optimized(np)) {
  4263. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4264. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4265. } else {
  4266. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4267. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4268. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4269. }
  4270. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4271. pci_push(get_hwbase(dev));
  4272. msleep(500);
  4273. /* check for rx of the packet */
  4274. if (!nv_optimized(np)) {
  4275. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4276. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4277. } else {
  4278. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4279. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4280. }
  4281. if (flags & NV_RX_AVAIL) {
  4282. ret = 0;
  4283. } else if (np->desc_ver == DESC_VER_1) {
  4284. if (flags & NV_RX_ERROR)
  4285. ret = 0;
  4286. } else {
  4287. if (flags & NV_RX2_ERROR)
  4288. ret = 0;
  4289. }
  4290. if (ret) {
  4291. if (len != pkt_len) {
  4292. ret = 0;
  4293. netdev_dbg(dev, "loopback len mismatch %d vs %d\n",
  4294. len, pkt_len);
  4295. } else {
  4296. rx_skb = np->rx_skb[0].skb;
  4297. for (i = 0; i < pkt_len; i++) {
  4298. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4299. ret = 0;
  4300. netdev_dbg(dev, "loopback pattern check failed on byte %d\n",
  4301. i);
  4302. break;
  4303. }
  4304. }
  4305. }
  4306. } else {
  4307. netdev_dbg(dev, "loopback - did not receive test packet\n");
  4308. }
  4309. pci_unmap_single(np->pci_dev, test_dma_addr,
  4310. (skb_end_pointer(tx_skb) - tx_skb->data),
  4311. PCI_DMA_TODEVICE);
  4312. dev_kfree_skb_any(tx_skb);
  4313. out:
  4314. /* stop engines */
  4315. nv_stop_rxtx(dev);
  4316. nv_txrx_reset(dev);
  4317. /* drain rx queue */
  4318. nv_drain_rxtx(dev);
  4319. if (netif_running(dev)) {
  4320. writel(misc1_flags, base + NvRegMisc1);
  4321. writel(filter_flags, base + NvRegPacketFilterFlags);
  4322. nv_enable_irq(dev);
  4323. }
  4324. return ret;
  4325. }
  4326. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4327. {
  4328. struct fe_priv *np = netdev_priv(dev);
  4329. u8 __iomem *base = get_hwbase(dev);
  4330. int result;
  4331. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4332. if (!nv_link_test(dev)) {
  4333. test->flags |= ETH_TEST_FL_FAILED;
  4334. buffer[0] = 1;
  4335. }
  4336. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4337. if (netif_running(dev)) {
  4338. netif_stop_queue(dev);
  4339. nv_napi_disable(dev);
  4340. netif_tx_lock_bh(dev);
  4341. netif_addr_lock(dev);
  4342. spin_lock_irq(&np->lock);
  4343. nv_disable_hw_interrupts(dev, np->irqmask);
  4344. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4345. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4346. else
  4347. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4348. /* stop engines */
  4349. nv_stop_rxtx(dev);
  4350. nv_txrx_reset(dev);
  4351. /* drain rx queue */
  4352. nv_drain_rxtx(dev);
  4353. spin_unlock_irq(&np->lock);
  4354. netif_addr_unlock(dev);
  4355. netif_tx_unlock_bh(dev);
  4356. }
  4357. if (!nv_register_test(dev)) {
  4358. test->flags |= ETH_TEST_FL_FAILED;
  4359. buffer[1] = 1;
  4360. }
  4361. result = nv_interrupt_test(dev);
  4362. if (result != 1) {
  4363. test->flags |= ETH_TEST_FL_FAILED;
  4364. buffer[2] = 1;
  4365. }
  4366. if (result == 0) {
  4367. /* bail out */
  4368. return;
  4369. }
  4370. if (!nv_loopback_test(dev)) {
  4371. test->flags |= ETH_TEST_FL_FAILED;
  4372. buffer[3] = 1;
  4373. }
  4374. if (netif_running(dev)) {
  4375. /* reinit driver view of the rx queue */
  4376. set_bufsize(dev);
  4377. if (nv_init_ring(dev)) {
  4378. if (!np->in_shutdown)
  4379. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4380. }
  4381. /* reinit nic view of the rx queue */
  4382. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4383. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4384. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4385. base + NvRegRingSizes);
  4386. pci_push(base);
  4387. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4388. pci_push(base);
  4389. /* restart rx engine */
  4390. nv_start_rxtx(dev);
  4391. netif_start_queue(dev);
  4392. nv_napi_enable(dev);
  4393. nv_enable_hw_interrupts(dev, np->irqmask);
  4394. }
  4395. }
  4396. }
  4397. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4398. {
  4399. switch (stringset) {
  4400. case ETH_SS_STATS:
  4401. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4402. break;
  4403. case ETH_SS_TEST:
  4404. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4405. break;
  4406. }
  4407. }
  4408. static const struct ethtool_ops ops = {
  4409. .get_drvinfo = nv_get_drvinfo,
  4410. .get_link = ethtool_op_get_link,
  4411. .get_wol = nv_get_wol,
  4412. .set_wol = nv_set_wol,
  4413. .get_settings = nv_get_settings,
  4414. .set_settings = nv_set_settings,
  4415. .get_regs_len = nv_get_regs_len,
  4416. .get_regs = nv_get_regs,
  4417. .nway_reset = nv_nway_reset,
  4418. .set_tso = nv_set_tso,
  4419. .get_ringparam = nv_get_ringparam,
  4420. .set_ringparam = nv_set_ringparam,
  4421. .get_pauseparam = nv_get_pauseparam,
  4422. .set_pauseparam = nv_set_pauseparam,
  4423. .get_rx_csum = nv_get_rx_csum,
  4424. .set_rx_csum = nv_set_rx_csum,
  4425. .set_tx_csum = nv_set_tx_csum,
  4426. .set_sg = nv_set_sg,
  4427. .get_strings = nv_get_strings,
  4428. .get_ethtool_stats = nv_get_ethtool_stats,
  4429. .get_sset_count = nv_get_sset_count,
  4430. .self_test = nv_self_test,
  4431. };
  4432. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4433. {
  4434. struct fe_priv *np = get_nvpriv(dev);
  4435. spin_lock_irq(&np->lock);
  4436. /* save vlan group */
  4437. np->vlangrp = grp;
  4438. if (grp) {
  4439. /* enable vlan on MAC */
  4440. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4441. } else {
  4442. /* disable vlan on MAC */
  4443. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4444. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4445. }
  4446. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4447. spin_unlock_irq(&np->lock);
  4448. }
  4449. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4450. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4451. {
  4452. struct fe_priv *np = netdev_priv(dev);
  4453. u8 __iomem *base = get_hwbase(dev);
  4454. int i;
  4455. u32 tx_ctrl, mgmt_sema;
  4456. for (i = 0; i < 10; i++) {
  4457. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4458. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4459. break;
  4460. msleep(500);
  4461. }
  4462. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4463. return 0;
  4464. for (i = 0; i < 2; i++) {
  4465. tx_ctrl = readl(base + NvRegTransmitterControl);
  4466. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4467. writel(tx_ctrl, base + NvRegTransmitterControl);
  4468. /* verify that semaphore was acquired */
  4469. tx_ctrl = readl(base + NvRegTransmitterControl);
  4470. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4471. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
  4472. np->mgmt_sema = 1;
  4473. return 1;
  4474. } else
  4475. udelay(50);
  4476. }
  4477. return 0;
  4478. }
  4479. static void nv_mgmt_release_sema(struct net_device *dev)
  4480. {
  4481. struct fe_priv *np = netdev_priv(dev);
  4482. u8 __iomem *base = get_hwbase(dev);
  4483. u32 tx_ctrl;
  4484. if (np->driver_data & DEV_HAS_MGMT_UNIT) {
  4485. if (np->mgmt_sema) {
  4486. tx_ctrl = readl(base + NvRegTransmitterControl);
  4487. tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
  4488. writel(tx_ctrl, base + NvRegTransmitterControl);
  4489. }
  4490. }
  4491. }
  4492. static int nv_mgmt_get_version(struct net_device *dev)
  4493. {
  4494. struct fe_priv *np = netdev_priv(dev);
  4495. u8 __iomem *base = get_hwbase(dev);
  4496. u32 data_ready = readl(base + NvRegTransmitterControl);
  4497. u32 data_ready2 = 0;
  4498. unsigned long start;
  4499. int ready = 0;
  4500. writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
  4501. writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
  4502. start = jiffies;
  4503. while (time_before(jiffies, start + 5*HZ)) {
  4504. data_ready2 = readl(base + NvRegTransmitterControl);
  4505. if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
  4506. ready = 1;
  4507. break;
  4508. }
  4509. schedule_timeout_uninterruptible(1);
  4510. }
  4511. if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
  4512. return 0;
  4513. np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
  4514. return 1;
  4515. }
  4516. static int nv_open(struct net_device *dev)
  4517. {
  4518. struct fe_priv *np = netdev_priv(dev);
  4519. u8 __iomem *base = get_hwbase(dev);
  4520. int ret = 1;
  4521. int oom, i;
  4522. u32 low;
  4523. netdev_dbg(dev, "%s\n", __func__);
  4524. /* power up phy */
  4525. mii_rw(dev, np->phyaddr, MII_BMCR,
  4526. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
  4527. nv_txrx_gate(dev, false);
  4528. /* erase previous misconfiguration */
  4529. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4530. nv_mac_reset(dev);
  4531. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4532. writel(0, base + NvRegMulticastAddrB);
  4533. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4534. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4535. writel(0, base + NvRegPacketFilterFlags);
  4536. writel(0, base + NvRegTransmitterControl);
  4537. writel(0, base + NvRegReceiverControl);
  4538. writel(0, base + NvRegAdapterControl);
  4539. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4540. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4541. /* initialize descriptor rings */
  4542. set_bufsize(dev);
  4543. oom = nv_init_ring(dev);
  4544. writel(0, base + NvRegLinkSpeed);
  4545. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4546. nv_txrx_reset(dev);
  4547. writel(0, base + NvRegUnknownSetupReg6);
  4548. np->in_shutdown = 0;
  4549. /* give hw rings */
  4550. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4551. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4552. base + NvRegRingSizes);
  4553. writel(np->linkspeed, base + NvRegLinkSpeed);
  4554. if (np->desc_ver == DESC_VER_1)
  4555. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4556. else
  4557. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4558. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4559. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4560. pci_push(base);
  4561. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4562. if (reg_delay(dev, NvRegUnknownSetupReg5,
  4563. NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4564. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX))
  4565. printk(KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4566. writel(0, base + NvRegMIIMask);
  4567. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4568. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4569. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4570. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4571. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4572. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4573. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4574. get_random_bytes(&low, sizeof(low));
  4575. low &= NVREG_SLOTTIME_MASK;
  4576. if (np->desc_ver == DESC_VER_1) {
  4577. writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
  4578. } else {
  4579. if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
  4580. /* setup legacy backoff */
  4581. writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
  4582. } else {
  4583. writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
  4584. nv_gear_backoff_reseed(dev);
  4585. }
  4586. }
  4587. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4588. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4589. if (poll_interval == -1) {
  4590. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4591. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4592. else
  4593. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4594. } else
  4595. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4596. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4597. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4598. base + NvRegAdapterControl);
  4599. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4600. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4601. if (np->wolenabled)
  4602. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4603. i = readl(base + NvRegPowerState);
  4604. if ((i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4605. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4606. pci_push(base);
  4607. udelay(10);
  4608. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4609. nv_disable_hw_interrupts(dev, np->irqmask);
  4610. pci_push(base);
  4611. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4612. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4613. pci_push(base);
  4614. if (nv_request_irq(dev, 0))
  4615. goto out_drain;
  4616. /* ask for interrupts */
  4617. nv_enable_hw_interrupts(dev, np->irqmask);
  4618. spin_lock_irq(&np->lock);
  4619. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4620. writel(0, base + NvRegMulticastAddrB);
  4621. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4622. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4623. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4624. /* One manual link speed update: Interrupts are enabled, future link
  4625. * speed changes cause interrupts and are handled by nv_link_irq().
  4626. */
  4627. {
  4628. u32 miistat;
  4629. miistat = readl(base + NvRegMIIStatus);
  4630. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4631. netdev_dbg(dev, "startup: got 0x%08x\n", miistat);
  4632. }
  4633. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4634. * to init hw */
  4635. np->linkspeed = 0;
  4636. ret = nv_update_linkspeed(dev);
  4637. nv_start_rxtx(dev);
  4638. netif_start_queue(dev);
  4639. nv_napi_enable(dev);
  4640. if (ret) {
  4641. netif_carrier_on(dev);
  4642. } else {
  4643. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4644. netif_carrier_off(dev);
  4645. }
  4646. if (oom)
  4647. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4648. /* start statistics timer */
  4649. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4650. mod_timer(&np->stats_poll,
  4651. round_jiffies(jiffies + STATS_INTERVAL));
  4652. spin_unlock_irq(&np->lock);
  4653. return 0;
  4654. out_drain:
  4655. nv_drain_rxtx(dev);
  4656. return ret;
  4657. }
  4658. static int nv_close(struct net_device *dev)
  4659. {
  4660. struct fe_priv *np = netdev_priv(dev);
  4661. u8 __iomem *base;
  4662. spin_lock_irq(&np->lock);
  4663. np->in_shutdown = 1;
  4664. spin_unlock_irq(&np->lock);
  4665. nv_napi_disable(dev);
  4666. synchronize_irq(np->pci_dev->irq);
  4667. del_timer_sync(&np->oom_kick);
  4668. del_timer_sync(&np->nic_poll);
  4669. del_timer_sync(&np->stats_poll);
  4670. netif_stop_queue(dev);
  4671. spin_lock_irq(&np->lock);
  4672. nv_stop_rxtx(dev);
  4673. nv_txrx_reset(dev);
  4674. /* disable interrupts on the nic or we will lock up */
  4675. base = get_hwbase(dev);
  4676. nv_disable_hw_interrupts(dev, np->irqmask);
  4677. pci_push(base);
  4678. netdev_dbg(dev, "Irqmask is zero again\n");
  4679. spin_unlock_irq(&np->lock);
  4680. nv_free_irq(dev);
  4681. nv_drain_rxtx(dev);
  4682. if (np->wolenabled || !phy_power_down) {
  4683. nv_txrx_gate(dev, false);
  4684. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4685. nv_start_rx(dev);
  4686. } else {
  4687. /* power down phy */
  4688. mii_rw(dev, np->phyaddr, MII_BMCR,
  4689. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
  4690. nv_txrx_gate(dev, true);
  4691. }
  4692. /* FIXME: power down nic */
  4693. return 0;
  4694. }
  4695. static const struct net_device_ops nv_netdev_ops = {
  4696. .ndo_open = nv_open,
  4697. .ndo_stop = nv_close,
  4698. .ndo_get_stats = nv_get_stats,
  4699. .ndo_start_xmit = nv_start_xmit,
  4700. .ndo_tx_timeout = nv_tx_timeout,
  4701. .ndo_change_mtu = nv_change_mtu,
  4702. .ndo_validate_addr = eth_validate_addr,
  4703. .ndo_set_mac_address = nv_set_mac_address,
  4704. .ndo_set_multicast_list = nv_set_multicast,
  4705. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4706. #ifdef CONFIG_NET_POLL_CONTROLLER
  4707. .ndo_poll_controller = nv_poll_controller,
  4708. #endif
  4709. };
  4710. static const struct net_device_ops nv_netdev_ops_optimized = {
  4711. .ndo_open = nv_open,
  4712. .ndo_stop = nv_close,
  4713. .ndo_get_stats = nv_get_stats,
  4714. .ndo_start_xmit = nv_start_xmit_optimized,
  4715. .ndo_tx_timeout = nv_tx_timeout,
  4716. .ndo_change_mtu = nv_change_mtu,
  4717. .ndo_validate_addr = eth_validate_addr,
  4718. .ndo_set_mac_address = nv_set_mac_address,
  4719. .ndo_set_multicast_list = nv_set_multicast,
  4720. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4721. #ifdef CONFIG_NET_POLL_CONTROLLER
  4722. .ndo_poll_controller = nv_poll_controller,
  4723. #endif
  4724. };
  4725. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4726. {
  4727. struct net_device *dev;
  4728. struct fe_priv *np;
  4729. unsigned long addr;
  4730. u8 __iomem *base;
  4731. int err, i;
  4732. u32 powerstate, txreg;
  4733. u32 phystate_orig = 0, phystate;
  4734. int phyinitialized = 0;
  4735. static int printed_version;
  4736. if (!printed_version++)
  4737. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4738. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4739. dev = alloc_etherdev(sizeof(struct fe_priv));
  4740. err = -ENOMEM;
  4741. if (!dev)
  4742. goto out;
  4743. np = netdev_priv(dev);
  4744. np->dev = dev;
  4745. np->pci_dev = pci_dev;
  4746. spin_lock_init(&np->lock);
  4747. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4748. init_timer(&np->oom_kick);
  4749. np->oom_kick.data = (unsigned long) dev;
  4750. np->oom_kick.function = nv_do_rx_refill; /* timer handler */
  4751. init_timer(&np->nic_poll);
  4752. np->nic_poll.data = (unsigned long) dev;
  4753. np->nic_poll.function = nv_do_nic_poll; /* timer handler */
  4754. init_timer(&np->stats_poll);
  4755. np->stats_poll.data = (unsigned long) dev;
  4756. np->stats_poll.function = nv_do_stats_poll; /* timer handler */
  4757. err = pci_enable_device(pci_dev);
  4758. if (err)
  4759. goto out_free;
  4760. pci_set_master(pci_dev);
  4761. err = pci_request_regions(pci_dev, DRV_NAME);
  4762. if (err < 0)
  4763. goto out_disable;
  4764. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4765. np->register_size = NV_PCI_REGSZ_VER3;
  4766. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4767. np->register_size = NV_PCI_REGSZ_VER2;
  4768. else
  4769. np->register_size = NV_PCI_REGSZ_VER1;
  4770. err = -EINVAL;
  4771. addr = 0;
  4772. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4773. netdev_dbg(dev, "%s: resource %d start %p len %lld flags 0x%08lx\n",
  4774. pci_name(pci_dev), i,
  4775. (void *)(unsigned long)pci_resource_start(pci_dev, i),
  4776. (long long)pci_resource_len(pci_dev, i),
  4777. pci_resource_flags(pci_dev, i));
  4778. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4779. pci_resource_len(pci_dev, i) >= np->register_size) {
  4780. addr = pci_resource_start(pci_dev, i);
  4781. break;
  4782. }
  4783. }
  4784. if (i == DEVICE_COUNT_RESOURCE) {
  4785. dev_printk(KERN_INFO, &pci_dev->dev,
  4786. "Couldn't find register window\n");
  4787. goto out_relreg;
  4788. }
  4789. /* copy of driver data */
  4790. np->driver_data = id->driver_data;
  4791. /* copy of device id */
  4792. np->device_id = id->device;
  4793. /* handle different descriptor versions */
  4794. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4795. /* packet format 3: supports 40-bit addressing */
  4796. np->desc_ver = DESC_VER_3;
  4797. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4798. if (dma_64bit) {
  4799. if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39)))
  4800. dev_printk(KERN_INFO, &pci_dev->dev,
  4801. "64-bit DMA failed, using 32-bit addressing\n");
  4802. else
  4803. dev->features |= NETIF_F_HIGHDMA;
  4804. if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) {
  4805. dev_printk(KERN_INFO, &pci_dev->dev,
  4806. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  4807. }
  4808. }
  4809. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4810. /* packet format 2: supports jumbo frames */
  4811. np->desc_ver = DESC_VER_2;
  4812. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  4813. } else {
  4814. /* original packet format */
  4815. np->desc_ver = DESC_VER_1;
  4816. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  4817. }
  4818. np->pkt_limit = NV_PKTLIMIT_1;
  4819. if (id->driver_data & DEV_HAS_LARGEDESC)
  4820. np->pkt_limit = NV_PKTLIMIT_2;
  4821. if (id->driver_data & DEV_HAS_CHECKSUM) {
  4822. np->rx_csum = 1;
  4823. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4824. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  4825. dev->features |= NETIF_F_TSO;
  4826. dev->features |= NETIF_F_GRO;
  4827. }
  4828. np->vlanctl_bits = 0;
  4829. if (id->driver_data & DEV_HAS_VLAN) {
  4830. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  4831. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  4832. }
  4833. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  4834. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  4835. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  4836. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  4837. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  4838. }
  4839. err = -ENOMEM;
  4840. np->base = ioremap(addr, np->register_size);
  4841. if (!np->base)
  4842. goto out_relreg;
  4843. dev->base_addr = (unsigned long)np->base;
  4844. dev->irq = pci_dev->irq;
  4845. np->rx_ring_size = RX_RING_DEFAULT;
  4846. np->tx_ring_size = TX_RING_DEFAULT;
  4847. if (!nv_optimized(np)) {
  4848. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  4849. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  4850. &np->ring_addr);
  4851. if (!np->rx_ring.orig)
  4852. goto out_unmap;
  4853. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4854. } else {
  4855. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  4856. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  4857. &np->ring_addr);
  4858. if (!np->rx_ring.ex)
  4859. goto out_unmap;
  4860. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4861. }
  4862. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4863. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4864. if (!np->rx_skb || !np->tx_skb)
  4865. goto out_freering;
  4866. if (!nv_optimized(np))
  4867. dev->netdev_ops = &nv_netdev_ops;
  4868. else
  4869. dev->netdev_ops = &nv_netdev_ops_optimized;
  4870. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  4871. SET_ETHTOOL_OPS(dev, &ops);
  4872. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  4873. pci_set_drvdata(pci_dev, dev);
  4874. /* read the mac address */
  4875. base = get_hwbase(dev);
  4876. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  4877. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  4878. /* check the workaround bit for correct mac address order */
  4879. txreg = readl(base + NvRegTransmitPoll);
  4880. if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
  4881. /* mac address is already in correct order */
  4882. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4883. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4884. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4885. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4886. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4887. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4888. } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  4889. /* mac address is already in correct order */
  4890. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4891. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4892. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4893. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4894. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4895. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4896. /*
  4897. * Set orig mac address back to the reversed version.
  4898. * This flag will be cleared during low power transition.
  4899. * Therefore, we should always put back the reversed address.
  4900. */
  4901. np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
  4902. (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
  4903. np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
  4904. } else {
  4905. /* need to reverse mac address to correct order */
  4906. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  4907. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  4908. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  4909. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  4910. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  4911. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  4912. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4913. printk(KERN_DEBUG "nv_probe: set workaround bit for reversed mac addr\n");
  4914. }
  4915. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  4916. if (!is_valid_ether_addr(dev->perm_addr)) {
  4917. /*
  4918. * Bad mac address. At least one bios sets the mac address
  4919. * to 01:23:45:67:89:ab
  4920. */
  4921. dev_printk(KERN_ERR, &pci_dev->dev,
  4922. "Invalid Mac address detected: %pM\n",
  4923. dev->dev_addr);
  4924. dev_printk(KERN_ERR, &pci_dev->dev,
  4925. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  4926. random_ether_addr(dev->dev_addr);
  4927. }
  4928. netdev_dbg(dev, "%s: MAC Address %pM\n",
  4929. pci_name(pci_dev), dev->dev_addr);
  4930. /* set mac address */
  4931. nv_copy_mac_to_hw(dev);
  4932. /* Workaround current PCI init glitch: wakeup bits aren't
  4933. * being set from PCI PM capability.
  4934. */
  4935. device_init_wakeup(&pci_dev->dev, 1);
  4936. /* disable WOL */
  4937. writel(0, base + NvRegWakeUpFlags);
  4938. np->wolenabled = 0;
  4939. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  4940. /* take phy and nic out of low power mode */
  4941. powerstate = readl(base + NvRegPowerState2);
  4942. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  4943. if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) &&
  4944. pci_dev->revision >= 0xA3)
  4945. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  4946. writel(powerstate, base + NvRegPowerState2);
  4947. }
  4948. if (np->desc_ver == DESC_VER_1)
  4949. np->tx_flags = NV_TX_VALID;
  4950. else
  4951. np->tx_flags = NV_TX2_VALID;
  4952. np->msi_flags = 0;
  4953. if ((id->driver_data & DEV_HAS_MSI) && msi)
  4954. np->msi_flags |= NV_MSI_CAPABLE;
  4955. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  4956. /* msix has had reported issues when modifying irqmask
  4957. as in the case of napi, therefore, disable for now
  4958. */
  4959. #if 0
  4960. np->msi_flags |= NV_MSI_X_CAPABLE;
  4961. #endif
  4962. }
  4963. if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
  4964. np->irqmask = NVREG_IRQMASK_CPU;
  4965. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4966. np->msi_flags |= 0x0001;
  4967. } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
  4968. !(id->driver_data & DEV_NEED_TIMERIRQ)) {
  4969. /* start off in throughput mode */
  4970. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  4971. /* remove support for msix mode */
  4972. np->msi_flags &= ~NV_MSI_X_CAPABLE;
  4973. } else {
  4974. optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  4975. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  4976. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4977. np->msi_flags |= 0x0003;
  4978. }
  4979. if (id->driver_data & DEV_NEED_TIMERIRQ)
  4980. np->irqmask |= NVREG_IRQ_TIMER;
  4981. if (id->driver_data & DEV_NEED_LINKTIMER) {
  4982. netdev_dbg(dev, "%s: link timer on\n", pci_name(pci_dev));
  4983. np->need_linktimer = 1;
  4984. np->link_timeout = jiffies + LINK_TIMEOUT;
  4985. } else {
  4986. netdev_dbg(dev, "%s: link timer off\n", pci_name(pci_dev));
  4987. np->need_linktimer = 0;
  4988. }
  4989. /* Limit the number of tx's outstanding for hw bug */
  4990. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  4991. np->tx_limit = 1;
  4992. if (((id->driver_data & DEV_NEED_TX_LIMIT2) == DEV_NEED_TX_LIMIT2) &&
  4993. pci_dev->revision >= 0xA2)
  4994. np->tx_limit = 0;
  4995. }
  4996. /* clear phy state and temporarily halt phy interrupts */
  4997. writel(0, base + NvRegMIIMask);
  4998. phystate = readl(base + NvRegAdapterControl);
  4999. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  5000. phystate_orig = 1;
  5001. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  5002. writel(phystate, base + NvRegAdapterControl);
  5003. }
  5004. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  5005. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  5006. /* management unit running on the mac? */
  5007. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
  5008. (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
  5009. nv_mgmt_acquire_sema(dev) &&
  5010. nv_mgmt_get_version(dev)) {
  5011. np->mac_in_use = 1;
  5012. if (np->mgmt_version > 0)
  5013. np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
  5014. netdev_dbg(dev, "%s: mgmt unit is running. mac in use %x\n",
  5015. pci_name(pci_dev), np->mac_in_use);
  5016. /* management unit setup the phy already? */
  5017. if (np->mac_in_use &&
  5018. ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  5019. NVREG_XMITCTL_SYNC_PHY_INIT)) {
  5020. /* phy is inited by mgmt unit */
  5021. phyinitialized = 1;
  5022. netdev_dbg(dev, "%s: Phy already initialized by mgmt unit\n",
  5023. pci_name(pci_dev));
  5024. } else {
  5025. /* we need to init the phy */
  5026. }
  5027. }
  5028. }
  5029. /* find a suitable phy */
  5030. for (i = 1; i <= 32; i++) {
  5031. int id1, id2;
  5032. int phyaddr = i & 0x1F;
  5033. spin_lock_irq(&np->lock);
  5034. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  5035. spin_unlock_irq(&np->lock);
  5036. if (id1 < 0 || id1 == 0xffff)
  5037. continue;
  5038. spin_lock_irq(&np->lock);
  5039. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  5040. spin_unlock_irq(&np->lock);
  5041. if (id2 < 0 || id2 == 0xffff)
  5042. continue;
  5043. np->phy_model = id2 & PHYID2_MODEL_MASK;
  5044. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  5045. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  5046. netdev_dbg(dev, "%s: %s: Found PHY %04x:%04x at address %d\n",
  5047. pci_name(pci_dev), __func__, id1, id2, phyaddr);
  5048. np->phyaddr = phyaddr;
  5049. np->phy_oui = id1 | id2;
  5050. /* Realtek hardcoded phy id1 to all zero's on certain phys */
  5051. if (np->phy_oui == PHY_OUI_REALTEK2)
  5052. np->phy_oui = PHY_OUI_REALTEK;
  5053. /* Setup phy revision for Realtek */
  5054. if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
  5055. np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
  5056. break;
  5057. }
  5058. if (i == 33) {
  5059. dev_printk(KERN_INFO, &pci_dev->dev,
  5060. "open: Could not find a valid PHY.\n");
  5061. goto out_error;
  5062. }
  5063. if (!phyinitialized) {
  5064. /* reset it */
  5065. phy_init(dev);
  5066. } else {
  5067. /* see if it is a gigabit phy */
  5068. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  5069. if (mii_status & PHY_GIGABIT)
  5070. np->gigabit = PHY_GIGABIT;
  5071. }
  5072. /* set default link speed settings */
  5073. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  5074. np->duplex = 0;
  5075. np->autoneg = 1;
  5076. err = register_netdev(dev);
  5077. if (err) {
  5078. dev_printk(KERN_INFO, &pci_dev->dev,
  5079. "unable to register netdev: %d\n", err);
  5080. goto out_error;
  5081. }
  5082. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  5083. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  5084. dev->name,
  5085. np->phy_oui,
  5086. np->phyaddr,
  5087. dev->dev_addr[0],
  5088. dev->dev_addr[1],
  5089. dev->dev_addr[2],
  5090. dev->dev_addr[3],
  5091. dev->dev_addr[4],
  5092. dev->dev_addr[5]);
  5093. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  5094. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  5095. dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
  5096. "csum " : "",
  5097. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  5098. "vlan " : "",
  5099. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  5100. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  5101. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  5102. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  5103. np->need_linktimer ? "lnktim " : "",
  5104. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  5105. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  5106. np->desc_ver);
  5107. return 0;
  5108. out_error:
  5109. if (phystate_orig)
  5110. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  5111. pci_set_drvdata(pci_dev, NULL);
  5112. out_freering:
  5113. free_rings(dev);
  5114. out_unmap:
  5115. iounmap(get_hwbase(dev));
  5116. out_relreg:
  5117. pci_release_regions(pci_dev);
  5118. out_disable:
  5119. pci_disable_device(pci_dev);
  5120. out_free:
  5121. free_netdev(dev);
  5122. out:
  5123. return err;
  5124. }
  5125. static void nv_restore_phy(struct net_device *dev)
  5126. {
  5127. struct fe_priv *np = netdev_priv(dev);
  5128. u16 phy_reserved, mii_control;
  5129. if (np->phy_oui == PHY_OUI_REALTEK &&
  5130. np->phy_model == PHY_MODEL_REALTEK_8201 &&
  5131. phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  5132. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
  5133. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  5134. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  5135. phy_reserved |= PHY_REALTEK_INIT8;
  5136. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
  5137. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
  5138. /* restart auto negotiation */
  5139. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  5140. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  5141. mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
  5142. }
  5143. }
  5144. static void nv_restore_mac_addr(struct pci_dev *pci_dev)
  5145. {
  5146. struct net_device *dev = pci_get_drvdata(pci_dev);
  5147. struct fe_priv *np = netdev_priv(dev);
  5148. u8 __iomem *base = get_hwbase(dev);
  5149. /* special op: write back the misordered MAC address - otherwise
  5150. * the next nv_probe would see a wrong address.
  5151. */
  5152. writel(np->orig_mac[0], base + NvRegMacAddrA);
  5153. writel(np->orig_mac[1], base + NvRegMacAddrB);
  5154. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  5155. base + NvRegTransmitPoll);
  5156. }
  5157. static void __devexit nv_remove(struct pci_dev *pci_dev)
  5158. {
  5159. struct net_device *dev = pci_get_drvdata(pci_dev);
  5160. unregister_netdev(dev);
  5161. nv_restore_mac_addr(pci_dev);
  5162. /* restore any phy related changes */
  5163. nv_restore_phy(dev);
  5164. nv_mgmt_release_sema(dev);
  5165. /* free all structures */
  5166. free_rings(dev);
  5167. iounmap(get_hwbase(dev));
  5168. pci_release_regions(pci_dev);
  5169. pci_disable_device(pci_dev);
  5170. free_netdev(dev);
  5171. pci_set_drvdata(pci_dev, NULL);
  5172. }
  5173. #ifdef CONFIG_PM
  5174. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  5175. {
  5176. struct net_device *dev = pci_get_drvdata(pdev);
  5177. struct fe_priv *np = netdev_priv(dev);
  5178. u8 __iomem *base = get_hwbase(dev);
  5179. int i;
  5180. if (netif_running(dev)) {
  5181. /* Gross. */
  5182. nv_close(dev);
  5183. }
  5184. netif_device_detach(dev);
  5185. /* save non-pci configuration space */
  5186. for (i = 0; i <= np->register_size/sizeof(u32); i++)
  5187. np->saved_config_space[i] = readl(base + i*sizeof(u32));
  5188. pci_save_state(pdev);
  5189. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  5190. pci_disable_device(pdev);
  5191. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  5192. return 0;
  5193. }
  5194. static int nv_resume(struct pci_dev *pdev)
  5195. {
  5196. struct net_device *dev = pci_get_drvdata(pdev);
  5197. struct fe_priv *np = netdev_priv(dev);
  5198. u8 __iomem *base = get_hwbase(dev);
  5199. int i, rc = 0;
  5200. pci_set_power_state(pdev, PCI_D0);
  5201. pci_restore_state(pdev);
  5202. /* ack any pending wake events, disable PME */
  5203. pci_enable_wake(pdev, PCI_D0, 0);
  5204. /* restore non-pci configuration space */
  5205. for (i = 0; i <= np->register_size/sizeof(u32); i++)
  5206. writel(np->saved_config_space[i], base+i*sizeof(u32));
  5207. if (np->driver_data & DEV_NEED_MSI_FIX)
  5208. pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
  5209. /* restore phy state, including autoneg */
  5210. phy_init(dev);
  5211. netif_device_attach(dev);
  5212. if (netif_running(dev)) {
  5213. rc = nv_open(dev);
  5214. nv_set_multicast(dev);
  5215. }
  5216. return rc;
  5217. }
  5218. static void nv_shutdown(struct pci_dev *pdev)
  5219. {
  5220. struct net_device *dev = pci_get_drvdata(pdev);
  5221. struct fe_priv *np = netdev_priv(dev);
  5222. if (netif_running(dev))
  5223. nv_close(dev);
  5224. /*
  5225. * Restore the MAC so a kernel started by kexec won't get confused.
  5226. * If we really go for poweroff, we must not restore the MAC,
  5227. * otherwise the MAC for WOL will be reversed at least on some boards.
  5228. */
  5229. if (system_state != SYSTEM_POWER_OFF)
  5230. nv_restore_mac_addr(pdev);
  5231. pci_disable_device(pdev);
  5232. /*
  5233. * Apparently it is not possible to reinitialise from D3 hot,
  5234. * only put the device into D3 if we really go for poweroff.
  5235. */
  5236. if (system_state == SYSTEM_POWER_OFF) {
  5237. if (pci_enable_wake(pdev, PCI_D3cold, np->wolenabled))
  5238. pci_enable_wake(pdev, PCI_D3hot, np->wolenabled);
  5239. pci_set_power_state(pdev, PCI_D3hot);
  5240. }
  5241. }
  5242. #else
  5243. #define nv_suspend NULL
  5244. #define nv_shutdown NULL
  5245. #define nv_resume NULL
  5246. #endif /* CONFIG_PM */
  5247. static DEFINE_PCI_DEVICE_TABLE(pci_tbl) = {
  5248. { /* nForce Ethernet Controller */
  5249. PCI_DEVICE(0x10DE, 0x01C3),
  5250. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5251. },
  5252. { /* nForce2 Ethernet Controller */
  5253. PCI_DEVICE(0x10DE, 0x0066),
  5254. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5255. },
  5256. { /* nForce3 Ethernet Controller */
  5257. PCI_DEVICE(0x10DE, 0x00D6),
  5258. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5259. },
  5260. { /* nForce3 Ethernet Controller */
  5261. PCI_DEVICE(0x10DE, 0x0086),
  5262. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5263. },
  5264. { /* nForce3 Ethernet Controller */
  5265. PCI_DEVICE(0x10DE, 0x008C),
  5266. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5267. },
  5268. { /* nForce3 Ethernet Controller */
  5269. PCI_DEVICE(0x10DE, 0x00E6),
  5270. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5271. },
  5272. { /* nForce3 Ethernet Controller */
  5273. PCI_DEVICE(0x10DE, 0x00DF),
  5274. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5275. },
  5276. { /* CK804 Ethernet Controller */
  5277. PCI_DEVICE(0x10DE, 0x0056),
  5278. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5279. },
  5280. { /* CK804 Ethernet Controller */
  5281. PCI_DEVICE(0x10DE, 0x0057),
  5282. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5283. },
  5284. { /* MCP04 Ethernet Controller */
  5285. PCI_DEVICE(0x10DE, 0x0037),
  5286. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5287. },
  5288. { /* MCP04 Ethernet Controller */
  5289. PCI_DEVICE(0x10DE, 0x0038),
  5290. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5291. },
  5292. { /* MCP51 Ethernet Controller */
  5293. PCI_DEVICE(0x10DE, 0x0268),
  5294. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
  5295. },
  5296. { /* MCP51 Ethernet Controller */
  5297. PCI_DEVICE(0x10DE, 0x0269),
  5298. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
  5299. },
  5300. { /* MCP55 Ethernet Controller */
  5301. PCI_DEVICE(0x10DE, 0x0372),
  5302. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
  5303. },
  5304. { /* MCP55 Ethernet Controller */
  5305. PCI_DEVICE(0x10DE, 0x0373),
  5306. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
  5307. },
  5308. { /* MCP61 Ethernet Controller */
  5309. PCI_DEVICE(0x10DE, 0x03E5),
  5310. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5311. },
  5312. { /* MCP61 Ethernet Controller */
  5313. PCI_DEVICE(0x10DE, 0x03E6),
  5314. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5315. },
  5316. { /* MCP61 Ethernet Controller */
  5317. PCI_DEVICE(0x10DE, 0x03EE),
  5318. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5319. },
  5320. { /* MCP61 Ethernet Controller */
  5321. PCI_DEVICE(0x10DE, 0x03EF),
  5322. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5323. },
  5324. { /* MCP65 Ethernet Controller */
  5325. PCI_DEVICE(0x10DE, 0x0450),
  5326. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5327. },
  5328. { /* MCP65 Ethernet Controller */
  5329. PCI_DEVICE(0x10DE, 0x0451),
  5330. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5331. },
  5332. { /* MCP65 Ethernet Controller */
  5333. PCI_DEVICE(0x10DE, 0x0452),
  5334. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5335. },
  5336. { /* MCP65 Ethernet Controller */
  5337. PCI_DEVICE(0x10DE, 0x0453),
  5338. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5339. },
  5340. { /* MCP67 Ethernet Controller */
  5341. PCI_DEVICE(0x10DE, 0x054C),
  5342. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5343. },
  5344. { /* MCP67 Ethernet Controller */
  5345. PCI_DEVICE(0x10DE, 0x054D),
  5346. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5347. },
  5348. { /* MCP67 Ethernet Controller */
  5349. PCI_DEVICE(0x10DE, 0x054E),
  5350. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5351. },
  5352. { /* MCP67 Ethernet Controller */
  5353. PCI_DEVICE(0x10DE, 0x054F),
  5354. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5355. },
  5356. { /* MCP73 Ethernet Controller */
  5357. PCI_DEVICE(0x10DE, 0x07DC),
  5358. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5359. },
  5360. { /* MCP73 Ethernet Controller */
  5361. PCI_DEVICE(0x10DE, 0x07DD),
  5362. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5363. },
  5364. { /* MCP73 Ethernet Controller */
  5365. PCI_DEVICE(0x10DE, 0x07DE),
  5366. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5367. },
  5368. { /* MCP73 Ethernet Controller */
  5369. PCI_DEVICE(0x10DE, 0x07DF),
  5370. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5371. },
  5372. { /* MCP77 Ethernet Controller */
  5373. PCI_DEVICE(0x10DE, 0x0760),
  5374. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5375. },
  5376. { /* MCP77 Ethernet Controller */
  5377. PCI_DEVICE(0x10DE, 0x0761),
  5378. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5379. },
  5380. { /* MCP77 Ethernet Controller */
  5381. PCI_DEVICE(0x10DE, 0x0762),
  5382. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5383. },
  5384. { /* MCP77 Ethernet Controller */
  5385. PCI_DEVICE(0x10DE, 0x0763),
  5386. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5387. },
  5388. { /* MCP79 Ethernet Controller */
  5389. PCI_DEVICE(0x10DE, 0x0AB0),
  5390. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5391. },
  5392. { /* MCP79 Ethernet Controller */
  5393. PCI_DEVICE(0x10DE, 0x0AB1),
  5394. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5395. },
  5396. { /* MCP79 Ethernet Controller */
  5397. PCI_DEVICE(0x10DE, 0x0AB2),
  5398. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5399. },
  5400. { /* MCP79 Ethernet Controller */
  5401. PCI_DEVICE(0x10DE, 0x0AB3),
  5402. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5403. },
  5404. { /* MCP89 Ethernet Controller */
  5405. PCI_DEVICE(0x10DE, 0x0D7D),
  5406. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX,
  5407. },
  5408. {0,},
  5409. };
  5410. static struct pci_driver driver = {
  5411. .name = DRV_NAME,
  5412. .id_table = pci_tbl,
  5413. .probe = nv_probe,
  5414. .remove = __devexit_p(nv_remove),
  5415. .suspend = nv_suspend,
  5416. .resume = nv_resume,
  5417. .shutdown = nv_shutdown,
  5418. };
  5419. static int __init init_nic(void)
  5420. {
  5421. return pci_register_driver(&driver);
  5422. }
  5423. static void __exit exit_nic(void)
  5424. {
  5425. pci_unregister_driver(&driver);
  5426. }
  5427. module_param(max_interrupt_work, int, 0);
  5428. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5429. module_param(optimization_mode, int, 0);
  5430. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
  5431. module_param(poll_interval, int, 0);
  5432. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5433. module_param(msi, int, 0);
  5434. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5435. module_param(msix, int, 0);
  5436. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5437. module_param(dma_64bit, int, 0);
  5438. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5439. module_param(phy_cross, int, 0);
  5440. MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
  5441. module_param(phy_power_down, int, 0);
  5442. MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0).");
  5443. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5444. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5445. MODULE_LICENSE("GPL");
  5446. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5447. module_init(init_nic);
  5448. module_exit(exit_nic);