ctree.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/highmem.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "transaction.h"
  22. #include "print-tree.h"
  23. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  24. *root, struct btrfs_path *path, int level);
  25. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  26. *root, struct btrfs_key *ins_key,
  27. struct btrfs_path *path, int data_size);
  28. static int push_node_left(struct btrfs_trans_handle *trans,
  29. struct btrfs_root *root, struct extent_buffer *dst,
  30. struct extent_buffer *src);
  31. static int balance_node_right(struct btrfs_trans_handle *trans,
  32. struct btrfs_root *root,
  33. struct extent_buffer *dst_buf,
  34. struct extent_buffer *src_buf);
  35. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  36. struct btrfs_path *path, int level, int slot);
  37. inline void btrfs_init_path(struct btrfs_path *p)
  38. {
  39. memset(p, 0, sizeof(*p));
  40. }
  41. struct btrfs_path *btrfs_alloc_path(void)
  42. {
  43. struct btrfs_path *path;
  44. path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
  45. if (path) {
  46. btrfs_init_path(path);
  47. path->reada = 1;
  48. }
  49. return path;
  50. }
  51. void btrfs_free_path(struct btrfs_path *p)
  52. {
  53. btrfs_release_path(NULL, p);
  54. kmem_cache_free(btrfs_path_cachep, p);
  55. }
  56. void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  57. {
  58. int i;
  59. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  60. if (!p->nodes[i])
  61. break;
  62. free_extent_buffer(p->nodes[i]);
  63. }
  64. memset(p, 0, sizeof(*p));
  65. }
  66. static int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  67. struct btrfs_root *root,
  68. struct extent_buffer *buf,
  69. struct extent_buffer *parent, int parent_slot,
  70. struct extent_buffer **cow_ret,
  71. u64 search_start, u64 empty_size)
  72. {
  73. struct extent_buffer *cow;
  74. int ret = 0;
  75. int different_trans = 0;
  76. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  77. cow = btrfs_alloc_free_block(trans, root, search_start, empty_size);
  78. if (IS_ERR(cow))
  79. return PTR_ERR(cow);
  80. cow->alloc_addr = (unsigned long)__builtin_return_address(0);
  81. if (buf->len != root->sectorsize || cow->len != root->sectorsize)
  82. WARN_ON(1);
  83. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  84. btrfs_set_header_blocknr(cow, extent_buffer_blocknr(cow));
  85. btrfs_set_header_generation(cow, trans->transid);
  86. btrfs_set_header_owner(cow, root->root_key.objectid);
  87. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  88. if (btrfs_header_generation(buf) != trans->transid) {
  89. different_trans = 1;
  90. ret = btrfs_inc_ref(trans, root, buf);
  91. if (ret)
  92. return ret;
  93. } else {
  94. clean_tree_block(trans, root, buf);
  95. }
  96. if (buf == root->node) {
  97. root->node = cow;
  98. extent_buffer_get(cow);
  99. if (buf != root->commit_root) {
  100. btrfs_free_extent(trans, root,
  101. extent_buffer_blocknr(buf), 1, 1);
  102. }
  103. free_extent_buffer(buf);
  104. } else {
  105. btrfs_set_node_blockptr(parent, parent_slot,
  106. extent_buffer_blocknr(cow));
  107. btrfs_mark_buffer_dirty(parent);
  108. WARN_ON(btrfs_header_generation(parent) != trans->transid);
  109. btrfs_free_extent(trans, root, extent_buffer_blocknr(buf),1,1);
  110. }
  111. free_extent_buffer(buf);
  112. btrfs_mark_buffer_dirty(cow);
  113. *cow_ret = cow;
  114. return 0;
  115. }
  116. int btrfs_cow_block(struct btrfs_trans_handle *trans,
  117. struct btrfs_root *root, struct extent_buffer *buf,
  118. struct extent_buffer *parent, int parent_slot,
  119. struct extent_buffer **cow_ret)
  120. {
  121. u64 search_start;
  122. int ret;
  123. if (trans->transaction != root->fs_info->running_transaction) {
  124. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  125. root->fs_info->running_transaction->transid);
  126. WARN_ON(1);
  127. }
  128. if (trans->transid != root->fs_info->generation) {
  129. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  130. root->fs_info->generation);
  131. WARN_ON(1);
  132. }
  133. if (btrfs_header_generation(buf) == trans->transid) {
  134. *cow_ret = buf;
  135. return 0;
  136. }
  137. search_start = extent_buffer_blocknr(buf) & ~((u64)65535);
  138. ret = __btrfs_cow_block(trans, root, buf, parent,
  139. parent_slot, cow_ret, search_start, 0);
  140. (*cow_ret)->alloc_addr = (unsigned long)__builtin_return_address(0);
  141. return ret;
  142. }
  143. static int close_blocks(u64 blocknr, u64 other)
  144. {
  145. if (blocknr < other && other - blocknr < 8)
  146. return 1;
  147. if (blocknr > other && blocknr - other < 8)
  148. return 1;
  149. return 0;
  150. }
  151. #if 0
  152. static int should_defrag_leaf(struct extent_buffer *eb)
  153. {
  154. return 0;
  155. struct btrfs_leaf *leaf = btrfs_buffer_leaf(eb);
  156. struct btrfs_disk_key *key;
  157. u32 nritems;
  158. if (buffer_defrag(bh))
  159. return 1;
  160. nritems = btrfs_header_nritems(&leaf->header);
  161. if (nritems == 0)
  162. return 0;
  163. key = &leaf->items[0].key;
  164. if (btrfs_disk_key_type(key) == BTRFS_DIR_ITEM_KEY)
  165. return 1;
  166. key = &leaf->items[nritems-1].key;
  167. if (btrfs_disk_key_type(key) == BTRFS_DIR_ITEM_KEY)
  168. return 1;
  169. if (nritems > 4) {
  170. key = &leaf->items[nritems/2].key;
  171. if (btrfs_disk_key_type(key) == BTRFS_DIR_ITEM_KEY)
  172. return 1;
  173. }
  174. return 0;
  175. }
  176. #endif
  177. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  178. struct btrfs_root *root, struct extent_buffer *parent,
  179. int cache_only, u64 *last_ret)
  180. {
  181. return 0;
  182. #if 0
  183. struct btrfs_node *parent_node;
  184. struct extent_buffer *cur_eb;
  185. struct extent_buffer *tmp_eb;
  186. u64 blocknr;
  187. u64 search_start = *last_ret;
  188. u64 last_block = 0;
  189. u64 other;
  190. u32 parent_nritems;
  191. int start_slot;
  192. int end_slot;
  193. int i;
  194. int err = 0;
  195. int parent_level;
  196. if (trans->transaction != root->fs_info->running_transaction) {
  197. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  198. root->fs_info->running_transaction->transid);
  199. WARN_ON(1);
  200. }
  201. if (trans->transid != root->fs_info->generation) {
  202. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  203. root->fs_info->generation);
  204. WARN_ON(1);
  205. }
  206. if (buffer_defrag_done(parent))
  207. return 0;
  208. parent_node = btrfs_buffer_node(parent);
  209. parent_nritems = btrfs_header_nritems(&parent_node->header);
  210. parent_level = btrfs_header_level(&parent_node->header);
  211. start_slot = 0;
  212. end_slot = parent_nritems;
  213. if (parent_nritems == 1)
  214. return 0;
  215. for (i = start_slot; i < end_slot; i++) {
  216. int close = 1;
  217. blocknr = btrfs_node_blockptr(parent_node, i);
  218. if (last_block == 0)
  219. last_block = blocknr;
  220. if (i > 0) {
  221. other = btrfs_node_blockptr(parent_node, i - 1);
  222. close = close_blocks(blocknr, other);
  223. }
  224. if (close && i < end_slot - 1) {
  225. other = btrfs_node_blockptr(parent_node, i + 1);
  226. close = close_blocks(blocknr, other);
  227. }
  228. if (close) {
  229. last_block = blocknr;
  230. continue;
  231. }
  232. cur_bh = btrfs_find_tree_block(root, blocknr);
  233. if (!cur_bh || !buffer_uptodate(cur_bh) ||
  234. buffer_locked(cur_bh) ||
  235. (parent_level != 1 && !buffer_defrag(cur_bh)) ||
  236. (parent_level == 1 && !should_defrag_leaf(cur_bh))) {
  237. if (cache_only) {
  238. brelse(cur_bh);
  239. continue;
  240. }
  241. if (!cur_bh || !buffer_uptodate(cur_bh) ||
  242. buffer_locked(cur_bh)) {
  243. brelse(cur_bh);
  244. cur_bh = read_tree_block(root, blocknr);
  245. }
  246. }
  247. if (search_start == 0)
  248. search_start = last_block & ~((u64)65535);
  249. err = __btrfs_cow_block(trans, root, cur_bh, parent, i,
  250. &tmp_bh, search_start,
  251. min(8, end_slot - i));
  252. if (err) {
  253. brelse(cur_bh);
  254. break;
  255. }
  256. search_start = bh_blocknr(tmp_bh);
  257. *last_ret = search_start;
  258. if (parent_level == 1)
  259. clear_buffer_defrag(tmp_bh);
  260. set_buffer_defrag_done(tmp_bh);
  261. brelse(tmp_bh);
  262. }
  263. return err;
  264. #endif
  265. }
  266. /*
  267. * The leaf data grows from end-to-front in the node.
  268. * this returns the address of the start of the last item,
  269. * which is the stop of the leaf data stack
  270. */
  271. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  272. struct extent_buffer *leaf)
  273. {
  274. u32 nr = btrfs_header_nritems(leaf);
  275. if (nr == 0)
  276. return BTRFS_LEAF_DATA_SIZE(root);
  277. return btrfs_item_offset_nr(leaf, nr - 1);
  278. }
  279. /*
  280. * compare two keys in a memcmp fashion
  281. */
  282. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  283. {
  284. struct btrfs_key k1;
  285. btrfs_disk_key_to_cpu(&k1, disk);
  286. if (k1.objectid > k2->objectid)
  287. return 1;
  288. if (k1.objectid < k2->objectid)
  289. return -1;
  290. if (k1.type > k2->type)
  291. return 1;
  292. if (k1.type < k2->type)
  293. return -1;
  294. if (k1.offset > k2->offset)
  295. return 1;
  296. if (k1.offset < k2->offset)
  297. return -1;
  298. return 0;
  299. }
  300. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  301. int level)
  302. {
  303. struct extent_buffer *parent = NULL;
  304. struct extent_buffer *node = path->nodes[level];
  305. struct btrfs_disk_key parent_key;
  306. struct btrfs_disk_key node_key;
  307. int parent_slot;
  308. int slot;
  309. struct btrfs_key cpukey;
  310. u32 nritems = btrfs_header_nritems(node);
  311. if (path->nodes[level + 1])
  312. parent = path->nodes[level + 1];
  313. slot = path->slots[level];
  314. BUG_ON(nritems == 0);
  315. if (parent) {
  316. parent_slot = path->slots[level + 1];
  317. btrfs_node_key(parent, &parent_key, parent_slot);
  318. btrfs_node_key(node, &node_key, 0);
  319. BUG_ON(memcmp(&parent_key, &node_key,
  320. sizeof(struct btrfs_disk_key)));
  321. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  322. btrfs_header_blocknr(node));
  323. }
  324. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  325. if (slot != 0) {
  326. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  327. btrfs_node_key(node, &node_key, slot);
  328. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  329. }
  330. if (slot < nritems - 1) {
  331. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  332. btrfs_node_key(node, &node_key, slot);
  333. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  334. }
  335. return 0;
  336. }
  337. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  338. int level)
  339. {
  340. struct extent_buffer *leaf = path->nodes[level];
  341. struct extent_buffer *parent = NULL;
  342. int parent_slot;
  343. struct btrfs_key cpukey;
  344. struct btrfs_disk_key parent_key;
  345. struct btrfs_disk_key leaf_key;
  346. int slot = path->slots[0];
  347. u32 nritems = btrfs_header_nritems(leaf);
  348. if (path->nodes[level + 1])
  349. parent = path->nodes[level + 1];
  350. if (nritems == 0)
  351. return 0;
  352. if (parent) {
  353. parent_slot = path->slots[level + 1];
  354. btrfs_node_key(parent, &parent_key, parent_slot);
  355. btrfs_item_key(leaf, &leaf_key, 0);
  356. BUG_ON(memcmp(&parent_key, &leaf_key,
  357. sizeof(struct btrfs_disk_key)));
  358. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  359. btrfs_header_blocknr(leaf));
  360. }
  361. #if 0
  362. for (i = 0; nritems > 1 && i < nritems - 2; i++) {
  363. btrfs_item_key_to_cpu(leaf, &cpukey, i + 1);
  364. btrfs_item_key(leaf, &leaf_key, i);
  365. if (comp_keys(&leaf_key, &cpukey) >= 0) {
  366. btrfs_print_leaf(root, leaf);
  367. printk("slot %d offset bad key\n", i);
  368. BUG_ON(1);
  369. }
  370. if (btrfs_item_offset_nr(leaf, i) !=
  371. btrfs_item_end_nr(leaf, i + 1)) {
  372. btrfs_print_leaf(root, leaf);
  373. printk("slot %d offset bad\n", i);
  374. BUG_ON(1);
  375. }
  376. if (i == 0) {
  377. if (btrfs_item_offset_nr(leaf, i) +
  378. btrfs_item_size_nr(leaf, i) !=
  379. BTRFS_LEAF_DATA_SIZE(root)) {
  380. btrfs_print_leaf(root, leaf);
  381. printk("slot %d first offset bad\n", i);
  382. BUG_ON(1);
  383. }
  384. }
  385. }
  386. if (nritems > 0) {
  387. if (btrfs_item_size_nr(leaf, nritems - 1) > 4096) {
  388. btrfs_print_leaf(root, leaf);
  389. printk("slot %d bad size \n", nritems - 1);
  390. BUG_ON(1);
  391. }
  392. }
  393. #endif
  394. if (slot != 0 && slot < nritems - 1) {
  395. btrfs_item_key(leaf, &leaf_key, slot);
  396. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  397. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  398. btrfs_print_leaf(root, leaf);
  399. printk("slot %d offset bad key\n", slot);
  400. BUG_ON(1);
  401. }
  402. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  403. btrfs_item_end_nr(leaf, slot)) {
  404. btrfs_print_leaf(root, leaf);
  405. printk("slot %d offset bad\n", slot);
  406. BUG_ON(1);
  407. }
  408. }
  409. if (slot < nritems - 1) {
  410. btrfs_item_key(leaf, &leaf_key, slot);
  411. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  412. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  413. if (btrfs_item_offset_nr(leaf, slot) !=
  414. btrfs_item_end_nr(leaf, slot + 1)) {
  415. btrfs_print_leaf(root, leaf);
  416. printk("slot %d offset bad\n", slot);
  417. BUG_ON(1);
  418. }
  419. }
  420. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  421. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  422. return 0;
  423. }
  424. static int check_block(struct btrfs_root *root, struct btrfs_path *path,
  425. int level)
  426. {
  427. struct extent_buffer *buf = path->nodes[level];
  428. if (memcmp_extent_buffer(buf, root->fs_info->fsid,
  429. (unsigned long)btrfs_header_fsid(buf),
  430. BTRFS_FSID_SIZE)) {
  431. printk("warning bad block %Lu\n", buf->start);
  432. BUG();
  433. }
  434. if (level == 0)
  435. return check_leaf(root, path, level);
  436. return check_node(root, path, level);
  437. }
  438. /*
  439. * search for key in the extent_buffer. The items start at offset p,
  440. * and they are item_size apart. There are 'max' items in p.
  441. *
  442. * the slot in the array is returned via slot, and it points to
  443. * the place where you would insert key if it is not found in
  444. * the array.
  445. *
  446. * slot may point to max if the key is bigger than all of the keys
  447. */
  448. static int generic_bin_search(struct extent_buffer *eb, unsigned long p,
  449. int item_size, struct btrfs_key *key,
  450. int max, int *slot)
  451. {
  452. int low = 0;
  453. int high = max;
  454. int mid;
  455. int ret;
  456. struct btrfs_disk_key *tmp = NULL;
  457. struct btrfs_disk_key unaligned;
  458. unsigned long offset;
  459. char *map_token = NULL;
  460. char *kaddr = NULL;
  461. unsigned long map_start = 0;
  462. unsigned long map_len = 0;
  463. int err;
  464. while(low < high) {
  465. mid = (low + high) / 2;
  466. offset = p + mid * item_size;
  467. if (!map_token || offset < map_start ||
  468. (offset + sizeof(struct btrfs_disk_key)) >
  469. map_start + map_len) {
  470. if (map_token) {
  471. unmap_extent_buffer(eb, map_token, KM_USER0);
  472. map_token = NULL;
  473. }
  474. err = map_extent_buffer(eb, offset,
  475. sizeof(struct btrfs_disk_key),
  476. &map_token, &kaddr,
  477. &map_start, &map_len, KM_USER0);
  478. if (!err) {
  479. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  480. map_start);
  481. } else {
  482. read_extent_buffer(eb, &unaligned,
  483. offset, sizeof(unaligned));
  484. tmp = &unaligned;
  485. }
  486. } else {
  487. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  488. map_start);
  489. }
  490. ret = comp_keys(tmp, key);
  491. if (ret < 0)
  492. low = mid + 1;
  493. else if (ret > 0)
  494. high = mid;
  495. else {
  496. *slot = mid;
  497. if (map_token)
  498. unmap_extent_buffer(eb, map_token, KM_USER0);
  499. return 0;
  500. }
  501. }
  502. *slot = low;
  503. if (map_token)
  504. unmap_extent_buffer(eb, map_token, KM_USER0);
  505. return 1;
  506. }
  507. /*
  508. * simple bin_search frontend that does the right thing for
  509. * leaves vs nodes
  510. */
  511. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  512. int level, int *slot)
  513. {
  514. if (level == 0) {
  515. return generic_bin_search(eb,
  516. offsetof(struct btrfs_leaf, items),
  517. sizeof(struct btrfs_item),
  518. key, btrfs_header_nritems(eb),
  519. slot);
  520. } else {
  521. return generic_bin_search(eb,
  522. offsetof(struct btrfs_node, ptrs),
  523. sizeof(struct btrfs_key_ptr),
  524. key, btrfs_header_nritems(eb),
  525. slot);
  526. }
  527. return -1;
  528. }
  529. static struct extent_buffer *read_node_slot(struct btrfs_root *root,
  530. struct extent_buffer *parent, int slot)
  531. {
  532. if (slot < 0)
  533. return NULL;
  534. if (slot >= btrfs_header_nritems(parent))
  535. return NULL;
  536. return read_tree_block(root, btrfs_node_blockptr(parent, slot));
  537. }
  538. static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
  539. *root, struct btrfs_path *path, int level)
  540. {
  541. struct extent_buffer *right = NULL;
  542. struct extent_buffer *mid;
  543. struct extent_buffer *left = NULL;
  544. struct extent_buffer *parent = NULL;
  545. int ret = 0;
  546. int wret;
  547. int pslot;
  548. int orig_slot = path->slots[level];
  549. int err_on_enospc = 0;
  550. u64 orig_ptr;
  551. if (level == 0)
  552. return 0;
  553. mid = path->nodes[level];
  554. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  555. if (level < BTRFS_MAX_LEVEL - 1)
  556. parent = path->nodes[level + 1];
  557. pslot = path->slots[level + 1];
  558. /*
  559. * deal with the case where there is only one pointer in the root
  560. * by promoting the node below to a root
  561. */
  562. if (!parent) {
  563. struct extent_buffer *child;
  564. u64 blocknr = extent_buffer_blocknr(mid);
  565. if (btrfs_header_nritems(mid) != 1)
  566. return 0;
  567. /* promote the child to a root */
  568. child = read_node_slot(root, mid, 0);
  569. BUG_ON(!child);
  570. root->node = child;
  571. path->nodes[level] = NULL;
  572. clean_tree_block(trans, root, mid);
  573. wait_on_tree_block_writeback(root, mid);
  574. /* once for the path */
  575. free_extent_buffer(mid);
  576. /* once for the root ptr */
  577. free_extent_buffer(mid);
  578. return btrfs_free_extent(trans, root, blocknr, 1, 1);
  579. }
  580. if (btrfs_header_nritems(mid) >
  581. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  582. return 0;
  583. if (btrfs_header_nritems(mid) < 2)
  584. err_on_enospc = 1;
  585. left = read_node_slot(root, parent, pslot - 1);
  586. if (left) {
  587. wret = btrfs_cow_block(trans, root, left,
  588. parent, pslot - 1, &left);
  589. if (wret) {
  590. ret = wret;
  591. goto enospc;
  592. }
  593. }
  594. right = read_node_slot(root, parent, pslot + 1);
  595. if (right) {
  596. wret = btrfs_cow_block(trans, root, right,
  597. parent, pslot + 1, &right);
  598. if (wret) {
  599. ret = wret;
  600. goto enospc;
  601. }
  602. }
  603. /* first, try to make some room in the middle buffer */
  604. if (left) {
  605. orig_slot += btrfs_header_nritems(left);
  606. wret = push_node_left(trans, root, left, mid);
  607. if (wret < 0)
  608. ret = wret;
  609. if (btrfs_header_nritems(mid) < 2)
  610. err_on_enospc = 1;
  611. }
  612. /*
  613. * then try to empty the right most buffer into the middle
  614. */
  615. if (right) {
  616. wret = push_node_left(trans, root, mid, right);
  617. if (wret < 0 && wret != -ENOSPC)
  618. ret = wret;
  619. if (btrfs_header_nritems(right) == 0) {
  620. u64 blocknr = extent_buffer_blocknr(right);
  621. clean_tree_block(trans, root, right);
  622. wait_on_tree_block_writeback(root, right);
  623. free_extent_buffer(right);
  624. right = NULL;
  625. wret = del_ptr(trans, root, path, level + 1, pslot +
  626. 1);
  627. if (wret)
  628. ret = wret;
  629. wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
  630. if (wret)
  631. ret = wret;
  632. } else {
  633. struct btrfs_disk_key right_key;
  634. btrfs_node_key(right, &right_key, 0);
  635. btrfs_set_node_key(parent, &right_key, pslot + 1);
  636. btrfs_mark_buffer_dirty(parent);
  637. }
  638. }
  639. if (btrfs_header_nritems(mid) == 1) {
  640. /*
  641. * we're not allowed to leave a node with one item in the
  642. * tree during a delete. A deletion from lower in the tree
  643. * could try to delete the only pointer in this node.
  644. * So, pull some keys from the left.
  645. * There has to be a left pointer at this point because
  646. * otherwise we would have pulled some pointers from the
  647. * right
  648. */
  649. BUG_ON(!left);
  650. wret = balance_node_right(trans, root, mid, left);
  651. if (wret < 0) {
  652. ret = wret;
  653. goto enospc;
  654. }
  655. BUG_ON(wret == 1);
  656. }
  657. if (btrfs_header_nritems(mid) == 0) {
  658. /* we've managed to empty the middle node, drop it */
  659. u64 blocknr = extent_buffer_blocknr(mid);
  660. clean_tree_block(trans, root, mid);
  661. wait_on_tree_block_writeback(root, mid);
  662. free_extent_buffer(mid);
  663. mid = NULL;
  664. wret = del_ptr(trans, root, path, level + 1, pslot);
  665. if (wret)
  666. ret = wret;
  667. wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
  668. if (wret)
  669. ret = wret;
  670. } else {
  671. /* update the parent key to reflect our changes */
  672. struct btrfs_disk_key mid_key;
  673. btrfs_node_key(mid, &mid_key, 0);
  674. btrfs_set_node_key(parent, &mid_key, pslot);
  675. btrfs_mark_buffer_dirty(parent);
  676. }
  677. /* update the path */
  678. if (left) {
  679. if (btrfs_header_nritems(left) > orig_slot) {
  680. extent_buffer_get(left);
  681. path->nodes[level] = left;
  682. path->slots[level + 1] -= 1;
  683. path->slots[level] = orig_slot;
  684. if (mid)
  685. free_extent_buffer(mid);
  686. } else {
  687. orig_slot -= btrfs_header_nritems(left);
  688. path->slots[level] = orig_slot;
  689. }
  690. }
  691. /* double check we haven't messed things up */
  692. check_block(root, path, level);
  693. if (orig_ptr !=
  694. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  695. BUG();
  696. enospc:
  697. if (right)
  698. free_extent_buffer(right);
  699. if (left)
  700. free_extent_buffer(left);
  701. return ret;
  702. }
  703. /* returns zero if the push worked, non-zero otherwise */
  704. static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  705. struct btrfs_root *root,
  706. struct btrfs_path *path, int level)
  707. {
  708. struct extent_buffer *right = NULL;
  709. struct extent_buffer *mid;
  710. struct extent_buffer *left = NULL;
  711. struct extent_buffer *parent = NULL;
  712. int ret = 0;
  713. int wret;
  714. int pslot;
  715. int orig_slot = path->slots[level];
  716. u64 orig_ptr;
  717. if (level == 0)
  718. return 1;
  719. mid = path->nodes[level];
  720. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  721. if (level < BTRFS_MAX_LEVEL - 1)
  722. parent = path->nodes[level + 1];
  723. pslot = path->slots[level + 1];
  724. if (!parent)
  725. return 1;
  726. left = read_node_slot(root, parent, pslot - 1);
  727. /* first, try to make some room in the middle buffer */
  728. if (left) {
  729. u32 left_nr;
  730. left_nr = btrfs_header_nritems(left);
  731. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  732. wret = 1;
  733. } else {
  734. ret = btrfs_cow_block(trans, root, left, parent,
  735. pslot - 1, &left);
  736. if (ret)
  737. wret = 1;
  738. else {
  739. wret = push_node_left(trans, root,
  740. left, mid);
  741. }
  742. }
  743. if (wret < 0)
  744. ret = wret;
  745. if (wret == 0) {
  746. struct btrfs_disk_key disk_key;
  747. orig_slot += left_nr;
  748. btrfs_node_key(mid, &disk_key, 0);
  749. btrfs_set_node_key(parent, &disk_key, pslot);
  750. btrfs_mark_buffer_dirty(parent);
  751. if (btrfs_header_nritems(left) > orig_slot) {
  752. path->nodes[level] = left;
  753. path->slots[level + 1] -= 1;
  754. path->slots[level] = orig_slot;
  755. free_extent_buffer(mid);
  756. } else {
  757. orig_slot -=
  758. btrfs_header_nritems(left);
  759. path->slots[level] = orig_slot;
  760. free_extent_buffer(left);
  761. }
  762. check_node(root, path, level);
  763. return 0;
  764. }
  765. free_extent_buffer(left);
  766. }
  767. right= read_node_slot(root, parent, pslot + 1);
  768. /*
  769. * then try to empty the right most buffer into the middle
  770. */
  771. if (right) {
  772. u32 right_nr;
  773. right_nr = btrfs_header_nritems(right);
  774. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  775. wret = 1;
  776. } else {
  777. ret = btrfs_cow_block(trans, root, right,
  778. parent, pslot + 1,
  779. &right);
  780. if (ret)
  781. wret = 1;
  782. else {
  783. wret = balance_node_right(trans, root,
  784. right, mid);
  785. }
  786. }
  787. if (wret < 0)
  788. ret = wret;
  789. if (wret == 0) {
  790. struct btrfs_disk_key disk_key;
  791. btrfs_node_key(right, &disk_key, 0);
  792. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  793. btrfs_mark_buffer_dirty(parent);
  794. if (btrfs_header_nritems(mid) <= orig_slot) {
  795. path->nodes[level] = right;
  796. path->slots[level + 1] += 1;
  797. path->slots[level] = orig_slot -
  798. btrfs_header_nritems(mid);
  799. free_extent_buffer(mid);
  800. } else {
  801. free_extent_buffer(right);
  802. }
  803. check_node(root, path, level);
  804. return 0;
  805. }
  806. free_extent_buffer(right);
  807. }
  808. check_node(root, path, level);
  809. return 1;
  810. }
  811. /*
  812. * readahead one full node of leaves
  813. */
  814. static void reada_for_search(struct btrfs_root *root, struct btrfs_path *path,
  815. int level, int slot)
  816. {
  817. struct extent_buffer *node;
  818. int i;
  819. u32 nritems;
  820. u64 blocknr;
  821. u64 search;
  822. u64 cluster_start;
  823. int ret;
  824. int nread = 0;
  825. int direction = path->reada;
  826. struct radix_tree_root found;
  827. unsigned long gang[8];
  828. struct extent_buffer *eb;
  829. if (level == 0)
  830. return;
  831. if (!path->nodes[level])
  832. return;
  833. node = path->nodes[level];
  834. search = btrfs_node_blockptr(node, slot);
  835. eb = btrfs_find_tree_block(root, search);
  836. if (eb) {
  837. free_extent_buffer(eb);
  838. return;
  839. }
  840. init_bit_radix(&found);
  841. nritems = btrfs_header_nritems(node);
  842. for (i = slot; i < nritems; i++) {
  843. blocknr = btrfs_node_blockptr(node, i);
  844. set_radix_bit(&found, blocknr);
  845. }
  846. if (direction > 0) {
  847. cluster_start = search - 4;
  848. if (cluster_start > search)
  849. cluster_start = 0;
  850. } else
  851. cluster_start = search + 4;
  852. while(1) {
  853. ret = find_first_radix_bit(&found, gang, 0, ARRAY_SIZE(gang));
  854. if (!ret)
  855. break;
  856. for (i = 0; i < ret; i++) {
  857. blocknr = gang[i];
  858. clear_radix_bit(&found, blocknr);
  859. if (path->reada == 1 && nread > 16)
  860. continue;
  861. if (close_blocks(cluster_start, blocknr)) {
  862. readahead_tree_block(root, blocknr);
  863. nread++;
  864. cluster_start = blocknr;
  865. }
  866. }
  867. }
  868. }
  869. /*
  870. * look for key in the tree. path is filled in with nodes along the way
  871. * if key is found, we return zero and you can find the item in the leaf
  872. * level of the path (level 0)
  873. *
  874. * If the key isn't found, the path points to the slot where it should
  875. * be inserted, and 1 is returned. If there are other errors during the
  876. * search a negative error number is returned.
  877. *
  878. * if ins_len > 0, nodes and leaves will be split as we walk down the
  879. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  880. * possible)
  881. */
  882. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  883. *root, struct btrfs_key *key, struct btrfs_path *p, int
  884. ins_len, int cow)
  885. {
  886. struct extent_buffer *b;
  887. u64 blocknr;
  888. int slot;
  889. int ret;
  890. int level;
  891. int should_reada = p->reada;
  892. u8 lowest_level = 0;
  893. lowest_level = p->lowest_level;
  894. WARN_ON(lowest_level && ins_len);
  895. WARN_ON(p->nodes[0] != NULL);
  896. WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
  897. again:
  898. b = root->node;
  899. extent_buffer_get(b);
  900. while (b) {
  901. level = btrfs_header_level(b);
  902. if (cow) {
  903. int wret;
  904. wret = btrfs_cow_block(trans, root, b,
  905. p->nodes[level + 1],
  906. p->slots[level + 1],
  907. &b);
  908. if (wret) {
  909. free_extent_buffer(b);
  910. return wret;
  911. }
  912. }
  913. BUG_ON(!cow && ins_len);
  914. if (level != btrfs_header_level(b))
  915. WARN_ON(1);
  916. level = btrfs_header_level(b);
  917. p->nodes[level] = b;
  918. ret = check_block(root, p, level);
  919. if (ret)
  920. return -1;
  921. ret = bin_search(b, key, level, &slot);
  922. if (level != 0) {
  923. if (ret && slot > 0)
  924. slot -= 1;
  925. p->slots[level] = slot;
  926. if (ins_len > 0 && btrfs_header_nritems(b) >=
  927. BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  928. int sret = split_node(trans, root, p, level);
  929. BUG_ON(sret > 0);
  930. if (sret)
  931. return sret;
  932. b = p->nodes[level];
  933. slot = p->slots[level];
  934. } else if (ins_len < 0) {
  935. int sret = balance_level(trans, root, p,
  936. level);
  937. if (sret)
  938. return sret;
  939. b = p->nodes[level];
  940. if (!b) {
  941. btrfs_release_path(NULL, p);
  942. goto again;
  943. }
  944. slot = p->slots[level];
  945. BUG_ON(btrfs_header_nritems(b) == 1);
  946. }
  947. /* this is only true while dropping a snapshot */
  948. if (level == lowest_level)
  949. break;
  950. blocknr = btrfs_node_blockptr(b, slot);
  951. if (should_reada)
  952. reada_for_search(root, p, level, slot);
  953. b = read_tree_block(root, btrfs_node_blockptr(b, slot));
  954. } else {
  955. p->slots[level] = slot;
  956. if (ins_len > 0 && btrfs_leaf_free_space(root, b) <
  957. sizeof(struct btrfs_item) + ins_len) {
  958. int sret = split_leaf(trans, root, key,
  959. p, ins_len);
  960. BUG_ON(sret > 0);
  961. if (sret)
  962. return sret;
  963. }
  964. return ret;
  965. }
  966. }
  967. return 1;
  968. }
  969. /*
  970. * adjust the pointers going up the tree, starting at level
  971. * making sure the right key of each node is points to 'key'.
  972. * This is used after shifting pointers to the left, so it stops
  973. * fixing up pointers when a given leaf/node is not in slot 0 of the
  974. * higher levels
  975. *
  976. * If this fails to write a tree block, it returns -1, but continues
  977. * fixing up the blocks in ram so the tree is consistent.
  978. */
  979. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  980. struct btrfs_root *root, struct btrfs_path *path,
  981. struct btrfs_disk_key *key, int level)
  982. {
  983. int i;
  984. int ret = 0;
  985. struct extent_buffer *t;
  986. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  987. int tslot = path->slots[i];
  988. if (!path->nodes[i])
  989. break;
  990. t = path->nodes[i];
  991. btrfs_set_node_key(t, key, tslot);
  992. btrfs_mark_buffer_dirty(path->nodes[i]);
  993. if (tslot != 0)
  994. break;
  995. }
  996. return ret;
  997. }
  998. /*
  999. * try to push data from one node into the next node left in the
  1000. * tree.
  1001. *
  1002. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1003. * error, and > 0 if there was no room in the left hand block.
  1004. */
  1005. static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
  1006. *root, struct extent_buffer *dst,
  1007. struct extent_buffer *src)
  1008. {
  1009. int push_items = 0;
  1010. int src_nritems;
  1011. int dst_nritems;
  1012. int ret = 0;
  1013. src_nritems = btrfs_header_nritems(src);
  1014. dst_nritems = btrfs_header_nritems(dst);
  1015. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1016. if (push_items <= 0) {
  1017. return 1;
  1018. }
  1019. if (src_nritems < push_items)
  1020. push_items = src_nritems;
  1021. copy_extent_buffer(dst, src,
  1022. btrfs_node_key_ptr_offset(dst_nritems),
  1023. btrfs_node_key_ptr_offset(0),
  1024. push_items * sizeof(struct btrfs_key_ptr));
  1025. if (push_items < src_nritems) {
  1026. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1027. btrfs_node_key_ptr_offset(push_items),
  1028. (src_nritems - push_items) *
  1029. sizeof(struct btrfs_key_ptr));
  1030. }
  1031. btrfs_set_header_nritems(src, src_nritems - push_items);
  1032. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1033. btrfs_mark_buffer_dirty(src);
  1034. btrfs_mark_buffer_dirty(dst);
  1035. return ret;
  1036. }
  1037. /*
  1038. * try to push data from one node into the next node right in the
  1039. * tree.
  1040. *
  1041. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1042. * error, and > 0 if there was no room in the right hand block.
  1043. *
  1044. * this will only push up to 1/2 the contents of the left node over
  1045. */
  1046. static int balance_node_right(struct btrfs_trans_handle *trans,
  1047. struct btrfs_root *root,
  1048. struct extent_buffer *dst,
  1049. struct extent_buffer *src)
  1050. {
  1051. int push_items = 0;
  1052. int max_push;
  1053. int src_nritems;
  1054. int dst_nritems;
  1055. int ret = 0;
  1056. src_nritems = btrfs_header_nritems(src);
  1057. dst_nritems = btrfs_header_nritems(dst);
  1058. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1059. if (push_items <= 0)
  1060. return 1;
  1061. max_push = src_nritems / 2 + 1;
  1062. /* don't try to empty the node */
  1063. if (max_push >= src_nritems)
  1064. return 1;
  1065. if (max_push < push_items)
  1066. push_items = max_push;
  1067. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1068. btrfs_node_key_ptr_offset(0),
  1069. (dst_nritems) *
  1070. sizeof(struct btrfs_key_ptr));
  1071. copy_extent_buffer(dst, src,
  1072. btrfs_node_key_ptr_offset(0),
  1073. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1074. push_items * sizeof(struct btrfs_key_ptr));
  1075. btrfs_set_header_nritems(src, src_nritems - push_items);
  1076. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1077. btrfs_mark_buffer_dirty(src);
  1078. btrfs_mark_buffer_dirty(dst);
  1079. return ret;
  1080. }
  1081. /*
  1082. * helper function to insert a new root level in the tree.
  1083. * A new node is allocated, and a single item is inserted to
  1084. * point to the existing root
  1085. *
  1086. * returns zero on success or < 0 on failure.
  1087. */
  1088. static int insert_new_root(struct btrfs_trans_handle *trans,
  1089. struct btrfs_root *root,
  1090. struct btrfs_path *path, int level)
  1091. {
  1092. struct extent_buffer *lower;
  1093. struct extent_buffer *c;
  1094. struct btrfs_disk_key lower_key;
  1095. BUG_ON(path->nodes[level]);
  1096. BUG_ON(path->nodes[level-1] != root->node);
  1097. c = btrfs_alloc_free_block(trans, root,
  1098. extent_buffer_blocknr(root->node), 0);
  1099. if (IS_ERR(c))
  1100. return PTR_ERR(c);
  1101. memset_extent_buffer(c, 0, 0, root->nodesize);
  1102. btrfs_set_header_nritems(c, 1);
  1103. btrfs_set_header_level(c, level);
  1104. btrfs_set_header_blocknr(c, extent_buffer_blocknr(c));
  1105. btrfs_set_header_generation(c, trans->transid);
  1106. btrfs_set_header_owner(c, root->root_key.objectid);
  1107. lower = path->nodes[level-1];
  1108. write_extent_buffer(c, root->fs_info->fsid,
  1109. (unsigned long)btrfs_header_fsid(c),
  1110. BTRFS_FSID_SIZE);
  1111. if (level == 1)
  1112. btrfs_item_key(lower, &lower_key, 0);
  1113. else
  1114. btrfs_node_key(lower, &lower_key, 0);
  1115. btrfs_set_node_key(c, &lower_key, 0);
  1116. btrfs_set_node_blockptr(c, 0, extent_buffer_blocknr(lower));
  1117. btrfs_mark_buffer_dirty(c);
  1118. /* the super has an extra ref to root->node */
  1119. free_extent_buffer(root->node);
  1120. root->node = c;
  1121. extent_buffer_get(c);
  1122. path->nodes[level] = c;
  1123. path->slots[level] = 0;
  1124. return 0;
  1125. }
  1126. /*
  1127. * worker function to insert a single pointer in a node.
  1128. * the node should have enough room for the pointer already
  1129. *
  1130. * slot and level indicate where you want the key to go, and
  1131. * blocknr is the block the key points to.
  1132. *
  1133. * returns zero on success and < 0 on any error
  1134. */
  1135. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1136. *root, struct btrfs_path *path, struct btrfs_disk_key
  1137. *key, u64 blocknr, int slot, int level)
  1138. {
  1139. struct extent_buffer *lower;
  1140. int nritems;
  1141. BUG_ON(!path->nodes[level]);
  1142. lower = path->nodes[level];
  1143. nritems = btrfs_header_nritems(lower);
  1144. if (slot > nritems)
  1145. BUG();
  1146. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1147. BUG();
  1148. if (slot != nritems) {
  1149. memmove_extent_buffer(lower,
  1150. btrfs_node_key_ptr_offset(slot + 1),
  1151. btrfs_node_key_ptr_offset(slot),
  1152. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1153. }
  1154. btrfs_set_node_key(lower, key, slot);
  1155. btrfs_set_node_blockptr(lower, slot, blocknr);
  1156. btrfs_set_header_nritems(lower, nritems + 1);
  1157. btrfs_mark_buffer_dirty(lower);
  1158. check_node(root, path, level);
  1159. return 0;
  1160. }
  1161. /*
  1162. * split the node at the specified level in path in two.
  1163. * The path is corrected to point to the appropriate node after the split
  1164. *
  1165. * Before splitting this tries to make some room in the node by pushing
  1166. * left and right, if either one works, it returns right away.
  1167. *
  1168. * returns 0 on success and < 0 on failure
  1169. */
  1170. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  1171. *root, struct btrfs_path *path, int level)
  1172. {
  1173. struct extent_buffer *c;
  1174. struct extent_buffer *split;
  1175. struct btrfs_disk_key disk_key;
  1176. int mid;
  1177. int ret;
  1178. int wret;
  1179. u32 c_nritems;
  1180. c = path->nodes[level];
  1181. if (c == root->node) {
  1182. /* trying to split the root, lets make a new one */
  1183. ret = insert_new_root(trans, root, path, level + 1);
  1184. if (ret)
  1185. return ret;
  1186. } else {
  1187. ret = push_nodes_for_insert(trans, root, path, level);
  1188. c = path->nodes[level];
  1189. if (!ret && btrfs_header_nritems(c) <
  1190. BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
  1191. return 0;
  1192. if (ret < 0)
  1193. return ret;
  1194. }
  1195. c_nritems = btrfs_header_nritems(c);
  1196. split = btrfs_alloc_free_block(trans, root,
  1197. extent_buffer_blocknr(c), 0);
  1198. if (IS_ERR(split))
  1199. return PTR_ERR(split);
  1200. btrfs_set_header_flags(split, btrfs_header_flags(c));
  1201. btrfs_set_header_level(split, btrfs_header_level(c));
  1202. btrfs_set_header_blocknr(split, extent_buffer_blocknr(split));
  1203. btrfs_set_header_generation(split, trans->transid);
  1204. btrfs_set_header_owner(split, root->root_key.objectid);
  1205. write_extent_buffer(split, root->fs_info->fsid,
  1206. (unsigned long)btrfs_header_fsid(split),
  1207. BTRFS_FSID_SIZE);
  1208. mid = (c_nritems + 1) / 2;
  1209. copy_extent_buffer(split, c,
  1210. btrfs_node_key_ptr_offset(0),
  1211. btrfs_node_key_ptr_offset(mid),
  1212. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1213. btrfs_set_header_nritems(split, c_nritems - mid);
  1214. btrfs_set_header_nritems(c, mid);
  1215. ret = 0;
  1216. btrfs_mark_buffer_dirty(c);
  1217. btrfs_mark_buffer_dirty(split);
  1218. btrfs_node_key(split, &disk_key, 0);
  1219. wret = insert_ptr(trans, root, path, &disk_key,
  1220. extent_buffer_blocknr(split),
  1221. path->slots[level + 1] + 1,
  1222. level + 1);
  1223. if (wret)
  1224. ret = wret;
  1225. if (path->slots[level] >= mid) {
  1226. path->slots[level] -= mid;
  1227. free_extent_buffer(c);
  1228. path->nodes[level] = split;
  1229. path->slots[level + 1] += 1;
  1230. } else {
  1231. free_extent_buffer(split);
  1232. }
  1233. return ret;
  1234. }
  1235. /*
  1236. * how many bytes are required to store the items in a leaf. start
  1237. * and nr indicate which items in the leaf to check. This totals up the
  1238. * space used both by the item structs and the item data
  1239. */
  1240. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  1241. {
  1242. int data_len;
  1243. int nritems = btrfs_header_nritems(l);
  1244. int end = min(nritems, start + nr) - 1;
  1245. if (!nr)
  1246. return 0;
  1247. data_len = btrfs_item_end_nr(l, start);
  1248. data_len = data_len - btrfs_item_offset_nr(l, end);
  1249. data_len += sizeof(struct btrfs_item) * nr;
  1250. WARN_ON(data_len < 0);
  1251. return data_len;
  1252. }
  1253. /*
  1254. * The space between the end of the leaf items and
  1255. * the start of the leaf data. IOW, how much room
  1256. * the leaf has left for both items and data
  1257. */
  1258. int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf)
  1259. {
  1260. int nritems = btrfs_header_nritems(leaf);
  1261. int ret;
  1262. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  1263. if (ret < 0) {
  1264. printk("leaf free space ret %d, leaf data size %lu, used %d nritems %d\n",
  1265. ret, BTRFS_LEAF_DATA_SIZE(root),
  1266. leaf_space_used(leaf, 0, nritems), nritems);
  1267. }
  1268. return ret;
  1269. }
  1270. /*
  1271. * push some data in the path leaf to the right, trying to free up at
  1272. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1273. *
  1274. * returns 1 if the push failed because the other node didn't have enough
  1275. * room, 0 if everything worked out and < 0 if there were major errors.
  1276. */
  1277. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  1278. *root, struct btrfs_path *path, int data_size)
  1279. {
  1280. struct extent_buffer *left = path->nodes[0];
  1281. struct extent_buffer *right;
  1282. struct extent_buffer *upper;
  1283. struct btrfs_disk_key disk_key;
  1284. int slot;
  1285. int i;
  1286. int free_space;
  1287. int push_space = 0;
  1288. int push_items = 0;
  1289. struct btrfs_item *item;
  1290. u32 left_nritems;
  1291. u32 right_nritems;
  1292. u32 data_end;
  1293. int ret;
  1294. slot = path->slots[1];
  1295. if (!path->nodes[1]) {
  1296. return 1;
  1297. }
  1298. upper = path->nodes[1];
  1299. if (slot >= btrfs_header_nritems(upper) - 1)
  1300. return 1;
  1301. right = read_tree_block(root, btrfs_node_blockptr(upper, slot + 1));
  1302. free_space = btrfs_leaf_free_space(root, right);
  1303. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1304. free_extent_buffer(right);
  1305. return 1;
  1306. }
  1307. /* cow and double check */
  1308. ret = btrfs_cow_block(trans, root, right, upper,
  1309. slot + 1, &right);
  1310. if (ret) {
  1311. free_extent_buffer(right);
  1312. return 1;
  1313. }
  1314. free_space = btrfs_leaf_free_space(root, right);
  1315. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1316. free_extent_buffer(right);
  1317. return 1;
  1318. }
  1319. left_nritems = btrfs_header_nritems(left);
  1320. if (left_nritems == 0) {
  1321. free_extent_buffer(right);
  1322. return 1;
  1323. }
  1324. for (i = left_nritems - 1; i >= 1; i--) {
  1325. item = btrfs_item_nr(left, i);
  1326. if (path->slots[0] == i)
  1327. push_space += data_size + sizeof(*item);
  1328. if (btrfs_item_size(left, item) + sizeof(*item) + push_space >
  1329. free_space)
  1330. break;
  1331. push_items++;
  1332. push_space += btrfs_item_size(left, item) + sizeof(*item);
  1333. }
  1334. if (push_items == 0) {
  1335. free_extent_buffer(right);
  1336. return 1;
  1337. }
  1338. if (push_items == left_nritems)
  1339. WARN_ON(1);
  1340. /* push left to right */
  1341. right_nritems = btrfs_header_nritems(right);
  1342. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  1343. push_space -= leaf_data_end(root, left);
  1344. /* make room in the right data area */
  1345. data_end = leaf_data_end(root, right);
  1346. memmove_extent_buffer(right,
  1347. btrfs_leaf_data(right) + data_end - push_space,
  1348. btrfs_leaf_data(right) + data_end,
  1349. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  1350. /* copy from the left data area */
  1351. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  1352. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1353. btrfs_leaf_data(left) + leaf_data_end(root, left),
  1354. push_space);
  1355. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  1356. btrfs_item_nr_offset(0),
  1357. right_nritems * sizeof(struct btrfs_item));
  1358. /* copy the items from left to right */
  1359. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  1360. btrfs_item_nr_offset(left_nritems - push_items),
  1361. push_items * sizeof(struct btrfs_item));
  1362. /* update the item pointers */
  1363. right_nritems += push_items;
  1364. btrfs_set_header_nritems(right, right_nritems);
  1365. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1366. for (i = 0; i < right_nritems; i++) {
  1367. item = btrfs_item_nr(right, i);
  1368. btrfs_set_item_offset(right, item, push_space -
  1369. btrfs_item_size(right, item));
  1370. push_space = btrfs_item_offset(right, item);
  1371. }
  1372. left_nritems -= push_items;
  1373. btrfs_set_header_nritems(left, left_nritems);
  1374. btrfs_mark_buffer_dirty(left);
  1375. btrfs_mark_buffer_dirty(right);
  1376. btrfs_item_key(right, &disk_key, 0);
  1377. btrfs_set_node_key(upper, &disk_key, slot + 1);
  1378. btrfs_mark_buffer_dirty(upper);
  1379. /* then fixup the leaf pointer in the path */
  1380. if (path->slots[0] >= left_nritems) {
  1381. path->slots[0] -= left_nritems;
  1382. free_extent_buffer(path->nodes[0]);
  1383. path->nodes[0] = right;
  1384. path->slots[1] += 1;
  1385. } else {
  1386. free_extent_buffer(right);
  1387. }
  1388. if (path->nodes[1])
  1389. check_node(root, path, 1);
  1390. return 0;
  1391. }
  1392. /*
  1393. * push some data in the path leaf to the left, trying to free up at
  1394. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1395. */
  1396. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  1397. *root, struct btrfs_path *path, int data_size)
  1398. {
  1399. struct btrfs_disk_key disk_key;
  1400. struct extent_buffer *right = path->nodes[0];
  1401. struct extent_buffer *left;
  1402. int slot;
  1403. int i;
  1404. int free_space;
  1405. int push_space = 0;
  1406. int push_items = 0;
  1407. struct btrfs_item *item;
  1408. u32 old_left_nritems;
  1409. u32 right_nritems;
  1410. int ret = 0;
  1411. int wret;
  1412. slot = path->slots[1];
  1413. if (slot == 0)
  1414. return 1;
  1415. if (!path->nodes[1])
  1416. return 1;
  1417. left = read_tree_block(root, btrfs_node_blockptr(path->nodes[1],
  1418. slot - 1));
  1419. free_space = btrfs_leaf_free_space(root, left);
  1420. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1421. free_extent_buffer(left);
  1422. return 1;
  1423. }
  1424. /* cow and double check */
  1425. ret = btrfs_cow_block(trans, root, left,
  1426. path->nodes[1], slot - 1, &left);
  1427. if (ret) {
  1428. /* we hit -ENOSPC, but it isn't fatal here */
  1429. free_extent_buffer(left);
  1430. return 1;
  1431. }
  1432. free_space = btrfs_leaf_free_space(root, left);
  1433. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1434. free_extent_buffer(left);
  1435. return 1;
  1436. }
  1437. right_nritems = btrfs_header_nritems(right);
  1438. if (right_nritems == 0) {
  1439. free_extent_buffer(left);
  1440. return 1;
  1441. }
  1442. for (i = 0; i < right_nritems - 1; i++) {
  1443. item = btrfs_item_nr(right, i);
  1444. if (path->slots[0] == i)
  1445. push_space += data_size + sizeof(*item);
  1446. if (btrfs_item_size(right, item) + sizeof(*item) + push_space >
  1447. free_space)
  1448. break;
  1449. push_items++;
  1450. push_space += btrfs_item_size(right, item) + sizeof(*item);
  1451. }
  1452. if (push_items == 0) {
  1453. free_extent_buffer(left);
  1454. return 1;
  1455. }
  1456. if (push_items == btrfs_header_nritems(right))
  1457. WARN_ON(1);
  1458. /* push data from right to left */
  1459. copy_extent_buffer(left, right,
  1460. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  1461. btrfs_item_nr_offset(0),
  1462. push_items * sizeof(struct btrfs_item));
  1463. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  1464. btrfs_item_offset_nr(right, push_items -1);
  1465. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  1466. leaf_data_end(root, left) - push_space,
  1467. btrfs_leaf_data(right) +
  1468. btrfs_item_offset_nr(right, push_items - 1),
  1469. push_space);
  1470. old_left_nritems = btrfs_header_nritems(left);
  1471. BUG_ON(old_left_nritems < 0);
  1472. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  1473. u32 ioff;
  1474. item = btrfs_item_nr(left, i);
  1475. ioff = btrfs_item_offset(left, item);
  1476. btrfs_set_item_offset(left, item,
  1477. ioff - (BTRFS_LEAF_DATA_SIZE(root) -
  1478. btrfs_item_offset_nr(left, old_left_nritems - 1)));
  1479. }
  1480. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  1481. /* fixup right node */
  1482. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  1483. leaf_data_end(root, right);
  1484. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  1485. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1486. btrfs_leaf_data(right) +
  1487. leaf_data_end(root, right), push_space);
  1488. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  1489. btrfs_item_nr_offset(push_items),
  1490. (btrfs_header_nritems(right) - push_items) *
  1491. sizeof(struct btrfs_item));
  1492. right_nritems = btrfs_header_nritems(right) - push_items;
  1493. btrfs_set_header_nritems(right, right_nritems);
  1494. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1495. for (i = 0; i < right_nritems; i++) {
  1496. item = btrfs_item_nr(right, i);
  1497. btrfs_set_item_offset(right, item, push_space -
  1498. btrfs_item_size(right, item));
  1499. push_space = btrfs_item_offset(right, item);
  1500. }
  1501. btrfs_mark_buffer_dirty(left);
  1502. btrfs_mark_buffer_dirty(right);
  1503. btrfs_item_key(right, &disk_key, 0);
  1504. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1505. if (wret)
  1506. ret = wret;
  1507. /* then fixup the leaf pointer in the path */
  1508. if (path->slots[0] < push_items) {
  1509. path->slots[0] += old_left_nritems;
  1510. free_extent_buffer(path->nodes[0]);
  1511. path->nodes[0] = left;
  1512. path->slots[1] -= 1;
  1513. } else {
  1514. free_extent_buffer(left);
  1515. path->slots[0] -= push_items;
  1516. }
  1517. BUG_ON(path->slots[0] < 0);
  1518. if (path->nodes[1])
  1519. check_node(root, path, 1);
  1520. return ret;
  1521. }
  1522. /*
  1523. * split the path's leaf in two, making sure there is at least data_size
  1524. * available for the resulting leaf level of the path.
  1525. *
  1526. * returns 0 if all went well and < 0 on failure.
  1527. */
  1528. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  1529. *root, struct btrfs_key *ins_key,
  1530. struct btrfs_path *path, int data_size)
  1531. {
  1532. struct extent_buffer *l;
  1533. u32 nritems;
  1534. int mid;
  1535. int slot;
  1536. struct extent_buffer *right;
  1537. int space_needed = data_size + sizeof(struct btrfs_item);
  1538. int data_copy_size;
  1539. int rt_data_off;
  1540. int i;
  1541. int ret = 0;
  1542. int wret;
  1543. int double_split = 0;
  1544. struct btrfs_disk_key disk_key;
  1545. /* first try to make some room by pushing left and right */
  1546. wret = push_leaf_left(trans, root, path, data_size);
  1547. if (wret < 0)
  1548. return wret;
  1549. if (wret) {
  1550. wret = push_leaf_right(trans, root, path, data_size);
  1551. if (wret < 0)
  1552. return wret;
  1553. }
  1554. l = path->nodes[0];
  1555. /* did the pushes work? */
  1556. if (btrfs_leaf_free_space(root, l) >=
  1557. sizeof(struct btrfs_item) + data_size)
  1558. return 0;
  1559. if (!path->nodes[1]) {
  1560. ret = insert_new_root(trans, root, path, 1);
  1561. if (ret)
  1562. return ret;
  1563. }
  1564. slot = path->slots[0];
  1565. nritems = btrfs_header_nritems(l);
  1566. mid = (nritems + 1)/ 2;
  1567. right = btrfs_alloc_free_block(trans, root,
  1568. extent_buffer_blocknr(l), 0);
  1569. if (IS_ERR(right))
  1570. return PTR_ERR(right);
  1571. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  1572. btrfs_set_header_blocknr(right, extent_buffer_blocknr(right));
  1573. btrfs_set_header_generation(right, trans->transid);
  1574. btrfs_set_header_owner(right, root->root_key.objectid);
  1575. btrfs_set_header_level(right, 0);
  1576. write_extent_buffer(right, root->fs_info->fsid,
  1577. (unsigned long)btrfs_header_fsid(right),
  1578. BTRFS_FSID_SIZE);
  1579. if (mid <= slot) {
  1580. if (nritems == 1 ||
  1581. leaf_space_used(l, mid, nritems - mid) + space_needed >
  1582. BTRFS_LEAF_DATA_SIZE(root)) {
  1583. if (slot >= nritems) {
  1584. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1585. btrfs_set_header_nritems(right, 0);
  1586. wret = insert_ptr(trans, root, path,
  1587. &disk_key,
  1588. extent_buffer_blocknr(right),
  1589. path->slots[1] + 1, 1);
  1590. if (wret)
  1591. ret = wret;
  1592. free_extent_buffer(path->nodes[0]);
  1593. path->nodes[0] = right;
  1594. path->slots[0] = 0;
  1595. path->slots[1] += 1;
  1596. return ret;
  1597. }
  1598. mid = slot;
  1599. double_split = 1;
  1600. }
  1601. } else {
  1602. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  1603. BTRFS_LEAF_DATA_SIZE(root)) {
  1604. if (slot == 0) {
  1605. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1606. btrfs_set_header_nritems(right, 0);
  1607. wret = insert_ptr(trans, root, path,
  1608. &disk_key,
  1609. extent_buffer_blocknr(right),
  1610. path->slots[1], 1);
  1611. if (wret)
  1612. ret = wret;
  1613. free_extent_buffer(path->nodes[0]);
  1614. path->nodes[0] = right;
  1615. path->slots[0] = 0;
  1616. if (path->slots[1] == 0) {
  1617. wret = fixup_low_keys(trans, root,
  1618. path, &disk_key, 1);
  1619. if (wret)
  1620. ret = wret;
  1621. }
  1622. return ret;
  1623. }
  1624. mid = slot;
  1625. double_split = 1;
  1626. }
  1627. }
  1628. nritems = nritems - mid;
  1629. btrfs_set_header_nritems(right, nritems);
  1630. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  1631. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  1632. btrfs_item_nr_offset(mid),
  1633. nritems * sizeof(struct btrfs_item));
  1634. copy_extent_buffer(right, l,
  1635. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  1636. data_copy_size, btrfs_leaf_data(l) +
  1637. leaf_data_end(root, l), data_copy_size);
  1638. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  1639. btrfs_item_end_nr(l, mid);
  1640. for (i = 0; i < nritems; i++) {
  1641. struct btrfs_item *item = btrfs_item_nr(right, i);
  1642. u32 ioff = btrfs_item_offset(right, item);
  1643. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  1644. }
  1645. btrfs_set_header_nritems(l, mid);
  1646. ret = 0;
  1647. btrfs_item_key(right, &disk_key, 0);
  1648. wret = insert_ptr(trans, root, path, &disk_key,
  1649. extent_buffer_blocknr(right), path->slots[1] + 1, 1);
  1650. if (wret)
  1651. ret = wret;
  1652. btrfs_mark_buffer_dirty(right);
  1653. btrfs_mark_buffer_dirty(l);
  1654. BUG_ON(path->slots[0] != slot);
  1655. if (mid <= slot) {
  1656. free_extent_buffer(path->nodes[0]);
  1657. path->nodes[0] = right;
  1658. path->slots[0] -= mid;
  1659. path->slots[1] += 1;
  1660. } else
  1661. free_extent_buffer(right);
  1662. BUG_ON(path->slots[0] < 0);
  1663. check_node(root, path, 1);
  1664. check_leaf(root, path, 0);
  1665. if (!double_split)
  1666. return ret;
  1667. right = btrfs_alloc_free_block(trans, root,
  1668. extent_buffer_blocknr(l), 0);
  1669. if (IS_ERR(right))
  1670. return PTR_ERR(right);
  1671. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  1672. btrfs_set_header_blocknr(right, extent_buffer_blocknr(right));
  1673. btrfs_set_header_generation(right, trans->transid);
  1674. btrfs_set_header_owner(right, root->root_key.objectid);
  1675. btrfs_set_header_level(right, 0);
  1676. write_extent_buffer(right, root->fs_info->fsid,
  1677. (unsigned long)btrfs_header_fsid(right),
  1678. BTRFS_FSID_SIZE);
  1679. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1680. btrfs_set_header_nritems(right, 0);
  1681. wret = insert_ptr(trans, root, path,
  1682. &disk_key,
  1683. extent_buffer_blocknr(right),
  1684. path->slots[1], 1);
  1685. if (wret)
  1686. ret = wret;
  1687. if (path->slots[1] == 0) {
  1688. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1689. if (wret)
  1690. ret = wret;
  1691. }
  1692. free_extent_buffer(path->nodes[0]);
  1693. path->nodes[0] = right;
  1694. path->slots[0] = 0;
  1695. check_node(root, path, 1);
  1696. check_leaf(root, path, 0);
  1697. return ret;
  1698. }
  1699. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  1700. struct btrfs_root *root,
  1701. struct btrfs_path *path,
  1702. u32 new_size)
  1703. {
  1704. int ret = 0;
  1705. int slot;
  1706. int slot_orig;
  1707. struct extent_buffer *leaf;
  1708. struct btrfs_item *item;
  1709. u32 nritems;
  1710. unsigned int data_end;
  1711. unsigned int old_data_start;
  1712. unsigned int old_size;
  1713. unsigned int size_diff;
  1714. int i;
  1715. slot_orig = path->slots[0];
  1716. leaf = path->nodes[0];
  1717. nritems = btrfs_header_nritems(leaf);
  1718. data_end = leaf_data_end(root, leaf);
  1719. slot = path->slots[0];
  1720. old_data_start = btrfs_item_offset_nr(leaf, slot);
  1721. old_size = btrfs_item_size_nr(leaf, slot);
  1722. BUG_ON(old_size <= new_size);
  1723. size_diff = old_size - new_size;
  1724. BUG_ON(slot < 0);
  1725. BUG_ON(slot >= nritems);
  1726. /*
  1727. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1728. */
  1729. /* first correct the data pointers */
  1730. for (i = slot; i < nritems; i++) {
  1731. u32 ioff;
  1732. item = btrfs_item_nr(leaf, i);
  1733. ioff = btrfs_item_offset(leaf, item);
  1734. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  1735. }
  1736. /* shift the data */
  1737. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  1738. data_end + size_diff, btrfs_leaf_data(leaf) +
  1739. data_end, old_data_start + new_size - data_end);
  1740. item = btrfs_item_nr(leaf, slot);
  1741. btrfs_set_item_size(leaf, item, new_size);
  1742. btrfs_mark_buffer_dirty(leaf);
  1743. ret = 0;
  1744. if (btrfs_leaf_free_space(root, leaf) < 0) {
  1745. btrfs_print_leaf(root, leaf);
  1746. BUG();
  1747. }
  1748. check_leaf(root, path, 0);
  1749. return ret;
  1750. }
  1751. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  1752. struct btrfs_root *root, struct btrfs_path *path,
  1753. u32 data_size)
  1754. {
  1755. int ret = 0;
  1756. int slot;
  1757. int slot_orig;
  1758. struct extent_buffer *leaf;
  1759. struct btrfs_item *item;
  1760. u32 nritems;
  1761. unsigned int data_end;
  1762. unsigned int old_data;
  1763. unsigned int old_size;
  1764. int i;
  1765. slot_orig = path->slots[0];
  1766. leaf = path->nodes[0];
  1767. nritems = btrfs_header_nritems(leaf);
  1768. data_end = leaf_data_end(root, leaf);
  1769. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  1770. btrfs_print_leaf(root, leaf);
  1771. BUG();
  1772. }
  1773. slot = path->slots[0];
  1774. old_data = btrfs_item_end_nr(leaf, slot);
  1775. BUG_ON(slot < 0);
  1776. BUG_ON(slot >= nritems);
  1777. /*
  1778. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1779. */
  1780. /* first correct the data pointers */
  1781. for (i = slot; i < nritems; i++) {
  1782. u32 ioff;
  1783. item = btrfs_item_nr(leaf, i);
  1784. ioff = btrfs_item_offset(leaf, item);
  1785. btrfs_set_item_offset(leaf, item, ioff - data_size);
  1786. }
  1787. /* shift the data */
  1788. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  1789. data_end - data_size, btrfs_leaf_data(leaf) +
  1790. data_end, old_data - data_end);
  1791. data_end = old_data;
  1792. old_size = btrfs_item_size_nr(leaf, slot);
  1793. item = btrfs_item_nr(leaf, slot);
  1794. btrfs_set_item_size(leaf, item, old_size + data_size);
  1795. btrfs_mark_buffer_dirty(leaf);
  1796. ret = 0;
  1797. if (btrfs_leaf_free_space(root, leaf) < 0) {
  1798. btrfs_print_leaf(root, leaf);
  1799. BUG();
  1800. }
  1801. check_leaf(root, path, 0);
  1802. return ret;
  1803. }
  1804. /*
  1805. * Given a key and some data, insert an item into the tree.
  1806. * This does all the path init required, making room in the tree if needed.
  1807. */
  1808. int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
  1809. struct btrfs_root *root,
  1810. struct btrfs_path *path,
  1811. struct btrfs_key *cpu_key, u32 data_size)
  1812. {
  1813. struct extent_buffer *leaf;
  1814. struct btrfs_item *item;
  1815. int ret = 0;
  1816. int slot;
  1817. int slot_orig;
  1818. u32 nritems;
  1819. unsigned int data_end;
  1820. struct btrfs_disk_key disk_key;
  1821. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  1822. /* create a root if there isn't one */
  1823. if (!root->node)
  1824. BUG();
  1825. ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
  1826. if (ret == 0) {
  1827. return -EEXIST;
  1828. }
  1829. if (ret < 0)
  1830. goto out;
  1831. slot_orig = path->slots[0];
  1832. leaf = path->nodes[0];
  1833. nritems = btrfs_header_nritems(leaf);
  1834. data_end = leaf_data_end(root, leaf);
  1835. if (btrfs_leaf_free_space(root, leaf) <
  1836. sizeof(struct btrfs_item) + data_size) {
  1837. BUG();
  1838. }
  1839. slot = path->slots[0];
  1840. BUG_ON(slot < 0);
  1841. if (slot != nritems) {
  1842. int i;
  1843. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  1844. if (old_data < data_end) {
  1845. btrfs_print_leaf(root, leaf);
  1846. printk("slot %d old_data %d data_end %d\n",
  1847. slot, old_data, data_end);
  1848. BUG_ON(1);
  1849. }
  1850. /*
  1851. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1852. */
  1853. /* first correct the data pointers */
  1854. for (i = slot; i < nritems; i++) {
  1855. u32 ioff;
  1856. item = btrfs_item_nr(leaf, i);
  1857. ioff = btrfs_item_offset(leaf, item);
  1858. btrfs_set_item_offset(leaf, item, ioff - data_size);
  1859. }
  1860. /* shift the items */
  1861. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  1862. btrfs_item_nr_offset(slot),
  1863. (nritems - slot) * sizeof(struct btrfs_item));
  1864. /* shift the data */
  1865. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  1866. data_end - data_size, btrfs_leaf_data(leaf) +
  1867. data_end, old_data - data_end);
  1868. data_end = old_data;
  1869. }
  1870. /* setup the item for the new data */
  1871. btrfs_set_item_key(leaf, &disk_key, slot);
  1872. item = btrfs_item_nr(leaf, slot);
  1873. btrfs_set_item_offset(leaf, item, data_end - data_size);
  1874. btrfs_set_item_size(leaf, item, data_size);
  1875. btrfs_set_header_nritems(leaf, nritems + 1);
  1876. btrfs_mark_buffer_dirty(leaf);
  1877. ret = 0;
  1878. if (slot == 0)
  1879. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1880. if (btrfs_leaf_free_space(root, leaf) < 0) {
  1881. btrfs_print_leaf(root, leaf);
  1882. BUG();
  1883. }
  1884. check_leaf(root, path, 0);
  1885. out:
  1886. return ret;
  1887. }
  1888. /*
  1889. * Given a key and some data, insert an item into the tree.
  1890. * This does all the path init required, making room in the tree if needed.
  1891. */
  1892. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1893. *root, struct btrfs_key *cpu_key, void *data, u32
  1894. data_size)
  1895. {
  1896. int ret = 0;
  1897. struct btrfs_path *path;
  1898. struct extent_buffer *leaf;
  1899. unsigned long ptr;
  1900. path = btrfs_alloc_path();
  1901. BUG_ON(!path);
  1902. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  1903. if (!ret) {
  1904. leaf = path->nodes[0];
  1905. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  1906. write_extent_buffer(leaf, data, ptr, data_size);
  1907. btrfs_mark_buffer_dirty(leaf);
  1908. }
  1909. btrfs_free_path(path);
  1910. return ret;
  1911. }
  1912. /*
  1913. * delete the pointer from a given node.
  1914. *
  1915. * If the delete empties a node, the node is removed from the tree,
  1916. * continuing all the way the root if required. The root is converted into
  1917. * a leaf if all the nodes are emptied.
  1918. */
  1919. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1920. struct btrfs_path *path, int level, int slot)
  1921. {
  1922. struct extent_buffer *parent = path->nodes[level];
  1923. u32 nritems;
  1924. int ret = 0;
  1925. int wret;
  1926. nritems = btrfs_header_nritems(parent);
  1927. if (slot != nritems -1) {
  1928. memmove_extent_buffer(parent,
  1929. btrfs_node_key_ptr_offset(slot),
  1930. btrfs_node_key_ptr_offset(slot + 1),
  1931. sizeof(struct btrfs_key_ptr) *
  1932. (nritems - slot - 1));
  1933. }
  1934. nritems--;
  1935. btrfs_set_header_nritems(parent, nritems);
  1936. if (nritems == 0 && parent == root->node) {
  1937. BUG_ON(btrfs_header_level(root->node) != 1);
  1938. /* just turn the root into a leaf and break */
  1939. btrfs_set_header_level(root->node, 0);
  1940. } else if (slot == 0) {
  1941. struct btrfs_disk_key disk_key;
  1942. btrfs_node_key(parent, &disk_key, 0);
  1943. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  1944. if (wret)
  1945. ret = wret;
  1946. }
  1947. btrfs_mark_buffer_dirty(parent);
  1948. return ret;
  1949. }
  1950. /*
  1951. * delete the item at the leaf level in path. If that empties
  1952. * the leaf, remove it from the tree
  1953. */
  1954. int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1955. struct btrfs_path *path)
  1956. {
  1957. int slot;
  1958. struct extent_buffer *leaf;
  1959. struct btrfs_item *item;
  1960. int doff;
  1961. int dsize;
  1962. int ret = 0;
  1963. int wret;
  1964. u32 nritems;
  1965. leaf = path->nodes[0];
  1966. slot = path->slots[0];
  1967. doff = btrfs_item_offset_nr(leaf, slot);
  1968. dsize = btrfs_item_size_nr(leaf, slot);
  1969. nritems = btrfs_header_nritems(leaf);
  1970. if (slot != nritems - 1) {
  1971. int i;
  1972. int data_end = leaf_data_end(root, leaf);
  1973. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  1974. data_end + dsize,
  1975. btrfs_leaf_data(leaf) + data_end,
  1976. doff - data_end);
  1977. for (i = slot + 1; i < nritems; i++) {
  1978. u32 ioff;
  1979. item = btrfs_item_nr(leaf, i);
  1980. ioff = btrfs_item_offset(leaf, item);
  1981. btrfs_set_item_offset(leaf, item, ioff + dsize);
  1982. }
  1983. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  1984. btrfs_item_nr_offset(slot + 1),
  1985. sizeof(struct btrfs_item) *
  1986. (nritems - slot - 1));
  1987. }
  1988. btrfs_set_header_nritems(leaf, nritems - 1);
  1989. nritems--;
  1990. /* delete the leaf if we've emptied it */
  1991. if (nritems == 0) {
  1992. if (leaf == root->node) {
  1993. btrfs_set_header_level(leaf, 0);
  1994. } else {
  1995. clean_tree_block(trans, root, leaf);
  1996. wait_on_tree_block_writeback(root, leaf);
  1997. wret = del_ptr(trans, root, path, 1, path->slots[1]);
  1998. if (wret)
  1999. ret = wret;
  2000. wret = btrfs_free_extent(trans, root,
  2001. extent_buffer_blocknr(leaf),
  2002. 1, 1);
  2003. if (wret)
  2004. ret = wret;
  2005. }
  2006. } else {
  2007. int used = leaf_space_used(leaf, 0, nritems);
  2008. if (slot == 0) {
  2009. struct btrfs_disk_key disk_key;
  2010. btrfs_item_key(leaf, &disk_key, 0);
  2011. wret = fixup_low_keys(trans, root, path,
  2012. &disk_key, 1);
  2013. if (wret)
  2014. ret = wret;
  2015. }
  2016. /* delete the leaf if it is mostly empty */
  2017. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  2018. /* push_leaf_left fixes the path.
  2019. * make sure the path still points to our leaf
  2020. * for possible call to del_ptr below
  2021. */
  2022. slot = path->slots[1];
  2023. extent_buffer_get(leaf);
  2024. wret = push_leaf_left(trans, root, path, 1);
  2025. if (wret < 0 && wret != -ENOSPC)
  2026. ret = wret;
  2027. if (path->nodes[0] == leaf &&
  2028. btrfs_header_nritems(leaf)) {
  2029. wret = push_leaf_right(trans, root, path, 1);
  2030. if (wret < 0 && wret != -ENOSPC)
  2031. ret = wret;
  2032. }
  2033. if (btrfs_header_nritems(leaf) == 0) {
  2034. u64 blocknr = extent_buffer_blocknr(leaf);
  2035. clean_tree_block(trans, root, leaf);
  2036. wait_on_tree_block_writeback(root, leaf);
  2037. wret = del_ptr(trans, root, path, 1, slot);
  2038. if (wret)
  2039. ret = wret;
  2040. free_extent_buffer(leaf);
  2041. wret = btrfs_free_extent(trans, root, blocknr,
  2042. 1, 1);
  2043. if (wret)
  2044. ret = wret;
  2045. } else {
  2046. btrfs_mark_buffer_dirty(leaf);
  2047. free_extent_buffer(leaf);
  2048. }
  2049. } else {
  2050. btrfs_mark_buffer_dirty(leaf);
  2051. }
  2052. }
  2053. return ret;
  2054. }
  2055. /*
  2056. * walk up the tree as far as required to find the next leaf.
  2057. * returns 0 if it found something or 1 if there are no greater leaves.
  2058. * returns < 0 on io errors.
  2059. */
  2060. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  2061. {
  2062. int slot;
  2063. int level = 1;
  2064. u64 blocknr;
  2065. struct extent_buffer *c;
  2066. struct extent_buffer *next = NULL;
  2067. while(level < BTRFS_MAX_LEVEL) {
  2068. if (!path->nodes[level])
  2069. return 1;
  2070. slot = path->slots[level] + 1;
  2071. c = path->nodes[level];
  2072. if (slot >= btrfs_header_nritems(c)) {
  2073. level++;
  2074. continue;
  2075. }
  2076. blocknr = btrfs_node_blockptr(c, slot);
  2077. if (next)
  2078. free_extent_buffer(next);
  2079. if (path->reada)
  2080. reada_for_search(root, path, level, slot);
  2081. next = read_tree_block(root, blocknr);
  2082. break;
  2083. }
  2084. path->slots[level] = slot;
  2085. while(1) {
  2086. level--;
  2087. c = path->nodes[level];
  2088. free_extent_buffer(c);
  2089. path->nodes[level] = next;
  2090. path->slots[level] = 0;
  2091. if (!level)
  2092. break;
  2093. if (path->reada)
  2094. reada_for_search(root, path, level, 0);
  2095. next = read_tree_block(root, btrfs_node_blockptr(next, 0));
  2096. }
  2097. return 0;
  2098. }