spi_bfin5xx.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469
  1. /*
  2. * Blackfin On-Chip SPI Driver
  3. *
  4. * Copyright 2004-2007 Analog Devices Inc.
  5. *
  6. * Enter bugs at http://blackfin.uclinux.org/
  7. *
  8. * Licensed under the GPL-2 or later.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/delay.h>
  13. #include <linux/device.h>
  14. #include <linux/slab.h>
  15. #include <linux/io.h>
  16. #include <linux/ioport.h>
  17. #include <linux/irq.h>
  18. #include <linux/errno.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/workqueue.h>
  24. #include <asm/dma.h>
  25. #include <asm/portmux.h>
  26. #include <asm/bfin5xx_spi.h>
  27. #include <asm/cacheflush.h>
  28. #define DRV_NAME "bfin-spi"
  29. #define DRV_AUTHOR "Bryan Wu, Luke Yang"
  30. #define DRV_DESC "Blackfin on-chip SPI Controller Driver"
  31. #define DRV_VERSION "1.0"
  32. MODULE_AUTHOR(DRV_AUTHOR);
  33. MODULE_DESCRIPTION(DRV_DESC);
  34. MODULE_LICENSE("GPL");
  35. #define START_STATE ((void *)0)
  36. #define RUNNING_STATE ((void *)1)
  37. #define DONE_STATE ((void *)2)
  38. #define ERROR_STATE ((void *)-1)
  39. struct driver_data {
  40. /* Driver model hookup */
  41. struct platform_device *pdev;
  42. /* SPI framework hookup */
  43. struct spi_master *master;
  44. /* Regs base of SPI controller */
  45. void __iomem *regs_base;
  46. /* Pin request list */
  47. u16 *pin_req;
  48. /* BFIN hookup */
  49. struct bfin5xx_spi_master *master_info;
  50. /* Driver message queue */
  51. struct workqueue_struct *workqueue;
  52. struct work_struct pump_messages;
  53. spinlock_t lock;
  54. struct list_head queue;
  55. int busy;
  56. bool running;
  57. /* Message Transfer pump */
  58. struct tasklet_struct pump_transfers;
  59. /* Current message transfer state info */
  60. struct spi_message *cur_msg;
  61. struct spi_transfer *cur_transfer;
  62. struct chip_data *cur_chip;
  63. size_t len_in_bytes;
  64. size_t len;
  65. void *tx;
  66. void *tx_end;
  67. void *rx;
  68. void *rx_end;
  69. /* DMA stuffs */
  70. int dma_channel;
  71. int dma_mapped;
  72. int dma_requested;
  73. dma_addr_t rx_dma;
  74. dma_addr_t tx_dma;
  75. int irq_requested;
  76. int spi_irq;
  77. size_t rx_map_len;
  78. size_t tx_map_len;
  79. u8 n_bytes;
  80. int cs_change;
  81. void (*write) (struct driver_data *);
  82. void (*read) (struct driver_data *);
  83. void (*duplex) (struct driver_data *);
  84. };
  85. struct chip_data {
  86. u16 ctl_reg;
  87. u16 baud;
  88. u16 flag;
  89. u8 chip_select_num;
  90. u8 n_bytes;
  91. u8 width; /* 0 or 1 */
  92. u8 enable_dma;
  93. u8 bits_per_word; /* 8 or 16 */
  94. u16 cs_chg_udelay; /* Some devices require > 255usec delay */
  95. u32 cs_gpio;
  96. u16 idle_tx_val;
  97. u8 pio_interrupt; /* use spi data irq */
  98. void (*write) (struct driver_data *);
  99. void (*read) (struct driver_data *);
  100. void (*duplex) (struct driver_data *);
  101. };
  102. #define DEFINE_SPI_REG(reg, off) \
  103. static inline u16 read_##reg(struct driver_data *drv_data) \
  104. { return bfin_read16(drv_data->regs_base + off); } \
  105. static inline void write_##reg(struct driver_data *drv_data, u16 v) \
  106. { bfin_write16(drv_data->regs_base + off, v); }
  107. DEFINE_SPI_REG(CTRL, 0x00)
  108. DEFINE_SPI_REG(FLAG, 0x04)
  109. DEFINE_SPI_REG(STAT, 0x08)
  110. DEFINE_SPI_REG(TDBR, 0x0C)
  111. DEFINE_SPI_REG(RDBR, 0x10)
  112. DEFINE_SPI_REG(BAUD, 0x14)
  113. DEFINE_SPI_REG(SHAW, 0x18)
  114. static void bfin_spi_enable(struct driver_data *drv_data)
  115. {
  116. u16 cr;
  117. cr = read_CTRL(drv_data);
  118. write_CTRL(drv_data, (cr | BIT_CTL_ENABLE));
  119. }
  120. static void bfin_spi_disable(struct driver_data *drv_data)
  121. {
  122. u16 cr;
  123. cr = read_CTRL(drv_data);
  124. write_CTRL(drv_data, (cr & (~BIT_CTL_ENABLE)));
  125. }
  126. /* Caculate the SPI_BAUD register value based on input HZ */
  127. static u16 hz_to_spi_baud(u32 speed_hz)
  128. {
  129. u_long sclk = get_sclk();
  130. u16 spi_baud = (sclk / (2 * speed_hz));
  131. if ((sclk % (2 * speed_hz)) > 0)
  132. spi_baud++;
  133. if (spi_baud < MIN_SPI_BAUD_VAL)
  134. spi_baud = MIN_SPI_BAUD_VAL;
  135. return spi_baud;
  136. }
  137. static int bfin_spi_flush(struct driver_data *drv_data)
  138. {
  139. unsigned long limit = loops_per_jiffy << 1;
  140. /* wait for stop and clear stat */
  141. while (!(read_STAT(drv_data) & BIT_STAT_SPIF) && --limit)
  142. cpu_relax();
  143. write_STAT(drv_data, BIT_STAT_CLR);
  144. return limit;
  145. }
  146. /* Chip select operation functions for cs_change flag */
  147. static void bfin_spi_cs_active(struct driver_data *drv_data, struct chip_data *chip)
  148. {
  149. if (likely(chip->chip_select_num)) {
  150. u16 flag = read_FLAG(drv_data);
  151. flag &= ~chip->flag;
  152. write_FLAG(drv_data, flag);
  153. } else {
  154. gpio_set_value(chip->cs_gpio, 0);
  155. }
  156. }
  157. static void bfin_spi_cs_deactive(struct driver_data *drv_data, struct chip_data *chip)
  158. {
  159. if (likely(chip->chip_select_num)) {
  160. u16 flag = read_FLAG(drv_data);
  161. flag |= chip->flag;
  162. write_FLAG(drv_data, flag);
  163. } else {
  164. gpio_set_value(chip->cs_gpio, 1);
  165. }
  166. /* Move delay here for consistency */
  167. if (chip->cs_chg_udelay)
  168. udelay(chip->cs_chg_udelay);
  169. }
  170. /* enable or disable the pin muxed by GPIO and SPI CS to work as SPI CS */
  171. static inline void bfin_spi_cs_enable(struct driver_data *drv_data, struct chip_data *chip)
  172. {
  173. u16 flag = read_FLAG(drv_data);
  174. flag |= (chip->flag >> 8);
  175. write_FLAG(drv_data, flag);
  176. }
  177. static inline void bfin_spi_cs_disable(struct driver_data *drv_data, struct chip_data *chip)
  178. {
  179. u16 flag = read_FLAG(drv_data);
  180. flag &= ~(chip->flag >> 8);
  181. write_FLAG(drv_data, flag);
  182. }
  183. /* stop controller and re-config current chip*/
  184. static void bfin_spi_restore_state(struct driver_data *drv_data)
  185. {
  186. struct chip_data *chip = drv_data->cur_chip;
  187. /* Clear status and disable clock */
  188. write_STAT(drv_data, BIT_STAT_CLR);
  189. bfin_spi_disable(drv_data);
  190. dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n");
  191. /* Load the registers */
  192. write_CTRL(drv_data, chip->ctl_reg);
  193. write_BAUD(drv_data, chip->baud);
  194. bfin_spi_enable(drv_data);
  195. bfin_spi_cs_active(drv_data, chip);
  196. }
  197. /* used to kick off transfer in rx mode and read unwanted RX data */
  198. static inline void bfin_spi_dummy_read(struct driver_data *drv_data)
  199. {
  200. (void) read_RDBR(drv_data);
  201. }
  202. static void bfin_spi_u8_writer(struct driver_data *drv_data)
  203. {
  204. /* clear RXS (we check for RXS inside the loop) */
  205. bfin_spi_dummy_read(drv_data);
  206. while (drv_data->tx < drv_data->tx_end) {
  207. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  208. /* wait until transfer finished.
  209. checking SPIF or TXS may not guarantee transfer completion */
  210. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  211. cpu_relax();
  212. /* discard RX data and clear RXS */
  213. bfin_spi_dummy_read(drv_data);
  214. }
  215. }
  216. static void bfin_spi_u8_reader(struct driver_data *drv_data)
  217. {
  218. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  219. /* discard old RX data and clear RXS */
  220. bfin_spi_dummy_read(drv_data);
  221. while (drv_data->rx < drv_data->rx_end) {
  222. write_TDBR(drv_data, tx_val);
  223. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  224. cpu_relax();
  225. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  226. }
  227. }
  228. static void bfin_spi_u8_duplex(struct driver_data *drv_data)
  229. {
  230. /* discard old RX data and clear RXS */
  231. bfin_spi_dummy_read(drv_data);
  232. while (drv_data->rx < drv_data->rx_end) {
  233. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  234. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  235. cpu_relax();
  236. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  237. }
  238. }
  239. static void bfin_spi_u16_writer(struct driver_data *drv_data)
  240. {
  241. /* clear RXS (we check for RXS inside the loop) */
  242. bfin_spi_dummy_read(drv_data);
  243. while (drv_data->tx < drv_data->tx_end) {
  244. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  245. drv_data->tx += 2;
  246. /* wait until transfer finished.
  247. checking SPIF or TXS may not guarantee transfer completion */
  248. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  249. cpu_relax();
  250. /* discard RX data and clear RXS */
  251. bfin_spi_dummy_read(drv_data);
  252. }
  253. }
  254. static void bfin_spi_u16_reader(struct driver_data *drv_data)
  255. {
  256. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  257. /* discard old RX data and clear RXS */
  258. bfin_spi_dummy_read(drv_data);
  259. while (drv_data->rx < drv_data->rx_end) {
  260. write_TDBR(drv_data, tx_val);
  261. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  262. cpu_relax();
  263. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  264. drv_data->rx += 2;
  265. }
  266. }
  267. static void bfin_spi_u16_duplex(struct driver_data *drv_data)
  268. {
  269. /* discard old RX data and clear RXS */
  270. bfin_spi_dummy_read(drv_data);
  271. while (drv_data->rx < drv_data->rx_end) {
  272. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  273. drv_data->tx += 2;
  274. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  275. cpu_relax();
  276. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  277. drv_data->rx += 2;
  278. }
  279. }
  280. /* test if ther is more transfer to be done */
  281. static void *bfin_spi_next_transfer(struct driver_data *drv_data)
  282. {
  283. struct spi_message *msg = drv_data->cur_msg;
  284. struct spi_transfer *trans = drv_data->cur_transfer;
  285. /* Move to next transfer */
  286. if (trans->transfer_list.next != &msg->transfers) {
  287. drv_data->cur_transfer =
  288. list_entry(trans->transfer_list.next,
  289. struct spi_transfer, transfer_list);
  290. return RUNNING_STATE;
  291. } else
  292. return DONE_STATE;
  293. }
  294. /*
  295. * caller already set message->status;
  296. * dma and pio irqs are blocked give finished message back
  297. */
  298. static void bfin_spi_giveback(struct driver_data *drv_data)
  299. {
  300. struct chip_data *chip = drv_data->cur_chip;
  301. struct spi_transfer *last_transfer;
  302. unsigned long flags;
  303. struct spi_message *msg;
  304. spin_lock_irqsave(&drv_data->lock, flags);
  305. msg = drv_data->cur_msg;
  306. drv_data->cur_msg = NULL;
  307. drv_data->cur_transfer = NULL;
  308. drv_data->cur_chip = NULL;
  309. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  310. spin_unlock_irqrestore(&drv_data->lock, flags);
  311. last_transfer = list_entry(msg->transfers.prev,
  312. struct spi_transfer, transfer_list);
  313. msg->state = NULL;
  314. if (!drv_data->cs_change)
  315. bfin_spi_cs_deactive(drv_data, chip);
  316. /* Not stop spi in autobuffer mode */
  317. if (drv_data->tx_dma != 0xFFFF)
  318. bfin_spi_disable(drv_data);
  319. if (msg->complete)
  320. msg->complete(msg->context);
  321. }
  322. /* spi data irq handler */
  323. static irqreturn_t bfin_spi_pio_irq_handler(int irq, void *dev_id)
  324. {
  325. struct driver_data *drv_data = dev_id;
  326. struct chip_data *chip = drv_data->cur_chip;
  327. struct spi_message *msg = drv_data->cur_msg;
  328. int n_bytes = drv_data->n_bytes;
  329. /* wait until transfer finished. */
  330. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  331. cpu_relax();
  332. if ((drv_data->tx && drv_data->tx >= drv_data->tx_end) ||
  333. (drv_data->rx && drv_data->rx >= (drv_data->rx_end - n_bytes))) {
  334. /* last read */
  335. if (drv_data->rx) {
  336. dev_dbg(&drv_data->pdev->dev, "last read\n");
  337. if (n_bytes == 2)
  338. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  339. else if (n_bytes == 1)
  340. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  341. drv_data->rx += n_bytes;
  342. }
  343. msg->actual_length += drv_data->len_in_bytes;
  344. if (drv_data->cs_change)
  345. bfin_spi_cs_deactive(drv_data, chip);
  346. /* Move to next transfer */
  347. msg->state = bfin_spi_next_transfer(drv_data);
  348. disable_irq(drv_data->spi_irq);
  349. /* Schedule transfer tasklet */
  350. tasklet_schedule(&drv_data->pump_transfers);
  351. return IRQ_HANDLED;
  352. }
  353. if (drv_data->rx && drv_data->tx) {
  354. /* duplex */
  355. dev_dbg(&drv_data->pdev->dev, "duplex: write_TDBR\n");
  356. if (drv_data->n_bytes == 2) {
  357. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  358. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  359. } else if (drv_data->n_bytes == 1) {
  360. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  361. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  362. }
  363. } else if (drv_data->rx) {
  364. /* read */
  365. dev_dbg(&drv_data->pdev->dev, "read: write_TDBR\n");
  366. if (drv_data->n_bytes == 2)
  367. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  368. else if (drv_data->n_bytes == 1)
  369. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  370. write_TDBR(drv_data, chip->idle_tx_val);
  371. } else if (drv_data->tx) {
  372. /* write */
  373. dev_dbg(&drv_data->pdev->dev, "write: write_TDBR\n");
  374. bfin_spi_dummy_read(drv_data);
  375. if (drv_data->n_bytes == 2)
  376. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  377. else if (drv_data->n_bytes == 1)
  378. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  379. }
  380. if (drv_data->tx)
  381. drv_data->tx += n_bytes;
  382. if (drv_data->rx)
  383. drv_data->rx += n_bytes;
  384. return IRQ_HANDLED;
  385. }
  386. static irqreturn_t bfin_spi_dma_irq_handler(int irq, void *dev_id)
  387. {
  388. struct driver_data *drv_data = dev_id;
  389. struct chip_data *chip = drv_data->cur_chip;
  390. struct spi_message *msg = drv_data->cur_msg;
  391. unsigned long timeout;
  392. unsigned short dmastat = get_dma_curr_irqstat(drv_data->dma_channel);
  393. u16 spistat = read_STAT(drv_data);
  394. dev_dbg(&drv_data->pdev->dev,
  395. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  396. dmastat, spistat);
  397. clear_dma_irqstat(drv_data->dma_channel);
  398. /*
  399. * wait for the last transaction shifted out. HRM states:
  400. * at this point there may still be data in the SPI DMA FIFO waiting
  401. * to be transmitted ... software needs to poll TXS in the SPI_STAT
  402. * register until it goes low for 2 successive reads
  403. */
  404. if (drv_data->tx != NULL) {
  405. while ((read_STAT(drv_data) & TXS) ||
  406. (read_STAT(drv_data) & TXS))
  407. cpu_relax();
  408. }
  409. dev_dbg(&drv_data->pdev->dev,
  410. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  411. dmastat, read_STAT(drv_data));
  412. timeout = jiffies + HZ;
  413. while (!(read_STAT(drv_data) & SPIF))
  414. if (!time_before(jiffies, timeout)) {
  415. dev_warn(&drv_data->pdev->dev, "timeout waiting for SPIF");
  416. break;
  417. } else
  418. cpu_relax();
  419. if ((dmastat & DMA_ERR) && (spistat & RBSY)) {
  420. msg->state = ERROR_STATE;
  421. dev_err(&drv_data->pdev->dev, "dma receive: fifo/buffer overflow\n");
  422. } else {
  423. msg->actual_length += drv_data->len_in_bytes;
  424. if (drv_data->cs_change)
  425. bfin_spi_cs_deactive(drv_data, chip);
  426. /* Move to next transfer */
  427. msg->state = bfin_spi_next_transfer(drv_data);
  428. }
  429. /* Schedule transfer tasklet */
  430. tasklet_schedule(&drv_data->pump_transfers);
  431. /* free the irq handler before next transfer */
  432. dev_dbg(&drv_data->pdev->dev,
  433. "disable dma channel irq%d\n",
  434. drv_data->dma_channel);
  435. dma_disable_irq(drv_data->dma_channel);
  436. return IRQ_HANDLED;
  437. }
  438. static void bfin_spi_pump_transfers(unsigned long data)
  439. {
  440. struct driver_data *drv_data = (struct driver_data *)data;
  441. struct spi_message *message = NULL;
  442. struct spi_transfer *transfer = NULL;
  443. struct spi_transfer *previous = NULL;
  444. struct chip_data *chip = NULL;
  445. u8 width;
  446. u16 cr, dma_width, dma_config;
  447. u32 tranf_success = 1;
  448. u8 full_duplex = 0;
  449. /* Get current state information */
  450. message = drv_data->cur_msg;
  451. transfer = drv_data->cur_transfer;
  452. chip = drv_data->cur_chip;
  453. /*
  454. * if msg is error or done, report it back using complete() callback
  455. */
  456. /* Handle for abort */
  457. if (message->state == ERROR_STATE) {
  458. dev_dbg(&drv_data->pdev->dev, "transfer: we've hit an error\n");
  459. message->status = -EIO;
  460. bfin_spi_giveback(drv_data);
  461. return;
  462. }
  463. /* Handle end of message */
  464. if (message->state == DONE_STATE) {
  465. dev_dbg(&drv_data->pdev->dev, "transfer: all done!\n");
  466. message->status = 0;
  467. bfin_spi_giveback(drv_data);
  468. return;
  469. }
  470. /* Delay if requested at end of transfer */
  471. if (message->state == RUNNING_STATE) {
  472. dev_dbg(&drv_data->pdev->dev, "transfer: still running ...\n");
  473. previous = list_entry(transfer->transfer_list.prev,
  474. struct spi_transfer, transfer_list);
  475. if (previous->delay_usecs)
  476. udelay(previous->delay_usecs);
  477. }
  478. /* Flush any existing transfers that may be sitting in the hardware */
  479. if (bfin_spi_flush(drv_data) == 0) {
  480. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  481. message->status = -EIO;
  482. bfin_spi_giveback(drv_data);
  483. return;
  484. }
  485. if (transfer->len == 0) {
  486. /* Move to next transfer of this msg */
  487. message->state = bfin_spi_next_transfer(drv_data);
  488. /* Schedule next transfer tasklet */
  489. tasklet_schedule(&drv_data->pump_transfers);
  490. }
  491. if (transfer->tx_buf != NULL) {
  492. drv_data->tx = (void *)transfer->tx_buf;
  493. drv_data->tx_end = drv_data->tx + transfer->len;
  494. dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n",
  495. transfer->tx_buf, drv_data->tx_end);
  496. } else {
  497. drv_data->tx = NULL;
  498. }
  499. if (transfer->rx_buf != NULL) {
  500. full_duplex = transfer->tx_buf != NULL;
  501. drv_data->rx = transfer->rx_buf;
  502. drv_data->rx_end = drv_data->rx + transfer->len;
  503. dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n",
  504. transfer->rx_buf, drv_data->rx_end);
  505. } else {
  506. drv_data->rx = NULL;
  507. }
  508. drv_data->rx_dma = transfer->rx_dma;
  509. drv_data->tx_dma = transfer->tx_dma;
  510. drv_data->len_in_bytes = transfer->len;
  511. drv_data->cs_change = transfer->cs_change;
  512. /* Bits per word setup */
  513. switch (transfer->bits_per_word) {
  514. case 8:
  515. drv_data->n_bytes = 1;
  516. width = CFG_SPI_WORDSIZE8;
  517. drv_data->read = bfin_spi_u8_reader;
  518. drv_data->write = bfin_spi_u8_writer;
  519. drv_data->duplex = bfin_spi_u8_duplex;
  520. break;
  521. case 16:
  522. drv_data->n_bytes = 2;
  523. width = CFG_SPI_WORDSIZE16;
  524. drv_data->read = bfin_spi_u16_reader;
  525. drv_data->write = bfin_spi_u16_writer;
  526. drv_data->duplex = bfin_spi_u16_duplex;
  527. break;
  528. default:
  529. /* No change, the same as default setting */
  530. transfer->bits_per_word = chip->bits_per_word;
  531. drv_data->n_bytes = chip->n_bytes;
  532. width = chip->width;
  533. drv_data->write = chip->write;
  534. drv_data->read = chip->read;
  535. drv_data->duplex = chip->duplex;
  536. break;
  537. }
  538. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  539. cr |= (width << 8);
  540. write_CTRL(drv_data, cr);
  541. if (width == CFG_SPI_WORDSIZE16) {
  542. drv_data->len = (transfer->len) >> 1;
  543. } else {
  544. drv_data->len = transfer->len;
  545. }
  546. dev_dbg(&drv_data->pdev->dev,
  547. "transfer: drv_data->write is %p, chip->write is %p\n",
  548. drv_data->write, chip->write);
  549. message->state = RUNNING_STATE;
  550. dma_config = 0;
  551. /* Speed setup (surely valid because already checked) */
  552. if (transfer->speed_hz)
  553. write_BAUD(drv_data, hz_to_spi_baud(transfer->speed_hz));
  554. else
  555. write_BAUD(drv_data, chip->baud);
  556. write_STAT(drv_data, BIT_STAT_CLR);
  557. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  558. if (drv_data->cs_change)
  559. bfin_spi_cs_active(drv_data, chip);
  560. dev_dbg(&drv_data->pdev->dev,
  561. "now pumping a transfer: width is %d, len is %d\n",
  562. width, transfer->len);
  563. /*
  564. * Try to map dma buffer and do a dma transfer. If successful use,
  565. * different way to r/w according to the enable_dma settings and if
  566. * we are not doing a full duplex transfer (since the hardware does
  567. * not support full duplex DMA transfers).
  568. */
  569. if (!full_duplex && drv_data->cur_chip->enable_dma
  570. && drv_data->len > 6) {
  571. unsigned long dma_start_addr, flags;
  572. disable_dma(drv_data->dma_channel);
  573. clear_dma_irqstat(drv_data->dma_channel);
  574. /* config dma channel */
  575. dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n");
  576. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  577. if (width == CFG_SPI_WORDSIZE16) {
  578. set_dma_x_modify(drv_data->dma_channel, 2);
  579. dma_width = WDSIZE_16;
  580. } else {
  581. set_dma_x_modify(drv_data->dma_channel, 1);
  582. dma_width = WDSIZE_8;
  583. }
  584. /* poll for SPI completion before start */
  585. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  586. cpu_relax();
  587. /* dirty hack for autobuffer DMA mode */
  588. if (drv_data->tx_dma == 0xFFFF) {
  589. dev_dbg(&drv_data->pdev->dev,
  590. "doing autobuffer DMA out.\n");
  591. /* no irq in autobuffer mode */
  592. dma_config =
  593. (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
  594. set_dma_config(drv_data->dma_channel, dma_config);
  595. set_dma_start_addr(drv_data->dma_channel,
  596. (unsigned long)drv_data->tx);
  597. enable_dma(drv_data->dma_channel);
  598. /* start SPI transfer */
  599. write_CTRL(drv_data, cr | BIT_CTL_TIMOD_DMA_TX);
  600. /* just return here, there can only be one transfer
  601. * in this mode
  602. */
  603. message->status = 0;
  604. bfin_spi_giveback(drv_data);
  605. return;
  606. }
  607. /* In dma mode, rx or tx must be NULL in one transfer */
  608. dma_config = (RESTART | dma_width | DI_EN);
  609. if (drv_data->rx != NULL) {
  610. /* set transfer mode, and enable SPI */
  611. dev_dbg(&drv_data->pdev->dev, "doing DMA in to %p (size %zx)\n",
  612. drv_data->rx, drv_data->len_in_bytes);
  613. /* invalidate caches, if needed */
  614. if (bfin_addr_dcacheable((unsigned long) drv_data->rx))
  615. invalidate_dcache_range((unsigned long) drv_data->rx,
  616. (unsigned long) (drv_data->rx +
  617. drv_data->len_in_bytes));
  618. dma_config |= WNR;
  619. dma_start_addr = (unsigned long)drv_data->rx;
  620. cr |= BIT_CTL_TIMOD_DMA_RX | BIT_CTL_SENDOPT;
  621. } else if (drv_data->tx != NULL) {
  622. dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n");
  623. /* flush caches, if needed */
  624. if (bfin_addr_dcacheable((unsigned long) drv_data->tx))
  625. flush_dcache_range((unsigned long) drv_data->tx,
  626. (unsigned long) (drv_data->tx +
  627. drv_data->len_in_bytes));
  628. dma_start_addr = (unsigned long)drv_data->tx;
  629. cr |= BIT_CTL_TIMOD_DMA_TX;
  630. } else
  631. BUG();
  632. /* oh man, here there be monsters ... and i dont mean the
  633. * fluffy cute ones from pixar, i mean the kind that'll eat
  634. * your data, kick your dog, and love it all. do *not* try
  635. * and change these lines unless you (1) heavily test DMA
  636. * with SPI flashes on a loaded system (e.g. ping floods),
  637. * (2) know just how broken the DMA engine interaction with
  638. * the SPI peripheral is, and (3) have someone else to blame
  639. * when you screw it all up anyways.
  640. */
  641. set_dma_start_addr(drv_data->dma_channel, dma_start_addr);
  642. set_dma_config(drv_data->dma_channel, dma_config);
  643. local_irq_save(flags);
  644. SSYNC();
  645. write_CTRL(drv_data, cr);
  646. enable_dma(drv_data->dma_channel);
  647. dma_enable_irq(drv_data->dma_channel);
  648. local_irq_restore(flags);
  649. return;
  650. }
  651. if (chip->pio_interrupt) {
  652. /* use write mode. spi irq should have been disabled */
  653. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  654. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  655. /* discard old RX data and clear RXS */
  656. bfin_spi_dummy_read(drv_data);
  657. /* start transfer */
  658. if (drv_data->tx == NULL)
  659. write_TDBR(drv_data, chip->idle_tx_val);
  660. else {
  661. if (transfer->bits_per_word == 8)
  662. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  663. else if (transfer->bits_per_word == 16)
  664. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  665. drv_data->tx += drv_data->n_bytes;
  666. }
  667. /* once TDBR is empty, interrupt is triggered */
  668. enable_irq(drv_data->spi_irq);
  669. return;
  670. }
  671. /* IO mode */
  672. dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n");
  673. /* we always use SPI_WRITE mode. SPI_READ mode
  674. seems to have problems with setting up the
  675. output value in TDBR prior to the transfer. */
  676. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  677. if (full_duplex) {
  678. /* full duplex mode */
  679. BUG_ON((drv_data->tx_end - drv_data->tx) !=
  680. (drv_data->rx_end - drv_data->rx));
  681. dev_dbg(&drv_data->pdev->dev,
  682. "IO duplex: cr is 0x%x\n", cr);
  683. drv_data->duplex(drv_data);
  684. if (drv_data->tx != drv_data->tx_end)
  685. tranf_success = 0;
  686. } else if (drv_data->tx != NULL) {
  687. /* write only half duplex */
  688. dev_dbg(&drv_data->pdev->dev,
  689. "IO write: cr is 0x%x\n", cr);
  690. drv_data->write(drv_data);
  691. if (drv_data->tx != drv_data->tx_end)
  692. tranf_success = 0;
  693. } else if (drv_data->rx != NULL) {
  694. /* read only half duplex */
  695. dev_dbg(&drv_data->pdev->dev,
  696. "IO read: cr is 0x%x\n", cr);
  697. drv_data->read(drv_data);
  698. if (drv_data->rx != drv_data->rx_end)
  699. tranf_success = 0;
  700. }
  701. if (!tranf_success) {
  702. dev_dbg(&drv_data->pdev->dev,
  703. "IO write error!\n");
  704. message->state = ERROR_STATE;
  705. } else {
  706. /* Update total byte transfered */
  707. message->actual_length += drv_data->len_in_bytes;
  708. /* Move to next transfer of this msg */
  709. message->state = bfin_spi_next_transfer(drv_data);
  710. if (drv_data->cs_change)
  711. bfin_spi_cs_deactive(drv_data, chip);
  712. }
  713. /* Schedule next transfer tasklet */
  714. tasklet_schedule(&drv_data->pump_transfers);
  715. }
  716. /* pop a msg from queue and kick off real transfer */
  717. static void bfin_spi_pump_messages(struct work_struct *work)
  718. {
  719. struct driver_data *drv_data;
  720. unsigned long flags;
  721. drv_data = container_of(work, struct driver_data, pump_messages);
  722. /* Lock queue and check for queue work */
  723. spin_lock_irqsave(&drv_data->lock, flags);
  724. if (list_empty(&drv_data->queue) || !drv_data->running) {
  725. /* pumper kicked off but no work to do */
  726. drv_data->busy = 0;
  727. spin_unlock_irqrestore(&drv_data->lock, flags);
  728. return;
  729. }
  730. /* Make sure we are not already running a message */
  731. if (drv_data->cur_msg) {
  732. spin_unlock_irqrestore(&drv_data->lock, flags);
  733. return;
  734. }
  735. /* Extract head of queue */
  736. drv_data->cur_msg = list_entry(drv_data->queue.next,
  737. struct spi_message, queue);
  738. /* Setup the SSP using the per chip configuration */
  739. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  740. bfin_spi_restore_state(drv_data);
  741. list_del_init(&drv_data->cur_msg->queue);
  742. /* Initial message state */
  743. drv_data->cur_msg->state = START_STATE;
  744. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  745. struct spi_transfer, transfer_list);
  746. dev_dbg(&drv_data->pdev->dev, "got a message to pump, "
  747. "state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
  748. drv_data->cur_chip->baud, drv_data->cur_chip->flag,
  749. drv_data->cur_chip->ctl_reg);
  750. dev_dbg(&drv_data->pdev->dev,
  751. "the first transfer len is %d\n",
  752. drv_data->cur_transfer->len);
  753. /* Mark as busy and launch transfers */
  754. tasklet_schedule(&drv_data->pump_transfers);
  755. drv_data->busy = 1;
  756. spin_unlock_irqrestore(&drv_data->lock, flags);
  757. }
  758. /*
  759. * got a msg to transfer, queue it in drv_data->queue.
  760. * And kick off message pumper
  761. */
  762. static int bfin_spi_transfer(struct spi_device *spi, struct spi_message *msg)
  763. {
  764. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  765. unsigned long flags;
  766. spin_lock_irqsave(&drv_data->lock, flags);
  767. if (!drv_data->running) {
  768. spin_unlock_irqrestore(&drv_data->lock, flags);
  769. return -ESHUTDOWN;
  770. }
  771. msg->actual_length = 0;
  772. msg->status = -EINPROGRESS;
  773. msg->state = START_STATE;
  774. dev_dbg(&spi->dev, "adding an msg in transfer() \n");
  775. list_add_tail(&msg->queue, &drv_data->queue);
  776. if (drv_data->running && !drv_data->busy)
  777. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  778. spin_unlock_irqrestore(&drv_data->lock, flags);
  779. return 0;
  780. }
  781. #define MAX_SPI_SSEL 7
  782. static u16 ssel[][MAX_SPI_SSEL] = {
  783. {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
  784. P_SPI0_SSEL4, P_SPI0_SSEL5,
  785. P_SPI0_SSEL6, P_SPI0_SSEL7},
  786. {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
  787. P_SPI1_SSEL4, P_SPI1_SSEL5,
  788. P_SPI1_SSEL6, P_SPI1_SSEL7},
  789. {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
  790. P_SPI2_SSEL4, P_SPI2_SSEL5,
  791. P_SPI2_SSEL6, P_SPI2_SSEL7},
  792. };
  793. /* setup for devices (may be called multiple times -- not just first setup) */
  794. static int bfin_spi_setup(struct spi_device *spi)
  795. {
  796. struct bfin5xx_spi_chip *chip_info;
  797. struct chip_data *chip = NULL;
  798. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  799. int ret = -EINVAL;
  800. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  801. goto error;
  802. /* Only alloc (or use chip_info) on first setup */
  803. chip_info = NULL;
  804. chip = spi_get_ctldata(spi);
  805. if (chip == NULL) {
  806. chip = kzalloc(sizeof(*chip), GFP_KERNEL);
  807. if (!chip) {
  808. dev_err(&spi->dev, "cannot allocate chip data\n");
  809. ret = -ENOMEM;
  810. goto error;
  811. }
  812. chip->enable_dma = 0;
  813. chip_info = spi->controller_data;
  814. }
  815. /* chip_info isn't always needed */
  816. if (chip_info) {
  817. /* Make sure people stop trying to set fields via ctl_reg
  818. * when they should actually be using common SPI framework.
  819. * Currently we let through: WOM EMISO PSSE GM SZ TIMOD.
  820. * Not sure if a user actually needs/uses any of these,
  821. * but let's assume (for now) they do.
  822. */
  823. if (chip_info->ctl_reg & (SPE|MSTR|CPOL|CPHA|LSBF|SIZE)) {
  824. dev_err(&spi->dev, "do not set bits in ctl_reg "
  825. "that the SPI framework manages\n");
  826. goto error;
  827. }
  828. chip->enable_dma = chip_info->enable_dma != 0
  829. && drv_data->master_info->enable_dma;
  830. chip->ctl_reg = chip_info->ctl_reg;
  831. chip->bits_per_word = chip_info->bits_per_word;
  832. chip->cs_chg_udelay = chip_info->cs_chg_udelay;
  833. chip->cs_gpio = chip_info->cs_gpio;
  834. chip->idle_tx_val = chip_info->idle_tx_val;
  835. chip->pio_interrupt = chip_info->pio_interrupt;
  836. }
  837. /* translate common spi framework into our register */
  838. if (spi->mode & SPI_CPOL)
  839. chip->ctl_reg |= CPOL;
  840. if (spi->mode & SPI_CPHA)
  841. chip->ctl_reg |= CPHA;
  842. if (spi->mode & SPI_LSB_FIRST)
  843. chip->ctl_reg |= LSBF;
  844. /* we dont support running in slave mode (yet?) */
  845. chip->ctl_reg |= MSTR;
  846. /*
  847. * Notice: for blackfin, the speed_hz is the value of register
  848. * SPI_BAUD, not the real baudrate
  849. */
  850. chip->baud = hz_to_spi_baud(spi->max_speed_hz);
  851. chip->flag = (1 << (spi->chip_select)) << 8;
  852. chip->chip_select_num = spi->chip_select;
  853. switch (chip->bits_per_word) {
  854. case 8:
  855. chip->n_bytes = 1;
  856. chip->width = CFG_SPI_WORDSIZE8;
  857. chip->read = bfin_spi_u8_reader;
  858. chip->write = bfin_spi_u8_writer;
  859. chip->duplex = bfin_spi_u8_duplex;
  860. break;
  861. case 16:
  862. chip->n_bytes = 2;
  863. chip->width = CFG_SPI_WORDSIZE16;
  864. chip->read = bfin_spi_u16_reader;
  865. chip->write = bfin_spi_u16_writer;
  866. chip->duplex = bfin_spi_u16_duplex;
  867. break;
  868. default:
  869. dev_err(&spi->dev, "%d bits_per_word is not supported\n",
  870. chip->bits_per_word);
  871. goto error;
  872. }
  873. if (chip->enable_dma && chip->pio_interrupt) {
  874. dev_err(&spi->dev, "enable_dma is set, "
  875. "do not set pio_interrupt\n");
  876. goto error;
  877. }
  878. /*
  879. * if any one SPI chip is registered and wants DMA, request the
  880. * DMA channel for it
  881. */
  882. if (chip->enable_dma && !drv_data->dma_requested) {
  883. /* register dma irq handler */
  884. ret = request_dma(drv_data->dma_channel, "BFIN_SPI_DMA");
  885. if (ret) {
  886. dev_err(&spi->dev,
  887. "Unable to request BlackFin SPI DMA channel\n");
  888. goto error;
  889. }
  890. drv_data->dma_requested = 1;
  891. ret = set_dma_callback(drv_data->dma_channel,
  892. bfin_spi_dma_irq_handler, drv_data);
  893. if (ret) {
  894. dev_err(&spi->dev, "Unable to set dma callback\n");
  895. goto error;
  896. }
  897. dma_disable_irq(drv_data->dma_channel);
  898. }
  899. if (chip->pio_interrupt && !drv_data->irq_requested) {
  900. ret = request_irq(drv_data->spi_irq, bfin_spi_pio_irq_handler,
  901. IRQF_DISABLED, "BFIN_SPI", drv_data);
  902. if (ret) {
  903. dev_err(&spi->dev, "Unable to register spi IRQ\n");
  904. goto error;
  905. }
  906. drv_data->irq_requested = 1;
  907. /* we use write mode, spi irq has to be disabled here */
  908. disable_irq(drv_data->spi_irq);
  909. }
  910. if (chip->chip_select_num == 0) {
  911. ret = gpio_request(chip->cs_gpio, spi->modalias);
  912. if (ret) {
  913. dev_err(&spi->dev, "gpio_request() error\n");
  914. goto pin_error;
  915. }
  916. gpio_direction_output(chip->cs_gpio, 1);
  917. }
  918. dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d\n",
  919. spi->modalias, chip->width, chip->enable_dma);
  920. dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n",
  921. chip->ctl_reg, chip->flag);
  922. spi_set_ctldata(spi, chip);
  923. dev_dbg(&spi->dev, "chip select number is %d\n", chip->chip_select_num);
  924. if (chip->chip_select_num > 0 &&
  925. chip->chip_select_num <= spi->master->num_chipselect) {
  926. ret = peripheral_request(ssel[spi->master->bus_num]
  927. [chip->chip_select_num-1], spi->modalias);
  928. if (ret) {
  929. dev_err(&spi->dev, "peripheral_request() error\n");
  930. goto pin_error;
  931. }
  932. }
  933. bfin_spi_cs_enable(drv_data, chip);
  934. bfin_spi_cs_deactive(drv_data, chip);
  935. return 0;
  936. pin_error:
  937. if (chip->chip_select_num == 0)
  938. gpio_free(chip->cs_gpio);
  939. else
  940. peripheral_free(ssel[spi->master->bus_num]
  941. [chip->chip_select_num - 1]);
  942. error:
  943. if (chip) {
  944. if (drv_data->dma_requested)
  945. free_dma(drv_data->dma_channel);
  946. drv_data->dma_requested = 0;
  947. kfree(chip);
  948. /* prevent free 'chip' twice */
  949. spi_set_ctldata(spi, NULL);
  950. }
  951. return ret;
  952. }
  953. /*
  954. * callback for spi framework.
  955. * clean driver specific data
  956. */
  957. static void bfin_spi_cleanup(struct spi_device *spi)
  958. {
  959. struct chip_data *chip = spi_get_ctldata(spi);
  960. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  961. if (!chip)
  962. return;
  963. if ((chip->chip_select_num > 0)
  964. && (chip->chip_select_num <= spi->master->num_chipselect)) {
  965. peripheral_free(ssel[spi->master->bus_num]
  966. [chip->chip_select_num-1]);
  967. bfin_spi_cs_disable(drv_data, chip);
  968. }
  969. if (chip->chip_select_num == 0)
  970. gpio_free(chip->cs_gpio);
  971. kfree(chip);
  972. /* prevent free 'chip' twice */
  973. spi_set_ctldata(spi, NULL);
  974. }
  975. static inline int bfin_spi_init_queue(struct driver_data *drv_data)
  976. {
  977. INIT_LIST_HEAD(&drv_data->queue);
  978. spin_lock_init(&drv_data->lock);
  979. drv_data->running = false;
  980. drv_data->busy = 0;
  981. /* init transfer tasklet */
  982. tasklet_init(&drv_data->pump_transfers,
  983. bfin_spi_pump_transfers, (unsigned long)drv_data);
  984. /* init messages workqueue */
  985. INIT_WORK(&drv_data->pump_messages, bfin_spi_pump_messages);
  986. drv_data->workqueue = create_singlethread_workqueue(
  987. dev_name(drv_data->master->dev.parent));
  988. if (drv_data->workqueue == NULL)
  989. return -EBUSY;
  990. return 0;
  991. }
  992. static inline int bfin_spi_start_queue(struct driver_data *drv_data)
  993. {
  994. unsigned long flags;
  995. spin_lock_irqsave(&drv_data->lock, flags);
  996. if (drv_data->running || drv_data->busy) {
  997. spin_unlock_irqrestore(&drv_data->lock, flags);
  998. return -EBUSY;
  999. }
  1000. drv_data->running = true;
  1001. drv_data->cur_msg = NULL;
  1002. drv_data->cur_transfer = NULL;
  1003. drv_data->cur_chip = NULL;
  1004. spin_unlock_irqrestore(&drv_data->lock, flags);
  1005. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1006. return 0;
  1007. }
  1008. static inline int bfin_spi_stop_queue(struct driver_data *drv_data)
  1009. {
  1010. unsigned long flags;
  1011. unsigned limit = 500;
  1012. int status = 0;
  1013. spin_lock_irqsave(&drv_data->lock, flags);
  1014. /*
  1015. * This is a bit lame, but is optimized for the common execution path.
  1016. * A wait_queue on the drv_data->busy could be used, but then the common
  1017. * execution path (pump_messages) would be required to call wake_up or
  1018. * friends on every SPI message. Do this instead
  1019. */
  1020. drv_data->running = false;
  1021. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1022. spin_unlock_irqrestore(&drv_data->lock, flags);
  1023. msleep(10);
  1024. spin_lock_irqsave(&drv_data->lock, flags);
  1025. }
  1026. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1027. status = -EBUSY;
  1028. spin_unlock_irqrestore(&drv_data->lock, flags);
  1029. return status;
  1030. }
  1031. static inline int bfin_spi_destroy_queue(struct driver_data *drv_data)
  1032. {
  1033. int status;
  1034. status = bfin_spi_stop_queue(drv_data);
  1035. if (status != 0)
  1036. return status;
  1037. destroy_workqueue(drv_data->workqueue);
  1038. return 0;
  1039. }
  1040. static int __init bfin_spi_probe(struct platform_device *pdev)
  1041. {
  1042. struct device *dev = &pdev->dev;
  1043. struct bfin5xx_spi_master *platform_info;
  1044. struct spi_master *master;
  1045. struct driver_data *drv_data = 0;
  1046. struct resource *res;
  1047. int status = 0;
  1048. platform_info = dev->platform_data;
  1049. /* Allocate master with space for drv_data */
  1050. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1051. if (!master) {
  1052. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1053. return -ENOMEM;
  1054. }
  1055. drv_data = spi_master_get_devdata(master);
  1056. drv_data->master = master;
  1057. drv_data->master_info = platform_info;
  1058. drv_data->pdev = pdev;
  1059. drv_data->pin_req = platform_info->pin_req;
  1060. /* the spi->mode bits supported by this driver: */
  1061. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
  1062. master->bus_num = pdev->id;
  1063. master->num_chipselect = platform_info->num_chipselect;
  1064. master->cleanup = bfin_spi_cleanup;
  1065. master->setup = bfin_spi_setup;
  1066. master->transfer = bfin_spi_transfer;
  1067. /* Find and map our resources */
  1068. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1069. if (res == NULL) {
  1070. dev_err(dev, "Cannot get IORESOURCE_MEM\n");
  1071. status = -ENOENT;
  1072. goto out_error_get_res;
  1073. }
  1074. drv_data->regs_base = ioremap(res->start, resource_size(res));
  1075. if (drv_data->regs_base == NULL) {
  1076. dev_err(dev, "Cannot map IO\n");
  1077. status = -ENXIO;
  1078. goto out_error_ioremap;
  1079. }
  1080. res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  1081. if (res == NULL) {
  1082. dev_err(dev, "No DMA channel specified\n");
  1083. status = -ENOENT;
  1084. goto out_error_free_io;
  1085. }
  1086. drv_data->dma_channel = res->start;
  1087. drv_data->spi_irq = platform_get_irq(pdev, 0);
  1088. if (drv_data->spi_irq < 0) {
  1089. dev_err(dev, "No spi pio irq specified\n");
  1090. status = -ENOENT;
  1091. goto out_error_free_io;
  1092. }
  1093. /* Initial and start queue */
  1094. status = bfin_spi_init_queue(drv_data);
  1095. if (status != 0) {
  1096. dev_err(dev, "problem initializing queue\n");
  1097. goto out_error_queue_alloc;
  1098. }
  1099. status = bfin_spi_start_queue(drv_data);
  1100. if (status != 0) {
  1101. dev_err(dev, "problem starting queue\n");
  1102. goto out_error_queue_alloc;
  1103. }
  1104. status = peripheral_request_list(drv_data->pin_req, DRV_NAME);
  1105. if (status != 0) {
  1106. dev_err(&pdev->dev, ": Requesting Peripherals failed\n");
  1107. goto out_error_queue_alloc;
  1108. }
  1109. /* Reset SPI registers. If these registers were used by the boot loader,
  1110. * the sky may fall on your head if you enable the dma controller.
  1111. */
  1112. write_CTRL(drv_data, BIT_CTL_CPHA | BIT_CTL_MASTER);
  1113. write_FLAG(drv_data, 0xFF00);
  1114. /* Register with the SPI framework */
  1115. platform_set_drvdata(pdev, drv_data);
  1116. status = spi_register_master(master);
  1117. if (status != 0) {
  1118. dev_err(dev, "problem registering spi master\n");
  1119. goto out_error_queue_alloc;
  1120. }
  1121. dev_info(dev, "%s, Version %s, regs_base@%p, dma channel@%d\n",
  1122. DRV_DESC, DRV_VERSION, drv_data->regs_base,
  1123. drv_data->dma_channel);
  1124. return status;
  1125. out_error_queue_alloc:
  1126. bfin_spi_destroy_queue(drv_data);
  1127. out_error_free_io:
  1128. iounmap((void *) drv_data->regs_base);
  1129. out_error_ioremap:
  1130. out_error_get_res:
  1131. spi_master_put(master);
  1132. return status;
  1133. }
  1134. /* stop hardware and remove the driver */
  1135. static int __devexit bfin_spi_remove(struct platform_device *pdev)
  1136. {
  1137. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1138. int status = 0;
  1139. if (!drv_data)
  1140. return 0;
  1141. /* Remove the queue */
  1142. status = bfin_spi_destroy_queue(drv_data);
  1143. if (status != 0)
  1144. return status;
  1145. /* Disable the SSP at the peripheral and SOC level */
  1146. bfin_spi_disable(drv_data);
  1147. /* Release DMA */
  1148. if (drv_data->master_info->enable_dma) {
  1149. if (dma_channel_active(drv_data->dma_channel))
  1150. free_dma(drv_data->dma_channel);
  1151. }
  1152. if (drv_data->irq_requested) {
  1153. free_irq(drv_data->spi_irq, drv_data);
  1154. drv_data->irq_requested = 0;
  1155. }
  1156. /* Disconnect from the SPI framework */
  1157. spi_unregister_master(drv_data->master);
  1158. peripheral_free_list(drv_data->pin_req);
  1159. /* Prevent double remove */
  1160. platform_set_drvdata(pdev, NULL);
  1161. return 0;
  1162. }
  1163. #ifdef CONFIG_PM
  1164. static int bfin_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1165. {
  1166. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1167. int status = 0;
  1168. status = bfin_spi_stop_queue(drv_data);
  1169. if (status != 0)
  1170. return status;
  1171. /* stop hardware */
  1172. bfin_spi_disable(drv_data);
  1173. return 0;
  1174. }
  1175. static int bfin_spi_resume(struct platform_device *pdev)
  1176. {
  1177. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1178. int status = 0;
  1179. /* Enable the SPI interface */
  1180. bfin_spi_enable(drv_data);
  1181. /* Start the queue running */
  1182. status = bfin_spi_start_queue(drv_data);
  1183. if (status != 0) {
  1184. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1185. return status;
  1186. }
  1187. return 0;
  1188. }
  1189. #else
  1190. #define bfin_spi_suspend NULL
  1191. #define bfin_spi_resume NULL
  1192. #endif /* CONFIG_PM */
  1193. MODULE_ALIAS("platform:bfin-spi");
  1194. static struct platform_driver bfin_spi_driver = {
  1195. .driver = {
  1196. .name = DRV_NAME,
  1197. .owner = THIS_MODULE,
  1198. },
  1199. .suspend = bfin_spi_suspend,
  1200. .resume = bfin_spi_resume,
  1201. .remove = __devexit_p(bfin_spi_remove),
  1202. };
  1203. static int __init bfin_spi_init(void)
  1204. {
  1205. return platform_driver_probe(&bfin_spi_driver, bfin_spi_probe);
  1206. }
  1207. module_init(bfin_spi_init);
  1208. static void __exit bfin_spi_exit(void)
  1209. {
  1210. platform_driver_unregister(&bfin_spi_driver);
  1211. }
  1212. module_exit(bfin_spi_exit);