sky2.c 91 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453
  1. /*
  2. * New driver for Marvell Yukon 2 chipset.
  3. * Based on earlier sk98lin, and skge driver.
  4. *
  5. * This driver intentionally does not support all the features
  6. * of the original driver such as link fail-over and link management because
  7. * those should be done at higher levels.
  8. *
  9. * Copyright (C) 2005 Stephen Hemminger <shemminger@osdl.org>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #include <linux/config.h>
  26. #include <linux/crc32.h>
  27. #include <linux/kernel.h>
  28. #include <linux/version.h>
  29. #include <linux/module.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/dma-mapping.h>
  32. #include <linux/etherdevice.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/pci.h>
  35. #include <linux/ip.h>
  36. #include <linux/tcp.h>
  37. #include <linux/in.h>
  38. #include <linux/delay.h>
  39. #include <linux/workqueue.h>
  40. #include <linux/if_vlan.h>
  41. #include <linux/prefetch.h>
  42. #include <linux/mii.h>
  43. #include <asm/irq.h>
  44. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  45. #define SKY2_VLAN_TAG_USED 1
  46. #endif
  47. #include "sky2.h"
  48. #define DRV_NAME "sky2"
  49. #define DRV_VERSION "1.2"
  50. #define PFX DRV_NAME " "
  51. /*
  52. * The Yukon II chipset takes 64 bit command blocks (called list elements)
  53. * that are organized into three (receive, transmit, status) different rings
  54. * similar to Tigon3. A transmit can require several elements;
  55. * a receive requires one (or two if using 64 bit dma).
  56. */
  57. #define RX_LE_SIZE 512
  58. #define RX_LE_BYTES (RX_LE_SIZE*sizeof(struct sky2_rx_le))
  59. #define RX_MAX_PENDING (RX_LE_SIZE/2 - 2)
  60. #define RX_DEF_PENDING RX_MAX_PENDING
  61. #define RX_SKB_ALIGN 8
  62. #define TX_RING_SIZE 512
  63. #define TX_DEF_PENDING (TX_RING_SIZE - 1)
  64. #define TX_MIN_PENDING 64
  65. #define MAX_SKB_TX_LE (4 + (sizeof(dma_addr_t)/sizeof(u32))*MAX_SKB_FRAGS)
  66. #define STATUS_RING_SIZE 2048 /* 2 ports * (TX + 2*RX) */
  67. #define STATUS_LE_BYTES (STATUS_RING_SIZE*sizeof(struct sky2_status_le))
  68. #define ETH_JUMBO_MTU 9000
  69. #define TX_WATCHDOG (5 * HZ)
  70. #define NAPI_WEIGHT 64
  71. #define PHY_RETRIES 1000
  72. static const u32 default_msg =
  73. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  74. | NETIF_MSG_TIMER | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR
  75. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  76. static int debug = -1; /* defaults above */
  77. module_param(debug, int, 0);
  78. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  79. static int copybreak __read_mostly = 256;
  80. module_param(copybreak, int, 0);
  81. MODULE_PARM_DESC(copybreak, "Receive copy threshold");
  82. static int disable_msi = 0;
  83. module_param(disable_msi, int, 0);
  84. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  85. static const struct pci_device_id sky2_id_table[] = {
  86. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9000) },
  87. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) },
  88. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4340) },
  89. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4341) },
  90. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4342) },
  91. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4343) },
  92. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4344) },
  93. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4345) },
  94. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4346) },
  95. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4347) },
  96. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4350) },
  97. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4351) },
  98. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4352) },
  99. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4360) },
  100. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4361) },
  101. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4362) },
  102. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4363) },
  103. { 0 }
  104. };
  105. MODULE_DEVICE_TABLE(pci, sky2_id_table);
  106. /* Avoid conditionals by using array */
  107. static const unsigned txqaddr[] = { Q_XA1, Q_XA2 };
  108. static const unsigned rxqaddr[] = { Q_R1, Q_R2 };
  109. static const u32 portirq_msk[] = { Y2_IS_PORT_1, Y2_IS_PORT_2 };
  110. /* This driver supports yukon2 chipset only */
  111. static const char *yukon2_name[] = {
  112. "XL", /* 0xb3 */
  113. "EC Ultra", /* 0xb4 */
  114. "UNKNOWN", /* 0xb5 */
  115. "EC", /* 0xb6 */
  116. "FE", /* 0xb7 */
  117. };
  118. /* Access to external PHY */
  119. static int gm_phy_write(struct sky2_hw *hw, unsigned port, u16 reg, u16 val)
  120. {
  121. int i;
  122. gma_write16(hw, port, GM_SMI_DATA, val);
  123. gma_write16(hw, port, GM_SMI_CTRL,
  124. GM_SMI_CT_PHY_AD(PHY_ADDR_MARV) | GM_SMI_CT_REG_AD(reg));
  125. for (i = 0; i < PHY_RETRIES; i++) {
  126. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  127. return 0;
  128. udelay(1);
  129. }
  130. printk(KERN_WARNING PFX "%s: phy write timeout\n", hw->dev[port]->name);
  131. return -ETIMEDOUT;
  132. }
  133. static int __gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg, u16 *val)
  134. {
  135. int i;
  136. gma_write16(hw, port, GM_SMI_CTRL, GM_SMI_CT_PHY_AD(PHY_ADDR_MARV)
  137. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  138. for (i = 0; i < PHY_RETRIES; i++) {
  139. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) {
  140. *val = gma_read16(hw, port, GM_SMI_DATA);
  141. return 0;
  142. }
  143. udelay(1);
  144. }
  145. return -ETIMEDOUT;
  146. }
  147. static u16 gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg)
  148. {
  149. u16 v;
  150. if (__gm_phy_read(hw, port, reg, &v) != 0)
  151. printk(KERN_WARNING PFX "%s: phy read timeout\n", hw->dev[port]->name);
  152. return v;
  153. }
  154. static int sky2_set_power_state(struct sky2_hw *hw, pci_power_t state)
  155. {
  156. u16 power_control;
  157. u32 reg1;
  158. int vaux;
  159. int ret = 0;
  160. pr_debug("sky2_set_power_state %d\n", state);
  161. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  162. power_control = sky2_pci_read16(hw, hw->pm_cap + PCI_PM_PMC);
  163. vaux = (sky2_read16(hw, B0_CTST) & Y2_VAUX_AVAIL) &&
  164. (power_control & PCI_PM_CAP_PME_D3cold);
  165. power_control = sky2_pci_read16(hw, hw->pm_cap + PCI_PM_CTRL);
  166. power_control |= PCI_PM_CTRL_PME_STATUS;
  167. power_control &= ~(PCI_PM_CTRL_STATE_MASK);
  168. switch (state) {
  169. case PCI_D0:
  170. /* switch power to VCC (WA for VAUX problem) */
  171. sky2_write8(hw, B0_POWER_CTRL,
  172. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  173. /* disable Core Clock Division, */
  174. sky2_write32(hw, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
  175. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  176. /* enable bits are inverted */
  177. sky2_write8(hw, B2_Y2_CLK_GATE,
  178. Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
  179. Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
  180. Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
  181. else
  182. sky2_write8(hw, B2_Y2_CLK_GATE, 0);
  183. /* Turn off phy power saving */
  184. reg1 = sky2_pci_read32(hw, PCI_DEV_REG1);
  185. reg1 &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
  186. /* looks like this XL is back asswards .. */
  187. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1) {
  188. reg1 |= PCI_Y2_PHY1_COMA;
  189. if (hw->ports > 1)
  190. reg1 |= PCI_Y2_PHY2_COMA;
  191. }
  192. if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
  193. sky2_pci_write32(hw, PCI_DEV_REG3, 0);
  194. reg1 = sky2_pci_read32(hw, PCI_DEV_REG4);
  195. reg1 &= P_ASPM_CONTROL_MSK;
  196. sky2_pci_write32(hw, PCI_DEV_REG4, reg1);
  197. sky2_pci_write32(hw, PCI_DEV_REG5, 0);
  198. }
  199. sky2_pci_write32(hw, PCI_DEV_REG1, reg1);
  200. break;
  201. case PCI_D3hot:
  202. case PCI_D3cold:
  203. /* Turn on phy power saving */
  204. reg1 = sky2_pci_read32(hw, PCI_DEV_REG1);
  205. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  206. reg1 &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
  207. else
  208. reg1 |= (PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
  209. sky2_pci_write32(hw, PCI_DEV_REG1, reg1);
  210. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  211. sky2_write8(hw, B2_Y2_CLK_GATE, 0);
  212. else
  213. /* enable bits are inverted */
  214. sky2_write8(hw, B2_Y2_CLK_GATE,
  215. Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
  216. Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
  217. Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
  218. /* switch power to VAUX */
  219. if (vaux && state != PCI_D3cold)
  220. sky2_write8(hw, B0_POWER_CTRL,
  221. (PC_VAUX_ENA | PC_VCC_ENA |
  222. PC_VAUX_ON | PC_VCC_OFF));
  223. break;
  224. default:
  225. printk(KERN_ERR PFX "Unknown power state %d\n", state);
  226. ret = -1;
  227. }
  228. sky2_pci_write16(hw, hw->pm_cap + PCI_PM_CTRL, power_control);
  229. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  230. return ret;
  231. }
  232. static void sky2_phy_reset(struct sky2_hw *hw, unsigned port)
  233. {
  234. u16 reg;
  235. /* disable all GMAC IRQ's */
  236. sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  237. /* disable PHY IRQs */
  238. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  239. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  240. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  241. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  242. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  243. reg = gma_read16(hw, port, GM_RX_CTRL);
  244. reg |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
  245. gma_write16(hw, port, GM_RX_CTRL, reg);
  246. }
  247. static void sky2_phy_init(struct sky2_hw *hw, unsigned port)
  248. {
  249. struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
  250. u16 ctrl, ct1000, adv, pg, ledctrl, ledover;
  251. if (sky2->autoneg == AUTONEG_ENABLE && hw->chip_id != CHIP_ID_YUKON_XL) {
  252. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  253. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  254. PHY_M_EC_MAC_S_MSK);
  255. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  256. if (hw->chip_id == CHIP_ID_YUKON_EC)
  257. ectrl |= PHY_M_EC_DSC_2(2) | PHY_M_EC_DOWN_S_ENA;
  258. else
  259. ectrl |= PHY_M_EC_M_DSC(2) | PHY_M_EC_S_DSC(3);
  260. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  261. }
  262. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  263. if (hw->copper) {
  264. if (hw->chip_id == CHIP_ID_YUKON_FE) {
  265. /* enable automatic crossover */
  266. ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO) >> 1;
  267. } else {
  268. /* disable energy detect */
  269. ctrl &= ~PHY_M_PC_EN_DET_MSK;
  270. /* enable automatic crossover */
  271. ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO);
  272. if (sky2->autoneg == AUTONEG_ENABLE &&
  273. hw->chip_id == CHIP_ID_YUKON_XL) {
  274. ctrl &= ~PHY_M_PC_DSC_MSK;
  275. ctrl |= PHY_M_PC_DSC(2) | PHY_M_PC_DOWN_S_ENA;
  276. }
  277. }
  278. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  279. } else {
  280. /* workaround for deviation #4.88 (CRC errors) */
  281. /* disable Automatic Crossover */
  282. ctrl &= ~PHY_M_PC_MDIX_MSK;
  283. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  284. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  285. /* Fiber: select 1000BASE-X only mode MAC Specific Ctrl Reg. */
  286. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 2);
  287. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  288. ctrl &= ~PHY_M_MAC_MD_MSK;
  289. ctrl |= PHY_M_MAC_MODE_SEL(PHY_M_MAC_MD_1000BX);
  290. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  291. /* select page 1 to access Fiber registers */
  292. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 1);
  293. }
  294. }
  295. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  296. if (sky2->autoneg == AUTONEG_DISABLE)
  297. ctrl &= ~PHY_CT_ANE;
  298. else
  299. ctrl |= PHY_CT_ANE;
  300. ctrl |= PHY_CT_RESET;
  301. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  302. ctrl = 0;
  303. ct1000 = 0;
  304. adv = PHY_AN_CSMA;
  305. if (sky2->autoneg == AUTONEG_ENABLE) {
  306. if (hw->copper) {
  307. if (sky2->advertising & ADVERTISED_1000baseT_Full)
  308. ct1000 |= PHY_M_1000C_AFD;
  309. if (sky2->advertising & ADVERTISED_1000baseT_Half)
  310. ct1000 |= PHY_M_1000C_AHD;
  311. if (sky2->advertising & ADVERTISED_100baseT_Full)
  312. adv |= PHY_M_AN_100_FD;
  313. if (sky2->advertising & ADVERTISED_100baseT_Half)
  314. adv |= PHY_M_AN_100_HD;
  315. if (sky2->advertising & ADVERTISED_10baseT_Full)
  316. adv |= PHY_M_AN_10_FD;
  317. if (sky2->advertising & ADVERTISED_10baseT_Half)
  318. adv |= PHY_M_AN_10_HD;
  319. } else /* special defines for FIBER (88E1011S only) */
  320. adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
  321. /* Set Flow-control capabilities */
  322. if (sky2->tx_pause && sky2->rx_pause)
  323. adv |= PHY_AN_PAUSE_CAP; /* symmetric */
  324. else if (sky2->rx_pause && !sky2->tx_pause)
  325. adv |= PHY_AN_PAUSE_ASYM | PHY_AN_PAUSE_CAP;
  326. else if (!sky2->rx_pause && sky2->tx_pause)
  327. adv |= PHY_AN_PAUSE_ASYM; /* local */
  328. /* Restart Auto-negotiation */
  329. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  330. } else {
  331. /* forced speed/duplex settings */
  332. ct1000 = PHY_M_1000C_MSE;
  333. if (sky2->duplex == DUPLEX_FULL)
  334. ctrl |= PHY_CT_DUP_MD;
  335. switch (sky2->speed) {
  336. case SPEED_1000:
  337. ctrl |= PHY_CT_SP1000;
  338. break;
  339. case SPEED_100:
  340. ctrl |= PHY_CT_SP100;
  341. break;
  342. }
  343. ctrl |= PHY_CT_RESET;
  344. }
  345. if (hw->chip_id != CHIP_ID_YUKON_FE)
  346. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  347. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  348. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  349. /* Setup Phy LED's */
  350. ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
  351. ledover = 0;
  352. switch (hw->chip_id) {
  353. case CHIP_ID_YUKON_FE:
  354. /* on 88E3082 these bits are at 11..9 (shifted left) */
  355. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
  356. ctrl = gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR);
  357. /* delete ACT LED control bits */
  358. ctrl &= ~PHY_M_FELP_LED1_MSK;
  359. /* change ACT LED control to blink mode */
  360. ctrl |= PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL);
  361. gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR, ctrl);
  362. break;
  363. case CHIP_ID_YUKON_XL:
  364. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  365. /* select page 3 to access LED control register */
  366. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  367. /* set LED Function Control register */
  368. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, (PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
  369. PHY_M_LEDC_INIT_CTRL(7) | /* 10 Mbps */
  370. PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
  371. PHY_M_LEDC_STA0_CTRL(7))); /* 1000 Mbps */
  372. /* set Polarity Control register */
  373. gm_phy_write(hw, port, PHY_MARV_PHY_STAT,
  374. (PHY_M_POLC_LS1_P_MIX(4) |
  375. PHY_M_POLC_IS0_P_MIX(4) |
  376. PHY_M_POLC_LOS_CTRL(2) |
  377. PHY_M_POLC_INIT_CTRL(2) |
  378. PHY_M_POLC_STA1_CTRL(2) |
  379. PHY_M_POLC_STA0_CTRL(2)));
  380. /* restore page register */
  381. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  382. break;
  383. default:
  384. /* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
  385. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
  386. /* turn off the Rx LED (LED_RX) */
  387. ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
  388. }
  389. if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev >= 2) {
  390. /* apply fixes in PHY AFE */
  391. gm_phy_write(hw, port, 22, 255);
  392. /* increase differential signal amplitude in 10BASE-T */
  393. gm_phy_write(hw, port, 24, 0xaa99);
  394. gm_phy_write(hw, port, 23, 0x2011);
  395. /* fix for IEEE A/B Symmetry failure in 1000BASE-T */
  396. gm_phy_write(hw, port, 24, 0xa204);
  397. gm_phy_write(hw, port, 23, 0x2002);
  398. /* set page register to 0 */
  399. gm_phy_write(hw, port, 22, 0);
  400. } else {
  401. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  402. if (sky2->autoneg == AUTONEG_DISABLE || sky2->speed == SPEED_100) {
  403. /* turn on 100 Mbps LED (LED_LINK100) */
  404. ledover |= PHY_M_LED_MO_100(MO_LED_ON);
  405. }
  406. if (ledover)
  407. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  408. }
  409. /* Enable phy interrupt on auto-negotiation complete (or link up) */
  410. if (sky2->autoneg == AUTONEG_ENABLE)
  411. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
  412. else
  413. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  414. }
  415. /* Force a renegotiation */
  416. static void sky2_phy_reinit(struct sky2_port *sky2)
  417. {
  418. spin_lock_bh(&sky2->phy_lock);
  419. sky2_phy_init(sky2->hw, sky2->port);
  420. spin_unlock_bh(&sky2->phy_lock);
  421. }
  422. static void sky2_mac_init(struct sky2_hw *hw, unsigned port)
  423. {
  424. struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
  425. u16 reg;
  426. int i;
  427. const u8 *addr = hw->dev[port]->dev_addr;
  428. sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  429. sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR|GPC_ENA_PAUSE);
  430. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  431. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0 && port == 1) {
  432. /* WA DEV_472 -- looks like crossed wires on port 2 */
  433. /* clear GMAC 1 Control reset */
  434. sky2_write8(hw, SK_REG(0, GMAC_CTRL), GMC_RST_CLR);
  435. do {
  436. sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_SET);
  437. sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_CLR);
  438. } while (gm_phy_read(hw, 1, PHY_MARV_ID0) != PHY_MARV_ID0_VAL ||
  439. gm_phy_read(hw, 1, PHY_MARV_ID1) != PHY_MARV_ID1_Y2 ||
  440. gm_phy_read(hw, 1, PHY_MARV_INT_MASK) != 0);
  441. }
  442. if (sky2->autoneg == AUTONEG_DISABLE) {
  443. reg = gma_read16(hw, port, GM_GP_CTRL);
  444. reg |= GM_GPCR_AU_ALL_DIS;
  445. gma_write16(hw, port, GM_GP_CTRL, reg);
  446. gma_read16(hw, port, GM_GP_CTRL);
  447. switch (sky2->speed) {
  448. case SPEED_1000:
  449. reg &= ~GM_GPCR_SPEED_100;
  450. reg |= GM_GPCR_SPEED_1000;
  451. break;
  452. case SPEED_100:
  453. reg &= ~GM_GPCR_SPEED_1000;
  454. reg |= GM_GPCR_SPEED_100;
  455. break;
  456. case SPEED_10:
  457. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  458. break;
  459. }
  460. if (sky2->duplex == DUPLEX_FULL)
  461. reg |= GM_GPCR_DUP_FULL;
  462. } else
  463. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  464. if (!sky2->tx_pause && !sky2->rx_pause) {
  465. sky2_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  466. reg |=
  467. GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  468. } else if (sky2->tx_pause && !sky2->rx_pause) {
  469. /* disable Rx flow-control */
  470. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  471. }
  472. gma_write16(hw, port, GM_GP_CTRL, reg);
  473. sky2_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  474. spin_lock_bh(&sky2->phy_lock);
  475. sky2_phy_init(hw, port);
  476. spin_unlock_bh(&sky2->phy_lock);
  477. /* MIB clear */
  478. reg = gma_read16(hw, port, GM_PHY_ADDR);
  479. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  480. for (i = GM_MIB_CNT_BASE; i <= GM_MIB_CNT_END; i += 4)
  481. gma_read16(hw, port, i);
  482. gma_write16(hw, port, GM_PHY_ADDR, reg);
  483. /* transmit control */
  484. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  485. /* receive control reg: unicast + multicast + no FCS */
  486. gma_write16(hw, port, GM_RX_CTRL,
  487. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  488. /* transmit flow control */
  489. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  490. /* transmit parameter */
  491. gma_write16(hw, port, GM_TX_PARAM,
  492. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  493. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  494. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) |
  495. TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
  496. /* serial mode register */
  497. reg = DATA_BLIND_VAL(DATA_BLIND_DEF) |
  498. GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  499. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  500. reg |= GM_SMOD_JUMBO_ENA;
  501. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  502. /* virtual address for data */
  503. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  504. /* physical address: used for pause frames */
  505. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  506. /* ignore counter overflows */
  507. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  508. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  509. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  510. /* Configure Rx MAC FIFO */
  511. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  512. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T),
  513. GMF_OPER_ON | GMF_RX_F_FL_ON);
  514. /* Flush Rx MAC FIFO on any flow control or error */
  515. sky2_write16(hw, SK_REG(port, RX_GMF_FL_MSK), GMR_FS_ANY_ERR);
  516. /* Set threshold to 0xa (64 bytes)
  517. * ASF disabled so no need to do WA dev #4.30
  518. */
  519. sky2_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF);
  520. /* Configure Tx MAC FIFO */
  521. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  522. sky2_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  523. if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
  524. sky2_write8(hw, SK_REG(port, RX_GMF_LP_THR), 768/8);
  525. sky2_write8(hw, SK_REG(port, RX_GMF_UP_THR), 1024/8);
  526. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  527. /* set Tx GMAC FIFO Almost Empty Threshold */
  528. sky2_write32(hw, SK_REG(port, TX_GMF_AE_THR), 0x180);
  529. /* Disable Store & Forward mode for TX */
  530. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_STFW_DIS);
  531. }
  532. }
  533. }
  534. /* Assign Ram Buffer allocation.
  535. * start and end are in units of 4k bytes
  536. * ram registers are in units of 64bit words
  537. */
  538. static void sky2_ramset(struct sky2_hw *hw, u16 q, u8 startk, u8 endk)
  539. {
  540. u32 start, end;
  541. start = startk * 4096/8;
  542. end = (endk * 4096/8) - 1;
  543. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  544. sky2_write32(hw, RB_ADDR(q, RB_START), start);
  545. sky2_write32(hw, RB_ADDR(q, RB_END), end);
  546. sky2_write32(hw, RB_ADDR(q, RB_WP), start);
  547. sky2_write32(hw, RB_ADDR(q, RB_RP), start);
  548. if (q == Q_R1 || q == Q_R2) {
  549. u32 space = (endk - startk) * 4096/8;
  550. u32 tp = space - space/4;
  551. /* On receive queue's set the thresholds
  552. * give receiver priority when > 3/4 full
  553. * send pause when down to 2K
  554. */
  555. sky2_write32(hw, RB_ADDR(q, RB_RX_UTHP), tp);
  556. sky2_write32(hw, RB_ADDR(q, RB_RX_LTHP), space/2);
  557. tp = space - 2048/8;
  558. sky2_write32(hw, RB_ADDR(q, RB_RX_UTPP), tp);
  559. sky2_write32(hw, RB_ADDR(q, RB_RX_LTPP), space/4);
  560. } else {
  561. /* Enable store & forward on Tx queue's because
  562. * Tx FIFO is only 1K on Yukon
  563. */
  564. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  565. }
  566. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  567. sky2_read8(hw, RB_ADDR(q, RB_CTRL));
  568. }
  569. /* Setup Bus Memory Interface */
  570. static void sky2_qset(struct sky2_hw *hw, u16 q)
  571. {
  572. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_CLR_RESET);
  573. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_OPER_INIT);
  574. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_FIFO_OP_ON);
  575. sky2_write32(hw, Q_ADDR(q, Q_WM), BMU_WM_DEFAULT);
  576. }
  577. /* Setup prefetch unit registers. This is the interface between
  578. * hardware and driver list elements
  579. */
  580. static void sky2_prefetch_init(struct sky2_hw *hw, u32 qaddr,
  581. u64 addr, u32 last)
  582. {
  583. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  584. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_CLR);
  585. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_HI), addr >> 32);
  586. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_LO), (u32) addr);
  587. sky2_write16(hw, Y2_QADDR(qaddr, PREF_UNIT_LAST_IDX), last);
  588. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_OP_ON);
  589. sky2_read32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL));
  590. }
  591. static inline struct sky2_tx_le *get_tx_le(struct sky2_port *sky2)
  592. {
  593. struct sky2_tx_le *le = sky2->tx_le + sky2->tx_prod;
  594. sky2->tx_prod = (sky2->tx_prod + 1) % TX_RING_SIZE;
  595. return le;
  596. }
  597. /* Update chip's next pointer */
  598. static inline void sky2_put_idx(struct sky2_hw *hw, unsigned q, u16 idx)
  599. {
  600. wmb();
  601. sky2_write16(hw, Y2_QADDR(q, PREF_UNIT_PUT_IDX), idx);
  602. mmiowb();
  603. }
  604. static inline struct sky2_rx_le *sky2_next_rx(struct sky2_port *sky2)
  605. {
  606. struct sky2_rx_le *le = sky2->rx_le + sky2->rx_put;
  607. sky2->rx_put = (sky2->rx_put + 1) % RX_LE_SIZE;
  608. return le;
  609. }
  610. /* Return high part of DMA address (could be 32 or 64 bit) */
  611. static inline u32 high32(dma_addr_t a)
  612. {
  613. return sizeof(a) > sizeof(u32) ? (a >> 16) >> 16 : 0;
  614. }
  615. /* Build description to hardware about buffer */
  616. static void sky2_rx_add(struct sky2_port *sky2, dma_addr_t map)
  617. {
  618. struct sky2_rx_le *le;
  619. u32 hi = high32(map);
  620. u16 len = sky2->rx_bufsize;
  621. if (sky2->rx_addr64 != hi) {
  622. le = sky2_next_rx(sky2);
  623. le->addr = cpu_to_le32(hi);
  624. le->ctrl = 0;
  625. le->opcode = OP_ADDR64 | HW_OWNER;
  626. sky2->rx_addr64 = high32(map + len);
  627. }
  628. le = sky2_next_rx(sky2);
  629. le->addr = cpu_to_le32((u32) map);
  630. le->length = cpu_to_le16(len);
  631. le->ctrl = 0;
  632. le->opcode = OP_PACKET | HW_OWNER;
  633. }
  634. /* Tell chip where to start receive checksum.
  635. * Actually has two checksums, but set both same to avoid possible byte
  636. * order problems.
  637. */
  638. static void rx_set_checksum(struct sky2_port *sky2)
  639. {
  640. struct sky2_rx_le *le;
  641. le = sky2_next_rx(sky2);
  642. le->addr = (ETH_HLEN << 16) | ETH_HLEN;
  643. le->ctrl = 0;
  644. le->opcode = OP_TCPSTART | HW_OWNER;
  645. sky2_write32(sky2->hw,
  646. Q_ADDR(rxqaddr[sky2->port], Q_CSR),
  647. sky2->rx_csum ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
  648. }
  649. /*
  650. * The RX Stop command will not work for Yukon-2 if the BMU does not
  651. * reach the end of packet and since we can't make sure that we have
  652. * incoming data, we must reset the BMU while it is not doing a DMA
  653. * transfer. Since it is possible that the RX path is still active,
  654. * the RX RAM buffer will be stopped first, so any possible incoming
  655. * data will not trigger a DMA. After the RAM buffer is stopped, the
  656. * BMU is polled until any DMA in progress is ended and only then it
  657. * will be reset.
  658. */
  659. static void sky2_rx_stop(struct sky2_port *sky2)
  660. {
  661. struct sky2_hw *hw = sky2->hw;
  662. unsigned rxq = rxqaddr[sky2->port];
  663. int i;
  664. /* disable the RAM Buffer receive queue */
  665. sky2_write8(hw, RB_ADDR(rxq, RB_CTRL), RB_DIS_OP_MD);
  666. for (i = 0; i < 0xffff; i++)
  667. if (sky2_read8(hw, RB_ADDR(rxq, Q_RSL))
  668. == sky2_read8(hw, RB_ADDR(rxq, Q_RL)))
  669. goto stopped;
  670. printk(KERN_WARNING PFX "%s: receiver stop failed\n",
  671. sky2->netdev->name);
  672. stopped:
  673. sky2_write32(hw, Q_ADDR(rxq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST);
  674. /* reset the Rx prefetch unit */
  675. sky2_write32(hw, Y2_QADDR(rxq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  676. }
  677. /* Clean out receive buffer area, assumes receiver hardware stopped */
  678. static void sky2_rx_clean(struct sky2_port *sky2)
  679. {
  680. unsigned i;
  681. memset(sky2->rx_le, 0, RX_LE_BYTES);
  682. for (i = 0; i < sky2->rx_pending; i++) {
  683. struct ring_info *re = sky2->rx_ring + i;
  684. if (re->skb) {
  685. pci_unmap_single(sky2->hw->pdev,
  686. re->mapaddr, sky2->rx_bufsize,
  687. PCI_DMA_FROMDEVICE);
  688. kfree_skb(re->skb);
  689. re->skb = NULL;
  690. }
  691. }
  692. }
  693. /* Basic MII support */
  694. static int sky2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  695. {
  696. struct mii_ioctl_data *data = if_mii(ifr);
  697. struct sky2_port *sky2 = netdev_priv(dev);
  698. struct sky2_hw *hw = sky2->hw;
  699. int err = -EOPNOTSUPP;
  700. if (!netif_running(dev))
  701. return -ENODEV; /* Phy still in reset */
  702. switch (cmd) {
  703. case SIOCGMIIPHY:
  704. data->phy_id = PHY_ADDR_MARV;
  705. /* fallthru */
  706. case SIOCGMIIREG: {
  707. u16 val = 0;
  708. spin_lock_bh(&sky2->phy_lock);
  709. err = __gm_phy_read(hw, sky2->port, data->reg_num & 0x1f, &val);
  710. spin_unlock_bh(&sky2->phy_lock);
  711. data->val_out = val;
  712. break;
  713. }
  714. case SIOCSMIIREG:
  715. if (!capable(CAP_NET_ADMIN))
  716. return -EPERM;
  717. spin_lock_bh(&sky2->phy_lock);
  718. err = gm_phy_write(hw, sky2->port, data->reg_num & 0x1f,
  719. data->val_in);
  720. spin_unlock_bh(&sky2->phy_lock);
  721. break;
  722. }
  723. return err;
  724. }
  725. #ifdef SKY2_VLAN_TAG_USED
  726. static void sky2_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  727. {
  728. struct sky2_port *sky2 = netdev_priv(dev);
  729. struct sky2_hw *hw = sky2->hw;
  730. u16 port = sky2->port;
  731. spin_lock_bh(&sky2->tx_lock);
  732. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_ON);
  733. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_ON);
  734. sky2->vlgrp = grp;
  735. spin_unlock_bh(&sky2->tx_lock);
  736. }
  737. static void sky2_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  738. {
  739. struct sky2_port *sky2 = netdev_priv(dev);
  740. struct sky2_hw *hw = sky2->hw;
  741. u16 port = sky2->port;
  742. spin_lock_bh(&sky2->tx_lock);
  743. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_OFF);
  744. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_OFF);
  745. if (sky2->vlgrp)
  746. sky2->vlgrp->vlan_devices[vid] = NULL;
  747. spin_unlock_bh(&sky2->tx_lock);
  748. }
  749. #endif
  750. /*
  751. * It appears the hardware has a bug in the FIFO logic that
  752. * cause it to hang if the FIFO gets overrun and the receive buffer
  753. * is not aligned. ALso alloc_skb() won't align properly if slab
  754. * debugging is enabled.
  755. */
  756. static inline struct sk_buff *sky2_alloc_skb(unsigned int size, gfp_t gfp_mask)
  757. {
  758. struct sk_buff *skb;
  759. skb = alloc_skb(size + RX_SKB_ALIGN, gfp_mask);
  760. if (likely(skb)) {
  761. unsigned long p = (unsigned long) skb->data;
  762. skb_reserve(skb, ALIGN(p, RX_SKB_ALIGN) - p);
  763. }
  764. return skb;
  765. }
  766. /*
  767. * Allocate and setup receiver buffer pool.
  768. * In case of 64 bit dma, there are 2X as many list elements
  769. * available as ring entries
  770. * and need to reserve one list element so we don't wrap around.
  771. */
  772. static int sky2_rx_start(struct sky2_port *sky2)
  773. {
  774. struct sky2_hw *hw = sky2->hw;
  775. unsigned rxq = rxqaddr[sky2->port];
  776. int i;
  777. sky2->rx_put = sky2->rx_next = 0;
  778. sky2_qset(hw, rxq);
  779. if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev >= 2) {
  780. /* MAC Rx RAM Read is controlled by hardware */
  781. sky2_write32(hw, Q_ADDR(rxq, Q_F), F_M_RX_RAM_DIS);
  782. }
  783. sky2_prefetch_init(hw, rxq, sky2->rx_le_map, RX_LE_SIZE - 1);
  784. rx_set_checksum(sky2);
  785. for (i = 0; i < sky2->rx_pending; i++) {
  786. struct ring_info *re = sky2->rx_ring + i;
  787. re->skb = sky2_alloc_skb(sky2->rx_bufsize, GFP_KERNEL);
  788. if (!re->skb)
  789. goto nomem;
  790. re->mapaddr = pci_map_single(hw->pdev, re->skb->data,
  791. sky2->rx_bufsize, PCI_DMA_FROMDEVICE);
  792. sky2_rx_add(sky2, re->mapaddr);
  793. }
  794. /* Truncate oversize frames */
  795. sky2_write16(hw, SK_REG(sky2->port, RX_GMF_TR_THR), sky2->rx_bufsize - 8);
  796. sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_ON);
  797. /* Tell chip about available buffers */
  798. sky2_write16(hw, Y2_QADDR(rxq, PREF_UNIT_PUT_IDX), sky2->rx_put);
  799. return 0;
  800. nomem:
  801. sky2_rx_clean(sky2);
  802. return -ENOMEM;
  803. }
  804. /* Bring up network interface. */
  805. static int sky2_up(struct net_device *dev)
  806. {
  807. struct sky2_port *sky2 = netdev_priv(dev);
  808. struct sky2_hw *hw = sky2->hw;
  809. unsigned port = sky2->port;
  810. u32 ramsize, rxspace, imask;
  811. int err = -ENOMEM;
  812. if (netif_msg_ifup(sky2))
  813. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  814. /* must be power of 2 */
  815. sky2->tx_le = pci_alloc_consistent(hw->pdev,
  816. TX_RING_SIZE *
  817. sizeof(struct sky2_tx_le),
  818. &sky2->tx_le_map);
  819. if (!sky2->tx_le)
  820. goto err_out;
  821. sky2->tx_ring = kcalloc(TX_RING_SIZE, sizeof(struct tx_ring_info),
  822. GFP_KERNEL);
  823. if (!sky2->tx_ring)
  824. goto err_out;
  825. sky2->tx_prod = sky2->tx_cons = 0;
  826. sky2->rx_le = pci_alloc_consistent(hw->pdev, RX_LE_BYTES,
  827. &sky2->rx_le_map);
  828. if (!sky2->rx_le)
  829. goto err_out;
  830. memset(sky2->rx_le, 0, RX_LE_BYTES);
  831. sky2->rx_ring = kcalloc(sky2->rx_pending, sizeof(struct ring_info),
  832. GFP_KERNEL);
  833. if (!sky2->rx_ring)
  834. goto err_out;
  835. sky2_mac_init(hw, port);
  836. /* Determine available ram buffer space (in 4K blocks).
  837. * Note: not sure about the FE setting below yet
  838. */
  839. if (hw->chip_id == CHIP_ID_YUKON_FE)
  840. ramsize = 4;
  841. else
  842. ramsize = sky2_read8(hw, B2_E_0);
  843. /* Give transmitter one third (rounded up) */
  844. rxspace = ramsize - (ramsize + 2) / 3;
  845. sky2_ramset(hw, rxqaddr[port], 0, rxspace);
  846. sky2_ramset(hw, txqaddr[port], rxspace, ramsize);
  847. /* Make sure SyncQ is disabled */
  848. sky2_write8(hw, RB_ADDR(port == 0 ? Q_XS1 : Q_XS2, RB_CTRL),
  849. RB_RST_SET);
  850. sky2_qset(hw, txqaddr[port]);
  851. /* Set almost empty threshold */
  852. if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev == 1)
  853. sky2_write16(hw, Q_ADDR(txqaddr[port], Q_AL), 0x1a0);
  854. sky2_prefetch_init(hw, txqaddr[port], sky2->tx_le_map,
  855. TX_RING_SIZE - 1);
  856. err = sky2_rx_start(sky2);
  857. if (err)
  858. goto err_out;
  859. /* Enable interrupts from phy/mac for port */
  860. imask = sky2_read32(hw, B0_IMSK);
  861. imask |= portirq_msk[port];
  862. sky2_write32(hw, B0_IMSK, imask);
  863. return 0;
  864. err_out:
  865. if (sky2->rx_le) {
  866. pci_free_consistent(hw->pdev, RX_LE_BYTES,
  867. sky2->rx_le, sky2->rx_le_map);
  868. sky2->rx_le = NULL;
  869. }
  870. if (sky2->tx_le) {
  871. pci_free_consistent(hw->pdev,
  872. TX_RING_SIZE * sizeof(struct sky2_tx_le),
  873. sky2->tx_le, sky2->tx_le_map);
  874. sky2->tx_le = NULL;
  875. }
  876. kfree(sky2->tx_ring);
  877. kfree(sky2->rx_ring);
  878. sky2->tx_ring = NULL;
  879. sky2->rx_ring = NULL;
  880. return err;
  881. }
  882. /* Modular subtraction in ring */
  883. static inline int tx_dist(unsigned tail, unsigned head)
  884. {
  885. return (head - tail) % TX_RING_SIZE;
  886. }
  887. /* Number of list elements available for next tx */
  888. static inline int tx_avail(const struct sky2_port *sky2)
  889. {
  890. return sky2->tx_pending - tx_dist(sky2->tx_cons, sky2->tx_prod);
  891. }
  892. /* Estimate of number of transmit list elements required */
  893. static unsigned tx_le_req(const struct sk_buff *skb)
  894. {
  895. unsigned count;
  896. count = sizeof(dma_addr_t) / sizeof(u32);
  897. count += skb_shinfo(skb)->nr_frags * count;
  898. if (skb_shinfo(skb)->tso_size)
  899. ++count;
  900. if (skb->ip_summed == CHECKSUM_HW)
  901. ++count;
  902. return count;
  903. }
  904. /*
  905. * Put one packet in ring for transmit.
  906. * A single packet can generate multiple list elements, and
  907. * the number of ring elements will probably be less than the number
  908. * of list elements used.
  909. *
  910. * No BH disabling for tx_lock here (like tg3)
  911. */
  912. static int sky2_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  913. {
  914. struct sky2_port *sky2 = netdev_priv(dev);
  915. struct sky2_hw *hw = sky2->hw;
  916. struct sky2_tx_le *le = NULL;
  917. struct tx_ring_info *re;
  918. unsigned i, len;
  919. int avail;
  920. dma_addr_t mapping;
  921. u32 addr64;
  922. u16 mss;
  923. u8 ctrl;
  924. /* No BH disabling for tx_lock here. We are running in BH disabled
  925. * context and TX reclaim runs via poll inside of a software
  926. * interrupt, and no related locks in IRQ processing.
  927. */
  928. if (!spin_trylock(&sky2->tx_lock))
  929. return NETDEV_TX_LOCKED;
  930. if (unlikely(tx_avail(sky2) < tx_le_req(skb))) {
  931. /* There is a known but harmless race with lockless tx
  932. * and netif_stop_queue.
  933. */
  934. if (!netif_queue_stopped(dev)) {
  935. netif_stop_queue(dev);
  936. if (net_ratelimit())
  937. printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
  938. dev->name);
  939. }
  940. spin_unlock(&sky2->tx_lock);
  941. return NETDEV_TX_BUSY;
  942. }
  943. if (unlikely(netif_msg_tx_queued(sky2)))
  944. printk(KERN_DEBUG "%s: tx queued, slot %u, len %d\n",
  945. dev->name, sky2->tx_prod, skb->len);
  946. len = skb_headlen(skb);
  947. mapping = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  948. addr64 = high32(mapping);
  949. re = sky2->tx_ring + sky2->tx_prod;
  950. /* Send high bits if changed or crosses boundary */
  951. if (addr64 != sky2->tx_addr64 || high32(mapping + len) != sky2->tx_addr64) {
  952. le = get_tx_le(sky2);
  953. le->tx.addr = cpu_to_le32(addr64);
  954. le->ctrl = 0;
  955. le->opcode = OP_ADDR64 | HW_OWNER;
  956. sky2->tx_addr64 = high32(mapping + len);
  957. }
  958. /* Check for TCP Segmentation Offload */
  959. mss = skb_shinfo(skb)->tso_size;
  960. if (mss != 0) {
  961. /* just drop the packet if non-linear expansion fails */
  962. if (skb_header_cloned(skb) &&
  963. pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
  964. dev_kfree_skb(skb);
  965. goto out_unlock;
  966. }
  967. mss += ((skb->h.th->doff - 5) * 4); /* TCP options */
  968. mss += (skb->nh.iph->ihl * 4) + sizeof(struct tcphdr);
  969. mss += ETH_HLEN;
  970. }
  971. if (mss != sky2->tx_last_mss) {
  972. le = get_tx_le(sky2);
  973. le->tx.tso.size = cpu_to_le16(mss);
  974. le->tx.tso.rsvd = 0;
  975. le->opcode = OP_LRGLEN | HW_OWNER;
  976. le->ctrl = 0;
  977. sky2->tx_last_mss = mss;
  978. }
  979. ctrl = 0;
  980. #ifdef SKY2_VLAN_TAG_USED
  981. /* Add VLAN tag, can piggyback on LRGLEN or ADDR64 */
  982. if (sky2->vlgrp && vlan_tx_tag_present(skb)) {
  983. if (!le) {
  984. le = get_tx_le(sky2);
  985. le->tx.addr = 0;
  986. le->opcode = OP_VLAN|HW_OWNER;
  987. le->ctrl = 0;
  988. } else
  989. le->opcode |= OP_VLAN;
  990. le->length = cpu_to_be16(vlan_tx_tag_get(skb));
  991. ctrl |= INS_VLAN;
  992. }
  993. #endif
  994. /* Handle TCP checksum offload */
  995. if (skb->ip_summed == CHECKSUM_HW) {
  996. u16 hdr = skb->h.raw - skb->data;
  997. u16 offset = hdr + skb->csum;
  998. ctrl = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
  999. if (skb->nh.iph->protocol == IPPROTO_UDP)
  1000. ctrl |= UDPTCP;
  1001. le = get_tx_le(sky2);
  1002. le->tx.csum.start = cpu_to_le16(hdr);
  1003. le->tx.csum.offset = cpu_to_le16(offset);
  1004. le->length = 0; /* initial checksum value */
  1005. le->ctrl = 1; /* one packet */
  1006. le->opcode = OP_TCPLISW | HW_OWNER;
  1007. }
  1008. le = get_tx_le(sky2);
  1009. le->tx.addr = cpu_to_le32((u32) mapping);
  1010. le->length = cpu_to_le16(len);
  1011. le->ctrl = ctrl;
  1012. le->opcode = mss ? (OP_LARGESEND | HW_OWNER) : (OP_PACKET | HW_OWNER);
  1013. /* Record the transmit mapping info */
  1014. re->skb = skb;
  1015. pci_unmap_addr_set(re, mapaddr, mapping);
  1016. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1017. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1018. struct tx_ring_info *fre;
  1019. mapping = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  1020. frag->size, PCI_DMA_TODEVICE);
  1021. addr64 = high32(mapping);
  1022. if (addr64 != sky2->tx_addr64) {
  1023. le = get_tx_le(sky2);
  1024. le->tx.addr = cpu_to_le32(addr64);
  1025. le->ctrl = 0;
  1026. le->opcode = OP_ADDR64 | HW_OWNER;
  1027. sky2->tx_addr64 = addr64;
  1028. }
  1029. le = get_tx_le(sky2);
  1030. le->tx.addr = cpu_to_le32((u32) mapping);
  1031. le->length = cpu_to_le16(frag->size);
  1032. le->ctrl = ctrl;
  1033. le->opcode = OP_BUFFER | HW_OWNER;
  1034. fre = sky2->tx_ring
  1035. + ((re - sky2->tx_ring) + i + 1) % TX_RING_SIZE;
  1036. pci_unmap_addr_set(fre, mapaddr, mapping);
  1037. }
  1038. re->idx = sky2->tx_prod;
  1039. le->ctrl |= EOP;
  1040. avail = tx_avail(sky2);
  1041. if (mss != 0 || avail < TX_MIN_PENDING) {
  1042. le->ctrl |= FRC_STAT;
  1043. if (avail <= MAX_SKB_TX_LE)
  1044. netif_stop_queue(dev);
  1045. }
  1046. sky2_put_idx(hw, txqaddr[sky2->port], sky2->tx_prod);
  1047. out_unlock:
  1048. spin_unlock(&sky2->tx_lock);
  1049. dev->trans_start = jiffies;
  1050. return NETDEV_TX_OK;
  1051. }
  1052. /*
  1053. * Free ring elements from starting at tx_cons until "done"
  1054. *
  1055. * NB: the hardware will tell us about partial completion of multi-part
  1056. * buffers; these are deferred until completion.
  1057. */
  1058. static void sky2_tx_complete(struct sky2_port *sky2, u16 done)
  1059. {
  1060. struct net_device *dev = sky2->netdev;
  1061. struct pci_dev *pdev = sky2->hw->pdev;
  1062. u16 nxt, put;
  1063. unsigned i;
  1064. BUG_ON(done >= TX_RING_SIZE);
  1065. if (unlikely(netif_msg_tx_done(sky2)))
  1066. printk(KERN_DEBUG "%s: tx done, up to %u\n",
  1067. dev->name, done);
  1068. for (put = sky2->tx_cons; put != done; put = nxt) {
  1069. struct tx_ring_info *re = sky2->tx_ring + put;
  1070. struct sk_buff *skb = re->skb;
  1071. nxt = re->idx;
  1072. BUG_ON(nxt >= TX_RING_SIZE);
  1073. prefetch(sky2->tx_ring + nxt);
  1074. /* Check for partial status */
  1075. if (tx_dist(put, done) < tx_dist(put, nxt))
  1076. break;
  1077. skb = re->skb;
  1078. pci_unmap_single(pdev, pci_unmap_addr(re, mapaddr),
  1079. skb_headlen(skb), PCI_DMA_TODEVICE);
  1080. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1081. struct tx_ring_info *fre;
  1082. fre = sky2->tx_ring + (put + i + 1) % TX_RING_SIZE;
  1083. pci_unmap_page(pdev, pci_unmap_addr(fre, mapaddr),
  1084. skb_shinfo(skb)->frags[i].size,
  1085. PCI_DMA_TODEVICE);
  1086. }
  1087. dev_kfree_skb(skb);
  1088. }
  1089. sky2->tx_cons = put;
  1090. if (tx_avail(sky2) > MAX_SKB_TX_LE)
  1091. netif_wake_queue(dev);
  1092. }
  1093. /* Cleanup all untransmitted buffers, assume transmitter not running */
  1094. static void sky2_tx_clean(struct sky2_port *sky2)
  1095. {
  1096. spin_lock_bh(&sky2->tx_lock);
  1097. sky2_tx_complete(sky2, sky2->tx_prod);
  1098. spin_unlock_bh(&sky2->tx_lock);
  1099. }
  1100. /* Network shutdown */
  1101. static int sky2_down(struct net_device *dev)
  1102. {
  1103. struct sky2_port *sky2 = netdev_priv(dev);
  1104. struct sky2_hw *hw = sky2->hw;
  1105. unsigned port = sky2->port;
  1106. u16 ctrl;
  1107. u32 imask;
  1108. /* Never really got started! */
  1109. if (!sky2->tx_le)
  1110. return 0;
  1111. if (netif_msg_ifdown(sky2))
  1112. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  1113. /* Stop more packets from being queued */
  1114. netif_stop_queue(dev);
  1115. sky2_phy_reset(hw, port);
  1116. /* Stop transmitter */
  1117. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_STOP);
  1118. sky2_read32(hw, Q_ADDR(txqaddr[port], Q_CSR));
  1119. sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1120. RB_RST_SET | RB_DIS_OP_MD);
  1121. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1122. ctrl &= ~(GM_GPCR_TX_ENA | GM_GPCR_RX_ENA);
  1123. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1124. sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1125. /* Workaround shared GMAC reset */
  1126. if (!(hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0
  1127. && port == 0 && hw->dev[1] && netif_running(hw->dev[1])))
  1128. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1129. /* Disable Force Sync bit and Enable Alloc bit */
  1130. sky2_write8(hw, SK_REG(port, TXA_CTRL),
  1131. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1132. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1133. sky2_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  1134. sky2_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  1135. /* Reset the PCI FIFO of the async Tx queue */
  1136. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR),
  1137. BMU_RST_SET | BMU_FIFO_RST);
  1138. /* Reset the Tx prefetch units */
  1139. sky2_write32(hw, Y2_QADDR(txqaddr[port], PREF_UNIT_CTRL),
  1140. PREF_UNIT_RST_SET);
  1141. sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1142. sky2_rx_stop(sky2);
  1143. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1144. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1145. /* Disable port IRQ */
  1146. imask = sky2_read32(hw, B0_IMSK);
  1147. imask &= ~portirq_msk[port];
  1148. sky2_write32(hw, B0_IMSK, imask);
  1149. /* turn off LED's */
  1150. sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
  1151. synchronize_irq(hw->pdev->irq);
  1152. sky2_tx_clean(sky2);
  1153. sky2_rx_clean(sky2);
  1154. pci_free_consistent(hw->pdev, RX_LE_BYTES,
  1155. sky2->rx_le, sky2->rx_le_map);
  1156. kfree(sky2->rx_ring);
  1157. pci_free_consistent(hw->pdev,
  1158. TX_RING_SIZE * sizeof(struct sky2_tx_le),
  1159. sky2->tx_le, sky2->tx_le_map);
  1160. kfree(sky2->tx_ring);
  1161. sky2->tx_le = NULL;
  1162. sky2->rx_le = NULL;
  1163. sky2->rx_ring = NULL;
  1164. sky2->tx_ring = NULL;
  1165. return 0;
  1166. }
  1167. static u16 sky2_phy_speed(const struct sky2_hw *hw, u16 aux)
  1168. {
  1169. if (!hw->copper)
  1170. return SPEED_1000;
  1171. if (hw->chip_id == CHIP_ID_YUKON_FE)
  1172. return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10;
  1173. switch (aux & PHY_M_PS_SPEED_MSK) {
  1174. case PHY_M_PS_SPEED_1000:
  1175. return SPEED_1000;
  1176. case PHY_M_PS_SPEED_100:
  1177. return SPEED_100;
  1178. default:
  1179. return SPEED_10;
  1180. }
  1181. }
  1182. static void sky2_link_up(struct sky2_port *sky2)
  1183. {
  1184. struct sky2_hw *hw = sky2->hw;
  1185. unsigned port = sky2->port;
  1186. u16 reg;
  1187. /* Enable Transmit FIFO Underrun */
  1188. sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1189. reg = gma_read16(hw, port, GM_GP_CTRL);
  1190. if (sky2->autoneg == AUTONEG_DISABLE) {
  1191. reg |= GM_GPCR_AU_ALL_DIS;
  1192. /* Is write/read necessary? Copied from sky2_mac_init */
  1193. gma_write16(hw, port, GM_GP_CTRL, reg);
  1194. gma_read16(hw, port, GM_GP_CTRL);
  1195. switch (sky2->speed) {
  1196. case SPEED_1000:
  1197. reg &= ~GM_GPCR_SPEED_100;
  1198. reg |= GM_GPCR_SPEED_1000;
  1199. break;
  1200. case SPEED_100:
  1201. reg &= ~GM_GPCR_SPEED_1000;
  1202. reg |= GM_GPCR_SPEED_100;
  1203. break;
  1204. case SPEED_10:
  1205. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1206. break;
  1207. }
  1208. } else
  1209. reg &= ~GM_GPCR_AU_ALL_DIS;
  1210. if (sky2->duplex == DUPLEX_FULL || sky2->autoneg == AUTONEG_ENABLE)
  1211. reg |= GM_GPCR_DUP_FULL;
  1212. /* enable Rx/Tx */
  1213. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1214. gma_write16(hw, port, GM_GP_CTRL, reg);
  1215. gma_read16(hw, port, GM_GP_CTRL);
  1216. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  1217. netif_carrier_on(sky2->netdev);
  1218. netif_wake_queue(sky2->netdev);
  1219. /* Turn on link LED */
  1220. sky2_write8(hw, SK_REG(port, LNK_LED_REG),
  1221. LINKLED_ON | LINKLED_BLINK_OFF | LINKLED_LINKSYNC_OFF);
  1222. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  1223. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  1224. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  1225. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
  1226. PHY_M_LEDC_INIT_CTRL(sky2->speed ==
  1227. SPEED_10 ? 7 : 0) |
  1228. PHY_M_LEDC_STA1_CTRL(sky2->speed ==
  1229. SPEED_100 ? 7 : 0) |
  1230. PHY_M_LEDC_STA0_CTRL(sky2->speed ==
  1231. SPEED_1000 ? 7 : 0));
  1232. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  1233. }
  1234. if (netif_msg_link(sky2))
  1235. printk(KERN_INFO PFX
  1236. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  1237. sky2->netdev->name, sky2->speed,
  1238. sky2->duplex == DUPLEX_FULL ? "full" : "half",
  1239. (sky2->tx_pause && sky2->rx_pause) ? "both" :
  1240. sky2->tx_pause ? "tx" : sky2->rx_pause ? "rx" : "none");
  1241. }
  1242. static void sky2_link_down(struct sky2_port *sky2)
  1243. {
  1244. struct sky2_hw *hw = sky2->hw;
  1245. unsigned port = sky2->port;
  1246. u16 reg;
  1247. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1248. reg = gma_read16(hw, port, GM_GP_CTRL);
  1249. reg &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1250. gma_write16(hw, port, GM_GP_CTRL, reg);
  1251. gma_read16(hw, port, GM_GP_CTRL); /* PCI post */
  1252. if (sky2->rx_pause && !sky2->tx_pause) {
  1253. /* restore Asymmetric Pause bit */
  1254. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1255. gm_phy_read(hw, port, PHY_MARV_AUNE_ADV)
  1256. | PHY_M_AN_ASP);
  1257. }
  1258. netif_carrier_off(sky2->netdev);
  1259. netif_stop_queue(sky2->netdev);
  1260. /* Turn on link LED */
  1261. sky2_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  1262. if (netif_msg_link(sky2))
  1263. printk(KERN_INFO PFX "%s: Link is down.\n", sky2->netdev->name);
  1264. sky2_phy_init(hw, port);
  1265. }
  1266. static int sky2_autoneg_done(struct sky2_port *sky2, u16 aux)
  1267. {
  1268. struct sky2_hw *hw = sky2->hw;
  1269. unsigned port = sky2->port;
  1270. u16 lpa;
  1271. lpa = gm_phy_read(hw, port, PHY_MARV_AUNE_LP);
  1272. if (lpa & PHY_M_AN_RF) {
  1273. printk(KERN_ERR PFX "%s: remote fault", sky2->netdev->name);
  1274. return -1;
  1275. }
  1276. if (hw->chip_id != CHIP_ID_YUKON_FE &&
  1277. gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1278. printk(KERN_ERR PFX "%s: master/slave fault",
  1279. sky2->netdev->name);
  1280. return -1;
  1281. }
  1282. if (!(aux & PHY_M_PS_SPDUP_RES)) {
  1283. printk(KERN_ERR PFX "%s: speed/duplex mismatch",
  1284. sky2->netdev->name);
  1285. return -1;
  1286. }
  1287. sky2->duplex = (aux & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1288. sky2->speed = sky2_phy_speed(hw, aux);
  1289. /* Pause bits are offset (9..8) */
  1290. if (hw->chip_id == CHIP_ID_YUKON_XL)
  1291. aux >>= 6;
  1292. sky2->rx_pause = (aux & PHY_M_PS_RX_P_EN) != 0;
  1293. sky2->tx_pause = (aux & PHY_M_PS_TX_P_EN) != 0;
  1294. if ((sky2->tx_pause || sky2->rx_pause)
  1295. && !(sky2->speed < SPEED_1000 && sky2->duplex == DUPLEX_HALF))
  1296. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1297. else
  1298. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1299. return 0;
  1300. }
  1301. /* Interrupt from PHY */
  1302. static void sky2_phy_intr(struct sky2_hw *hw, unsigned port)
  1303. {
  1304. struct net_device *dev = hw->dev[port];
  1305. struct sky2_port *sky2 = netdev_priv(dev);
  1306. u16 istatus, phystat;
  1307. spin_lock(&sky2->phy_lock);
  1308. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1309. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1310. if (!netif_running(dev))
  1311. goto out;
  1312. if (netif_msg_intr(sky2))
  1313. printk(KERN_INFO PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1314. sky2->netdev->name, istatus, phystat);
  1315. if (istatus & PHY_M_IS_AN_COMPL) {
  1316. if (sky2_autoneg_done(sky2, phystat) == 0)
  1317. sky2_link_up(sky2);
  1318. goto out;
  1319. }
  1320. if (istatus & PHY_M_IS_LSP_CHANGE)
  1321. sky2->speed = sky2_phy_speed(hw, phystat);
  1322. if (istatus & PHY_M_IS_DUP_CHANGE)
  1323. sky2->duplex =
  1324. (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1325. if (istatus & PHY_M_IS_LST_CHANGE) {
  1326. if (phystat & PHY_M_PS_LINK_UP)
  1327. sky2_link_up(sky2);
  1328. else
  1329. sky2_link_down(sky2);
  1330. }
  1331. out:
  1332. spin_unlock(&sky2->phy_lock);
  1333. }
  1334. /* Transmit timeout is only called if we are running, carries is up
  1335. * and tx queue is full (stopped).
  1336. */
  1337. static void sky2_tx_timeout(struct net_device *dev)
  1338. {
  1339. struct sky2_port *sky2 = netdev_priv(dev);
  1340. struct sky2_hw *hw = sky2->hw;
  1341. unsigned txq = txqaddr[sky2->port];
  1342. u16 report, done;
  1343. if (netif_msg_timer(sky2))
  1344. printk(KERN_ERR PFX "%s: tx timeout\n", dev->name);
  1345. report = sky2_read16(hw, sky2->port == 0 ? STAT_TXA1_RIDX : STAT_TXA2_RIDX);
  1346. done = sky2_read16(hw, Q_ADDR(txq, Q_DONE));
  1347. printk(KERN_DEBUG PFX "%s: transmit ring %u .. %u report=%u done=%u\n",
  1348. dev->name,
  1349. sky2->tx_cons, sky2->tx_prod, report, done);
  1350. if (report != done) {
  1351. printk(KERN_INFO PFX "status burst pending (irq moderation?)\n");
  1352. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
  1353. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  1354. } else if (report != sky2->tx_cons) {
  1355. printk(KERN_INFO PFX "status report lost?\n");
  1356. spin_lock_bh(&sky2->tx_lock);
  1357. sky2_tx_complete(sky2, report);
  1358. spin_unlock_bh(&sky2->tx_lock);
  1359. } else {
  1360. printk(KERN_INFO PFX "hardware hung? flushing\n");
  1361. sky2_write32(hw, Q_ADDR(txq, Q_CSR), BMU_STOP);
  1362. sky2_write32(hw, Y2_QADDR(txq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  1363. sky2_tx_clean(sky2);
  1364. sky2_qset(hw, txq);
  1365. sky2_prefetch_init(hw, txq, sky2->tx_le_map, TX_RING_SIZE - 1);
  1366. }
  1367. }
  1368. /* Want receive buffer size to be multiple of 64 bits
  1369. * and incl room for vlan and truncation
  1370. */
  1371. static inline unsigned sky2_buf_size(int mtu)
  1372. {
  1373. return ALIGN(mtu + ETH_HLEN + VLAN_HLEN, 8) + 8;
  1374. }
  1375. static int sky2_change_mtu(struct net_device *dev, int new_mtu)
  1376. {
  1377. struct sky2_port *sky2 = netdev_priv(dev);
  1378. struct sky2_hw *hw = sky2->hw;
  1379. int err;
  1380. u16 ctl, mode;
  1381. u32 imask;
  1382. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  1383. return -EINVAL;
  1384. if (hw->chip_id == CHIP_ID_YUKON_EC_U && new_mtu > ETH_DATA_LEN)
  1385. return -EINVAL;
  1386. if (!netif_running(dev)) {
  1387. dev->mtu = new_mtu;
  1388. return 0;
  1389. }
  1390. imask = sky2_read32(hw, B0_IMSK);
  1391. sky2_write32(hw, B0_IMSK, 0);
  1392. dev->trans_start = jiffies; /* prevent tx timeout */
  1393. netif_stop_queue(dev);
  1394. netif_poll_disable(hw->dev[0]);
  1395. synchronize_irq(hw->pdev->irq);
  1396. ctl = gma_read16(hw, sky2->port, GM_GP_CTRL);
  1397. gma_write16(hw, sky2->port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA);
  1398. sky2_rx_stop(sky2);
  1399. sky2_rx_clean(sky2);
  1400. dev->mtu = new_mtu;
  1401. sky2->rx_bufsize = sky2_buf_size(new_mtu);
  1402. mode = DATA_BLIND_VAL(DATA_BLIND_DEF) |
  1403. GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1404. if (dev->mtu > ETH_DATA_LEN)
  1405. mode |= GM_SMOD_JUMBO_ENA;
  1406. gma_write16(hw, sky2->port, GM_SERIAL_MODE, mode);
  1407. sky2_write8(hw, RB_ADDR(rxqaddr[sky2->port], RB_CTRL), RB_ENA_OP_MD);
  1408. err = sky2_rx_start(sky2);
  1409. sky2_write32(hw, B0_IMSK, imask);
  1410. if (err)
  1411. dev_close(dev);
  1412. else {
  1413. gma_write16(hw, sky2->port, GM_GP_CTRL, ctl);
  1414. netif_poll_enable(hw->dev[0]);
  1415. netif_wake_queue(dev);
  1416. }
  1417. return err;
  1418. }
  1419. /*
  1420. * Receive one packet.
  1421. * For small packets or errors, just reuse existing skb.
  1422. * For larger packets, get new buffer.
  1423. */
  1424. static struct sk_buff *sky2_receive(struct sky2_port *sky2,
  1425. u16 length, u32 status)
  1426. {
  1427. struct ring_info *re = sky2->rx_ring + sky2->rx_next;
  1428. struct sk_buff *skb = NULL;
  1429. if (unlikely(netif_msg_rx_status(sky2)))
  1430. printk(KERN_DEBUG PFX "%s: rx slot %u status 0x%x len %d\n",
  1431. sky2->netdev->name, sky2->rx_next, status, length);
  1432. sky2->rx_next = (sky2->rx_next + 1) % sky2->rx_pending;
  1433. prefetch(sky2->rx_ring + sky2->rx_next);
  1434. if (status & GMR_FS_ANY_ERR)
  1435. goto error;
  1436. if (!(status & GMR_FS_RX_OK))
  1437. goto resubmit;
  1438. if (length > sky2->netdev->mtu + ETH_HLEN)
  1439. goto oversize;
  1440. if (length < copybreak) {
  1441. skb = alloc_skb(length + 2, GFP_ATOMIC);
  1442. if (!skb)
  1443. goto resubmit;
  1444. skb_reserve(skb, 2);
  1445. pci_dma_sync_single_for_cpu(sky2->hw->pdev, re->mapaddr,
  1446. length, PCI_DMA_FROMDEVICE);
  1447. memcpy(skb->data, re->skb->data, length);
  1448. skb->ip_summed = re->skb->ip_summed;
  1449. skb->csum = re->skb->csum;
  1450. pci_dma_sync_single_for_device(sky2->hw->pdev, re->mapaddr,
  1451. length, PCI_DMA_FROMDEVICE);
  1452. } else {
  1453. struct sk_buff *nskb;
  1454. nskb = sky2_alloc_skb(sky2->rx_bufsize, GFP_ATOMIC);
  1455. if (!nskb)
  1456. goto resubmit;
  1457. skb = re->skb;
  1458. re->skb = nskb;
  1459. pci_unmap_single(sky2->hw->pdev, re->mapaddr,
  1460. sky2->rx_bufsize, PCI_DMA_FROMDEVICE);
  1461. prefetch(skb->data);
  1462. re->mapaddr = pci_map_single(sky2->hw->pdev, nskb->data,
  1463. sky2->rx_bufsize, PCI_DMA_FROMDEVICE);
  1464. }
  1465. skb_put(skb, length);
  1466. resubmit:
  1467. re->skb->ip_summed = CHECKSUM_NONE;
  1468. sky2_rx_add(sky2, re->mapaddr);
  1469. /* Tell receiver about new buffers. */
  1470. sky2_put_idx(sky2->hw, rxqaddr[sky2->port], sky2->rx_put);
  1471. return skb;
  1472. oversize:
  1473. ++sky2->net_stats.rx_over_errors;
  1474. goto resubmit;
  1475. error:
  1476. ++sky2->net_stats.rx_errors;
  1477. if (netif_msg_rx_err(sky2) && net_ratelimit())
  1478. printk(KERN_INFO PFX "%s: rx error, status 0x%x length %d\n",
  1479. sky2->netdev->name, status, length);
  1480. if (status & (GMR_FS_LONG_ERR | GMR_FS_UN_SIZE))
  1481. sky2->net_stats.rx_length_errors++;
  1482. if (status & GMR_FS_FRAGMENT)
  1483. sky2->net_stats.rx_frame_errors++;
  1484. if (status & GMR_FS_CRC_ERR)
  1485. sky2->net_stats.rx_crc_errors++;
  1486. if (status & GMR_FS_RX_FF_OV)
  1487. sky2->net_stats.rx_fifo_errors++;
  1488. goto resubmit;
  1489. }
  1490. /* Transmit complete */
  1491. static inline void sky2_tx_done(struct net_device *dev, u16 last)
  1492. {
  1493. struct sky2_port *sky2 = netdev_priv(dev);
  1494. if (netif_running(dev)) {
  1495. spin_lock(&sky2->tx_lock);
  1496. sky2_tx_complete(sky2, last);
  1497. spin_unlock(&sky2->tx_lock);
  1498. }
  1499. }
  1500. /* Process status response ring */
  1501. static int sky2_status_intr(struct sky2_hw *hw, int to_do)
  1502. {
  1503. int work_done = 0;
  1504. rmb();
  1505. for(;;) {
  1506. struct sky2_status_le *le = hw->st_le + hw->st_idx;
  1507. struct net_device *dev;
  1508. struct sky2_port *sky2;
  1509. struct sk_buff *skb;
  1510. u32 status;
  1511. u16 length;
  1512. u8 link, opcode;
  1513. opcode = le->opcode;
  1514. if (!opcode)
  1515. break;
  1516. opcode &= ~HW_OWNER;
  1517. hw->st_idx = (hw->st_idx + 1) % STATUS_RING_SIZE;
  1518. le->opcode = 0;
  1519. link = le->link;
  1520. BUG_ON(link >= 2);
  1521. dev = hw->dev[link];
  1522. sky2 = netdev_priv(dev);
  1523. length = le->length;
  1524. status = le->status;
  1525. switch (opcode) {
  1526. case OP_RXSTAT:
  1527. skb = sky2_receive(sky2, length, status);
  1528. if (!skb)
  1529. break;
  1530. skb->dev = dev;
  1531. skb->protocol = eth_type_trans(skb, dev);
  1532. dev->last_rx = jiffies;
  1533. #ifdef SKY2_VLAN_TAG_USED
  1534. if (sky2->vlgrp && (status & GMR_FS_VLAN)) {
  1535. vlan_hwaccel_receive_skb(skb,
  1536. sky2->vlgrp,
  1537. be16_to_cpu(sky2->rx_tag));
  1538. } else
  1539. #endif
  1540. netif_receive_skb(skb);
  1541. if (++work_done >= to_do)
  1542. goto exit_loop;
  1543. break;
  1544. #ifdef SKY2_VLAN_TAG_USED
  1545. case OP_RXVLAN:
  1546. sky2->rx_tag = length;
  1547. break;
  1548. case OP_RXCHKSVLAN:
  1549. sky2->rx_tag = length;
  1550. /* fall through */
  1551. #endif
  1552. case OP_RXCHKS:
  1553. skb = sky2->rx_ring[sky2->rx_next].skb;
  1554. skb->ip_summed = CHECKSUM_HW;
  1555. skb->csum = le16_to_cpu(status);
  1556. break;
  1557. case OP_TXINDEXLE:
  1558. /* TX index reports status for both ports */
  1559. sky2_tx_done(hw->dev[0], status & 0xffff);
  1560. if (hw->dev[1])
  1561. sky2_tx_done(hw->dev[1],
  1562. ((status >> 24) & 0xff)
  1563. | (u16)(length & 0xf) << 8);
  1564. break;
  1565. default:
  1566. if (net_ratelimit())
  1567. printk(KERN_WARNING PFX
  1568. "unknown status opcode 0x%x\n", opcode);
  1569. break;
  1570. }
  1571. }
  1572. exit_loop:
  1573. return work_done;
  1574. }
  1575. static void sky2_hw_error(struct sky2_hw *hw, unsigned port, u32 status)
  1576. {
  1577. struct net_device *dev = hw->dev[port];
  1578. if (net_ratelimit())
  1579. printk(KERN_INFO PFX "%s: hw error interrupt status 0x%x\n",
  1580. dev->name, status);
  1581. if (status & Y2_IS_PAR_RD1) {
  1582. if (net_ratelimit())
  1583. printk(KERN_ERR PFX "%s: ram data read parity error\n",
  1584. dev->name);
  1585. /* Clear IRQ */
  1586. sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_RD_PERR);
  1587. }
  1588. if (status & Y2_IS_PAR_WR1) {
  1589. if (net_ratelimit())
  1590. printk(KERN_ERR PFX "%s: ram data write parity error\n",
  1591. dev->name);
  1592. sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_WR_PERR);
  1593. }
  1594. if (status & Y2_IS_PAR_MAC1) {
  1595. if (net_ratelimit())
  1596. printk(KERN_ERR PFX "%s: MAC parity error\n", dev->name);
  1597. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_PE);
  1598. }
  1599. if (status & Y2_IS_PAR_RX1) {
  1600. if (net_ratelimit())
  1601. printk(KERN_ERR PFX "%s: RX parity error\n", dev->name);
  1602. sky2_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), BMU_CLR_IRQ_PAR);
  1603. }
  1604. if (status & Y2_IS_TCP_TXA1) {
  1605. if (net_ratelimit())
  1606. printk(KERN_ERR PFX "%s: TCP segmentation error\n",
  1607. dev->name);
  1608. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_CLR_IRQ_TCP);
  1609. }
  1610. }
  1611. static void sky2_hw_intr(struct sky2_hw *hw)
  1612. {
  1613. u32 status = sky2_read32(hw, B0_HWE_ISRC);
  1614. if (status & Y2_IS_TIST_OV)
  1615. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  1616. if (status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) {
  1617. u16 pci_err;
  1618. pci_err = sky2_pci_read16(hw, PCI_STATUS);
  1619. if (net_ratelimit())
  1620. printk(KERN_ERR PFX "%s: pci hw error (0x%x)\n",
  1621. pci_name(hw->pdev), pci_err);
  1622. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1623. sky2_pci_write16(hw, PCI_STATUS,
  1624. pci_err | PCI_STATUS_ERROR_BITS);
  1625. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1626. }
  1627. if (status & Y2_IS_PCI_EXP) {
  1628. /* PCI-Express uncorrectable Error occurred */
  1629. u32 pex_err;
  1630. pex_err = sky2_pci_read32(hw, PEX_UNC_ERR_STAT);
  1631. if (net_ratelimit())
  1632. printk(KERN_ERR PFX "%s: pci express error (0x%x)\n",
  1633. pci_name(hw->pdev), pex_err);
  1634. /* clear the interrupt */
  1635. sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1636. sky2_pci_write32(hw, PEX_UNC_ERR_STAT,
  1637. 0xffffffffUL);
  1638. sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1639. if (pex_err & PEX_FATAL_ERRORS) {
  1640. u32 hwmsk = sky2_read32(hw, B0_HWE_IMSK);
  1641. hwmsk &= ~Y2_IS_PCI_EXP;
  1642. sky2_write32(hw, B0_HWE_IMSK, hwmsk);
  1643. }
  1644. }
  1645. if (status & Y2_HWE_L1_MASK)
  1646. sky2_hw_error(hw, 0, status);
  1647. status >>= 8;
  1648. if (status & Y2_HWE_L1_MASK)
  1649. sky2_hw_error(hw, 1, status);
  1650. }
  1651. static void sky2_mac_intr(struct sky2_hw *hw, unsigned port)
  1652. {
  1653. struct net_device *dev = hw->dev[port];
  1654. struct sky2_port *sky2 = netdev_priv(dev);
  1655. u8 status = sky2_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1656. if (netif_msg_intr(sky2))
  1657. printk(KERN_INFO PFX "%s: mac interrupt status 0x%x\n",
  1658. dev->name, status);
  1659. if (status & GM_IS_RX_FF_OR) {
  1660. ++sky2->net_stats.rx_fifo_errors;
  1661. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1662. }
  1663. if (status & GM_IS_TX_FF_UR) {
  1664. ++sky2->net_stats.tx_fifo_errors;
  1665. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1666. }
  1667. }
  1668. /* This should never happen it is a fatal situation */
  1669. static void sky2_descriptor_error(struct sky2_hw *hw, unsigned port,
  1670. const char *rxtx, u32 mask)
  1671. {
  1672. struct net_device *dev = hw->dev[port];
  1673. struct sky2_port *sky2 = netdev_priv(dev);
  1674. u32 imask;
  1675. printk(KERN_ERR PFX "%s: %s descriptor error (hardware problem)\n",
  1676. dev ? dev->name : "<not registered>", rxtx);
  1677. imask = sky2_read32(hw, B0_IMSK);
  1678. imask &= ~mask;
  1679. sky2_write32(hw, B0_IMSK, imask);
  1680. if (dev) {
  1681. spin_lock(&sky2->phy_lock);
  1682. sky2_link_down(sky2);
  1683. spin_unlock(&sky2->phy_lock);
  1684. }
  1685. }
  1686. /* If idle then force a fake soft NAPI poll once a second
  1687. * to work around cases where sharing an edge triggered interrupt.
  1688. */
  1689. static void sky2_idle(unsigned long arg)
  1690. {
  1691. struct net_device *dev = (struct net_device *) arg;
  1692. local_irq_disable();
  1693. if (__netif_rx_schedule_prep(dev))
  1694. __netif_rx_schedule(dev);
  1695. local_irq_enable();
  1696. }
  1697. static int sky2_poll(struct net_device *dev0, int *budget)
  1698. {
  1699. struct sky2_hw *hw = ((struct sky2_port *) netdev_priv(dev0))->hw;
  1700. int work_limit = min(dev0->quota, *budget);
  1701. int work_done = 0;
  1702. u32 status = sky2_read32(hw, B0_Y2_SP_EISR);
  1703. restart_poll:
  1704. if (unlikely(status & ~Y2_IS_STAT_BMU)) {
  1705. if (status & Y2_IS_HW_ERR)
  1706. sky2_hw_intr(hw);
  1707. if (status & Y2_IS_IRQ_PHY1)
  1708. sky2_phy_intr(hw, 0);
  1709. if (status & Y2_IS_IRQ_PHY2)
  1710. sky2_phy_intr(hw, 1);
  1711. if (status & Y2_IS_IRQ_MAC1)
  1712. sky2_mac_intr(hw, 0);
  1713. if (status & Y2_IS_IRQ_MAC2)
  1714. sky2_mac_intr(hw, 1);
  1715. if (status & Y2_IS_CHK_RX1)
  1716. sky2_descriptor_error(hw, 0, "receive", Y2_IS_CHK_RX1);
  1717. if (status & Y2_IS_CHK_RX2)
  1718. sky2_descriptor_error(hw, 1, "receive", Y2_IS_CHK_RX2);
  1719. if (status & Y2_IS_CHK_TXA1)
  1720. sky2_descriptor_error(hw, 0, "transmit", Y2_IS_CHK_TXA1);
  1721. if (status & Y2_IS_CHK_TXA2)
  1722. sky2_descriptor_error(hw, 1, "transmit", Y2_IS_CHK_TXA2);
  1723. }
  1724. if (status & Y2_IS_STAT_BMU) {
  1725. work_done += sky2_status_intr(hw, work_limit - work_done);
  1726. *budget -= work_done;
  1727. dev0->quota -= work_done;
  1728. if (work_done >= work_limit)
  1729. return 1;
  1730. sky2_write32(hw, STAT_CTRL, SC_STAT_CLR_IRQ);
  1731. }
  1732. mod_timer(&hw->idle_timer, jiffies + HZ);
  1733. local_irq_disable();
  1734. __netif_rx_complete(dev0);
  1735. status = sky2_read32(hw, B0_Y2_SP_LISR);
  1736. if (unlikely(status)) {
  1737. /* More work pending, try and keep going */
  1738. if (__netif_rx_schedule_prep(dev0)) {
  1739. __netif_rx_reschedule(dev0, work_done);
  1740. status = sky2_read32(hw, B0_Y2_SP_EISR);
  1741. local_irq_enable();
  1742. goto restart_poll;
  1743. }
  1744. }
  1745. local_irq_enable();
  1746. return 0;
  1747. }
  1748. static irqreturn_t sky2_intr(int irq, void *dev_id, struct pt_regs *regs)
  1749. {
  1750. struct sky2_hw *hw = dev_id;
  1751. struct net_device *dev0 = hw->dev[0];
  1752. u32 status;
  1753. /* Reading this mask interrupts as side effect */
  1754. status = sky2_read32(hw, B0_Y2_SP_ISRC2);
  1755. if (status == 0 || status == ~0)
  1756. return IRQ_NONE;
  1757. prefetch(&hw->st_le[hw->st_idx]);
  1758. if (likely(__netif_rx_schedule_prep(dev0)))
  1759. __netif_rx_schedule(dev0);
  1760. return IRQ_HANDLED;
  1761. }
  1762. #ifdef CONFIG_NET_POLL_CONTROLLER
  1763. static void sky2_netpoll(struct net_device *dev)
  1764. {
  1765. struct sky2_port *sky2 = netdev_priv(dev);
  1766. sky2_intr(sky2->hw->pdev->irq, sky2->hw, NULL);
  1767. }
  1768. #endif
  1769. /* Chip internal frequency for clock calculations */
  1770. static inline u32 sky2_mhz(const struct sky2_hw *hw)
  1771. {
  1772. switch (hw->chip_id) {
  1773. case CHIP_ID_YUKON_EC:
  1774. case CHIP_ID_YUKON_EC_U:
  1775. return 125; /* 125 Mhz */
  1776. case CHIP_ID_YUKON_FE:
  1777. return 100; /* 100 Mhz */
  1778. default: /* YUKON_XL */
  1779. return 156; /* 156 Mhz */
  1780. }
  1781. }
  1782. static inline u32 sky2_us2clk(const struct sky2_hw *hw, u32 us)
  1783. {
  1784. return sky2_mhz(hw) * us;
  1785. }
  1786. static inline u32 sky2_clk2us(const struct sky2_hw *hw, u32 clk)
  1787. {
  1788. return clk / sky2_mhz(hw);
  1789. }
  1790. static int __devinit sky2_reset(struct sky2_hw *hw)
  1791. {
  1792. u16 status;
  1793. u8 t8, pmd_type;
  1794. int i;
  1795. sky2_write8(hw, B0_CTST, CS_RST_CLR);
  1796. hw->chip_id = sky2_read8(hw, B2_CHIP_ID);
  1797. if (hw->chip_id < CHIP_ID_YUKON_XL || hw->chip_id > CHIP_ID_YUKON_FE) {
  1798. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  1799. pci_name(hw->pdev), hw->chip_id);
  1800. return -EOPNOTSUPP;
  1801. }
  1802. hw->chip_rev = (sky2_read8(hw, B2_MAC_CFG) & CFG_CHIP_R_MSK) >> 4;
  1803. /* This rev is really old, and requires untested workarounds */
  1804. if (hw->chip_id == CHIP_ID_YUKON_EC && hw->chip_rev == CHIP_REV_YU_EC_A1) {
  1805. printk(KERN_ERR PFX "%s: unsupported revision Yukon-%s (0x%x) rev %d\n",
  1806. pci_name(hw->pdev), yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL],
  1807. hw->chip_id, hw->chip_rev);
  1808. return -EOPNOTSUPP;
  1809. }
  1810. /* This chip is new and not tested yet */
  1811. if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
  1812. pr_info(PFX "%s: is a version of Yukon 2 chipset that has not been tested yet.\n",
  1813. pci_name(hw->pdev));
  1814. pr_info("Please report success/failure to maintainer <shemminger@osdl.org>\n");
  1815. }
  1816. /* disable ASF */
  1817. if (hw->chip_id <= CHIP_ID_YUKON_EC) {
  1818. sky2_write8(hw, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
  1819. sky2_write16(hw, B0_CTST, Y2_ASF_DISABLE);
  1820. }
  1821. /* do a SW reset */
  1822. sky2_write8(hw, B0_CTST, CS_RST_SET);
  1823. sky2_write8(hw, B0_CTST, CS_RST_CLR);
  1824. /* clear PCI errors, if any */
  1825. status = sky2_pci_read16(hw, PCI_STATUS);
  1826. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1827. sky2_pci_write16(hw, PCI_STATUS, status | PCI_STATUS_ERROR_BITS);
  1828. sky2_write8(hw, B0_CTST, CS_MRST_CLR);
  1829. /* clear any PEX errors */
  1830. if (pci_find_capability(hw->pdev, PCI_CAP_ID_EXP))
  1831. sky2_pci_write32(hw, PEX_UNC_ERR_STAT, 0xffffffffUL);
  1832. pmd_type = sky2_read8(hw, B2_PMD_TYP);
  1833. hw->copper = !(pmd_type == 'L' || pmd_type == 'S');
  1834. hw->ports = 1;
  1835. t8 = sky2_read8(hw, B2_Y2_HW_RES);
  1836. if ((t8 & CFG_DUAL_MAC_MSK) == CFG_DUAL_MAC_MSK) {
  1837. if (!(sky2_read8(hw, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
  1838. ++hw->ports;
  1839. }
  1840. sky2_set_power_state(hw, PCI_D0);
  1841. for (i = 0; i < hw->ports; i++) {
  1842. sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  1843. sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  1844. }
  1845. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1846. /* Clear I2C IRQ noise */
  1847. sky2_write32(hw, B2_I2C_IRQ, 1);
  1848. /* turn off hardware timer (unused) */
  1849. sky2_write8(hw, B2_TI_CTRL, TIM_STOP);
  1850. sky2_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  1851. sky2_write8(hw, B0_Y2LED, LED_STAT_ON);
  1852. /* Turn off descriptor polling */
  1853. sky2_write32(hw, B28_DPT_CTRL, DPT_STOP);
  1854. /* Turn off receive timestamp */
  1855. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_STOP);
  1856. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  1857. /* enable the Tx Arbiters */
  1858. for (i = 0; i < hw->ports; i++)
  1859. sky2_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  1860. /* Initialize ram interface */
  1861. for (i = 0; i < hw->ports; i++) {
  1862. sky2_write8(hw, RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
  1863. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R1), SK_RI_TO_53);
  1864. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA1), SK_RI_TO_53);
  1865. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS1), SK_RI_TO_53);
  1866. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R1), SK_RI_TO_53);
  1867. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA1), SK_RI_TO_53);
  1868. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS1), SK_RI_TO_53);
  1869. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R2), SK_RI_TO_53);
  1870. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA2), SK_RI_TO_53);
  1871. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS2), SK_RI_TO_53);
  1872. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R2), SK_RI_TO_53);
  1873. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA2), SK_RI_TO_53);
  1874. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS2), SK_RI_TO_53);
  1875. }
  1876. sky2_write32(hw, B0_HWE_IMSK, Y2_HWE_ALL_MASK);
  1877. for (i = 0; i < hw->ports; i++)
  1878. sky2_phy_reset(hw, i);
  1879. memset(hw->st_le, 0, STATUS_LE_BYTES);
  1880. hw->st_idx = 0;
  1881. sky2_write32(hw, STAT_CTRL, SC_STAT_RST_SET);
  1882. sky2_write32(hw, STAT_CTRL, SC_STAT_RST_CLR);
  1883. sky2_write32(hw, STAT_LIST_ADDR_LO, hw->st_dma);
  1884. sky2_write32(hw, STAT_LIST_ADDR_HI, (u64) hw->st_dma >> 32);
  1885. /* Set the list last index */
  1886. sky2_write16(hw, STAT_LAST_IDX, STATUS_RING_SIZE - 1);
  1887. sky2_write16(hw, STAT_TX_IDX_TH, 10);
  1888. sky2_write8(hw, STAT_FIFO_WM, 16);
  1889. /* set Status-FIFO ISR watermark */
  1890. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0)
  1891. sky2_write8(hw, STAT_FIFO_ISR_WM, 4);
  1892. else
  1893. sky2_write8(hw, STAT_FIFO_ISR_WM, 16);
  1894. sky2_write32(hw, STAT_TX_TIMER_INI, sky2_us2clk(hw, 1000));
  1895. sky2_write32(hw, STAT_ISR_TIMER_INI, sky2_us2clk(hw, 20));
  1896. sky2_write32(hw, STAT_LEV_TIMER_INI, sky2_us2clk(hw, 100));
  1897. /* enable status unit */
  1898. sky2_write32(hw, STAT_CTRL, SC_STAT_OP_ON);
  1899. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  1900. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
  1901. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
  1902. return 0;
  1903. }
  1904. static u32 sky2_supported_modes(const struct sky2_hw *hw)
  1905. {
  1906. u32 modes;
  1907. if (hw->copper) {
  1908. modes = SUPPORTED_10baseT_Half
  1909. | SUPPORTED_10baseT_Full
  1910. | SUPPORTED_100baseT_Half
  1911. | SUPPORTED_100baseT_Full
  1912. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1913. if (hw->chip_id != CHIP_ID_YUKON_FE)
  1914. modes |= SUPPORTED_1000baseT_Half
  1915. | SUPPORTED_1000baseT_Full;
  1916. } else
  1917. modes = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  1918. | SUPPORTED_Autoneg;
  1919. return modes;
  1920. }
  1921. static int sky2_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  1922. {
  1923. struct sky2_port *sky2 = netdev_priv(dev);
  1924. struct sky2_hw *hw = sky2->hw;
  1925. ecmd->transceiver = XCVR_INTERNAL;
  1926. ecmd->supported = sky2_supported_modes(hw);
  1927. ecmd->phy_address = PHY_ADDR_MARV;
  1928. if (hw->copper) {
  1929. ecmd->supported = SUPPORTED_10baseT_Half
  1930. | SUPPORTED_10baseT_Full
  1931. | SUPPORTED_100baseT_Half
  1932. | SUPPORTED_100baseT_Full
  1933. | SUPPORTED_1000baseT_Half
  1934. | SUPPORTED_1000baseT_Full
  1935. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1936. ecmd->port = PORT_TP;
  1937. } else
  1938. ecmd->port = PORT_FIBRE;
  1939. ecmd->advertising = sky2->advertising;
  1940. ecmd->autoneg = sky2->autoneg;
  1941. ecmd->speed = sky2->speed;
  1942. ecmd->duplex = sky2->duplex;
  1943. return 0;
  1944. }
  1945. static int sky2_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  1946. {
  1947. struct sky2_port *sky2 = netdev_priv(dev);
  1948. const struct sky2_hw *hw = sky2->hw;
  1949. u32 supported = sky2_supported_modes(hw);
  1950. if (ecmd->autoneg == AUTONEG_ENABLE) {
  1951. ecmd->advertising = supported;
  1952. sky2->duplex = -1;
  1953. sky2->speed = -1;
  1954. } else {
  1955. u32 setting;
  1956. switch (ecmd->speed) {
  1957. case SPEED_1000:
  1958. if (ecmd->duplex == DUPLEX_FULL)
  1959. setting = SUPPORTED_1000baseT_Full;
  1960. else if (ecmd->duplex == DUPLEX_HALF)
  1961. setting = SUPPORTED_1000baseT_Half;
  1962. else
  1963. return -EINVAL;
  1964. break;
  1965. case SPEED_100:
  1966. if (ecmd->duplex == DUPLEX_FULL)
  1967. setting = SUPPORTED_100baseT_Full;
  1968. else if (ecmd->duplex == DUPLEX_HALF)
  1969. setting = SUPPORTED_100baseT_Half;
  1970. else
  1971. return -EINVAL;
  1972. break;
  1973. case SPEED_10:
  1974. if (ecmd->duplex == DUPLEX_FULL)
  1975. setting = SUPPORTED_10baseT_Full;
  1976. else if (ecmd->duplex == DUPLEX_HALF)
  1977. setting = SUPPORTED_10baseT_Half;
  1978. else
  1979. return -EINVAL;
  1980. break;
  1981. default:
  1982. return -EINVAL;
  1983. }
  1984. if ((setting & supported) == 0)
  1985. return -EINVAL;
  1986. sky2->speed = ecmd->speed;
  1987. sky2->duplex = ecmd->duplex;
  1988. }
  1989. sky2->autoneg = ecmd->autoneg;
  1990. sky2->advertising = ecmd->advertising;
  1991. if (netif_running(dev))
  1992. sky2_phy_reinit(sky2);
  1993. return 0;
  1994. }
  1995. static void sky2_get_drvinfo(struct net_device *dev,
  1996. struct ethtool_drvinfo *info)
  1997. {
  1998. struct sky2_port *sky2 = netdev_priv(dev);
  1999. strcpy(info->driver, DRV_NAME);
  2000. strcpy(info->version, DRV_VERSION);
  2001. strcpy(info->fw_version, "N/A");
  2002. strcpy(info->bus_info, pci_name(sky2->hw->pdev));
  2003. }
  2004. static const struct sky2_stat {
  2005. char name[ETH_GSTRING_LEN];
  2006. u16 offset;
  2007. } sky2_stats[] = {
  2008. { "tx_bytes", GM_TXO_OK_HI },
  2009. { "rx_bytes", GM_RXO_OK_HI },
  2010. { "tx_broadcast", GM_TXF_BC_OK },
  2011. { "rx_broadcast", GM_RXF_BC_OK },
  2012. { "tx_multicast", GM_TXF_MC_OK },
  2013. { "rx_multicast", GM_RXF_MC_OK },
  2014. { "tx_unicast", GM_TXF_UC_OK },
  2015. { "rx_unicast", GM_RXF_UC_OK },
  2016. { "tx_mac_pause", GM_TXF_MPAUSE },
  2017. { "rx_mac_pause", GM_RXF_MPAUSE },
  2018. { "collisions", GM_TXF_COL },
  2019. { "late_collision",GM_TXF_LAT_COL },
  2020. { "aborted", GM_TXF_ABO_COL },
  2021. { "single_collisions", GM_TXF_SNG_COL },
  2022. { "multi_collisions", GM_TXF_MUL_COL },
  2023. { "rx_short", GM_RXF_SHT },
  2024. { "rx_runt", GM_RXE_FRAG },
  2025. { "rx_64_byte_packets", GM_RXF_64B },
  2026. { "rx_65_to_127_byte_packets", GM_RXF_127B },
  2027. { "rx_128_to_255_byte_packets", GM_RXF_255B },
  2028. { "rx_256_to_511_byte_packets", GM_RXF_511B },
  2029. { "rx_512_to_1023_byte_packets", GM_RXF_1023B },
  2030. { "rx_1024_to_1518_byte_packets", GM_RXF_1518B },
  2031. { "rx_1518_to_max_byte_packets", GM_RXF_MAX_SZ },
  2032. { "rx_too_long", GM_RXF_LNG_ERR },
  2033. { "rx_fifo_overflow", GM_RXE_FIFO_OV },
  2034. { "rx_jabber", GM_RXF_JAB_PKT },
  2035. { "rx_fcs_error", GM_RXF_FCS_ERR },
  2036. { "tx_64_byte_packets", GM_TXF_64B },
  2037. { "tx_65_to_127_byte_packets", GM_TXF_127B },
  2038. { "tx_128_to_255_byte_packets", GM_TXF_255B },
  2039. { "tx_256_to_511_byte_packets", GM_TXF_511B },
  2040. { "tx_512_to_1023_byte_packets", GM_TXF_1023B },
  2041. { "tx_1024_to_1518_byte_packets", GM_TXF_1518B },
  2042. { "tx_1519_to_max_byte_packets", GM_TXF_MAX_SZ },
  2043. { "tx_fifo_underrun", GM_TXE_FIFO_UR },
  2044. };
  2045. static u32 sky2_get_rx_csum(struct net_device *dev)
  2046. {
  2047. struct sky2_port *sky2 = netdev_priv(dev);
  2048. return sky2->rx_csum;
  2049. }
  2050. static int sky2_set_rx_csum(struct net_device *dev, u32 data)
  2051. {
  2052. struct sky2_port *sky2 = netdev_priv(dev);
  2053. sky2->rx_csum = data;
  2054. sky2_write32(sky2->hw, Q_ADDR(rxqaddr[sky2->port], Q_CSR),
  2055. data ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
  2056. return 0;
  2057. }
  2058. static u32 sky2_get_msglevel(struct net_device *netdev)
  2059. {
  2060. struct sky2_port *sky2 = netdev_priv(netdev);
  2061. return sky2->msg_enable;
  2062. }
  2063. static int sky2_nway_reset(struct net_device *dev)
  2064. {
  2065. struct sky2_port *sky2 = netdev_priv(dev);
  2066. if (sky2->autoneg != AUTONEG_ENABLE)
  2067. return -EINVAL;
  2068. sky2_phy_reinit(sky2);
  2069. return 0;
  2070. }
  2071. static void sky2_phy_stats(struct sky2_port *sky2, u64 * data, unsigned count)
  2072. {
  2073. struct sky2_hw *hw = sky2->hw;
  2074. unsigned port = sky2->port;
  2075. int i;
  2076. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  2077. | (u64) gma_read32(hw, port, GM_TXO_OK_LO);
  2078. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  2079. | (u64) gma_read32(hw, port, GM_RXO_OK_LO);
  2080. for (i = 2; i < count; i++)
  2081. data[i] = (u64) gma_read32(hw, port, sky2_stats[i].offset);
  2082. }
  2083. static void sky2_set_msglevel(struct net_device *netdev, u32 value)
  2084. {
  2085. struct sky2_port *sky2 = netdev_priv(netdev);
  2086. sky2->msg_enable = value;
  2087. }
  2088. static int sky2_get_stats_count(struct net_device *dev)
  2089. {
  2090. return ARRAY_SIZE(sky2_stats);
  2091. }
  2092. static void sky2_get_ethtool_stats(struct net_device *dev,
  2093. struct ethtool_stats *stats, u64 * data)
  2094. {
  2095. struct sky2_port *sky2 = netdev_priv(dev);
  2096. sky2_phy_stats(sky2, data, ARRAY_SIZE(sky2_stats));
  2097. }
  2098. static void sky2_get_strings(struct net_device *dev, u32 stringset, u8 * data)
  2099. {
  2100. int i;
  2101. switch (stringset) {
  2102. case ETH_SS_STATS:
  2103. for (i = 0; i < ARRAY_SIZE(sky2_stats); i++)
  2104. memcpy(data + i * ETH_GSTRING_LEN,
  2105. sky2_stats[i].name, ETH_GSTRING_LEN);
  2106. break;
  2107. }
  2108. }
  2109. /* Use hardware MIB variables for critical path statistics and
  2110. * transmit feedback not reported at interrupt.
  2111. * Other errors are accounted for in interrupt handler.
  2112. */
  2113. static struct net_device_stats *sky2_get_stats(struct net_device *dev)
  2114. {
  2115. struct sky2_port *sky2 = netdev_priv(dev);
  2116. u64 data[13];
  2117. sky2_phy_stats(sky2, data, ARRAY_SIZE(data));
  2118. sky2->net_stats.tx_bytes = data[0];
  2119. sky2->net_stats.rx_bytes = data[1];
  2120. sky2->net_stats.tx_packets = data[2] + data[4] + data[6];
  2121. sky2->net_stats.rx_packets = data[3] + data[5] + data[7];
  2122. sky2->net_stats.multicast = data[3] + data[5];
  2123. sky2->net_stats.collisions = data[10];
  2124. sky2->net_stats.tx_aborted_errors = data[12];
  2125. return &sky2->net_stats;
  2126. }
  2127. static int sky2_set_mac_address(struct net_device *dev, void *p)
  2128. {
  2129. struct sky2_port *sky2 = netdev_priv(dev);
  2130. struct sky2_hw *hw = sky2->hw;
  2131. unsigned port = sky2->port;
  2132. const struct sockaddr *addr = p;
  2133. if (!is_valid_ether_addr(addr->sa_data))
  2134. return -EADDRNOTAVAIL;
  2135. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2136. memcpy_toio(hw->regs + B2_MAC_1 + port * 8,
  2137. dev->dev_addr, ETH_ALEN);
  2138. memcpy_toio(hw->regs + B2_MAC_2 + port * 8,
  2139. dev->dev_addr, ETH_ALEN);
  2140. /* virtual address for data */
  2141. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2142. /* physical address: used for pause frames */
  2143. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2144. return 0;
  2145. }
  2146. static void sky2_set_multicast(struct net_device *dev)
  2147. {
  2148. struct sky2_port *sky2 = netdev_priv(dev);
  2149. struct sky2_hw *hw = sky2->hw;
  2150. unsigned port = sky2->port;
  2151. struct dev_mc_list *list = dev->mc_list;
  2152. u16 reg;
  2153. u8 filter[8];
  2154. memset(filter, 0, sizeof(filter));
  2155. reg = gma_read16(hw, port, GM_RX_CTRL);
  2156. reg |= GM_RXCR_UCF_ENA;
  2157. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2158. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2159. else if ((dev->flags & IFF_ALLMULTI) || dev->mc_count > 16) /* all multicast */
  2160. memset(filter, 0xff, sizeof(filter));
  2161. else if (dev->mc_count == 0) /* no multicast */
  2162. reg &= ~GM_RXCR_MCF_ENA;
  2163. else {
  2164. int i;
  2165. reg |= GM_RXCR_MCF_ENA;
  2166. for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
  2167. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  2168. filter[bit / 8] |= 1 << (bit % 8);
  2169. }
  2170. }
  2171. gma_write16(hw, port, GM_MC_ADDR_H1,
  2172. (u16) filter[0] | ((u16) filter[1] << 8));
  2173. gma_write16(hw, port, GM_MC_ADDR_H2,
  2174. (u16) filter[2] | ((u16) filter[3] << 8));
  2175. gma_write16(hw, port, GM_MC_ADDR_H3,
  2176. (u16) filter[4] | ((u16) filter[5] << 8));
  2177. gma_write16(hw, port, GM_MC_ADDR_H4,
  2178. (u16) filter[6] | ((u16) filter[7] << 8));
  2179. gma_write16(hw, port, GM_RX_CTRL, reg);
  2180. }
  2181. /* Can have one global because blinking is controlled by
  2182. * ethtool and that is always under RTNL mutex
  2183. */
  2184. static void sky2_led(struct sky2_hw *hw, unsigned port, int on)
  2185. {
  2186. u16 pg;
  2187. switch (hw->chip_id) {
  2188. case CHIP_ID_YUKON_XL:
  2189. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2190. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2191. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
  2192. on ? (PHY_M_LEDC_LOS_CTRL(1) |
  2193. PHY_M_LEDC_INIT_CTRL(7) |
  2194. PHY_M_LEDC_STA1_CTRL(7) |
  2195. PHY_M_LEDC_STA0_CTRL(7))
  2196. : 0);
  2197. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2198. break;
  2199. default:
  2200. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  2201. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  2202. on ? PHY_M_LED_MO_DUP(MO_LED_ON) |
  2203. PHY_M_LED_MO_10(MO_LED_ON) |
  2204. PHY_M_LED_MO_100(MO_LED_ON) |
  2205. PHY_M_LED_MO_1000(MO_LED_ON) |
  2206. PHY_M_LED_MO_RX(MO_LED_ON)
  2207. : PHY_M_LED_MO_DUP(MO_LED_OFF) |
  2208. PHY_M_LED_MO_10(MO_LED_OFF) |
  2209. PHY_M_LED_MO_100(MO_LED_OFF) |
  2210. PHY_M_LED_MO_1000(MO_LED_OFF) |
  2211. PHY_M_LED_MO_RX(MO_LED_OFF));
  2212. }
  2213. }
  2214. /* blink LED's for finding board */
  2215. static int sky2_phys_id(struct net_device *dev, u32 data)
  2216. {
  2217. struct sky2_port *sky2 = netdev_priv(dev);
  2218. struct sky2_hw *hw = sky2->hw;
  2219. unsigned port = sky2->port;
  2220. u16 ledctrl, ledover = 0;
  2221. long ms;
  2222. int interrupted;
  2223. int onoff = 1;
  2224. if (!data || data > (u32) (MAX_SCHEDULE_TIMEOUT / HZ))
  2225. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT);
  2226. else
  2227. ms = data * 1000;
  2228. /* save initial values */
  2229. spin_lock_bh(&sky2->phy_lock);
  2230. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  2231. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2232. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2233. ledctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  2234. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2235. } else {
  2236. ledctrl = gm_phy_read(hw, port, PHY_MARV_LED_CTRL);
  2237. ledover = gm_phy_read(hw, port, PHY_MARV_LED_OVER);
  2238. }
  2239. interrupted = 0;
  2240. while (!interrupted && ms > 0) {
  2241. sky2_led(hw, port, onoff);
  2242. onoff = !onoff;
  2243. spin_unlock_bh(&sky2->phy_lock);
  2244. interrupted = msleep_interruptible(250);
  2245. spin_lock_bh(&sky2->phy_lock);
  2246. ms -= 250;
  2247. }
  2248. /* resume regularly scheduled programming */
  2249. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  2250. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2251. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2252. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ledctrl);
  2253. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2254. } else {
  2255. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  2256. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  2257. }
  2258. spin_unlock_bh(&sky2->phy_lock);
  2259. return 0;
  2260. }
  2261. static void sky2_get_pauseparam(struct net_device *dev,
  2262. struct ethtool_pauseparam *ecmd)
  2263. {
  2264. struct sky2_port *sky2 = netdev_priv(dev);
  2265. ecmd->tx_pause = sky2->tx_pause;
  2266. ecmd->rx_pause = sky2->rx_pause;
  2267. ecmd->autoneg = sky2->autoneg;
  2268. }
  2269. static int sky2_set_pauseparam(struct net_device *dev,
  2270. struct ethtool_pauseparam *ecmd)
  2271. {
  2272. struct sky2_port *sky2 = netdev_priv(dev);
  2273. int err = 0;
  2274. sky2->autoneg = ecmd->autoneg;
  2275. sky2->tx_pause = ecmd->tx_pause != 0;
  2276. sky2->rx_pause = ecmd->rx_pause != 0;
  2277. sky2_phy_reinit(sky2);
  2278. return err;
  2279. }
  2280. static int sky2_get_coalesce(struct net_device *dev,
  2281. struct ethtool_coalesce *ecmd)
  2282. {
  2283. struct sky2_port *sky2 = netdev_priv(dev);
  2284. struct sky2_hw *hw = sky2->hw;
  2285. if (sky2_read8(hw, STAT_TX_TIMER_CTRL) == TIM_STOP)
  2286. ecmd->tx_coalesce_usecs = 0;
  2287. else {
  2288. u32 clks = sky2_read32(hw, STAT_TX_TIMER_INI);
  2289. ecmd->tx_coalesce_usecs = sky2_clk2us(hw, clks);
  2290. }
  2291. ecmd->tx_max_coalesced_frames = sky2_read16(hw, STAT_TX_IDX_TH);
  2292. if (sky2_read8(hw, STAT_LEV_TIMER_CTRL) == TIM_STOP)
  2293. ecmd->rx_coalesce_usecs = 0;
  2294. else {
  2295. u32 clks = sky2_read32(hw, STAT_LEV_TIMER_INI);
  2296. ecmd->rx_coalesce_usecs = sky2_clk2us(hw, clks);
  2297. }
  2298. ecmd->rx_max_coalesced_frames = sky2_read8(hw, STAT_FIFO_WM);
  2299. if (sky2_read8(hw, STAT_ISR_TIMER_CTRL) == TIM_STOP)
  2300. ecmd->rx_coalesce_usecs_irq = 0;
  2301. else {
  2302. u32 clks = sky2_read32(hw, STAT_ISR_TIMER_INI);
  2303. ecmd->rx_coalesce_usecs_irq = sky2_clk2us(hw, clks);
  2304. }
  2305. ecmd->rx_max_coalesced_frames_irq = sky2_read8(hw, STAT_FIFO_ISR_WM);
  2306. return 0;
  2307. }
  2308. /* Note: this affect both ports */
  2309. static int sky2_set_coalesce(struct net_device *dev,
  2310. struct ethtool_coalesce *ecmd)
  2311. {
  2312. struct sky2_port *sky2 = netdev_priv(dev);
  2313. struct sky2_hw *hw = sky2->hw;
  2314. const u32 tmax = sky2_clk2us(hw, 0x0ffffff);
  2315. if (ecmd->tx_coalesce_usecs > tmax ||
  2316. ecmd->rx_coalesce_usecs > tmax ||
  2317. ecmd->rx_coalesce_usecs_irq > tmax)
  2318. return -EINVAL;
  2319. if (ecmd->tx_max_coalesced_frames >= TX_RING_SIZE-1)
  2320. return -EINVAL;
  2321. if (ecmd->rx_max_coalesced_frames > RX_MAX_PENDING)
  2322. return -EINVAL;
  2323. if (ecmd->rx_max_coalesced_frames_irq >RX_MAX_PENDING)
  2324. return -EINVAL;
  2325. if (ecmd->tx_coalesce_usecs == 0)
  2326. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
  2327. else {
  2328. sky2_write32(hw, STAT_TX_TIMER_INI,
  2329. sky2_us2clk(hw, ecmd->tx_coalesce_usecs));
  2330. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  2331. }
  2332. sky2_write16(hw, STAT_TX_IDX_TH, ecmd->tx_max_coalesced_frames);
  2333. if (ecmd->rx_coalesce_usecs == 0)
  2334. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_STOP);
  2335. else {
  2336. sky2_write32(hw, STAT_LEV_TIMER_INI,
  2337. sky2_us2clk(hw, ecmd->rx_coalesce_usecs));
  2338. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
  2339. }
  2340. sky2_write8(hw, STAT_FIFO_WM, ecmd->rx_max_coalesced_frames);
  2341. if (ecmd->rx_coalesce_usecs_irq == 0)
  2342. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_STOP);
  2343. else {
  2344. sky2_write32(hw, STAT_ISR_TIMER_INI,
  2345. sky2_us2clk(hw, ecmd->rx_coalesce_usecs_irq));
  2346. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
  2347. }
  2348. sky2_write8(hw, STAT_FIFO_ISR_WM, ecmd->rx_max_coalesced_frames_irq);
  2349. return 0;
  2350. }
  2351. static void sky2_get_ringparam(struct net_device *dev,
  2352. struct ethtool_ringparam *ering)
  2353. {
  2354. struct sky2_port *sky2 = netdev_priv(dev);
  2355. ering->rx_max_pending = RX_MAX_PENDING;
  2356. ering->rx_mini_max_pending = 0;
  2357. ering->rx_jumbo_max_pending = 0;
  2358. ering->tx_max_pending = TX_RING_SIZE - 1;
  2359. ering->rx_pending = sky2->rx_pending;
  2360. ering->rx_mini_pending = 0;
  2361. ering->rx_jumbo_pending = 0;
  2362. ering->tx_pending = sky2->tx_pending;
  2363. }
  2364. static int sky2_set_ringparam(struct net_device *dev,
  2365. struct ethtool_ringparam *ering)
  2366. {
  2367. struct sky2_port *sky2 = netdev_priv(dev);
  2368. int err = 0;
  2369. if (ering->rx_pending > RX_MAX_PENDING ||
  2370. ering->rx_pending < 8 ||
  2371. ering->tx_pending < MAX_SKB_TX_LE ||
  2372. ering->tx_pending > TX_RING_SIZE - 1)
  2373. return -EINVAL;
  2374. if (netif_running(dev))
  2375. sky2_down(dev);
  2376. sky2->rx_pending = ering->rx_pending;
  2377. sky2->tx_pending = ering->tx_pending;
  2378. if (netif_running(dev)) {
  2379. err = sky2_up(dev);
  2380. if (err)
  2381. dev_close(dev);
  2382. else
  2383. sky2_set_multicast(dev);
  2384. }
  2385. return err;
  2386. }
  2387. static int sky2_get_regs_len(struct net_device *dev)
  2388. {
  2389. return 0x4000;
  2390. }
  2391. /*
  2392. * Returns copy of control register region
  2393. * Note: access to the RAM address register set will cause timeouts.
  2394. */
  2395. static void sky2_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  2396. void *p)
  2397. {
  2398. const struct sky2_port *sky2 = netdev_priv(dev);
  2399. const void __iomem *io = sky2->hw->regs;
  2400. BUG_ON(regs->len < B3_RI_WTO_R1);
  2401. regs->version = 1;
  2402. memset(p, 0, regs->len);
  2403. memcpy_fromio(p, io, B3_RAM_ADDR);
  2404. memcpy_fromio(p + B3_RI_WTO_R1,
  2405. io + B3_RI_WTO_R1,
  2406. regs->len - B3_RI_WTO_R1);
  2407. }
  2408. static struct ethtool_ops sky2_ethtool_ops = {
  2409. .get_settings = sky2_get_settings,
  2410. .set_settings = sky2_set_settings,
  2411. .get_drvinfo = sky2_get_drvinfo,
  2412. .get_msglevel = sky2_get_msglevel,
  2413. .set_msglevel = sky2_set_msglevel,
  2414. .nway_reset = sky2_nway_reset,
  2415. .get_regs_len = sky2_get_regs_len,
  2416. .get_regs = sky2_get_regs,
  2417. .get_link = ethtool_op_get_link,
  2418. .get_sg = ethtool_op_get_sg,
  2419. .set_sg = ethtool_op_set_sg,
  2420. .get_tx_csum = ethtool_op_get_tx_csum,
  2421. .set_tx_csum = ethtool_op_set_tx_csum,
  2422. .get_tso = ethtool_op_get_tso,
  2423. .set_tso = ethtool_op_set_tso,
  2424. .get_rx_csum = sky2_get_rx_csum,
  2425. .set_rx_csum = sky2_set_rx_csum,
  2426. .get_strings = sky2_get_strings,
  2427. .get_coalesce = sky2_get_coalesce,
  2428. .set_coalesce = sky2_set_coalesce,
  2429. .get_ringparam = sky2_get_ringparam,
  2430. .set_ringparam = sky2_set_ringparam,
  2431. .get_pauseparam = sky2_get_pauseparam,
  2432. .set_pauseparam = sky2_set_pauseparam,
  2433. .phys_id = sky2_phys_id,
  2434. .get_stats_count = sky2_get_stats_count,
  2435. .get_ethtool_stats = sky2_get_ethtool_stats,
  2436. .get_perm_addr = ethtool_op_get_perm_addr,
  2437. };
  2438. /* Initialize network device */
  2439. static __devinit struct net_device *sky2_init_netdev(struct sky2_hw *hw,
  2440. unsigned port, int highmem)
  2441. {
  2442. struct sky2_port *sky2;
  2443. struct net_device *dev = alloc_etherdev(sizeof(*sky2));
  2444. if (!dev) {
  2445. printk(KERN_ERR "sky2 etherdev alloc failed");
  2446. return NULL;
  2447. }
  2448. SET_MODULE_OWNER(dev);
  2449. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2450. dev->irq = hw->pdev->irq;
  2451. dev->open = sky2_up;
  2452. dev->stop = sky2_down;
  2453. dev->do_ioctl = sky2_ioctl;
  2454. dev->hard_start_xmit = sky2_xmit_frame;
  2455. dev->get_stats = sky2_get_stats;
  2456. dev->set_multicast_list = sky2_set_multicast;
  2457. dev->set_mac_address = sky2_set_mac_address;
  2458. dev->change_mtu = sky2_change_mtu;
  2459. SET_ETHTOOL_OPS(dev, &sky2_ethtool_ops);
  2460. dev->tx_timeout = sky2_tx_timeout;
  2461. dev->watchdog_timeo = TX_WATCHDOG;
  2462. if (port == 0)
  2463. dev->poll = sky2_poll;
  2464. dev->weight = NAPI_WEIGHT;
  2465. #ifdef CONFIG_NET_POLL_CONTROLLER
  2466. dev->poll_controller = sky2_netpoll;
  2467. #endif
  2468. sky2 = netdev_priv(dev);
  2469. sky2->netdev = dev;
  2470. sky2->hw = hw;
  2471. sky2->msg_enable = netif_msg_init(debug, default_msg);
  2472. spin_lock_init(&sky2->tx_lock);
  2473. /* Auto speed and flow control */
  2474. sky2->autoneg = AUTONEG_ENABLE;
  2475. sky2->tx_pause = 1;
  2476. sky2->rx_pause = 1;
  2477. sky2->duplex = -1;
  2478. sky2->speed = -1;
  2479. sky2->advertising = sky2_supported_modes(hw);
  2480. /* Receive checksum disabled for Yukon XL
  2481. * because of observed problems with incorrect
  2482. * values when multiple packets are received in one interrupt
  2483. */
  2484. sky2->rx_csum = (hw->chip_id != CHIP_ID_YUKON_XL);
  2485. spin_lock_init(&sky2->phy_lock);
  2486. sky2->tx_pending = TX_DEF_PENDING;
  2487. sky2->rx_pending = RX_DEF_PENDING;
  2488. sky2->rx_bufsize = sky2_buf_size(ETH_DATA_LEN);
  2489. hw->dev[port] = dev;
  2490. sky2->port = port;
  2491. dev->features |= NETIF_F_LLTX;
  2492. if (hw->chip_id != CHIP_ID_YUKON_EC_U)
  2493. dev->features |= NETIF_F_TSO;
  2494. if (highmem)
  2495. dev->features |= NETIF_F_HIGHDMA;
  2496. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2497. #ifdef SKY2_VLAN_TAG_USED
  2498. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  2499. dev->vlan_rx_register = sky2_vlan_rx_register;
  2500. dev->vlan_rx_kill_vid = sky2_vlan_rx_kill_vid;
  2501. #endif
  2502. /* read the mac address */
  2503. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port * 8, ETH_ALEN);
  2504. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2505. /* device is off until link detection */
  2506. netif_carrier_off(dev);
  2507. netif_stop_queue(dev);
  2508. return dev;
  2509. }
  2510. static void __devinit sky2_show_addr(struct net_device *dev)
  2511. {
  2512. const struct sky2_port *sky2 = netdev_priv(dev);
  2513. if (netif_msg_probe(sky2))
  2514. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2515. dev->name,
  2516. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2517. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2518. }
  2519. /* Handle software interrupt used during MSI test */
  2520. static irqreturn_t __devinit sky2_test_intr(int irq, void *dev_id,
  2521. struct pt_regs *regs)
  2522. {
  2523. struct sky2_hw *hw = dev_id;
  2524. u32 status = sky2_read32(hw, B0_Y2_SP_ISRC2);
  2525. if (status == 0)
  2526. return IRQ_NONE;
  2527. if (status & Y2_IS_IRQ_SW) {
  2528. hw->msi_detected = 1;
  2529. wake_up(&hw->msi_wait);
  2530. sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
  2531. }
  2532. sky2_write32(hw, B0_Y2_SP_ICR, 2);
  2533. return IRQ_HANDLED;
  2534. }
  2535. /* Test interrupt path by forcing a a software IRQ */
  2536. static int __devinit sky2_test_msi(struct sky2_hw *hw)
  2537. {
  2538. struct pci_dev *pdev = hw->pdev;
  2539. int err;
  2540. sky2_write32(hw, B0_IMSK, Y2_IS_IRQ_SW);
  2541. err = request_irq(pdev->irq, sky2_test_intr, SA_SHIRQ, DRV_NAME, hw);
  2542. if (err) {
  2543. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2544. pci_name(pdev), pdev->irq);
  2545. return err;
  2546. }
  2547. init_waitqueue_head (&hw->msi_wait);
  2548. sky2_write8(hw, B0_CTST, CS_ST_SW_IRQ);
  2549. wmb();
  2550. wait_event_timeout(hw->msi_wait, hw->msi_detected, HZ/10);
  2551. if (!hw->msi_detected) {
  2552. /* MSI test failed, go back to INTx mode */
  2553. printk(KERN_WARNING PFX "%s: No interrupt was generated using MSI, "
  2554. "switching to INTx mode. Please report this failure to "
  2555. "the PCI maintainer and include system chipset information.\n",
  2556. pci_name(pdev));
  2557. err = -EOPNOTSUPP;
  2558. sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
  2559. }
  2560. sky2_write32(hw, B0_IMSK, 0);
  2561. free_irq(pdev->irq, hw);
  2562. return err;
  2563. }
  2564. static int __devinit sky2_probe(struct pci_dev *pdev,
  2565. const struct pci_device_id *ent)
  2566. {
  2567. struct net_device *dev, *dev1 = NULL;
  2568. struct sky2_hw *hw;
  2569. int err, pm_cap, using_dac = 0;
  2570. err = pci_enable_device(pdev);
  2571. if (err) {
  2572. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2573. pci_name(pdev));
  2574. goto err_out;
  2575. }
  2576. err = pci_request_regions(pdev, DRV_NAME);
  2577. if (err) {
  2578. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2579. pci_name(pdev));
  2580. goto err_out;
  2581. }
  2582. pci_set_master(pdev);
  2583. /* Find power-management capability. */
  2584. pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  2585. if (pm_cap == 0) {
  2586. printk(KERN_ERR PFX "Cannot find PowerManagement capability, "
  2587. "aborting.\n");
  2588. err = -EIO;
  2589. goto err_out_free_regions;
  2590. }
  2591. if (sizeof(dma_addr_t) > sizeof(u32) &&
  2592. !(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
  2593. using_dac = 1;
  2594. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  2595. if (err < 0) {
  2596. printk(KERN_ERR PFX "%s unable to obtain 64 bit DMA "
  2597. "for consistent allocations\n", pci_name(pdev));
  2598. goto err_out_free_regions;
  2599. }
  2600. } else {
  2601. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  2602. if (err) {
  2603. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2604. pci_name(pdev));
  2605. goto err_out_free_regions;
  2606. }
  2607. }
  2608. err = -ENOMEM;
  2609. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  2610. if (!hw) {
  2611. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2612. pci_name(pdev));
  2613. goto err_out_free_regions;
  2614. }
  2615. hw->pdev = pdev;
  2616. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2617. if (!hw->regs) {
  2618. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2619. pci_name(pdev));
  2620. goto err_out_free_hw;
  2621. }
  2622. hw->pm_cap = pm_cap;
  2623. #ifdef __BIG_ENDIAN
  2624. /* byte swap descriptors in hardware */
  2625. {
  2626. u32 reg;
  2627. reg = sky2_pci_read32(hw, PCI_DEV_REG2);
  2628. reg |= PCI_REV_DESC;
  2629. sky2_pci_write32(hw, PCI_DEV_REG2, reg);
  2630. }
  2631. #endif
  2632. /* ring for status responses */
  2633. hw->st_le = pci_alloc_consistent(hw->pdev, STATUS_LE_BYTES,
  2634. &hw->st_dma);
  2635. if (!hw->st_le)
  2636. goto err_out_iounmap;
  2637. err = sky2_reset(hw);
  2638. if (err)
  2639. goto err_out_iounmap;
  2640. printk(KERN_INFO PFX "v%s addr 0x%lx irq %d Yukon-%s (0x%x) rev %d\n",
  2641. DRV_VERSION, pci_resource_start(pdev, 0), pdev->irq,
  2642. yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL],
  2643. hw->chip_id, hw->chip_rev);
  2644. dev = sky2_init_netdev(hw, 0, using_dac);
  2645. if (!dev)
  2646. goto err_out_free_pci;
  2647. err = register_netdev(dev);
  2648. if (err) {
  2649. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2650. pci_name(pdev));
  2651. goto err_out_free_netdev;
  2652. }
  2653. sky2_show_addr(dev);
  2654. if (hw->ports > 1 && (dev1 = sky2_init_netdev(hw, 1, using_dac))) {
  2655. if (register_netdev(dev1) == 0)
  2656. sky2_show_addr(dev1);
  2657. else {
  2658. /* Failure to register second port need not be fatal */
  2659. printk(KERN_WARNING PFX
  2660. "register of second port failed\n");
  2661. hw->dev[1] = NULL;
  2662. free_netdev(dev1);
  2663. }
  2664. }
  2665. if (!disable_msi && pci_enable_msi(pdev) == 0) {
  2666. err = sky2_test_msi(hw);
  2667. if (err == -EOPNOTSUPP)
  2668. pci_disable_msi(pdev);
  2669. else if (err)
  2670. goto err_out_unregister;
  2671. }
  2672. err = request_irq(pdev->irq, sky2_intr, SA_SHIRQ, DRV_NAME, hw);
  2673. if (err) {
  2674. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2675. pci_name(pdev), pdev->irq);
  2676. goto err_out_unregister;
  2677. }
  2678. sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
  2679. setup_timer(&hw->idle_timer, sky2_idle, (unsigned long) dev);
  2680. pci_set_drvdata(pdev, hw);
  2681. return 0;
  2682. err_out_unregister:
  2683. pci_disable_msi(pdev);
  2684. if (dev1) {
  2685. unregister_netdev(dev1);
  2686. free_netdev(dev1);
  2687. }
  2688. unregister_netdev(dev);
  2689. err_out_free_netdev:
  2690. free_netdev(dev);
  2691. err_out_free_pci:
  2692. sky2_write8(hw, B0_CTST, CS_RST_SET);
  2693. pci_free_consistent(hw->pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
  2694. err_out_iounmap:
  2695. iounmap(hw->regs);
  2696. err_out_free_hw:
  2697. kfree(hw);
  2698. err_out_free_regions:
  2699. pci_release_regions(pdev);
  2700. pci_disable_device(pdev);
  2701. err_out:
  2702. return err;
  2703. }
  2704. static void __devexit sky2_remove(struct pci_dev *pdev)
  2705. {
  2706. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2707. struct net_device *dev0, *dev1;
  2708. if (!hw)
  2709. return;
  2710. del_timer_sync(&hw->idle_timer);
  2711. sky2_write32(hw, B0_IMSK, 0);
  2712. dev0 = hw->dev[0];
  2713. dev1 = hw->dev[1];
  2714. if (dev1)
  2715. unregister_netdev(dev1);
  2716. unregister_netdev(dev0);
  2717. sky2_set_power_state(hw, PCI_D3hot);
  2718. sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
  2719. sky2_write8(hw, B0_CTST, CS_RST_SET);
  2720. sky2_read8(hw, B0_CTST);
  2721. free_irq(pdev->irq, hw);
  2722. pci_disable_msi(pdev);
  2723. pci_free_consistent(pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
  2724. pci_release_regions(pdev);
  2725. pci_disable_device(pdev);
  2726. if (dev1)
  2727. free_netdev(dev1);
  2728. free_netdev(dev0);
  2729. iounmap(hw->regs);
  2730. kfree(hw);
  2731. pci_set_drvdata(pdev, NULL);
  2732. }
  2733. #ifdef CONFIG_PM
  2734. static int sky2_suspend(struct pci_dev *pdev, pm_message_t state)
  2735. {
  2736. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2737. int i;
  2738. for (i = 0; i < 2; i++) {
  2739. struct net_device *dev = hw->dev[i];
  2740. if (dev) {
  2741. if (!netif_running(dev))
  2742. continue;
  2743. sky2_down(dev);
  2744. netif_device_detach(dev);
  2745. }
  2746. }
  2747. return sky2_set_power_state(hw, pci_choose_state(pdev, state));
  2748. }
  2749. static int sky2_resume(struct pci_dev *pdev)
  2750. {
  2751. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2752. int i, err;
  2753. pci_restore_state(pdev);
  2754. pci_enable_wake(pdev, PCI_D0, 0);
  2755. err = sky2_set_power_state(hw, PCI_D0);
  2756. if (err)
  2757. goto out;
  2758. err = sky2_reset(hw);
  2759. if (err)
  2760. goto out;
  2761. for (i = 0; i < 2; i++) {
  2762. struct net_device *dev = hw->dev[i];
  2763. if (dev && netif_running(dev)) {
  2764. netif_device_attach(dev);
  2765. err = sky2_up(dev);
  2766. if (err) {
  2767. printk(KERN_ERR PFX "%s: could not up: %d\n",
  2768. dev->name, err);
  2769. dev_close(dev);
  2770. break;
  2771. }
  2772. }
  2773. }
  2774. out:
  2775. return err;
  2776. }
  2777. #endif
  2778. static struct pci_driver sky2_driver = {
  2779. .name = DRV_NAME,
  2780. .id_table = sky2_id_table,
  2781. .probe = sky2_probe,
  2782. .remove = __devexit_p(sky2_remove),
  2783. #ifdef CONFIG_PM
  2784. .suspend = sky2_suspend,
  2785. .resume = sky2_resume,
  2786. #endif
  2787. };
  2788. static int __init sky2_init_module(void)
  2789. {
  2790. return pci_register_driver(&sky2_driver);
  2791. }
  2792. static void __exit sky2_cleanup_module(void)
  2793. {
  2794. pci_unregister_driver(&sky2_driver);
  2795. }
  2796. module_init(sky2_init_module);
  2797. module_exit(sky2_cleanup_module);
  2798. MODULE_DESCRIPTION("Marvell Yukon 2 Gigabit Ethernet driver");
  2799. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  2800. MODULE_LICENSE("GPL");
  2801. MODULE_VERSION(DRV_VERSION);