p2m.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759
  1. /*
  2. * Xen leaves the responsibility for maintaining p2m mappings to the
  3. * guests themselves, but it must also access and update the p2m array
  4. * during suspend/resume when all the pages are reallocated.
  5. *
  6. * The p2m table is logically a flat array, but we implement it as a
  7. * three-level tree to allow the address space to be sparse.
  8. *
  9. * Xen
  10. * |
  11. * p2m_top p2m_top_mfn
  12. * / \ / \
  13. * p2m_mid p2m_mid p2m_mid_mfn p2m_mid_mfn
  14. * / \ / \ / /
  15. * p2m p2m p2m p2m p2m p2m p2m ...
  16. *
  17. * The p2m_mid_mfn pages are mapped by p2m_top_mfn_p.
  18. *
  19. * The p2m_top and p2m_top_mfn levels are limited to 1 page, so the
  20. * maximum representable pseudo-physical address space is:
  21. * P2M_TOP_PER_PAGE * P2M_MID_PER_PAGE * P2M_PER_PAGE pages
  22. *
  23. * P2M_PER_PAGE depends on the architecture, as a mfn is always
  24. * unsigned long (8 bytes on 64-bit, 4 bytes on 32), leading to
  25. * 512 and 1024 entries respectively.
  26. *
  27. * In short, these structures contain the Machine Frame Number (MFN) of the PFN.
  28. *
  29. * However not all entries are filled with MFNs. Specifically for all other
  30. * leaf entries, or for the top root, or middle one, for which there is a void
  31. * entry, we assume it is "missing". So (for example)
  32. * pfn_to_mfn(0x90909090)=INVALID_P2M_ENTRY.
  33. *
  34. * We also have the possibility of setting 1-1 mappings on certain regions, so
  35. * that:
  36. * pfn_to_mfn(0xc0000)=0xc0000
  37. *
  38. * The benefit of this is, that we can assume for non-RAM regions (think
  39. * PCI BARs, or ACPI spaces), we can create mappings easily b/c we
  40. * get the PFN value to match the MFN.
  41. *
  42. * For this to work efficiently we have one new page p2m_identity and
  43. * allocate (via reserved_brk) any other pages we need to cover the sides
  44. * (1GB or 4MB boundary violations). All entries in p2m_identity are set to
  45. * INVALID_P2M_ENTRY type (Xen toolstack only recognizes that and MFNs,
  46. * no other fancy value).
  47. *
  48. * On lookup we spot that the entry points to p2m_identity and return the
  49. * identity value instead of dereferencing and returning INVALID_P2M_ENTRY.
  50. * If the entry points to an allocated page, we just proceed as before and
  51. * return the PFN. If the PFN has IDENTITY_FRAME_BIT set we unmask that in
  52. * appropriate functions (pfn_to_mfn).
  53. *
  54. * The reason for having the IDENTITY_FRAME_BIT instead of just returning the
  55. * PFN is that we could find ourselves where pfn_to_mfn(pfn)==pfn for a
  56. * non-identity pfn. To protect ourselves against we elect to set (and get) the
  57. * IDENTITY_FRAME_BIT on all identity mapped PFNs.
  58. *
  59. * This simplistic diagram is used to explain the more subtle piece of code.
  60. * There is also a digram of the P2M at the end that can help.
  61. * Imagine your E820 looking as so:
  62. *
  63. * 1GB 2GB
  64. * /-------------------+---------\/----\ /----------\ /---+-----\
  65. * | System RAM | Sys RAM ||ACPI| | reserved | | Sys RAM |
  66. * \-------------------+---------/\----/ \----------/ \---+-----/
  67. * ^- 1029MB ^- 2001MB
  68. *
  69. * [1029MB = 263424 (0x40500), 2001MB = 512256 (0x7D100),
  70. * 2048MB = 524288 (0x80000)]
  71. *
  72. * And dom0_mem=max:3GB,1GB is passed in to the guest, meaning memory past 1GB
  73. * is actually not present (would have to kick the balloon driver to put it in).
  74. *
  75. * When we are told to set the PFNs for identity mapping (see patch: "xen/setup:
  76. * Set identity mapping for non-RAM E820 and E820 gaps.") we pass in the start
  77. * of the PFN and the end PFN (263424 and 512256 respectively). The first step
  78. * is to reserve_brk a top leaf page if the p2m[1] is missing. The top leaf page
  79. * covers 512^2 of page estate (1GB) and in case the start or end PFN is not
  80. * aligned on 512^2*PAGE_SIZE (1GB) we loop on aligned 1GB PFNs from start pfn
  81. * to end pfn. We reserve_brk top leaf pages if they are missing (means they
  82. * point to p2m_mid_missing).
  83. *
  84. * With the E820 example above, 263424 is not 1GB aligned so we allocate a
  85. * reserve_brk page which will cover the PFNs estate from 0x40000 to 0x80000.
  86. * Each entry in the allocate page is "missing" (points to p2m_missing).
  87. *
  88. * Next stage is to determine if we need to do a more granular boundary check
  89. * on the 4MB (or 2MB depending on architecture) off the start and end pfn's.
  90. * We check if the start pfn and end pfn violate that boundary check, and if
  91. * so reserve_brk a middle (p2m[x][y]) leaf page. This way we have a much finer
  92. * granularity of setting which PFNs are missing and which ones are identity.
  93. * In our example 263424 and 512256 both fail the check so we reserve_brk two
  94. * pages. Populate them with INVALID_P2M_ENTRY (so they both have "missing"
  95. * values) and assign them to p2m[1][2] and p2m[1][488] respectively.
  96. *
  97. * At this point we would at minimum reserve_brk one page, but could be up to
  98. * three. Each call to set_phys_range_identity has at maximum a three page
  99. * cost. If we were to query the P2M at this stage, all those entries from
  100. * start PFN through end PFN (so 1029MB -> 2001MB) would return
  101. * INVALID_P2M_ENTRY ("missing").
  102. *
  103. * The next step is to walk from the start pfn to the end pfn setting
  104. * the IDENTITY_FRAME_BIT on each PFN. This is done in set_phys_range_identity.
  105. * If we find that the middle leaf is pointing to p2m_missing we can swap it
  106. * over to p2m_identity - this way covering 4MB (or 2MB) PFN space. At this
  107. * point we do not need to worry about boundary aligment (so no need to
  108. * reserve_brk a middle page, figure out which PFNs are "missing" and which
  109. * ones are identity), as that has been done earlier. If we find that the
  110. * middle leaf is not occupied by p2m_identity or p2m_missing, we dereference
  111. * that page (which covers 512 PFNs) and set the appropriate PFN with
  112. * IDENTITY_FRAME_BIT. In our example 263424 and 512256 end up there, and we
  113. * set from p2m[1][2][256->511] and p2m[1][488][0->256] with
  114. * IDENTITY_FRAME_BIT set.
  115. *
  116. * All other regions that are void (or not filled) either point to p2m_missing
  117. * (considered missing) or have the default value of INVALID_P2M_ENTRY (also
  118. * considered missing). In our case, p2m[1][2][0->255] and p2m[1][488][257->511]
  119. * contain the INVALID_P2M_ENTRY value and are considered "missing."
  120. *
  121. * This is what the p2m ends up looking (for the E820 above) with this
  122. * fabulous drawing:
  123. *
  124. * p2m /--------------\
  125. * /-----\ | &mfn_list[0],| /-----------------\
  126. * | 0 |------>| &mfn_list[1],| /---------------\ | ~0, ~0, .. |
  127. * |-----| | ..., ~0, ~0 | | ~0, ~0, [x]---+----->| IDENTITY [@256] |
  128. * | 1 |---\ \--------------/ | [p2m_identity]+\ | IDENTITY [@257] |
  129. * |-----| \ | [p2m_identity]+\\ | .... |
  130. * | 2 |--\ \-------------------->| ... | \\ \----------------/
  131. * |-----| \ \---------------/ \\
  132. * | 3 |\ \ \\ p2m_identity
  133. * |-----| \ \-------------------->/---------------\ /-----------------\
  134. * | .. +->+ | [p2m_identity]+-->| ~0, ~0, ~0, ... |
  135. * \-----/ / | [p2m_identity]+-->| ..., ~0 |
  136. * / /---------------\ | .... | \-----------------/
  137. * / | IDENTITY[@0] | /-+-[x], ~0, ~0.. |
  138. * / | IDENTITY[@256]|<----/ \---------------/
  139. * / | ~0, ~0, .... |
  140. * | \---------------/
  141. * |
  142. * p2m_missing p2m_missing
  143. * /------------------\ /------------\
  144. * | [p2m_mid_missing]+---->| ~0, ~0, ~0 |
  145. * | [p2m_mid_missing]+---->| ..., ~0 |
  146. * \------------------/ \------------/
  147. *
  148. * where ~0 is INVALID_P2M_ENTRY. IDENTITY is (PFN | IDENTITY_BIT)
  149. */
  150. #include <linux/init.h>
  151. #include <linux/module.h>
  152. #include <linux/list.h>
  153. #include <linux/hash.h>
  154. #include <linux/sched.h>
  155. #include <asm/cache.h>
  156. #include <asm/setup.h>
  157. #include <asm/xen/page.h>
  158. #include <asm/xen/hypercall.h>
  159. #include <asm/xen/hypervisor.h>
  160. #include "xen-ops.h"
  161. static void __init m2p_override_init(void);
  162. unsigned long xen_max_p2m_pfn __read_mostly;
  163. #define P2M_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
  164. #define P2M_MID_PER_PAGE (PAGE_SIZE / sizeof(unsigned long *))
  165. #define P2M_TOP_PER_PAGE (PAGE_SIZE / sizeof(unsigned long **))
  166. #define MAX_P2M_PFN (P2M_TOP_PER_PAGE * P2M_MID_PER_PAGE * P2M_PER_PAGE)
  167. /* Placeholders for holes in the address space */
  168. static RESERVE_BRK_ARRAY(unsigned long, p2m_missing, P2M_PER_PAGE);
  169. static RESERVE_BRK_ARRAY(unsigned long *, p2m_mid_missing, P2M_MID_PER_PAGE);
  170. static RESERVE_BRK_ARRAY(unsigned long, p2m_mid_missing_mfn, P2M_MID_PER_PAGE);
  171. static RESERVE_BRK_ARRAY(unsigned long **, p2m_top, P2M_TOP_PER_PAGE);
  172. static RESERVE_BRK_ARRAY(unsigned long, p2m_top_mfn, P2M_TOP_PER_PAGE);
  173. static RESERVE_BRK_ARRAY(unsigned long *, p2m_top_mfn_p, P2M_TOP_PER_PAGE);
  174. static RESERVE_BRK_ARRAY(unsigned long, p2m_identity, P2M_PER_PAGE);
  175. RESERVE_BRK(p2m_mid, PAGE_SIZE * (MAX_DOMAIN_PAGES / (P2M_PER_PAGE * P2M_MID_PER_PAGE)));
  176. RESERVE_BRK(p2m_mid_mfn, PAGE_SIZE * (MAX_DOMAIN_PAGES / (P2M_PER_PAGE * P2M_MID_PER_PAGE)));
  177. /* We might hit two boundary violations at the start and end, at max each
  178. * boundary violation will require three middle nodes. */
  179. RESERVE_BRK(p2m_mid_identity, PAGE_SIZE * 2 * 3);
  180. static inline unsigned p2m_top_index(unsigned long pfn)
  181. {
  182. BUG_ON(pfn >= MAX_P2M_PFN);
  183. return pfn / (P2M_MID_PER_PAGE * P2M_PER_PAGE);
  184. }
  185. static inline unsigned p2m_mid_index(unsigned long pfn)
  186. {
  187. return (pfn / P2M_PER_PAGE) % P2M_MID_PER_PAGE;
  188. }
  189. static inline unsigned p2m_index(unsigned long pfn)
  190. {
  191. return pfn % P2M_PER_PAGE;
  192. }
  193. static void p2m_top_init(unsigned long ***top)
  194. {
  195. unsigned i;
  196. for (i = 0; i < P2M_TOP_PER_PAGE; i++)
  197. top[i] = p2m_mid_missing;
  198. }
  199. static void p2m_top_mfn_init(unsigned long *top)
  200. {
  201. unsigned i;
  202. for (i = 0; i < P2M_TOP_PER_PAGE; i++)
  203. top[i] = virt_to_mfn(p2m_mid_missing_mfn);
  204. }
  205. static void p2m_top_mfn_p_init(unsigned long **top)
  206. {
  207. unsigned i;
  208. for (i = 0; i < P2M_TOP_PER_PAGE; i++)
  209. top[i] = p2m_mid_missing_mfn;
  210. }
  211. static void p2m_mid_init(unsigned long **mid)
  212. {
  213. unsigned i;
  214. for (i = 0; i < P2M_MID_PER_PAGE; i++)
  215. mid[i] = p2m_missing;
  216. }
  217. static void p2m_mid_mfn_init(unsigned long *mid)
  218. {
  219. unsigned i;
  220. for (i = 0; i < P2M_MID_PER_PAGE; i++)
  221. mid[i] = virt_to_mfn(p2m_missing);
  222. }
  223. static void p2m_init(unsigned long *p2m)
  224. {
  225. unsigned i;
  226. for (i = 0; i < P2M_MID_PER_PAGE; i++)
  227. p2m[i] = INVALID_P2M_ENTRY;
  228. }
  229. /*
  230. * Build the parallel p2m_top_mfn and p2m_mid_mfn structures
  231. *
  232. * This is called both at boot time, and after resuming from suspend:
  233. * - At boot time we're called very early, and must use extend_brk()
  234. * to allocate memory.
  235. *
  236. * - After resume we're called from within stop_machine, but the mfn
  237. * tree should alreay be completely allocated.
  238. */
  239. void xen_build_mfn_list_list(void)
  240. {
  241. unsigned long pfn;
  242. /* Pre-initialize p2m_top_mfn to be completely missing */
  243. if (p2m_top_mfn == NULL) {
  244. p2m_mid_missing_mfn = extend_brk(PAGE_SIZE, PAGE_SIZE);
  245. p2m_mid_mfn_init(p2m_mid_missing_mfn);
  246. p2m_top_mfn_p = extend_brk(PAGE_SIZE, PAGE_SIZE);
  247. p2m_top_mfn_p_init(p2m_top_mfn_p);
  248. p2m_top_mfn = extend_brk(PAGE_SIZE, PAGE_SIZE);
  249. p2m_top_mfn_init(p2m_top_mfn);
  250. } else {
  251. /* Reinitialise, mfn's all change after migration */
  252. p2m_mid_mfn_init(p2m_mid_missing_mfn);
  253. }
  254. for (pfn = 0; pfn < xen_max_p2m_pfn; pfn += P2M_PER_PAGE) {
  255. unsigned topidx = p2m_top_index(pfn);
  256. unsigned mididx = p2m_mid_index(pfn);
  257. unsigned long **mid;
  258. unsigned long *mid_mfn_p;
  259. mid = p2m_top[topidx];
  260. mid_mfn_p = p2m_top_mfn_p[topidx];
  261. /* Don't bother allocating any mfn mid levels if
  262. * they're just missing, just update the stored mfn,
  263. * since all could have changed over a migrate.
  264. */
  265. if (mid == p2m_mid_missing) {
  266. BUG_ON(mididx);
  267. BUG_ON(mid_mfn_p != p2m_mid_missing_mfn);
  268. p2m_top_mfn[topidx] = virt_to_mfn(p2m_mid_missing_mfn);
  269. pfn += (P2M_MID_PER_PAGE - 1) * P2M_PER_PAGE;
  270. continue;
  271. }
  272. if (mid_mfn_p == p2m_mid_missing_mfn) {
  273. /*
  274. * XXX boot-time only! We should never find
  275. * missing parts of the mfn tree after
  276. * runtime. extend_brk() will BUG if we call
  277. * it too late.
  278. */
  279. mid_mfn_p = extend_brk(PAGE_SIZE, PAGE_SIZE);
  280. p2m_mid_mfn_init(mid_mfn_p);
  281. p2m_top_mfn_p[topidx] = mid_mfn_p;
  282. }
  283. p2m_top_mfn[topidx] = virt_to_mfn(mid_mfn_p);
  284. mid_mfn_p[mididx] = virt_to_mfn(mid[mididx]);
  285. }
  286. }
  287. void xen_setup_mfn_list_list(void)
  288. {
  289. BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
  290. HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
  291. virt_to_mfn(p2m_top_mfn);
  292. HYPERVISOR_shared_info->arch.max_pfn = xen_max_p2m_pfn;
  293. }
  294. /* Set up p2m_top to point to the domain-builder provided p2m pages */
  295. void __init xen_build_dynamic_phys_to_machine(void)
  296. {
  297. unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
  298. unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
  299. unsigned long pfn;
  300. xen_max_p2m_pfn = max_pfn;
  301. p2m_missing = extend_brk(PAGE_SIZE, PAGE_SIZE);
  302. p2m_init(p2m_missing);
  303. p2m_mid_missing = extend_brk(PAGE_SIZE, PAGE_SIZE);
  304. p2m_mid_init(p2m_mid_missing);
  305. p2m_top = extend_brk(PAGE_SIZE, PAGE_SIZE);
  306. p2m_top_init(p2m_top);
  307. p2m_identity = extend_brk(PAGE_SIZE, PAGE_SIZE);
  308. p2m_init(p2m_identity);
  309. /*
  310. * The domain builder gives us a pre-constructed p2m array in
  311. * mfn_list for all the pages initially given to us, so we just
  312. * need to graft that into our tree structure.
  313. */
  314. for (pfn = 0; pfn < max_pfn; pfn += P2M_PER_PAGE) {
  315. unsigned topidx = p2m_top_index(pfn);
  316. unsigned mididx = p2m_mid_index(pfn);
  317. if (p2m_top[topidx] == p2m_mid_missing) {
  318. unsigned long **mid = extend_brk(PAGE_SIZE, PAGE_SIZE);
  319. p2m_mid_init(mid);
  320. p2m_top[topidx] = mid;
  321. }
  322. /*
  323. * As long as the mfn_list has enough entries to completely
  324. * fill a p2m page, pointing into the array is ok. But if
  325. * not the entries beyond the last pfn will be undefined.
  326. * And guessing that the 'what-ever-there-is' does not take it
  327. * too kindly when changing it to invalid markers, a new page
  328. * is allocated, initialized and filled with the valid part.
  329. */
  330. if (unlikely(pfn + P2M_PER_PAGE > max_pfn)) {
  331. unsigned long p2midx;
  332. unsigned long *p2m = extend_brk(PAGE_SIZE, PAGE_SIZE);
  333. p2m_init(p2m);
  334. for (p2midx = 0; pfn + p2midx < max_pfn; p2midx++) {
  335. p2m[p2midx] = mfn_list[pfn + p2midx];
  336. }
  337. p2m_top[topidx][mididx] = p2m;
  338. } else
  339. p2m_top[topidx][mididx] = &mfn_list[pfn];
  340. }
  341. m2p_override_init();
  342. }
  343. unsigned long get_phys_to_machine(unsigned long pfn)
  344. {
  345. unsigned topidx, mididx, idx;
  346. if (unlikely(pfn >= MAX_P2M_PFN))
  347. return INVALID_P2M_ENTRY;
  348. topidx = p2m_top_index(pfn);
  349. mididx = p2m_mid_index(pfn);
  350. idx = p2m_index(pfn);
  351. /*
  352. * The INVALID_P2M_ENTRY is filled in both p2m_*identity
  353. * and in p2m_*missing, so returning the INVALID_P2M_ENTRY
  354. * would be wrong.
  355. */
  356. if (p2m_top[topidx][mididx] == p2m_identity)
  357. return IDENTITY_FRAME(pfn);
  358. return p2m_top[topidx][mididx][idx];
  359. }
  360. EXPORT_SYMBOL_GPL(get_phys_to_machine);
  361. static void *alloc_p2m_page(void)
  362. {
  363. return (void *)__get_free_page(GFP_KERNEL | __GFP_REPEAT);
  364. }
  365. static void free_p2m_page(void *p)
  366. {
  367. free_page((unsigned long)p);
  368. }
  369. /*
  370. * Fully allocate the p2m structure for a given pfn. We need to check
  371. * that both the top and mid levels are allocated, and make sure the
  372. * parallel mfn tree is kept in sync. We may race with other cpus, so
  373. * the new pages are installed with cmpxchg; if we lose the race then
  374. * simply free the page we allocated and use the one that's there.
  375. */
  376. static bool alloc_p2m(unsigned long pfn)
  377. {
  378. unsigned topidx, mididx;
  379. unsigned long ***top_p, **mid;
  380. unsigned long *top_mfn_p, *mid_mfn;
  381. topidx = p2m_top_index(pfn);
  382. mididx = p2m_mid_index(pfn);
  383. top_p = &p2m_top[topidx];
  384. mid = *top_p;
  385. if (mid == p2m_mid_missing) {
  386. /* Mid level is missing, allocate a new one */
  387. mid = alloc_p2m_page();
  388. if (!mid)
  389. return false;
  390. p2m_mid_init(mid);
  391. if (cmpxchg(top_p, p2m_mid_missing, mid) != p2m_mid_missing)
  392. free_p2m_page(mid);
  393. }
  394. top_mfn_p = &p2m_top_mfn[topidx];
  395. mid_mfn = p2m_top_mfn_p[topidx];
  396. BUG_ON(virt_to_mfn(mid_mfn) != *top_mfn_p);
  397. if (mid_mfn == p2m_mid_missing_mfn) {
  398. /* Separately check the mid mfn level */
  399. unsigned long missing_mfn;
  400. unsigned long mid_mfn_mfn;
  401. mid_mfn = alloc_p2m_page();
  402. if (!mid_mfn)
  403. return false;
  404. p2m_mid_mfn_init(mid_mfn);
  405. missing_mfn = virt_to_mfn(p2m_mid_missing_mfn);
  406. mid_mfn_mfn = virt_to_mfn(mid_mfn);
  407. if (cmpxchg(top_mfn_p, missing_mfn, mid_mfn_mfn) != missing_mfn)
  408. free_p2m_page(mid_mfn);
  409. else
  410. p2m_top_mfn_p[topidx] = mid_mfn;
  411. }
  412. if (p2m_top[topidx][mididx] == p2m_identity ||
  413. p2m_top[topidx][mididx] == p2m_missing) {
  414. /* p2m leaf page is missing */
  415. unsigned long *p2m;
  416. unsigned long *p2m_orig = p2m_top[topidx][mididx];
  417. p2m = alloc_p2m_page();
  418. if (!p2m)
  419. return false;
  420. p2m_init(p2m);
  421. if (cmpxchg(&mid[mididx], p2m_orig, p2m) != p2m_orig)
  422. free_p2m_page(p2m);
  423. else
  424. mid_mfn[mididx] = virt_to_mfn(p2m);
  425. }
  426. return true;
  427. }
  428. bool __early_alloc_p2m(unsigned long pfn)
  429. {
  430. unsigned topidx, mididx, idx;
  431. topidx = p2m_top_index(pfn);
  432. mididx = p2m_mid_index(pfn);
  433. idx = p2m_index(pfn);
  434. /* Pfff.. No boundary cross-over, lets get out. */
  435. if (!idx)
  436. return false;
  437. WARN(p2m_top[topidx][mididx] == p2m_identity,
  438. "P2M[%d][%d] == IDENTITY, should be MISSING (or alloced)!\n",
  439. topidx, mididx);
  440. /*
  441. * Could be done by xen_build_dynamic_phys_to_machine..
  442. */
  443. if (p2m_top[topidx][mididx] != p2m_missing)
  444. return false;
  445. /* Boundary cross-over for the edges: */
  446. if (idx) {
  447. unsigned long *p2m = extend_brk(PAGE_SIZE, PAGE_SIZE);
  448. p2m_init(p2m);
  449. p2m_top[topidx][mididx] = p2m;
  450. }
  451. return idx != 0;
  452. }
  453. unsigned long set_phys_range_identity(unsigned long pfn_s,
  454. unsigned long pfn_e)
  455. {
  456. unsigned long pfn;
  457. if (unlikely(pfn_s >= MAX_P2M_PFN || pfn_e >= MAX_P2M_PFN))
  458. return 0;
  459. if (unlikely(xen_feature(XENFEAT_auto_translated_physmap)))
  460. return pfn_e - pfn_s;
  461. if (pfn_s > pfn_e)
  462. return 0;
  463. for (pfn = (pfn_s & ~(P2M_MID_PER_PAGE * P2M_PER_PAGE - 1));
  464. pfn < ALIGN(pfn_e, (P2M_MID_PER_PAGE * P2M_PER_PAGE));
  465. pfn += P2M_MID_PER_PAGE * P2M_PER_PAGE)
  466. {
  467. unsigned topidx = p2m_top_index(pfn);
  468. if (p2m_top[topidx] == p2m_mid_missing) {
  469. unsigned long **mid = extend_brk(PAGE_SIZE, PAGE_SIZE);
  470. p2m_mid_init(mid);
  471. p2m_top[topidx] = mid;
  472. }
  473. }
  474. __early_alloc_p2m(pfn_s);
  475. __early_alloc_p2m(pfn_e);
  476. for (pfn = pfn_s; pfn < pfn_e; pfn++)
  477. if (!__set_phys_to_machine(pfn, IDENTITY_FRAME(pfn)))
  478. break;
  479. if (!WARN((pfn - pfn_s) != (pfn_e - pfn_s),
  480. "Identity mapping failed. We are %ld short of 1-1 mappings!\n",
  481. (pfn_e - pfn_s) - (pfn - pfn_s)))
  482. printk(KERN_DEBUG "1-1 mapping on %lx->%lx\n", pfn_s, pfn);
  483. return pfn - pfn_s;
  484. }
  485. /* Try to install p2m mapping; fail if intermediate bits missing */
  486. bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn)
  487. {
  488. unsigned topidx, mididx, idx;
  489. if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
  490. BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
  491. return true;
  492. }
  493. if (unlikely(pfn >= MAX_P2M_PFN)) {
  494. BUG_ON(mfn != INVALID_P2M_ENTRY);
  495. return true;
  496. }
  497. topidx = p2m_top_index(pfn);
  498. mididx = p2m_mid_index(pfn);
  499. idx = p2m_index(pfn);
  500. /* For sparse holes were the p2m leaf has real PFN along with
  501. * PCI holes, stick in the PFN as the MFN value.
  502. */
  503. if (mfn != INVALID_P2M_ENTRY && (mfn & IDENTITY_FRAME_BIT)) {
  504. if (p2m_top[topidx][mididx] == p2m_identity)
  505. return true;
  506. /* Swap over from MISSING to IDENTITY if needed. */
  507. if (p2m_top[topidx][mididx] == p2m_missing) {
  508. p2m_top[topidx][mididx] = p2m_identity;
  509. return true;
  510. }
  511. }
  512. if (p2m_top[topidx][mididx] == p2m_missing)
  513. return mfn == INVALID_P2M_ENTRY;
  514. p2m_top[topidx][mididx][idx] = mfn;
  515. return true;
  516. }
  517. bool set_phys_to_machine(unsigned long pfn, unsigned long mfn)
  518. {
  519. if (unlikely(!__set_phys_to_machine(pfn, mfn))) {
  520. if (!alloc_p2m(pfn))
  521. return false;
  522. if (!__set_phys_to_machine(pfn, mfn))
  523. return false;
  524. }
  525. return true;
  526. }
  527. #define M2P_OVERRIDE_HASH_SHIFT 10
  528. #define M2P_OVERRIDE_HASH (1 << M2P_OVERRIDE_HASH_SHIFT)
  529. static RESERVE_BRK_ARRAY(struct list_head, m2p_overrides, M2P_OVERRIDE_HASH);
  530. static DEFINE_SPINLOCK(m2p_override_lock);
  531. static void __init m2p_override_init(void)
  532. {
  533. unsigned i;
  534. m2p_overrides = extend_brk(sizeof(*m2p_overrides) * M2P_OVERRIDE_HASH,
  535. sizeof(unsigned long));
  536. for (i = 0; i < M2P_OVERRIDE_HASH; i++)
  537. INIT_LIST_HEAD(&m2p_overrides[i]);
  538. }
  539. static unsigned long mfn_hash(unsigned long mfn)
  540. {
  541. return hash_long(mfn, M2P_OVERRIDE_HASH_SHIFT);
  542. }
  543. /* Add an MFN override for a particular page */
  544. int m2p_add_override(unsigned long mfn, struct page *page)
  545. {
  546. unsigned long flags;
  547. unsigned long pfn;
  548. unsigned long address;
  549. unsigned level;
  550. pte_t *ptep = NULL;
  551. pfn = page_to_pfn(page);
  552. if (!PageHighMem(page)) {
  553. address = (unsigned long)__va(pfn << PAGE_SHIFT);
  554. ptep = lookup_address(address, &level);
  555. if (WARN(ptep == NULL || level != PG_LEVEL_4K,
  556. "m2p_add_override: pfn %lx not mapped", pfn))
  557. return -EINVAL;
  558. }
  559. page->private = mfn;
  560. page->index = pfn_to_mfn(pfn);
  561. __set_phys_to_machine(pfn, FOREIGN_FRAME(mfn));
  562. if (!PageHighMem(page))
  563. /* Just zap old mapping for now */
  564. pte_clear(&init_mm, address, ptep);
  565. spin_lock_irqsave(&m2p_override_lock, flags);
  566. list_add(&page->lru, &m2p_overrides[mfn_hash(mfn)]);
  567. spin_unlock_irqrestore(&m2p_override_lock, flags);
  568. return 0;
  569. }
  570. int m2p_remove_override(struct page *page)
  571. {
  572. unsigned long flags;
  573. unsigned long mfn;
  574. unsigned long pfn;
  575. unsigned long address;
  576. unsigned level;
  577. pte_t *ptep = NULL;
  578. pfn = page_to_pfn(page);
  579. mfn = get_phys_to_machine(pfn);
  580. if (mfn == INVALID_P2M_ENTRY || !(mfn & FOREIGN_FRAME_BIT))
  581. return -EINVAL;
  582. if (!PageHighMem(page)) {
  583. address = (unsigned long)__va(pfn << PAGE_SHIFT);
  584. ptep = lookup_address(address, &level);
  585. if (WARN(ptep == NULL || level != PG_LEVEL_4K,
  586. "m2p_remove_override: pfn %lx not mapped", pfn))
  587. return -EINVAL;
  588. }
  589. spin_lock_irqsave(&m2p_override_lock, flags);
  590. list_del(&page->lru);
  591. spin_unlock_irqrestore(&m2p_override_lock, flags);
  592. __set_phys_to_machine(pfn, page->index);
  593. if (!PageHighMem(page))
  594. set_pte_at(&init_mm, address, ptep,
  595. pfn_pte(pfn, PAGE_KERNEL));
  596. /* No tlb flush necessary because the caller already
  597. * left the pte unmapped. */
  598. return 0;
  599. }
  600. struct page *m2p_find_override(unsigned long mfn)
  601. {
  602. unsigned long flags;
  603. struct list_head *bucket = &m2p_overrides[mfn_hash(mfn)];
  604. struct page *p, *ret;
  605. ret = NULL;
  606. spin_lock_irqsave(&m2p_override_lock, flags);
  607. list_for_each_entry(p, bucket, lru) {
  608. if (p->private == mfn) {
  609. ret = p;
  610. break;
  611. }
  612. }
  613. spin_unlock_irqrestore(&m2p_override_lock, flags);
  614. return ret;
  615. }
  616. unsigned long m2p_find_override_pfn(unsigned long mfn, unsigned long pfn)
  617. {
  618. struct page *p = m2p_find_override(mfn);
  619. unsigned long ret = pfn;
  620. if (p)
  621. ret = page_to_pfn(p);
  622. return ret;
  623. }
  624. EXPORT_SYMBOL_GPL(m2p_find_override_pfn);