mtdcore.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236
  1. /*
  2. * Core registration and callback routines for MTD
  3. * drivers and users.
  4. *
  5. * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
  6. * Copyright © 2006 Red Hat UK Limited
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/ptrace.h>
  26. #include <linux/seq_file.h>
  27. #include <linux/string.h>
  28. #include <linux/timer.h>
  29. #include <linux/major.h>
  30. #include <linux/fs.h>
  31. #include <linux/err.h>
  32. #include <linux/ioctl.h>
  33. #include <linux/init.h>
  34. #include <linux/proc_fs.h>
  35. #include <linux/idr.h>
  36. #include <linux/backing-dev.h>
  37. #include <linux/gfp.h>
  38. #include <linux/slab.h>
  39. #include <linux/mtd/mtd.h>
  40. #include <linux/mtd/partitions.h>
  41. #include "mtdcore.h"
  42. /*
  43. * backing device capabilities for non-mappable devices (such as NAND flash)
  44. * - permits private mappings, copies are taken of the data
  45. */
  46. static struct backing_dev_info mtd_bdi_unmappable = {
  47. .capabilities = BDI_CAP_MAP_COPY,
  48. };
  49. /*
  50. * backing device capabilities for R/O mappable devices (such as ROM)
  51. * - permits private mappings, copies are taken of the data
  52. * - permits non-writable shared mappings
  53. */
  54. static struct backing_dev_info mtd_bdi_ro_mappable = {
  55. .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
  56. BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
  57. };
  58. /*
  59. * backing device capabilities for writable mappable devices (such as RAM)
  60. * - permits private mappings, copies are taken of the data
  61. * - permits non-writable shared mappings
  62. */
  63. static struct backing_dev_info mtd_bdi_rw_mappable = {
  64. .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
  65. BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
  66. BDI_CAP_WRITE_MAP),
  67. };
  68. static int mtd_cls_suspend(struct device *dev, pm_message_t state);
  69. static int mtd_cls_resume(struct device *dev);
  70. static struct class mtd_class = {
  71. .name = "mtd",
  72. .owner = THIS_MODULE,
  73. .suspend = mtd_cls_suspend,
  74. .resume = mtd_cls_resume,
  75. };
  76. static DEFINE_IDR(mtd_idr);
  77. /* These are exported solely for the purpose of mtd_blkdevs.c. You
  78. should not use them for _anything_ else */
  79. DEFINE_MUTEX(mtd_table_mutex);
  80. EXPORT_SYMBOL_GPL(mtd_table_mutex);
  81. struct mtd_info *__mtd_next_device(int i)
  82. {
  83. return idr_get_next(&mtd_idr, &i);
  84. }
  85. EXPORT_SYMBOL_GPL(__mtd_next_device);
  86. static LIST_HEAD(mtd_notifiers);
  87. #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
  88. /* REVISIT once MTD uses the driver model better, whoever allocates
  89. * the mtd_info will probably want to use the release() hook...
  90. */
  91. static void mtd_release(struct device *dev)
  92. {
  93. struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
  94. dev_t index = MTD_DEVT(mtd->index);
  95. /* remove /dev/mtdXro node if needed */
  96. if (index)
  97. device_destroy(&mtd_class, index + 1);
  98. }
  99. static int mtd_cls_suspend(struct device *dev, pm_message_t state)
  100. {
  101. struct mtd_info *mtd = dev_get_drvdata(dev);
  102. return mtd ? mtd_suspend(mtd) : 0;
  103. }
  104. static int mtd_cls_resume(struct device *dev)
  105. {
  106. struct mtd_info *mtd = dev_get_drvdata(dev);
  107. if (mtd)
  108. mtd_resume(mtd);
  109. return 0;
  110. }
  111. static ssize_t mtd_type_show(struct device *dev,
  112. struct device_attribute *attr, char *buf)
  113. {
  114. struct mtd_info *mtd = dev_get_drvdata(dev);
  115. char *type;
  116. switch (mtd->type) {
  117. case MTD_ABSENT:
  118. type = "absent";
  119. break;
  120. case MTD_RAM:
  121. type = "ram";
  122. break;
  123. case MTD_ROM:
  124. type = "rom";
  125. break;
  126. case MTD_NORFLASH:
  127. type = "nor";
  128. break;
  129. case MTD_NANDFLASH:
  130. type = "nand";
  131. break;
  132. case MTD_DATAFLASH:
  133. type = "dataflash";
  134. break;
  135. case MTD_UBIVOLUME:
  136. type = "ubi";
  137. break;
  138. case MTD_MLCNANDFLASH:
  139. type = "mlc-nand";
  140. break;
  141. default:
  142. type = "unknown";
  143. }
  144. return snprintf(buf, PAGE_SIZE, "%s\n", type);
  145. }
  146. static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
  147. static ssize_t mtd_flags_show(struct device *dev,
  148. struct device_attribute *attr, char *buf)
  149. {
  150. struct mtd_info *mtd = dev_get_drvdata(dev);
  151. return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
  152. }
  153. static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
  154. static ssize_t mtd_size_show(struct device *dev,
  155. struct device_attribute *attr, char *buf)
  156. {
  157. struct mtd_info *mtd = dev_get_drvdata(dev);
  158. return snprintf(buf, PAGE_SIZE, "%llu\n",
  159. (unsigned long long)mtd->size);
  160. }
  161. static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
  162. static ssize_t mtd_erasesize_show(struct device *dev,
  163. struct device_attribute *attr, char *buf)
  164. {
  165. struct mtd_info *mtd = dev_get_drvdata(dev);
  166. return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
  167. }
  168. static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
  169. static ssize_t mtd_writesize_show(struct device *dev,
  170. struct device_attribute *attr, char *buf)
  171. {
  172. struct mtd_info *mtd = dev_get_drvdata(dev);
  173. return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
  174. }
  175. static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
  176. static ssize_t mtd_subpagesize_show(struct device *dev,
  177. struct device_attribute *attr, char *buf)
  178. {
  179. struct mtd_info *mtd = dev_get_drvdata(dev);
  180. unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
  181. return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
  182. }
  183. static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
  184. static ssize_t mtd_oobsize_show(struct device *dev,
  185. struct device_attribute *attr, char *buf)
  186. {
  187. struct mtd_info *mtd = dev_get_drvdata(dev);
  188. return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
  189. }
  190. static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
  191. static ssize_t mtd_numeraseregions_show(struct device *dev,
  192. struct device_attribute *attr, char *buf)
  193. {
  194. struct mtd_info *mtd = dev_get_drvdata(dev);
  195. return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
  196. }
  197. static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
  198. NULL);
  199. static ssize_t mtd_name_show(struct device *dev,
  200. struct device_attribute *attr, char *buf)
  201. {
  202. struct mtd_info *mtd = dev_get_drvdata(dev);
  203. return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
  204. }
  205. static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
  206. static ssize_t mtd_ecc_strength_show(struct device *dev,
  207. struct device_attribute *attr, char *buf)
  208. {
  209. struct mtd_info *mtd = dev_get_drvdata(dev);
  210. return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
  211. }
  212. static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
  213. static ssize_t mtd_bitflip_threshold_show(struct device *dev,
  214. struct device_attribute *attr,
  215. char *buf)
  216. {
  217. struct mtd_info *mtd = dev_get_drvdata(dev);
  218. return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
  219. }
  220. static ssize_t mtd_bitflip_threshold_store(struct device *dev,
  221. struct device_attribute *attr,
  222. const char *buf, size_t count)
  223. {
  224. struct mtd_info *mtd = dev_get_drvdata(dev);
  225. unsigned int bitflip_threshold;
  226. int retval;
  227. retval = kstrtouint(buf, 0, &bitflip_threshold);
  228. if (retval)
  229. return retval;
  230. mtd->bitflip_threshold = bitflip_threshold;
  231. return count;
  232. }
  233. static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
  234. mtd_bitflip_threshold_show,
  235. mtd_bitflip_threshold_store);
  236. static ssize_t mtd_ecc_step_size_show(struct device *dev,
  237. struct device_attribute *attr, char *buf)
  238. {
  239. struct mtd_info *mtd = dev_get_drvdata(dev);
  240. return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
  241. }
  242. static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
  243. static struct attribute *mtd_attrs[] = {
  244. &dev_attr_type.attr,
  245. &dev_attr_flags.attr,
  246. &dev_attr_size.attr,
  247. &dev_attr_erasesize.attr,
  248. &dev_attr_writesize.attr,
  249. &dev_attr_subpagesize.attr,
  250. &dev_attr_oobsize.attr,
  251. &dev_attr_numeraseregions.attr,
  252. &dev_attr_name.attr,
  253. &dev_attr_ecc_strength.attr,
  254. &dev_attr_ecc_step_size.attr,
  255. &dev_attr_bitflip_threshold.attr,
  256. NULL,
  257. };
  258. static struct attribute_group mtd_group = {
  259. .attrs = mtd_attrs,
  260. };
  261. static const struct attribute_group *mtd_groups[] = {
  262. &mtd_group,
  263. NULL,
  264. };
  265. static struct device_type mtd_devtype = {
  266. .name = "mtd",
  267. .groups = mtd_groups,
  268. .release = mtd_release,
  269. };
  270. /**
  271. * add_mtd_device - register an MTD device
  272. * @mtd: pointer to new MTD device info structure
  273. *
  274. * Add a device to the list of MTD devices present in the system, and
  275. * notify each currently active MTD 'user' of its arrival. Returns
  276. * zero on success or 1 on failure, which currently will only happen
  277. * if there is insufficient memory or a sysfs error.
  278. */
  279. int add_mtd_device(struct mtd_info *mtd)
  280. {
  281. struct mtd_notifier *not;
  282. int i, error;
  283. if (!mtd->backing_dev_info) {
  284. switch (mtd->type) {
  285. case MTD_RAM:
  286. mtd->backing_dev_info = &mtd_bdi_rw_mappable;
  287. break;
  288. case MTD_ROM:
  289. mtd->backing_dev_info = &mtd_bdi_ro_mappable;
  290. break;
  291. default:
  292. mtd->backing_dev_info = &mtd_bdi_unmappable;
  293. break;
  294. }
  295. }
  296. BUG_ON(mtd->writesize == 0);
  297. mutex_lock(&mtd_table_mutex);
  298. i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
  299. if (i < 0)
  300. goto fail_locked;
  301. mtd->index = i;
  302. mtd->usecount = 0;
  303. /* default value if not set by driver */
  304. if (mtd->bitflip_threshold == 0)
  305. mtd->bitflip_threshold = mtd->ecc_strength;
  306. if (is_power_of_2(mtd->erasesize))
  307. mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
  308. else
  309. mtd->erasesize_shift = 0;
  310. if (is_power_of_2(mtd->writesize))
  311. mtd->writesize_shift = ffs(mtd->writesize) - 1;
  312. else
  313. mtd->writesize_shift = 0;
  314. mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
  315. mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
  316. /* Some chips always power up locked. Unlock them now */
  317. if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
  318. error = mtd_unlock(mtd, 0, mtd->size);
  319. if (error && error != -EOPNOTSUPP)
  320. printk(KERN_WARNING
  321. "%s: unlock failed, writes may not work\n",
  322. mtd->name);
  323. }
  324. /* Caller should have set dev.parent to match the
  325. * physical device.
  326. */
  327. mtd->dev.type = &mtd_devtype;
  328. mtd->dev.class = &mtd_class;
  329. mtd->dev.devt = MTD_DEVT(i);
  330. dev_set_name(&mtd->dev, "mtd%d", i);
  331. dev_set_drvdata(&mtd->dev, mtd);
  332. if (device_register(&mtd->dev) != 0)
  333. goto fail_added;
  334. if (MTD_DEVT(i))
  335. device_create(&mtd_class, mtd->dev.parent,
  336. MTD_DEVT(i) + 1,
  337. NULL, "mtd%dro", i);
  338. pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
  339. /* No need to get a refcount on the module containing
  340. the notifier, since we hold the mtd_table_mutex */
  341. list_for_each_entry(not, &mtd_notifiers, list)
  342. not->add(mtd);
  343. mutex_unlock(&mtd_table_mutex);
  344. /* We _know_ we aren't being removed, because
  345. our caller is still holding us here. So none
  346. of this try_ nonsense, and no bitching about it
  347. either. :) */
  348. __module_get(THIS_MODULE);
  349. return 0;
  350. fail_added:
  351. idr_remove(&mtd_idr, i);
  352. fail_locked:
  353. mutex_unlock(&mtd_table_mutex);
  354. return 1;
  355. }
  356. /**
  357. * del_mtd_device - unregister an MTD device
  358. * @mtd: pointer to MTD device info structure
  359. *
  360. * Remove a device from the list of MTD devices present in the system,
  361. * and notify each currently active MTD 'user' of its departure.
  362. * Returns zero on success or 1 on failure, which currently will happen
  363. * if the requested device does not appear to be present in the list.
  364. */
  365. int del_mtd_device(struct mtd_info *mtd)
  366. {
  367. int ret;
  368. struct mtd_notifier *not;
  369. mutex_lock(&mtd_table_mutex);
  370. if (idr_find(&mtd_idr, mtd->index) != mtd) {
  371. ret = -ENODEV;
  372. goto out_error;
  373. }
  374. /* No need to get a refcount on the module containing
  375. the notifier, since we hold the mtd_table_mutex */
  376. list_for_each_entry(not, &mtd_notifiers, list)
  377. not->remove(mtd);
  378. if (mtd->usecount) {
  379. printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
  380. mtd->index, mtd->name, mtd->usecount);
  381. ret = -EBUSY;
  382. } else {
  383. device_unregister(&mtd->dev);
  384. idr_remove(&mtd_idr, mtd->index);
  385. module_put(THIS_MODULE);
  386. ret = 0;
  387. }
  388. out_error:
  389. mutex_unlock(&mtd_table_mutex);
  390. return ret;
  391. }
  392. /**
  393. * mtd_device_parse_register - parse partitions and register an MTD device.
  394. *
  395. * @mtd: the MTD device to register
  396. * @types: the list of MTD partition probes to try, see
  397. * 'parse_mtd_partitions()' for more information
  398. * @parser_data: MTD partition parser-specific data
  399. * @parts: fallback partition information to register, if parsing fails;
  400. * only valid if %nr_parts > %0
  401. * @nr_parts: the number of partitions in parts, if zero then the full
  402. * MTD device is registered if no partition info is found
  403. *
  404. * This function aggregates MTD partitions parsing (done by
  405. * 'parse_mtd_partitions()') and MTD device and partitions registering. It
  406. * basically follows the most common pattern found in many MTD drivers:
  407. *
  408. * * It first tries to probe partitions on MTD device @mtd using parsers
  409. * specified in @types (if @types is %NULL, then the default list of parsers
  410. * is used, see 'parse_mtd_partitions()' for more information). If none are
  411. * found this functions tries to fallback to information specified in
  412. * @parts/@nr_parts.
  413. * * If any partitioning info was found, this function registers the found
  414. * partitions.
  415. * * If no partitions were found this function just registers the MTD device
  416. * @mtd and exits.
  417. *
  418. * Returns zero in case of success and a negative error code in case of failure.
  419. */
  420. int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
  421. struct mtd_part_parser_data *parser_data,
  422. const struct mtd_partition *parts,
  423. int nr_parts)
  424. {
  425. int err;
  426. struct mtd_partition *real_parts;
  427. err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
  428. if (err <= 0 && nr_parts && parts) {
  429. real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
  430. GFP_KERNEL);
  431. if (!real_parts)
  432. err = -ENOMEM;
  433. else
  434. err = nr_parts;
  435. }
  436. if (err > 0) {
  437. err = add_mtd_partitions(mtd, real_parts, err);
  438. kfree(real_parts);
  439. } else if (err == 0) {
  440. err = add_mtd_device(mtd);
  441. if (err == 1)
  442. err = -ENODEV;
  443. }
  444. return err;
  445. }
  446. EXPORT_SYMBOL_GPL(mtd_device_parse_register);
  447. /**
  448. * mtd_device_unregister - unregister an existing MTD device.
  449. *
  450. * @master: the MTD device to unregister. This will unregister both the master
  451. * and any partitions if registered.
  452. */
  453. int mtd_device_unregister(struct mtd_info *master)
  454. {
  455. int err;
  456. err = del_mtd_partitions(master);
  457. if (err)
  458. return err;
  459. if (!device_is_registered(&master->dev))
  460. return 0;
  461. return del_mtd_device(master);
  462. }
  463. EXPORT_SYMBOL_GPL(mtd_device_unregister);
  464. /**
  465. * register_mtd_user - register a 'user' of MTD devices.
  466. * @new: pointer to notifier info structure
  467. *
  468. * Registers a pair of callbacks function to be called upon addition
  469. * or removal of MTD devices. Causes the 'add' callback to be immediately
  470. * invoked for each MTD device currently present in the system.
  471. */
  472. void register_mtd_user (struct mtd_notifier *new)
  473. {
  474. struct mtd_info *mtd;
  475. mutex_lock(&mtd_table_mutex);
  476. list_add(&new->list, &mtd_notifiers);
  477. __module_get(THIS_MODULE);
  478. mtd_for_each_device(mtd)
  479. new->add(mtd);
  480. mutex_unlock(&mtd_table_mutex);
  481. }
  482. EXPORT_SYMBOL_GPL(register_mtd_user);
  483. /**
  484. * unregister_mtd_user - unregister a 'user' of MTD devices.
  485. * @old: pointer to notifier info structure
  486. *
  487. * Removes a callback function pair from the list of 'users' to be
  488. * notified upon addition or removal of MTD devices. Causes the
  489. * 'remove' callback to be immediately invoked for each MTD device
  490. * currently present in the system.
  491. */
  492. int unregister_mtd_user (struct mtd_notifier *old)
  493. {
  494. struct mtd_info *mtd;
  495. mutex_lock(&mtd_table_mutex);
  496. module_put(THIS_MODULE);
  497. mtd_for_each_device(mtd)
  498. old->remove(mtd);
  499. list_del(&old->list);
  500. mutex_unlock(&mtd_table_mutex);
  501. return 0;
  502. }
  503. EXPORT_SYMBOL_GPL(unregister_mtd_user);
  504. /**
  505. * get_mtd_device - obtain a validated handle for an MTD device
  506. * @mtd: last known address of the required MTD device
  507. * @num: internal device number of the required MTD device
  508. *
  509. * Given a number and NULL address, return the num'th entry in the device
  510. * table, if any. Given an address and num == -1, search the device table
  511. * for a device with that address and return if it's still present. Given
  512. * both, return the num'th driver only if its address matches. Return
  513. * error code if not.
  514. */
  515. struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
  516. {
  517. struct mtd_info *ret = NULL, *other;
  518. int err = -ENODEV;
  519. mutex_lock(&mtd_table_mutex);
  520. if (num == -1) {
  521. mtd_for_each_device(other) {
  522. if (other == mtd) {
  523. ret = mtd;
  524. break;
  525. }
  526. }
  527. } else if (num >= 0) {
  528. ret = idr_find(&mtd_idr, num);
  529. if (mtd && mtd != ret)
  530. ret = NULL;
  531. }
  532. if (!ret) {
  533. ret = ERR_PTR(err);
  534. goto out;
  535. }
  536. err = __get_mtd_device(ret);
  537. if (err)
  538. ret = ERR_PTR(err);
  539. out:
  540. mutex_unlock(&mtd_table_mutex);
  541. return ret;
  542. }
  543. EXPORT_SYMBOL_GPL(get_mtd_device);
  544. int __get_mtd_device(struct mtd_info *mtd)
  545. {
  546. int err;
  547. if (!try_module_get(mtd->owner))
  548. return -ENODEV;
  549. if (mtd->_get_device) {
  550. err = mtd->_get_device(mtd);
  551. if (err) {
  552. module_put(mtd->owner);
  553. return err;
  554. }
  555. }
  556. mtd->usecount++;
  557. return 0;
  558. }
  559. EXPORT_SYMBOL_GPL(__get_mtd_device);
  560. /**
  561. * get_mtd_device_nm - obtain a validated handle for an MTD device by
  562. * device name
  563. * @name: MTD device name to open
  564. *
  565. * This function returns MTD device description structure in case of
  566. * success and an error code in case of failure.
  567. */
  568. struct mtd_info *get_mtd_device_nm(const char *name)
  569. {
  570. int err = -ENODEV;
  571. struct mtd_info *mtd = NULL, *other;
  572. mutex_lock(&mtd_table_mutex);
  573. mtd_for_each_device(other) {
  574. if (!strcmp(name, other->name)) {
  575. mtd = other;
  576. break;
  577. }
  578. }
  579. if (!mtd)
  580. goto out_unlock;
  581. err = __get_mtd_device(mtd);
  582. if (err)
  583. goto out_unlock;
  584. mutex_unlock(&mtd_table_mutex);
  585. return mtd;
  586. out_unlock:
  587. mutex_unlock(&mtd_table_mutex);
  588. return ERR_PTR(err);
  589. }
  590. EXPORT_SYMBOL_GPL(get_mtd_device_nm);
  591. void put_mtd_device(struct mtd_info *mtd)
  592. {
  593. mutex_lock(&mtd_table_mutex);
  594. __put_mtd_device(mtd);
  595. mutex_unlock(&mtd_table_mutex);
  596. }
  597. EXPORT_SYMBOL_GPL(put_mtd_device);
  598. void __put_mtd_device(struct mtd_info *mtd)
  599. {
  600. --mtd->usecount;
  601. BUG_ON(mtd->usecount < 0);
  602. if (mtd->_put_device)
  603. mtd->_put_device(mtd);
  604. module_put(mtd->owner);
  605. }
  606. EXPORT_SYMBOL_GPL(__put_mtd_device);
  607. /*
  608. * Erase is an asynchronous operation. Device drivers are supposed
  609. * to call instr->callback() whenever the operation completes, even
  610. * if it completes with a failure.
  611. * Callers are supposed to pass a callback function and wait for it
  612. * to be called before writing to the block.
  613. */
  614. int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
  615. {
  616. if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
  617. return -EINVAL;
  618. if (!(mtd->flags & MTD_WRITEABLE))
  619. return -EROFS;
  620. instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
  621. if (!instr->len) {
  622. instr->state = MTD_ERASE_DONE;
  623. mtd_erase_callback(instr);
  624. return 0;
  625. }
  626. return mtd->_erase(mtd, instr);
  627. }
  628. EXPORT_SYMBOL_GPL(mtd_erase);
  629. /*
  630. * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
  631. */
  632. int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
  633. void **virt, resource_size_t *phys)
  634. {
  635. *retlen = 0;
  636. *virt = NULL;
  637. if (phys)
  638. *phys = 0;
  639. if (!mtd->_point)
  640. return -EOPNOTSUPP;
  641. if (from < 0 || from > mtd->size || len > mtd->size - from)
  642. return -EINVAL;
  643. if (!len)
  644. return 0;
  645. return mtd->_point(mtd, from, len, retlen, virt, phys);
  646. }
  647. EXPORT_SYMBOL_GPL(mtd_point);
  648. /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
  649. int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  650. {
  651. if (!mtd->_point)
  652. return -EOPNOTSUPP;
  653. if (from < 0 || from > mtd->size || len > mtd->size - from)
  654. return -EINVAL;
  655. if (!len)
  656. return 0;
  657. return mtd->_unpoint(mtd, from, len);
  658. }
  659. EXPORT_SYMBOL_GPL(mtd_unpoint);
  660. /*
  661. * Allow NOMMU mmap() to directly map the device (if not NULL)
  662. * - return the address to which the offset maps
  663. * - return -ENOSYS to indicate refusal to do the mapping
  664. */
  665. unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
  666. unsigned long offset, unsigned long flags)
  667. {
  668. if (!mtd->_get_unmapped_area)
  669. return -EOPNOTSUPP;
  670. if (offset > mtd->size || len > mtd->size - offset)
  671. return -EINVAL;
  672. return mtd->_get_unmapped_area(mtd, len, offset, flags);
  673. }
  674. EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
  675. int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
  676. u_char *buf)
  677. {
  678. int ret_code;
  679. *retlen = 0;
  680. if (from < 0 || from > mtd->size || len > mtd->size - from)
  681. return -EINVAL;
  682. if (!len)
  683. return 0;
  684. /*
  685. * In the absence of an error, drivers return a non-negative integer
  686. * representing the maximum number of bitflips that were corrected on
  687. * any one ecc region (if applicable; zero otherwise).
  688. */
  689. ret_code = mtd->_read(mtd, from, len, retlen, buf);
  690. if (unlikely(ret_code < 0))
  691. return ret_code;
  692. if (mtd->ecc_strength == 0)
  693. return 0; /* device lacks ecc */
  694. return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
  695. }
  696. EXPORT_SYMBOL_GPL(mtd_read);
  697. int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
  698. const u_char *buf)
  699. {
  700. *retlen = 0;
  701. if (to < 0 || to > mtd->size || len > mtd->size - to)
  702. return -EINVAL;
  703. if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
  704. return -EROFS;
  705. if (!len)
  706. return 0;
  707. return mtd->_write(mtd, to, len, retlen, buf);
  708. }
  709. EXPORT_SYMBOL_GPL(mtd_write);
  710. /*
  711. * In blackbox flight recorder like scenarios we want to make successful writes
  712. * in interrupt context. panic_write() is only intended to be called when its
  713. * known the kernel is about to panic and we need the write to succeed. Since
  714. * the kernel is not going to be running for much longer, this function can
  715. * break locks and delay to ensure the write succeeds (but not sleep).
  716. */
  717. int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
  718. const u_char *buf)
  719. {
  720. *retlen = 0;
  721. if (!mtd->_panic_write)
  722. return -EOPNOTSUPP;
  723. if (to < 0 || to > mtd->size || len > mtd->size - to)
  724. return -EINVAL;
  725. if (!(mtd->flags & MTD_WRITEABLE))
  726. return -EROFS;
  727. if (!len)
  728. return 0;
  729. return mtd->_panic_write(mtd, to, len, retlen, buf);
  730. }
  731. EXPORT_SYMBOL_GPL(mtd_panic_write);
  732. int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
  733. {
  734. int ret_code;
  735. ops->retlen = ops->oobretlen = 0;
  736. if (!mtd->_read_oob)
  737. return -EOPNOTSUPP;
  738. /*
  739. * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
  740. * similar to mtd->_read(), returning a non-negative integer
  741. * representing max bitflips. In other cases, mtd->_read_oob() may
  742. * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
  743. */
  744. ret_code = mtd->_read_oob(mtd, from, ops);
  745. if (unlikely(ret_code < 0))
  746. return ret_code;
  747. if (mtd->ecc_strength == 0)
  748. return 0; /* device lacks ecc */
  749. return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
  750. }
  751. EXPORT_SYMBOL_GPL(mtd_read_oob);
  752. /*
  753. * Method to access the protection register area, present in some flash
  754. * devices. The user data is one time programmable but the factory data is read
  755. * only.
  756. */
  757. int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
  758. size_t len)
  759. {
  760. if (!mtd->_get_fact_prot_info)
  761. return -EOPNOTSUPP;
  762. if (!len)
  763. return 0;
  764. return mtd->_get_fact_prot_info(mtd, buf, len);
  765. }
  766. EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
  767. int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
  768. size_t *retlen, u_char *buf)
  769. {
  770. *retlen = 0;
  771. if (!mtd->_read_fact_prot_reg)
  772. return -EOPNOTSUPP;
  773. if (!len)
  774. return 0;
  775. return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
  776. }
  777. EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
  778. int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf,
  779. size_t len)
  780. {
  781. if (!mtd->_get_user_prot_info)
  782. return -EOPNOTSUPP;
  783. if (!len)
  784. return 0;
  785. return mtd->_get_user_prot_info(mtd, buf, len);
  786. }
  787. EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
  788. int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
  789. size_t *retlen, u_char *buf)
  790. {
  791. *retlen = 0;
  792. if (!mtd->_read_user_prot_reg)
  793. return -EOPNOTSUPP;
  794. if (!len)
  795. return 0;
  796. return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
  797. }
  798. EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
  799. int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
  800. size_t *retlen, u_char *buf)
  801. {
  802. *retlen = 0;
  803. if (!mtd->_write_user_prot_reg)
  804. return -EOPNOTSUPP;
  805. if (!len)
  806. return 0;
  807. return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
  808. }
  809. EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
  810. int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
  811. {
  812. if (!mtd->_lock_user_prot_reg)
  813. return -EOPNOTSUPP;
  814. if (!len)
  815. return 0;
  816. return mtd->_lock_user_prot_reg(mtd, from, len);
  817. }
  818. EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
  819. /* Chip-supported device locking */
  820. int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  821. {
  822. if (!mtd->_lock)
  823. return -EOPNOTSUPP;
  824. if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
  825. return -EINVAL;
  826. if (!len)
  827. return 0;
  828. return mtd->_lock(mtd, ofs, len);
  829. }
  830. EXPORT_SYMBOL_GPL(mtd_lock);
  831. int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  832. {
  833. if (!mtd->_unlock)
  834. return -EOPNOTSUPP;
  835. if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
  836. return -EINVAL;
  837. if (!len)
  838. return 0;
  839. return mtd->_unlock(mtd, ofs, len);
  840. }
  841. EXPORT_SYMBOL_GPL(mtd_unlock);
  842. int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  843. {
  844. if (!mtd->_is_locked)
  845. return -EOPNOTSUPP;
  846. if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
  847. return -EINVAL;
  848. if (!len)
  849. return 0;
  850. return mtd->_is_locked(mtd, ofs, len);
  851. }
  852. EXPORT_SYMBOL_GPL(mtd_is_locked);
  853. int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
  854. {
  855. if (!mtd->_block_isbad)
  856. return 0;
  857. if (ofs < 0 || ofs > mtd->size)
  858. return -EINVAL;
  859. return mtd->_block_isbad(mtd, ofs);
  860. }
  861. EXPORT_SYMBOL_GPL(mtd_block_isbad);
  862. int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
  863. {
  864. if (!mtd->_block_markbad)
  865. return -EOPNOTSUPP;
  866. if (ofs < 0 || ofs > mtd->size)
  867. return -EINVAL;
  868. if (!(mtd->flags & MTD_WRITEABLE))
  869. return -EROFS;
  870. return mtd->_block_markbad(mtd, ofs);
  871. }
  872. EXPORT_SYMBOL_GPL(mtd_block_markbad);
  873. /*
  874. * default_mtd_writev - the default writev method
  875. * @mtd: mtd device description object pointer
  876. * @vecs: the vectors to write
  877. * @count: count of vectors in @vecs
  878. * @to: the MTD device offset to write to
  879. * @retlen: on exit contains the count of bytes written to the MTD device.
  880. *
  881. * This function returns zero in case of success and a negative error code in
  882. * case of failure.
  883. */
  884. static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
  885. unsigned long count, loff_t to, size_t *retlen)
  886. {
  887. unsigned long i;
  888. size_t totlen = 0, thislen;
  889. int ret = 0;
  890. for (i = 0; i < count; i++) {
  891. if (!vecs[i].iov_len)
  892. continue;
  893. ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
  894. vecs[i].iov_base);
  895. totlen += thislen;
  896. if (ret || thislen != vecs[i].iov_len)
  897. break;
  898. to += vecs[i].iov_len;
  899. }
  900. *retlen = totlen;
  901. return ret;
  902. }
  903. /*
  904. * mtd_writev - the vector-based MTD write method
  905. * @mtd: mtd device description object pointer
  906. * @vecs: the vectors to write
  907. * @count: count of vectors in @vecs
  908. * @to: the MTD device offset to write to
  909. * @retlen: on exit contains the count of bytes written to the MTD device.
  910. *
  911. * This function returns zero in case of success and a negative error code in
  912. * case of failure.
  913. */
  914. int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
  915. unsigned long count, loff_t to, size_t *retlen)
  916. {
  917. *retlen = 0;
  918. if (!(mtd->flags & MTD_WRITEABLE))
  919. return -EROFS;
  920. if (!mtd->_writev)
  921. return default_mtd_writev(mtd, vecs, count, to, retlen);
  922. return mtd->_writev(mtd, vecs, count, to, retlen);
  923. }
  924. EXPORT_SYMBOL_GPL(mtd_writev);
  925. /**
  926. * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
  927. * @mtd: mtd device description object pointer
  928. * @size: a pointer to the ideal or maximum size of the allocation, points
  929. * to the actual allocation size on success.
  930. *
  931. * This routine attempts to allocate a contiguous kernel buffer up to
  932. * the specified size, backing off the size of the request exponentially
  933. * until the request succeeds or until the allocation size falls below
  934. * the system page size. This attempts to make sure it does not adversely
  935. * impact system performance, so when allocating more than one page, we
  936. * ask the memory allocator to avoid re-trying, swapping, writing back
  937. * or performing I/O.
  938. *
  939. * Note, this function also makes sure that the allocated buffer is aligned to
  940. * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
  941. *
  942. * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
  943. * to handle smaller (i.e. degraded) buffer allocations under low- or
  944. * fragmented-memory situations where such reduced allocations, from a
  945. * requested ideal, are allowed.
  946. *
  947. * Returns a pointer to the allocated buffer on success; otherwise, NULL.
  948. */
  949. void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
  950. {
  951. gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
  952. __GFP_NORETRY | __GFP_NO_KSWAPD;
  953. size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
  954. void *kbuf;
  955. *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
  956. while (*size > min_alloc) {
  957. kbuf = kmalloc(*size, flags);
  958. if (kbuf)
  959. return kbuf;
  960. *size >>= 1;
  961. *size = ALIGN(*size, mtd->writesize);
  962. }
  963. /*
  964. * For the last resort allocation allow 'kmalloc()' to do all sorts of
  965. * things (write-back, dropping caches, etc) by using GFP_KERNEL.
  966. */
  967. return kmalloc(*size, GFP_KERNEL);
  968. }
  969. EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
  970. #ifdef CONFIG_PROC_FS
  971. /*====================================================================*/
  972. /* Support for /proc/mtd */
  973. static int mtd_proc_show(struct seq_file *m, void *v)
  974. {
  975. struct mtd_info *mtd;
  976. seq_puts(m, "dev: size erasesize name\n");
  977. mutex_lock(&mtd_table_mutex);
  978. mtd_for_each_device(mtd) {
  979. seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
  980. mtd->index, (unsigned long long)mtd->size,
  981. mtd->erasesize, mtd->name);
  982. }
  983. mutex_unlock(&mtd_table_mutex);
  984. return 0;
  985. }
  986. static int mtd_proc_open(struct inode *inode, struct file *file)
  987. {
  988. return single_open(file, mtd_proc_show, NULL);
  989. }
  990. static const struct file_operations mtd_proc_ops = {
  991. .open = mtd_proc_open,
  992. .read = seq_read,
  993. .llseek = seq_lseek,
  994. .release = single_release,
  995. };
  996. #endif /* CONFIG_PROC_FS */
  997. /*====================================================================*/
  998. /* Init code */
  999. static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
  1000. {
  1001. int ret;
  1002. ret = bdi_init(bdi);
  1003. if (!ret)
  1004. ret = bdi_register(bdi, NULL, "%s", name);
  1005. if (ret)
  1006. bdi_destroy(bdi);
  1007. return ret;
  1008. }
  1009. static struct proc_dir_entry *proc_mtd;
  1010. static int __init init_mtd(void)
  1011. {
  1012. int ret;
  1013. ret = class_register(&mtd_class);
  1014. if (ret)
  1015. goto err_reg;
  1016. ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
  1017. if (ret)
  1018. goto err_bdi1;
  1019. ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
  1020. if (ret)
  1021. goto err_bdi2;
  1022. ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
  1023. if (ret)
  1024. goto err_bdi3;
  1025. proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
  1026. ret = init_mtdchar();
  1027. if (ret)
  1028. goto out_procfs;
  1029. return 0;
  1030. out_procfs:
  1031. if (proc_mtd)
  1032. remove_proc_entry("mtd", NULL);
  1033. err_bdi3:
  1034. bdi_destroy(&mtd_bdi_ro_mappable);
  1035. err_bdi2:
  1036. bdi_destroy(&mtd_bdi_unmappable);
  1037. err_bdi1:
  1038. class_unregister(&mtd_class);
  1039. err_reg:
  1040. pr_err("Error registering mtd class or bdi: %d\n", ret);
  1041. return ret;
  1042. }
  1043. static void __exit cleanup_mtd(void)
  1044. {
  1045. cleanup_mtdchar();
  1046. if (proc_mtd)
  1047. remove_proc_entry("mtd", NULL);
  1048. class_unregister(&mtd_class);
  1049. bdi_destroy(&mtd_bdi_unmappable);
  1050. bdi_destroy(&mtd_bdi_ro_mappable);
  1051. bdi_destroy(&mtd_bdi_rw_mappable);
  1052. }
  1053. module_init(init_mtd);
  1054. module_exit(cleanup_mtd);
  1055. MODULE_LICENSE("GPL");
  1056. MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
  1057. MODULE_DESCRIPTION("Core MTD registration and access routines");