pagemap.h 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455
  1. #ifndef _LINUX_PAGEMAP_H
  2. #define _LINUX_PAGEMAP_H
  3. /*
  4. * Copyright 1995 Linus Torvalds
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/fs.h>
  8. #include <linux/list.h>
  9. #include <linux/highmem.h>
  10. #include <linux/compiler.h>
  11. #include <asm/uaccess.h>
  12. #include <linux/gfp.h>
  13. #include <linux/bitops.h>
  14. #include <linux/hardirq.h> /* for in_interrupt() */
  15. /*
  16. * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
  17. * allocation mode flags.
  18. */
  19. #define AS_EIO (__GFP_BITS_SHIFT + 0) /* IO error on async write */
  20. #define AS_ENOSPC (__GFP_BITS_SHIFT + 1) /* ENOSPC on async write */
  21. #define AS_MM_ALL_LOCKS (__GFP_BITS_SHIFT + 2) /* under mm_take_all_locks() */
  22. static inline void mapping_set_error(struct address_space *mapping, int error)
  23. {
  24. if (unlikely(error)) {
  25. if (error == -ENOSPC)
  26. set_bit(AS_ENOSPC, &mapping->flags);
  27. else
  28. set_bit(AS_EIO, &mapping->flags);
  29. }
  30. }
  31. #ifdef CONFIG_UNEVICTABLE_LRU
  32. #define AS_UNEVICTABLE (__GFP_BITS_SHIFT + 2) /* e.g., ramdisk, SHM_LOCK */
  33. static inline void mapping_set_unevictable(struct address_space *mapping)
  34. {
  35. set_bit(AS_UNEVICTABLE, &mapping->flags);
  36. }
  37. static inline void mapping_clear_unevictable(struct address_space *mapping)
  38. {
  39. clear_bit(AS_UNEVICTABLE, &mapping->flags);
  40. }
  41. static inline int mapping_unevictable(struct address_space *mapping)
  42. {
  43. if (likely(mapping))
  44. return test_bit(AS_UNEVICTABLE, &mapping->flags);
  45. return !!mapping;
  46. }
  47. #else
  48. static inline void mapping_set_unevictable(struct address_space *mapping) { }
  49. static inline void mapping_clear_unevictable(struct address_space *mapping) { }
  50. static inline int mapping_unevictable(struct address_space *mapping)
  51. {
  52. return 0;
  53. }
  54. #endif
  55. static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
  56. {
  57. return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
  58. }
  59. /*
  60. * This is non-atomic. Only to be used before the mapping is activated.
  61. * Probably needs a barrier...
  62. */
  63. static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
  64. {
  65. m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
  66. (__force unsigned long)mask;
  67. }
  68. /*
  69. * The page cache can done in larger chunks than
  70. * one page, because it allows for more efficient
  71. * throughput (it can then be mapped into user
  72. * space in smaller chunks for same flexibility).
  73. *
  74. * Or rather, it _will_ be done in larger chunks.
  75. */
  76. #define PAGE_CACHE_SHIFT PAGE_SHIFT
  77. #define PAGE_CACHE_SIZE PAGE_SIZE
  78. #define PAGE_CACHE_MASK PAGE_MASK
  79. #define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
  80. #define page_cache_get(page) get_page(page)
  81. #define page_cache_release(page) put_page(page)
  82. void release_pages(struct page **pages, int nr, int cold);
  83. /*
  84. * speculatively take a reference to a page.
  85. * If the page is free (_count == 0), then _count is untouched, and 0
  86. * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
  87. *
  88. * This function must be called inside the same rcu_read_lock() section as has
  89. * been used to lookup the page in the pagecache radix-tree (or page table):
  90. * this allows allocators to use a synchronize_rcu() to stabilize _count.
  91. *
  92. * Unless an RCU grace period has passed, the count of all pages coming out
  93. * of the allocator must be considered unstable. page_count may return higher
  94. * than expected, and put_page must be able to do the right thing when the
  95. * page has been finished with, no matter what it is subsequently allocated
  96. * for (because put_page is what is used here to drop an invalid speculative
  97. * reference).
  98. *
  99. * This is the interesting part of the lockless pagecache (and lockless
  100. * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
  101. * has the following pattern:
  102. * 1. find page in radix tree
  103. * 2. conditionally increment refcount
  104. * 3. check the page is still in pagecache (if no, goto 1)
  105. *
  106. * Remove-side that cares about stability of _count (eg. reclaim) has the
  107. * following (with tree_lock held for write):
  108. * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
  109. * B. remove page from pagecache
  110. * C. free the page
  111. *
  112. * There are 2 critical interleavings that matter:
  113. * - 2 runs before A: in this case, A sees elevated refcount and bails out
  114. * - A runs before 2: in this case, 2 sees zero refcount and retries;
  115. * subsequently, B will complete and 1 will find no page, causing the
  116. * lookup to return NULL.
  117. *
  118. * It is possible that between 1 and 2, the page is removed then the exact same
  119. * page is inserted into the same position in pagecache. That's OK: the
  120. * old find_get_page using tree_lock could equally have run before or after
  121. * such a re-insertion, depending on order that locks are granted.
  122. *
  123. * Lookups racing against pagecache insertion isn't a big problem: either 1
  124. * will find the page or it will not. Likewise, the old find_get_page could run
  125. * either before the insertion or afterwards, depending on timing.
  126. */
  127. static inline int page_cache_get_speculative(struct page *page)
  128. {
  129. VM_BUG_ON(in_interrupt());
  130. #if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
  131. # ifdef CONFIG_PREEMPT
  132. VM_BUG_ON(!in_atomic());
  133. # endif
  134. /*
  135. * Preempt must be disabled here - we rely on rcu_read_lock doing
  136. * this for us.
  137. *
  138. * Pagecache won't be truncated from interrupt context, so if we have
  139. * found a page in the radix tree here, we have pinned its refcount by
  140. * disabling preempt, and hence no need for the "speculative get" that
  141. * SMP requires.
  142. */
  143. VM_BUG_ON(page_count(page) == 0);
  144. atomic_inc(&page->_count);
  145. #else
  146. if (unlikely(!get_page_unless_zero(page))) {
  147. /*
  148. * Either the page has been freed, or will be freed.
  149. * In either case, retry here and the caller should
  150. * do the right thing (see comments above).
  151. */
  152. return 0;
  153. }
  154. #endif
  155. VM_BUG_ON(PageTail(page));
  156. return 1;
  157. }
  158. /*
  159. * Same as above, but add instead of inc (could just be merged)
  160. */
  161. static inline int page_cache_add_speculative(struct page *page, int count)
  162. {
  163. VM_BUG_ON(in_interrupt());
  164. #if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
  165. # ifdef CONFIG_PREEMPT
  166. VM_BUG_ON(!in_atomic());
  167. # endif
  168. VM_BUG_ON(page_count(page) == 0);
  169. atomic_add(count, &page->_count);
  170. #else
  171. if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
  172. return 0;
  173. #endif
  174. VM_BUG_ON(PageCompound(page) && page != compound_head(page));
  175. return 1;
  176. }
  177. static inline int page_freeze_refs(struct page *page, int count)
  178. {
  179. return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
  180. }
  181. static inline void page_unfreeze_refs(struct page *page, int count)
  182. {
  183. VM_BUG_ON(page_count(page) != 0);
  184. VM_BUG_ON(count == 0);
  185. atomic_set(&page->_count, count);
  186. }
  187. #ifdef CONFIG_NUMA
  188. extern struct page *__page_cache_alloc(gfp_t gfp);
  189. #else
  190. static inline struct page *__page_cache_alloc(gfp_t gfp)
  191. {
  192. return alloc_pages(gfp, 0);
  193. }
  194. #endif
  195. static inline struct page *page_cache_alloc(struct address_space *x)
  196. {
  197. return __page_cache_alloc(mapping_gfp_mask(x));
  198. }
  199. static inline struct page *page_cache_alloc_cold(struct address_space *x)
  200. {
  201. return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
  202. }
  203. typedef int filler_t(void *, struct page *);
  204. extern struct page * find_get_page(struct address_space *mapping,
  205. pgoff_t index);
  206. extern struct page * find_lock_page(struct address_space *mapping,
  207. pgoff_t index);
  208. extern struct page * find_or_create_page(struct address_space *mapping,
  209. pgoff_t index, gfp_t gfp_mask);
  210. unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
  211. unsigned int nr_pages, struct page **pages);
  212. unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
  213. unsigned int nr_pages, struct page **pages);
  214. unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
  215. int tag, unsigned int nr_pages, struct page **pages);
  216. struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index);
  217. /*
  218. * Returns locked page at given index in given cache, creating it if needed.
  219. */
  220. static inline struct page *grab_cache_page(struct address_space *mapping,
  221. pgoff_t index)
  222. {
  223. return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
  224. }
  225. extern struct page * grab_cache_page_nowait(struct address_space *mapping,
  226. pgoff_t index);
  227. extern struct page * read_cache_page_async(struct address_space *mapping,
  228. pgoff_t index, filler_t *filler,
  229. void *data);
  230. extern struct page * read_cache_page(struct address_space *mapping,
  231. pgoff_t index, filler_t *filler,
  232. void *data);
  233. extern int read_cache_pages(struct address_space *mapping,
  234. struct list_head *pages, filler_t *filler, void *data);
  235. static inline struct page *read_mapping_page_async(
  236. struct address_space *mapping,
  237. pgoff_t index, void *data)
  238. {
  239. filler_t *filler = (filler_t *)mapping->a_ops->readpage;
  240. return read_cache_page_async(mapping, index, filler, data);
  241. }
  242. static inline struct page *read_mapping_page(struct address_space *mapping,
  243. pgoff_t index, void *data)
  244. {
  245. filler_t *filler = (filler_t *)mapping->a_ops->readpage;
  246. return read_cache_page(mapping, index, filler, data);
  247. }
  248. /*
  249. * Return byte-offset into filesystem object for page.
  250. */
  251. static inline loff_t page_offset(struct page *page)
  252. {
  253. return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
  254. }
  255. static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
  256. unsigned long address)
  257. {
  258. pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
  259. pgoff += vma->vm_pgoff;
  260. return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  261. }
  262. extern void __lock_page(struct page *page);
  263. extern int __lock_page_killable(struct page *page);
  264. extern void __lock_page_nosync(struct page *page);
  265. extern void unlock_page(struct page *page);
  266. static inline void __set_page_locked(struct page *page)
  267. {
  268. __set_bit(PG_locked, &page->flags);
  269. }
  270. static inline void __clear_page_locked(struct page *page)
  271. {
  272. __clear_bit(PG_locked, &page->flags);
  273. }
  274. static inline int trylock_page(struct page *page)
  275. {
  276. return !test_and_set_bit(PG_locked, &page->flags);
  277. }
  278. /*
  279. * lock_page may only be called if we have the page's inode pinned.
  280. */
  281. static inline void lock_page(struct page *page)
  282. {
  283. might_sleep();
  284. if (!trylock_page(page))
  285. __lock_page(page);
  286. }
  287. /*
  288. * lock_page_killable is like lock_page but can be interrupted by fatal
  289. * signals. It returns 0 if it locked the page and -EINTR if it was
  290. * killed while waiting.
  291. */
  292. static inline int lock_page_killable(struct page *page)
  293. {
  294. might_sleep();
  295. if (!trylock_page(page))
  296. return __lock_page_killable(page);
  297. return 0;
  298. }
  299. /*
  300. * lock_page_nosync should only be used if we can't pin the page's inode.
  301. * Doesn't play quite so well with block device plugging.
  302. */
  303. static inline void lock_page_nosync(struct page *page)
  304. {
  305. might_sleep();
  306. if (!trylock_page(page))
  307. __lock_page_nosync(page);
  308. }
  309. /*
  310. * This is exported only for wait_on_page_locked/wait_on_page_writeback.
  311. * Never use this directly!
  312. */
  313. extern void wait_on_page_bit(struct page *page, int bit_nr);
  314. /*
  315. * Wait for a page to be unlocked.
  316. *
  317. * This must be called with the caller "holding" the page,
  318. * ie with increased "page->count" so that the page won't
  319. * go away during the wait..
  320. */
  321. static inline void wait_on_page_locked(struct page *page)
  322. {
  323. if (PageLocked(page))
  324. wait_on_page_bit(page, PG_locked);
  325. }
  326. /*
  327. * Wait for a page to complete writeback
  328. */
  329. static inline void wait_on_page_writeback(struct page *page)
  330. {
  331. if (PageWriteback(page))
  332. wait_on_page_bit(page, PG_writeback);
  333. }
  334. extern void end_page_writeback(struct page *page);
  335. /*
  336. * Fault a userspace page into pagetables. Return non-zero on a fault.
  337. *
  338. * This assumes that two userspace pages are always sufficient. That's
  339. * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
  340. */
  341. static inline int fault_in_pages_writeable(char __user *uaddr, int size)
  342. {
  343. int ret;
  344. if (unlikely(size == 0))
  345. return 0;
  346. /*
  347. * Writing zeroes into userspace here is OK, because we know that if
  348. * the zero gets there, we'll be overwriting it.
  349. */
  350. ret = __put_user(0, uaddr);
  351. if (ret == 0) {
  352. char __user *end = uaddr + size - 1;
  353. /*
  354. * If the page was already mapped, this will get a cache miss
  355. * for sure, so try to avoid doing it.
  356. */
  357. if (((unsigned long)uaddr & PAGE_MASK) !=
  358. ((unsigned long)end & PAGE_MASK))
  359. ret = __put_user(0, end);
  360. }
  361. return ret;
  362. }
  363. static inline int fault_in_pages_readable(const char __user *uaddr, int size)
  364. {
  365. volatile char c;
  366. int ret;
  367. if (unlikely(size == 0))
  368. return 0;
  369. ret = __get_user(c, uaddr);
  370. if (ret == 0) {
  371. const char __user *end = uaddr + size - 1;
  372. if (((unsigned long)uaddr & PAGE_MASK) !=
  373. ((unsigned long)end & PAGE_MASK))
  374. ret = __get_user(c, end);
  375. }
  376. return ret;
  377. }
  378. int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
  379. pgoff_t index, gfp_t gfp_mask);
  380. int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
  381. pgoff_t index, gfp_t gfp_mask);
  382. extern void remove_from_page_cache(struct page *page);
  383. extern void __remove_from_page_cache(struct page *page);
  384. /*
  385. * Like add_to_page_cache_locked, but used to add newly allocated pages:
  386. * the page is new, so we can just run __set_page_locked() against it.
  387. */
  388. static inline int add_to_page_cache(struct page *page,
  389. struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
  390. {
  391. int error;
  392. __set_page_locked(page);
  393. error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
  394. if (unlikely(error))
  395. __clear_page_locked(page);
  396. return error;
  397. }
  398. #endif /* _LINUX_PAGEMAP_H */