ctree.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include "ctree.h"
  19. #include "disk-io.h"
  20. #include "transaction.h"
  21. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  22. *root, struct btrfs_path *path, int level);
  23. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  24. *root, struct btrfs_key *ins_key,
  25. struct btrfs_path *path, int data_size);
  26. static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
  27. *root, struct buffer_head *dst, struct buffer_head
  28. *src);
  29. static int balance_node_right(struct btrfs_trans_handle *trans, struct
  30. btrfs_root *root, struct buffer_head *dst_buf,
  31. struct buffer_head *src_buf);
  32. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  33. struct btrfs_path *path, int level, int slot);
  34. inline void btrfs_init_path(struct btrfs_path *p)
  35. {
  36. memset(p, 0, sizeof(*p));
  37. }
  38. struct btrfs_path *btrfs_alloc_path(void)
  39. {
  40. struct btrfs_path *path;
  41. path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
  42. if (path)
  43. btrfs_init_path(path);
  44. return path;
  45. }
  46. void btrfs_free_path(struct btrfs_path *p)
  47. {
  48. btrfs_release_path(NULL, p);
  49. kmem_cache_free(btrfs_path_cachep, p);
  50. }
  51. void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  52. {
  53. int i;
  54. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  55. if (!p->nodes[i])
  56. break;
  57. btrfs_block_release(root, p->nodes[i]);
  58. }
  59. memset(p, 0, sizeof(*p));
  60. }
  61. static int __btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
  62. *root, struct buffer_head *buf, struct buffer_head
  63. *parent, int parent_slot, struct buffer_head
  64. **cow_ret, u64 search_start, u64 empty_size)
  65. {
  66. struct buffer_head *cow;
  67. struct btrfs_node *cow_node;
  68. int ret = 0;
  69. int different_trans = 0;
  70. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  71. WARN_ON(!buffer_uptodate(buf));
  72. cow = btrfs_alloc_free_block(trans, root, search_start, empty_size);
  73. if (IS_ERR(cow))
  74. return PTR_ERR(cow);
  75. cow_node = btrfs_buffer_node(cow);
  76. if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
  77. WARN_ON(1);
  78. memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
  79. btrfs_set_header_blocknr(&cow_node->header, bh_blocknr(cow));
  80. btrfs_set_header_generation(&cow_node->header, trans->transid);
  81. btrfs_set_header_owner(&cow_node->header, root->root_key.objectid);
  82. WARN_ON(btrfs_header_generation(btrfs_buffer_header(buf)) >
  83. trans->transid);
  84. if (btrfs_header_generation(btrfs_buffer_header(buf)) !=
  85. trans->transid) {
  86. different_trans = 1;
  87. ret = btrfs_inc_ref(trans, root, buf);
  88. if (ret)
  89. return ret;
  90. } else {
  91. WARN_ON(!root->ref_cows);
  92. clean_tree_block(trans, root, buf);
  93. }
  94. if (buf == root->node) {
  95. root->node = cow;
  96. get_bh(cow);
  97. if (buf != root->commit_root) {
  98. btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
  99. }
  100. btrfs_block_release(root, buf);
  101. } else {
  102. btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
  103. bh_blocknr(cow));
  104. btrfs_mark_buffer_dirty(parent);
  105. WARN_ON(btrfs_header_generation(btrfs_buffer_header(parent)) !=
  106. trans->transid);
  107. btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
  108. }
  109. btrfs_block_release(root, buf);
  110. btrfs_mark_buffer_dirty(cow);
  111. *cow_ret = cow;
  112. return 0;
  113. }
  114. int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
  115. *root, struct buffer_head *buf, struct buffer_head
  116. *parent, int parent_slot, struct buffer_head
  117. **cow_ret)
  118. {
  119. u64 search_start;
  120. if (trans->transaction != root->fs_info->running_transaction) {
  121. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  122. root->fs_info->running_transaction->transid);
  123. WARN_ON(1);
  124. }
  125. if (trans->transid != root->fs_info->generation) {
  126. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  127. root->fs_info->generation);
  128. WARN_ON(1);
  129. }
  130. if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
  131. trans->transid) {
  132. *cow_ret = buf;
  133. return 0;
  134. }
  135. search_start = bh_blocknr(buf) & ~((u64)65535);
  136. return __btrfs_cow_block(trans, root, buf, parent,
  137. parent_slot, cow_ret, search_start, 0);
  138. }
  139. static int close_blocks(u64 blocknr, u64 other)
  140. {
  141. if (blocknr < other && other - blocknr < 8)
  142. return 1;
  143. if (blocknr > other && blocknr - other < 8)
  144. return 1;
  145. return 0;
  146. }
  147. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  148. struct btrfs_root *root, struct buffer_head *parent,
  149. int cache_only)
  150. {
  151. struct btrfs_node *parent_node;
  152. struct buffer_head *cur_bh;
  153. struct buffer_head *tmp_bh;
  154. u64 blocknr;
  155. u64 search_start = 0;
  156. u64 other;
  157. u32 parent_nritems;
  158. int start_slot;
  159. int end_slot;
  160. int i;
  161. int err = 0;
  162. if (trans->transaction != root->fs_info->running_transaction) {
  163. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  164. root->fs_info->running_transaction->transid);
  165. WARN_ON(1);
  166. }
  167. if (trans->transid != root->fs_info->generation) {
  168. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  169. root->fs_info->generation);
  170. WARN_ON(1);
  171. }
  172. parent_node = btrfs_buffer_node(parent);
  173. parent_nritems = btrfs_header_nritems(&parent_node->header);
  174. start_slot = 0;
  175. end_slot = parent_nritems;
  176. if (parent_nritems == 1)
  177. return 0;
  178. for (i = start_slot; i < end_slot; i++) {
  179. int close = 1;
  180. blocknr = btrfs_node_blockptr(parent_node, i);
  181. if (i > 0) {
  182. other = btrfs_node_blockptr(parent_node, i - 1);
  183. close = close_blocks(blocknr, other);
  184. }
  185. if (close && i < end_slot - 1) {
  186. other = btrfs_node_blockptr(parent_node, i + 1);
  187. close = close_blocks(blocknr, other);
  188. }
  189. if (close)
  190. continue;
  191. cur_bh = btrfs_find_tree_block(root, blocknr);
  192. if (!cur_bh || !buffer_uptodate(cur_bh) ||
  193. buffer_locked(cur_bh)) {
  194. if (cache_only) {
  195. brelse(cur_bh);
  196. continue;
  197. }
  198. brelse(cur_bh);
  199. cur_bh = read_tree_block(root, blocknr);
  200. }
  201. if (search_start == 0) {
  202. search_start = bh_blocknr(cur_bh) & ~((u64)65535);
  203. }
  204. err = __btrfs_cow_block(trans, root, cur_bh, parent, i,
  205. &tmp_bh, search_start,
  206. min(8, end_slot - i));
  207. if (err)
  208. break;
  209. search_start = bh_blocknr(tmp_bh);
  210. brelse(tmp_bh);
  211. }
  212. return err;
  213. }
  214. /*
  215. * The leaf data grows from end-to-front in the node.
  216. * this returns the address of the start of the last item,
  217. * which is the stop of the leaf data stack
  218. */
  219. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  220. struct btrfs_leaf *leaf)
  221. {
  222. u32 nr = btrfs_header_nritems(&leaf->header);
  223. if (nr == 0)
  224. return BTRFS_LEAF_DATA_SIZE(root);
  225. return btrfs_item_offset(leaf->items + nr - 1);
  226. }
  227. /*
  228. * compare two keys in a memcmp fashion
  229. */
  230. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  231. {
  232. struct btrfs_key k1;
  233. btrfs_disk_key_to_cpu(&k1, disk);
  234. if (k1.objectid > k2->objectid)
  235. return 1;
  236. if (k1.objectid < k2->objectid)
  237. return -1;
  238. if (k1.flags > k2->flags)
  239. return 1;
  240. if (k1.flags < k2->flags)
  241. return -1;
  242. if (k1.offset > k2->offset)
  243. return 1;
  244. if (k1.offset < k2->offset)
  245. return -1;
  246. return 0;
  247. }
  248. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  249. int level)
  250. {
  251. struct btrfs_node *parent = NULL;
  252. struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
  253. int parent_slot;
  254. int slot;
  255. struct btrfs_key cpukey;
  256. u32 nritems = btrfs_header_nritems(&node->header);
  257. if (path->nodes[level + 1])
  258. parent = btrfs_buffer_node(path->nodes[level + 1]);
  259. slot = path->slots[level];
  260. BUG_ON(nritems == 0);
  261. if (parent) {
  262. struct btrfs_disk_key *parent_key;
  263. parent_slot = path->slots[level + 1];
  264. parent_key = &parent->ptrs[parent_slot].key;
  265. BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
  266. sizeof(struct btrfs_disk_key)));
  267. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  268. btrfs_header_blocknr(&node->header));
  269. }
  270. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  271. if (slot != 0) {
  272. btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot - 1].key);
  273. BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) <= 0);
  274. }
  275. if (slot < nritems - 1) {
  276. btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot + 1].key);
  277. BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) >= 0);
  278. }
  279. return 0;
  280. }
  281. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  282. int level)
  283. {
  284. struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
  285. struct btrfs_node *parent = NULL;
  286. int parent_slot;
  287. int slot = path->slots[0];
  288. struct btrfs_key cpukey;
  289. u32 nritems = btrfs_header_nritems(&leaf->header);
  290. if (path->nodes[level + 1])
  291. parent = btrfs_buffer_node(path->nodes[level + 1]);
  292. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  293. if (nritems == 0)
  294. return 0;
  295. if (parent) {
  296. struct btrfs_disk_key *parent_key;
  297. parent_slot = path->slots[level + 1];
  298. parent_key = &parent->ptrs[parent_slot].key;
  299. BUG_ON(memcmp(parent_key, &leaf->items[0].key,
  300. sizeof(struct btrfs_disk_key)));
  301. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  302. btrfs_header_blocknr(&leaf->header));
  303. }
  304. if (slot != 0) {
  305. btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot - 1].key);
  306. BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) <= 0);
  307. BUG_ON(btrfs_item_offset(leaf->items + slot - 1) !=
  308. btrfs_item_end(leaf->items + slot));
  309. }
  310. if (slot < nritems - 1) {
  311. btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot + 1].key);
  312. BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) >= 0);
  313. BUG_ON(btrfs_item_offset(leaf->items + slot) !=
  314. btrfs_item_end(leaf->items + slot + 1));
  315. }
  316. BUG_ON(btrfs_item_offset(leaf->items) +
  317. btrfs_item_size(leaf->items) != BTRFS_LEAF_DATA_SIZE(root));
  318. return 0;
  319. }
  320. static int check_block(struct btrfs_root *root, struct btrfs_path *path,
  321. int level)
  322. {
  323. struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
  324. if (memcmp(node->header.fsid, root->fs_info->disk_super->fsid,
  325. sizeof(node->header.fsid)))
  326. BUG();
  327. if (level == 0)
  328. return check_leaf(root, path, level);
  329. return check_node(root, path, level);
  330. }
  331. /*
  332. * search for key in the array p. items p are item_size apart
  333. * and there are 'max' items in p
  334. * the slot in the array is returned via slot, and it points to
  335. * the place where you would insert key if it is not found in
  336. * the array.
  337. *
  338. * slot may point to max if the key is bigger than all of the keys
  339. */
  340. static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
  341. int max, int *slot)
  342. {
  343. int low = 0;
  344. int high = max;
  345. int mid;
  346. int ret;
  347. struct btrfs_disk_key *tmp;
  348. while(low < high) {
  349. mid = (low + high) / 2;
  350. tmp = (struct btrfs_disk_key *)(p + mid * item_size);
  351. ret = comp_keys(tmp, key);
  352. if (ret < 0)
  353. low = mid + 1;
  354. else if (ret > 0)
  355. high = mid;
  356. else {
  357. *slot = mid;
  358. return 0;
  359. }
  360. }
  361. *slot = low;
  362. return 1;
  363. }
  364. /*
  365. * simple bin_search frontend that does the right thing for
  366. * leaves vs nodes
  367. */
  368. static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
  369. {
  370. if (btrfs_is_leaf(c)) {
  371. struct btrfs_leaf *l = (struct btrfs_leaf *)c;
  372. return generic_bin_search((void *)l->items,
  373. sizeof(struct btrfs_item),
  374. key, btrfs_header_nritems(&c->header),
  375. slot);
  376. } else {
  377. return generic_bin_search((void *)c->ptrs,
  378. sizeof(struct btrfs_key_ptr),
  379. key, btrfs_header_nritems(&c->header),
  380. slot);
  381. }
  382. return -1;
  383. }
  384. static struct buffer_head *read_node_slot(struct btrfs_root *root,
  385. struct buffer_head *parent_buf,
  386. int slot)
  387. {
  388. struct btrfs_node *node = btrfs_buffer_node(parent_buf);
  389. if (slot < 0)
  390. return NULL;
  391. if (slot >= btrfs_header_nritems(&node->header))
  392. return NULL;
  393. return read_tree_block(root, btrfs_node_blockptr(node, slot));
  394. }
  395. static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
  396. *root, struct btrfs_path *path, int level)
  397. {
  398. struct buffer_head *right_buf;
  399. struct buffer_head *mid_buf;
  400. struct buffer_head *left_buf;
  401. struct buffer_head *parent_buf = NULL;
  402. struct btrfs_node *right = NULL;
  403. struct btrfs_node *mid;
  404. struct btrfs_node *left = NULL;
  405. struct btrfs_node *parent = NULL;
  406. int ret = 0;
  407. int wret;
  408. int pslot;
  409. int orig_slot = path->slots[level];
  410. int err_on_enospc = 0;
  411. u64 orig_ptr;
  412. if (level == 0)
  413. return 0;
  414. mid_buf = path->nodes[level];
  415. mid = btrfs_buffer_node(mid_buf);
  416. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  417. if (level < BTRFS_MAX_LEVEL - 1)
  418. parent_buf = path->nodes[level + 1];
  419. pslot = path->slots[level + 1];
  420. /*
  421. * deal with the case where there is only one pointer in the root
  422. * by promoting the node below to a root
  423. */
  424. if (!parent_buf) {
  425. struct buffer_head *child;
  426. u64 blocknr = bh_blocknr(mid_buf);
  427. if (btrfs_header_nritems(&mid->header) != 1)
  428. return 0;
  429. /* promote the child to a root */
  430. child = read_node_slot(root, mid_buf, 0);
  431. BUG_ON(!child);
  432. root->node = child;
  433. path->nodes[level] = NULL;
  434. clean_tree_block(trans, root, mid_buf);
  435. wait_on_buffer(mid_buf);
  436. /* once for the path */
  437. btrfs_block_release(root, mid_buf);
  438. /* once for the root ptr */
  439. btrfs_block_release(root, mid_buf);
  440. return btrfs_free_extent(trans, root, blocknr, 1, 1);
  441. }
  442. parent = btrfs_buffer_node(parent_buf);
  443. if (btrfs_header_nritems(&mid->header) >
  444. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  445. return 0;
  446. if (btrfs_header_nritems(&mid->header) < 2)
  447. err_on_enospc = 1;
  448. left_buf = read_node_slot(root, parent_buf, pslot - 1);
  449. right_buf = read_node_slot(root, parent_buf, pslot + 1);
  450. /* first, try to make some room in the middle buffer */
  451. if (left_buf) {
  452. wret = btrfs_cow_block(trans, root, left_buf,
  453. parent_buf, pslot - 1, &left_buf);
  454. if (wret) {
  455. ret = wret;
  456. goto enospc;
  457. }
  458. left = btrfs_buffer_node(left_buf);
  459. orig_slot += btrfs_header_nritems(&left->header);
  460. wret = push_node_left(trans, root, left_buf, mid_buf);
  461. if (wret < 0)
  462. ret = wret;
  463. if (btrfs_header_nritems(&mid->header) < 2)
  464. err_on_enospc = 1;
  465. }
  466. /*
  467. * then try to empty the right most buffer into the middle
  468. */
  469. if (right_buf) {
  470. wret = btrfs_cow_block(trans, root, right_buf,
  471. parent_buf, pslot + 1, &right_buf);
  472. if (wret) {
  473. ret = wret;
  474. goto enospc;
  475. }
  476. right = btrfs_buffer_node(right_buf);
  477. wret = push_node_left(trans, root, mid_buf, right_buf);
  478. if (wret < 0 && wret != -ENOSPC)
  479. ret = wret;
  480. if (btrfs_header_nritems(&right->header) == 0) {
  481. u64 blocknr = bh_blocknr(right_buf);
  482. clean_tree_block(trans, root, right_buf);
  483. wait_on_buffer(right_buf);
  484. btrfs_block_release(root, right_buf);
  485. right_buf = NULL;
  486. right = NULL;
  487. wret = del_ptr(trans, root, path, level + 1, pslot +
  488. 1);
  489. if (wret)
  490. ret = wret;
  491. wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
  492. if (wret)
  493. ret = wret;
  494. } else {
  495. btrfs_memcpy(root, parent,
  496. &parent->ptrs[pslot + 1].key,
  497. &right->ptrs[0].key,
  498. sizeof(struct btrfs_disk_key));
  499. btrfs_mark_buffer_dirty(parent_buf);
  500. }
  501. }
  502. if (btrfs_header_nritems(&mid->header) == 1) {
  503. /*
  504. * we're not allowed to leave a node with one item in the
  505. * tree during a delete. A deletion from lower in the tree
  506. * could try to delete the only pointer in this node.
  507. * So, pull some keys from the left.
  508. * There has to be a left pointer at this point because
  509. * otherwise we would have pulled some pointers from the
  510. * right
  511. */
  512. BUG_ON(!left_buf);
  513. wret = balance_node_right(trans, root, mid_buf, left_buf);
  514. if (wret < 0) {
  515. ret = wret;
  516. goto enospc;
  517. }
  518. BUG_ON(wret == 1);
  519. }
  520. if (btrfs_header_nritems(&mid->header) == 0) {
  521. /* we've managed to empty the middle node, drop it */
  522. u64 blocknr = bh_blocknr(mid_buf);
  523. clean_tree_block(trans, root, mid_buf);
  524. wait_on_buffer(mid_buf);
  525. btrfs_block_release(root, mid_buf);
  526. mid_buf = NULL;
  527. mid = NULL;
  528. wret = del_ptr(trans, root, path, level + 1, pslot);
  529. if (wret)
  530. ret = wret;
  531. wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
  532. if (wret)
  533. ret = wret;
  534. } else {
  535. /* update the parent key to reflect our changes */
  536. btrfs_memcpy(root, parent,
  537. &parent->ptrs[pslot].key, &mid->ptrs[0].key,
  538. sizeof(struct btrfs_disk_key));
  539. btrfs_mark_buffer_dirty(parent_buf);
  540. }
  541. /* update the path */
  542. if (left_buf) {
  543. if (btrfs_header_nritems(&left->header) > orig_slot) {
  544. get_bh(left_buf);
  545. path->nodes[level] = left_buf;
  546. path->slots[level + 1] -= 1;
  547. path->slots[level] = orig_slot;
  548. if (mid_buf)
  549. btrfs_block_release(root, mid_buf);
  550. } else {
  551. orig_slot -= btrfs_header_nritems(&left->header);
  552. path->slots[level] = orig_slot;
  553. }
  554. }
  555. /* double check we haven't messed things up */
  556. check_block(root, path, level);
  557. if (orig_ptr !=
  558. btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
  559. path->slots[level]))
  560. BUG();
  561. enospc:
  562. if (right_buf)
  563. btrfs_block_release(root, right_buf);
  564. if (left_buf)
  565. btrfs_block_release(root, left_buf);
  566. return ret;
  567. }
  568. /* returns zero if the push worked, non-zero otherwise */
  569. static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  570. struct btrfs_root *root,
  571. struct btrfs_path *path, int level)
  572. {
  573. struct buffer_head *right_buf;
  574. struct buffer_head *mid_buf;
  575. struct buffer_head *left_buf;
  576. struct buffer_head *parent_buf = NULL;
  577. struct btrfs_node *right = NULL;
  578. struct btrfs_node *mid;
  579. struct btrfs_node *left = NULL;
  580. struct btrfs_node *parent = NULL;
  581. int ret = 0;
  582. int wret;
  583. int pslot;
  584. int orig_slot = path->slots[level];
  585. u64 orig_ptr;
  586. if (level == 0)
  587. return 1;
  588. mid_buf = path->nodes[level];
  589. mid = btrfs_buffer_node(mid_buf);
  590. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  591. if (level < BTRFS_MAX_LEVEL - 1)
  592. parent_buf = path->nodes[level + 1];
  593. pslot = path->slots[level + 1];
  594. if (!parent_buf)
  595. return 1;
  596. parent = btrfs_buffer_node(parent_buf);
  597. left_buf = read_node_slot(root, parent_buf, pslot - 1);
  598. /* first, try to make some room in the middle buffer */
  599. if (left_buf) {
  600. u32 left_nr;
  601. left = btrfs_buffer_node(left_buf);
  602. left_nr = btrfs_header_nritems(&left->header);
  603. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  604. wret = 1;
  605. } else {
  606. ret = btrfs_cow_block(trans, root, left_buf, parent_buf,
  607. pslot - 1, &left_buf);
  608. if (ret)
  609. wret = 1;
  610. else {
  611. left = btrfs_buffer_node(left_buf);
  612. wret = push_node_left(trans, root,
  613. left_buf, mid_buf);
  614. }
  615. }
  616. if (wret < 0)
  617. ret = wret;
  618. if (wret == 0) {
  619. orig_slot += left_nr;
  620. btrfs_memcpy(root, parent,
  621. &parent->ptrs[pslot].key,
  622. &mid->ptrs[0].key,
  623. sizeof(struct btrfs_disk_key));
  624. btrfs_mark_buffer_dirty(parent_buf);
  625. if (btrfs_header_nritems(&left->header) > orig_slot) {
  626. path->nodes[level] = left_buf;
  627. path->slots[level + 1] -= 1;
  628. path->slots[level] = orig_slot;
  629. btrfs_block_release(root, mid_buf);
  630. } else {
  631. orig_slot -=
  632. btrfs_header_nritems(&left->header);
  633. path->slots[level] = orig_slot;
  634. btrfs_block_release(root, left_buf);
  635. }
  636. check_node(root, path, level);
  637. return 0;
  638. }
  639. btrfs_block_release(root, left_buf);
  640. }
  641. right_buf = read_node_slot(root, parent_buf, pslot + 1);
  642. /*
  643. * then try to empty the right most buffer into the middle
  644. */
  645. if (right_buf) {
  646. u32 right_nr;
  647. right = btrfs_buffer_node(right_buf);
  648. right_nr = btrfs_header_nritems(&right->header);
  649. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  650. wret = 1;
  651. } else {
  652. ret = btrfs_cow_block(trans, root, right_buf,
  653. parent_buf, pslot + 1,
  654. &right_buf);
  655. if (ret)
  656. wret = 1;
  657. else {
  658. right = btrfs_buffer_node(right_buf);
  659. wret = balance_node_right(trans, root,
  660. right_buf, mid_buf);
  661. }
  662. }
  663. if (wret < 0)
  664. ret = wret;
  665. if (wret == 0) {
  666. btrfs_memcpy(root, parent,
  667. &parent->ptrs[pslot + 1].key,
  668. &right->ptrs[0].key,
  669. sizeof(struct btrfs_disk_key));
  670. btrfs_mark_buffer_dirty(parent_buf);
  671. if (btrfs_header_nritems(&mid->header) <= orig_slot) {
  672. path->nodes[level] = right_buf;
  673. path->slots[level + 1] += 1;
  674. path->slots[level] = orig_slot -
  675. btrfs_header_nritems(&mid->header);
  676. btrfs_block_release(root, mid_buf);
  677. } else {
  678. btrfs_block_release(root, right_buf);
  679. }
  680. check_node(root, path, level);
  681. return 0;
  682. }
  683. btrfs_block_release(root, right_buf);
  684. }
  685. check_node(root, path, level);
  686. return 1;
  687. }
  688. /*
  689. * readahead one full node of leaves
  690. */
  691. static void reada_for_search(struct btrfs_root *root, struct btrfs_path *path,
  692. int level, int slot)
  693. {
  694. struct btrfs_node *node;
  695. int i;
  696. u32 nritems;
  697. u64 item_objectid;
  698. u64 blocknr;
  699. u64 search;
  700. u64 cluster_start;
  701. int ret;
  702. int nread = 0;
  703. int direction = path->reada;
  704. struct radix_tree_root found;
  705. unsigned long gang[8];
  706. struct buffer_head *bh;
  707. if (level == 0)
  708. return;
  709. if (!path->nodes[level])
  710. return;
  711. node = btrfs_buffer_node(path->nodes[level]);
  712. search = btrfs_node_blockptr(node, slot);
  713. bh = btrfs_find_tree_block(root, search);
  714. if (bh) {
  715. brelse(bh);
  716. return;
  717. }
  718. init_bit_radix(&found);
  719. nritems = btrfs_header_nritems(&node->header);
  720. for (i = slot; i < nritems; i++) {
  721. item_objectid = btrfs_disk_key_objectid(&node->ptrs[i].key);
  722. blocknr = btrfs_node_blockptr(node, i);
  723. set_radix_bit(&found, blocknr);
  724. }
  725. if (direction > 0) {
  726. cluster_start = search - 4;
  727. if (cluster_start > search)
  728. cluster_start = 0;
  729. } else
  730. cluster_start = search + 4;
  731. while(1) {
  732. ret = find_first_radix_bit(&found, gang, 0, ARRAY_SIZE(gang));
  733. if (!ret)
  734. break;
  735. for (i = 0; i < ret; i++) {
  736. blocknr = gang[i];
  737. clear_radix_bit(&found, blocknr);
  738. if (nread > 32)
  739. continue;
  740. if (direction > 0 && cluster_start <= blocknr &&
  741. cluster_start + 8 > blocknr) {
  742. cluster_start = blocknr;
  743. readahead_tree_block(root, blocknr);
  744. nread++;
  745. } else if (direction < 0 && cluster_start >= blocknr &&
  746. blocknr + 8 > cluster_start) {
  747. cluster_start = blocknr;
  748. readahead_tree_block(root, blocknr);
  749. nread++;
  750. }
  751. }
  752. }
  753. }
  754. /*
  755. * look for key in the tree. path is filled in with nodes along the way
  756. * if key is found, we return zero and you can find the item in the leaf
  757. * level of the path (level 0)
  758. *
  759. * If the key isn't found, the path points to the slot where it should
  760. * be inserted, and 1 is returned. If there are other errors during the
  761. * search a negative error number is returned.
  762. *
  763. * if ins_len > 0, nodes and leaves will be split as we walk down the
  764. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  765. * possible)
  766. */
  767. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  768. *root, struct btrfs_key *key, struct btrfs_path *p, int
  769. ins_len, int cow)
  770. {
  771. struct buffer_head *b;
  772. struct buffer_head *cow_buf;
  773. struct btrfs_node *c;
  774. u64 blocknr;
  775. int slot;
  776. int ret;
  777. int level;
  778. int should_reada = p->reada;
  779. u8 lowest_level = 0;
  780. lowest_level = p->lowest_level;
  781. WARN_ON(lowest_level && ins_len);
  782. WARN_ON(p->nodes[0] != NULL);
  783. WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
  784. again:
  785. b = root->node;
  786. get_bh(b);
  787. while (b) {
  788. c = btrfs_buffer_node(b);
  789. level = btrfs_header_level(&c->header);
  790. if (cow) {
  791. int wret;
  792. wret = btrfs_cow_block(trans, root, b,
  793. p->nodes[level + 1],
  794. p->slots[level + 1],
  795. &cow_buf);
  796. if (wret) {
  797. btrfs_block_release(root, cow_buf);
  798. return wret;
  799. }
  800. b = cow_buf;
  801. c = btrfs_buffer_node(b);
  802. }
  803. BUG_ON(!cow && ins_len);
  804. if (level != btrfs_header_level(&c->header))
  805. WARN_ON(1);
  806. level = btrfs_header_level(&c->header);
  807. p->nodes[level] = b;
  808. ret = check_block(root, p, level);
  809. if (ret)
  810. return -1;
  811. ret = bin_search(c, key, &slot);
  812. if (!btrfs_is_leaf(c)) {
  813. if (ret && slot > 0)
  814. slot -= 1;
  815. p->slots[level] = slot;
  816. if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
  817. BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  818. int sret = split_node(trans, root, p, level);
  819. BUG_ON(sret > 0);
  820. if (sret)
  821. return sret;
  822. b = p->nodes[level];
  823. c = btrfs_buffer_node(b);
  824. slot = p->slots[level];
  825. } else if (ins_len < 0) {
  826. int sret = balance_level(trans, root, p,
  827. level);
  828. if (sret)
  829. return sret;
  830. b = p->nodes[level];
  831. if (!b)
  832. goto again;
  833. c = btrfs_buffer_node(b);
  834. slot = p->slots[level];
  835. BUG_ON(btrfs_header_nritems(&c->header) == 1);
  836. }
  837. /* this is only true while dropping a snapshot */
  838. if (level == lowest_level)
  839. break;
  840. blocknr = btrfs_node_blockptr(c, slot);
  841. if (should_reada)
  842. reada_for_search(root, p, level, slot);
  843. b = read_tree_block(root, btrfs_node_blockptr(c, slot));
  844. } else {
  845. struct btrfs_leaf *l = (struct btrfs_leaf *)c;
  846. p->slots[level] = slot;
  847. if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
  848. sizeof(struct btrfs_item) + ins_len) {
  849. int sret = split_leaf(trans, root, key,
  850. p, ins_len);
  851. BUG_ON(sret > 0);
  852. if (sret)
  853. return sret;
  854. }
  855. return ret;
  856. }
  857. }
  858. return 1;
  859. }
  860. /*
  861. * adjust the pointers going up the tree, starting at level
  862. * making sure the right key of each node is points to 'key'.
  863. * This is used after shifting pointers to the left, so it stops
  864. * fixing up pointers when a given leaf/node is not in slot 0 of the
  865. * higher levels
  866. *
  867. * If this fails to write a tree block, it returns -1, but continues
  868. * fixing up the blocks in ram so the tree is consistent.
  869. */
  870. static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
  871. *root, struct btrfs_path *path, struct btrfs_disk_key
  872. *key, int level)
  873. {
  874. int i;
  875. int ret = 0;
  876. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  877. struct btrfs_node *t;
  878. int tslot = path->slots[i];
  879. if (!path->nodes[i])
  880. break;
  881. t = btrfs_buffer_node(path->nodes[i]);
  882. btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
  883. btrfs_mark_buffer_dirty(path->nodes[i]);
  884. if (tslot != 0)
  885. break;
  886. }
  887. return ret;
  888. }
  889. /*
  890. * try to push data from one node into the next node left in the
  891. * tree.
  892. *
  893. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  894. * error, and > 0 if there was no room in the left hand block.
  895. */
  896. static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
  897. *root, struct buffer_head *dst_buf, struct
  898. buffer_head *src_buf)
  899. {
  900. struct btrfs_node *src = btrfs_buffer_node(src_buf);
  901. struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
  902. int push_items = 0;
  903. int src_nritems;
  904. int dst_nritems;
  905. int ret = 0;
  906. src_nritems = btrfs_header_nritems(&src->header);
  907. dst_nritems = btrfs_header_nritems(&dst->header);
  908. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  909. if (push_items <= 0) {
  910. return 1;
  911. }
  912. if (src_nritems < push_items)
  913. push_items = src_nritems;
  914. btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
  915. push_items * sizeof(struct btrfs_key_ptr));
  916. if (push_items < src_nritems) {
  917. btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
  918. (src_nritems - push_items) *
  919. sizeof(struct btrfs_key_ptr));
  920. }
  921. btrfs_set_header_nritems(&src->header, src_nritems - push_items);
  922. btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
  923. btrfs_mark_buffer_dirty(src_buf);
  924. btrfs_mark_buffer_dirty(dst_buf);
  925. return ret;
  926. }
  927. /*
  928. * try to push data from one node into the next node right in the
  929. * tree.
  930. *
  931. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  932. * error, and > 0 if there was no room in the right hand block.
  933. *
  934. * this will only push up to 1/2 the contents of the left node over
  935. */
  936. static int balance_node_right(struct btrfs_trans_handle *trans, struct
  937. btrfs_root *root, struct buffer_head *dst_buf,
  938. struct buffer_head *src_buf)
  939. {
  940. struct btrfs_node *src = btrfs_buffer_node(src_buf);
  941. struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
  942. int push_items = 0;
  943. int max_push;
  944. int src_nritems;
  945. int dst_nritems;
  946. int ret = 0;
  947. src_nritems = btrfs_header_nritems(&src->header);
  948. dst_nritems = btrfs_header_nritems(&dst->header);
  949. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  950. if (push_items <= 0) {
  951. return 1;
  952. }
  953. max_push = src_nritems / 2 + 1;
  954. /* don't try to empty the node */
  955. if (max_push > src_nritems)
  956. return 1;
  957. if (max_push < push_items)
  958. push_items = max_push;
  959. btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
  960. dst_nritems * sizeof(struct btrfs_key_ptr));
  961. btrfs_memcpy(root, dst, dst->ptrs,
  962. src->ptrs + src_nritems - push_items,
  963. push_items * sizeof(struct btrfs_key_ptr));
  964. btrfs_set_header_nritems(&src->header, src_nritems - push_items);
  965. btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
  966. btrfs_mark_buffer_dirty(src_buf);
  967. btrfs_mark_buffer_dirty(dst_buf);
  968. return ret;
  969. }
  970. /*
  971. * helper function to insert a new root level in the tree.
  972. * A new node is allocated, and a single item is inserted to
  973. * point to the existing root
  974. *
  975. * returns zero on success or < 0 on failure.
  976. */
  977. static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
  978. *root, struct btrfs_path *path, int level)
  979. {
  980. struct buffer_head *t;
  981. struct btrfs_node *lower;
  982. struct btrfs_node *c;
  983. struct btrfs_disk_key *lower_key;
  984. BUG_ON(path->nodes[level]);
  985. BUG_ON(path->nodes[level-1] != root->node);
  986. t = btrfs_alloc_free_block(trans, root, root->node->b_blocknr, 0);
  987. if (IS_ERR(t))
  988. return PTR_ERR(t);
  989. c = btrfs_buffer_node(t);
  990. memset(c, 0, root->blocksize);
  991. btrfs_set_header_nritems(&c->header, 1);
  992. btrfs_set_header_level(&c->header, level);
  993. btrfs_set_header_blocknr(&c->header, bh_blocknr(t));
  994. btrfs_set_header_generation(&c->header, trans->transid);
  995. btrfs_set_header_owner(&c->header, root->root_key.objectid);
  996. lower = btrfs_buffer_node(path->nodes[level-1]);
  997. memcpy(c->header.fsid, root->fs_info->disk_super->fsid,
  998. sizeof(c->header.fsid));
  999. if (btrfs_is_leaf(lower))
  1000. lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
  1001. else
  1002. lower_key = &lower->ptrs[0].key;
  1003. btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
  1004. sizeof(struct btrfs_disk_key));
  1005. btrfs_set_node_blockptr(c, 0, bh_blocknr(path->nodes[level - 1]));
  1006. btrfs_mark_buffer_dirty(t);
  1007. /* the super has an extra ref to root->node */
  1008. btrfs_block_release(root, root->node);
  1009. root->node = t;
  1010. get_bh(t);
  1011. path->nodes[level] = t;
  1012. path->slots[level] = 0;
  1013. return 0;
  1014. }
  1015. /*
  1016. * worker function to insert a single pointer in a node.
  1017. * the node should have enough room for the pointer already
  1018. *
  1019. * slot and level indicate where you want the key to go, and
  1020. * blocknr is the block the key points to.
  1021. *
  1022. * returns zero on success and < 0 on any error
  1023. */
  1024. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1025. *root, struct btrfs_path *path, struct btrfs_disk_key
  1026. *key, u64 blocknr, int slot, int level)
  1027. {
  1028. struct btrfs_node *lower;
  1029. int nritems;
  1030. BUG_ON(!path->nodes[level]);
  1031. lower = btrfs_buffer_node(path->nodes[level]);
  1032. nritems = btrfs_header_nritems(&lower->header);
  1033. if (slot > nritems)
  1034. BUG();
  1035. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1036. BUG();
  1037. if (slot != nritems) {
  1038. btrfs_memmove(root, lower, lower->ptrs + slot + 1,
  1039. lower->ptrs + slot,
  1040. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1041. }
  1042. btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
  1043. key, sizeof(struct btrfs_disk_key));
  1044. btrfs_set_node_blockptr(lower, slot, blocknr);
  1045. btrfs_set_header_nritems(&lower->header, nritems + 1);
  1046. btrfs_mark_buffer_dirty(path->nodes[level]);
  1047. check_node(root, path, level);
  1048. return 0;
  1049. }
  1050. /*
  1051. * split the node at the specified level in path in two.
  1052. * The path is corrected to point to the appropriate node after the split
  1053. *
  1054. * Before splitting this tries to make some room in the node by pushing
  1055. * left and right, if either one works, it returns right away.
  1056. *
  1057. * returns 0 on success and < 0 on failure
  1058. */
  1059. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  1060. *root, struct btrfs_path *path, int level)
  1061. {
  1062. struct buffer_head *t;
  1063. struct btrfs_node *c;
  1064. struct buffer_head *split_buffer;
  1065. struct btrfs_node *split;
  1066. int mid;
  1067. int ret;
  1068. int wret;
  1069. u32 c_nritems;
  1070. t = path->nodes[level];
  1071. c = btrfs_buffer_node(t);
  1072. if (t == root->node) {
  1073. /* trying to split the root, lets make a new one */
  1074. ret = insert_new_root(trans, root, path, level + 1);
  1075. if (ret)
  1076. return ret;
  1077. } else {
  1078. ret = push_nodes_for_insert(trans, root, path, level);
  1079. t = path->nodes[level];
  1080. c = btrfs_buffer_node(t);
  1081. if (!ret &&
  1082. btrfs_header_nritems(&c->header) <
  1083. BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
  1084. return 0;
  1085. if (ret < 0)
  1086. return ret;
  1087. }
  1088. c_nritems = btrfs_header_nritems(&c->header);
  1089. split_buffer = btrfs_alloc_free_block(trans, root, t->b_blocknr, 0);
  1090. if (IS_ERR(split_buffer))
  1091. return PTR_ERR(split_buffer);
  1092. split = btrfs_buffer_node(split_buffer);
  1093. btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
  1094. btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
  1095. btrfs_set_header_blocknr(&split->header, bh_blocknr(split_buffer));
  1096. btrfs_set_header_generation(&split->header, trans->transid);
  1097. btrfs_set_header_owner(&split->header, root->root_key.objectid);
  1098. memcpy(split->header.fsid, root->fs_info->disk_super->fsid,
  1099. sizeof(split->header.fsid));
  1100. mid = (c_nritems + 1) / 2;
  1101. btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
  1102. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1103. btrfs_set_header_nritems(&split->header, c_nritems - mid);
  1104. btrfs_set_header_nritems(&c->header, mid);
  1105. ret = 0;
  1106. btrfs_mark_buffer_dirty(t);
  1107. btrfs_mark_buffer_dirty(split_buffer);
  1108. wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
  1109. bh_blocknr(split_buffer), path->slots[level + 1] + 1,
  1110. level + 1);
  1111. if (wret)
  1112. ret = wret;
  1113. if (path->slots[level] >= mid) {
  1114. path->slots[level] -= mid;
  1115. btrfs_block_release(root, t);
  1116. path->nodes[level] = split_buffer;
  1117. path->slots[level + 1] += 1;
  1118. } else {
  1119. btrfs_block_release(root, split_buffer);
  1120. }
  1121. return ret;
  1122. }
  1123. /*
  1124. * how many bytes are required to store the items in a leaf. start
  1125. * and nr indicate which items in the leaf to check. This totals up the
  1126. * space used both by the item structs and the item data
  1127. */
  1128. static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
  1129. {
  1130. int data_len;
  1131. int nritems = btrfs_header_nritems(&l->header);
  1132. int end = min(nritems, start + nr) - 1;
  1133. if (!nr)
  1134. return 0;
  1135. data_len = btrfs_item_end(l->items + start);
  1136. data_len = data_len - btrfs_item_offset(l->items + end);
  1137. data_len += sizeof(struct btrfs_item) * nr;
  1138. WARN_ON(data_len < 0);
  1139. return data_len;
  1140. }
  1141. /*
  1142. * The space between the end of the leaf items and
  1143. * the start of the leaf data. IOW, how much room
  1144. * the leaf has left for both items and data
  1145. */
  1146. int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
  1147. {
  1148. int nritems = btrfs_header_nritems(&leaf->header);
  1149. return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  1150. }
  1151. /*
  1152. * push some data in the path leaf to the right, trying to free up at
  1153. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1154. *
  1155. * returns 1 if the push failed because the other node didn't have enough
  1156. * room, 0 if everything worked out and < 0 if there were major errors.
  1157. */
  1158. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  1159. *root, struct btrfs_path *path, int data_size)
  1160. {
  1161. struct buffer_head *left_buf = path->nodes[0];
  1162. struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
  1163. struct btrfs_leaf *right;
  1164. struct buffer_head *right_buf;
  1165. struct buffer_head *upper;
  1166. struct btrfs_node *upper_node;
  1167. int slot;
  1168. int i;
  1169. int free_space;
  1170. int push_space = 0;
  1171. int push_items = 0;
  1172. struct btrfs_item *item;
  1173. u32 left_nritems;
  1174. u32 right_nritems;
  1175. int ret;
  1176. slot = path->slots[1];
  1177. if (!path->nodes[1]) {
  1178. return 1;
  1179. }
  1180. upper = path->nodes[1];
  1181. upper_node = btrfs_buffer_node(upper);
  1182. if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
  1183. return 1;
  1184. }
  1185. right_buf = read_tree_block(root,
  1186. btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
  1187. right = btrfs_buffer_leaf(right_buf);
  1188. free_space = btrfs_leaf_free_space(root, right);
  1189. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1190. btrfs_block_release(root, right_buf);
  1191. return 1;
  1192. }
  1193. /* cow and double check */
  1194. ret = btrfs_cow_block(trans, root, right_buf, upper,
  1195. slot + 1, &right_buf);
  1196. if (ret) {
  1197. btrfs_block_release(root, right_buf);
  1198. return 1;
  1199. }
  1200. right = btrfs_buffer_leaf(right_buf);
  1201. free_space = btrfs_leaf_free_space(root, right);
  1202. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1203. btrfs_block_release(root, right_buf);
  1204. return 1;
  1205. }
  1206. left_nritems = btrfs_header_nritems(&left->header);
  1207. if (left_nritems == 0) {
  1208. btrfs_block_release(root, right_buf);
  1209. return 1;
  1210. }
  1211. for (i = left_nritems - 1; i >= 1; i--) {
  1212. item = left->items + i;
  1213. if (path->slots[0] == i)
  1214. push_space += data_size + sizeof(*item);
  1215. if (btrfs_item_size(item) + sizeof(*item) + push_space >
  1216. free_space)
  1217. break;
  1218. push_items++;
  1219. push_space += btrfs_item_size(item) + sizeof(*item);
  1220. }
  1221. if (push_items == 0) {
  1222. btrfs_block_release(root, right_buf);
  1223. return 1;
  1224. }
  1225. if (push_items == left_nritems)
  1226. WARN_ON(1);
  1227. right_nritems = btrfs_header_nritems(&right->header);
  1228. /* push left to right */
  1229. push_space = btrfs_item_end(left->items + left_nritems - push_items);
  1230. push_space -= leaf_data_end(root, left);
  1231. /* make room in the right data area */
  1232. btrfs_memmove(root, right, btrfs_leaf_data(right) +
  1233. leaf_data_end(root, right) - push_space,
  1234. btrfs_leaf_data(right) +
  1235. leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
  1236. leaf_data_end(root, right));
  1237. /* copy from the left data area */
  1238. btrfs_memcpy(root, right, btrfs_leaf_data(right) +
  1239. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1240. btrfs_leaf_data(left) + leaf_data_end(root, left),
  1241. push_space);
  1242. btrfs_memmove(root, right, right->items + push_items, right->items,
  1243. right_nritems * sizeof(struct btrfs_item));
  1244. /* copy the items from left to right */
  1245. btrfs_memcpy(root, right, right->items, left->items +
  1246. left_nritems - push_items,
  1247. push_items * sizeof(struct btrfs_item));
  1248. /* update the item pointers */
  1249. right_nritems += push_items;
  1250. btrfs_set_header_nritems(&right->header, right_nritems);
  1251. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1252. for (i = 0; i < right_nritems; i++) {
  1253. btrfs_set_item_offset(right->items + i, push_space -
  1254. btrfs_item_size(right->items + i));
  1255. push_space = btrfs_item_offset(right->items + i);
  1256. }
  1257. left_nritems -= push_items;
  1258. btrfs_set_header_nritems(&left->header, left_nritems);
  1259. btrfs_mark_buffer_dirty(left_buf);
  1260. btrfs_mark_buffer_dirty(right_buf);
  1261. btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
  1262. &right->items[0].key, sizeof(struct btrfs_disk_key));
  1263. btrfs_mark_buffer_dirty(upper);
  1264. /* then fixup the leaf pointer in the path */
  1265. if (path->slots[0] >= left_nritems) {
  1266. path->slots[0] -= left_nritems;
  1267. btrfs_block_release(root, path->nodes[0]);
  1268. path->nodes[0] = right_buf;
  1269. path->slots[1] += 1;
  1270. } else {
  1271. btrfs_block_release(root, right_buf);
  1272. }
  1273. if (path->nodes[1])
  1274. check_node(root, path, 1);
  1275. return 0;
  1276. }
  1277. /*
  1278. * push some data in the path leaf to the left, trying to free up at
  1279. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1280. */
  1281. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  1282. *root, struct btrfs_path *path, int data_size)
  1283. {
  1284. struct buffer_head *right_buf = path->nodes[0];
  1285. struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
  1286. struct buffer_head *t;
  1287. struct btrfs_leaf *left;
  1288. int slot;
  1289. int i;
  1290. int free_space;
  1291. int push_space = 0;
  1292. int push_items = 0;
  1293. struct btrfs_item *item;
  1294. u32 old_left_nritems;
  1295. int ret = 0;
  1296. int wret;
  1297. slot = path->slots[1];
  1298. if (slot == 0) {
  1299. return 1;
  1300. }
  1301. if (!path->nodes[1]) {
  1302. return 1;
  1303. }
  1304. t = read_tree_block(root,
  1305. btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
  1306. left = btrfs_buffer_leaf(t);
  1307. free_space = btrfs_leaf_free_space(root, left);
  1308. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1309. btrfs_block_release(root, t);
  1310. return 1;
  1311. }
  1312. /* cow and double check */
  1313. ret = btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
  1314. if (ret) {
  1315. /* we hit -ENOSPC, but it isn't fatal here */
  1316. return 1;
  1317. }
  1318. left = btrfs_buffer_leaf(t);
  1319. free_space = btrfs_leaf_free_space(root, left);
  1320. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1321. btrfs_block_release(root, t);
  1322. return 1;
  1323. }
  1324. if (btrfs_header_nritems(&right->header) == 0) {
  1325. btrfs_block_release(root, t);
  1326. return 1;
  1327. }
  1328. for (i = 0; i < btrfs_header_nritems(&right->header) - 1; i++) {
  1329. item = right->items + i;
  1330. if (path->slots[0] == i)
  1331. push_space += data_size + sizeof(*item);
  1332. if (btrfs_item_size(item) + sizeof(*item) + push_space >
  1333. free_space)
  1334. break;
  1335. push_items++;
  1336. push_space += btrfs_item_size(item) + sizeof(*item);
  1337. }
  1338. if (push_items == 0) {
  1339. btrfs_block_release(root, t);
  1340. return 1;
  1341. }
  1342. if (push_items == btrfs_header_nritems(&right->header))
  1343. WARN_ON(1);
  1344. /* push data from right to left */
  1345. btrfs_memcpy(root, left, left->items +
  1346. btrfs_header_nritems(&left->header),
  1347. right->items, push_items * sizeof(struct btrfs_item));
  1348. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  1349. btrfs_item_offset(right->items + push_items -1);
  1350. btrfs_memcpy(root, left, btrfs_leaf_data(left) +
  1351. leaf_data_end(root, left) - push_space,
  1352. btrfs_leaf_data(right) +
  1353. btrfs_item_offset(right->items + push_items - 1),
  1354. push_space);
  1355. old_left_nritems = btrfs_header_nritems(&left->header);
  1356. BUG_ON(old_left_nritems < 0);
  1357. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  1358. u32 ioff = btrfs_item_offset(left->items + i);
  1359. btrfs_set_item_offset(left->items + i, ioff -
  1360. (BTRFS_LEAF_DATA_SIZE(root) -
  1361. btrfs_item_offset(left->items +
  1362. old_left_nritems - 1)));
  1363. }
  1364. btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
  1365. /* fixup right node */
  1366. push_space = btrfs_item_offset(right->items + push_items - 1) -
  1367. leaf_data_end(root, right);
  1368. btrfs_memmove(root, right, btrfs_leaf_data(right) +
  1369. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1370. btrfs_leaf_data(right) +
  1371. leaf_data_end(root, right), push_space);
  1372. btrfs_memmove(root, right, right->items, right->items + push_items,
  1373. (btrfs_header_nritems(&right->header) - push_items) *
  1374. sizeof(struct btrfs_item));
  1375. btrfs_set_header_nritems(&right->header,
  1376. btrfs_header_nritems(&right->header) -
  1377. push_items);
  1378. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1379. for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
  1380. btrfs_set_item_offset(right->items + i, push_space -
  1381. btrfs_item_size(right->items + i));
  1382. push_space = btrfs_item_offset(right->items + i);
  1383. }
  1384. btrfs_mark_buffer_dirty(t);
  1385. btrfs_mark_buffer_dirty(right_buf);
  1386. wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
  1387. if (wret)
  1388. ret = wret;
  1389. /* then fixup the leaf pointer in the path */
  1390. if (path->slots[0] < push_items) {
  1391. path->slots[0] += old_left_nritems;
  1392. btrfs_block_release(root, path->nodes[0]);
  1393. path->nodes[0] = t;
  1394. path->slots[1] -= 1;
  1395. } else {
  1396. btrfs_block_release(root, t);
  1397. path->slots[0] -= push_items;
  1398. }
  1399. BUG_ON(path->slots[0] < 0);
  1400. if (path->nodes[1])
  1401. check_node(root, path, 1);
  1402. return ret;
  1403. }
  1404. /*
  1405. * split the path's leaf in two, making sure there is at least data_size
  1406. * available for the resulting leaf level of the path.
  1407. *
  1408. * returns 0 if all went well and < 0 on failure.
  1409. */
  1410. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  1411. *root, struct btrfs_key *ins_key,
  1412. struct btrfs_path *path, int data_size)
  1413. {
  1414. struct buffer_head *l_buf;
  1415. struct btrfs_leaf *l;
  1416. u32 nritems;
  1417. int mid;
  1418. int slot;
  1419. struct btrfs_leaf *right;
  1420. struct buffer_head *right_buffer;
  1421. int space_needed = data_size + sizeof(struct btrfs_item);
  1422. int data_copy_size;
  1423. int rt_data_off;
  1424. int i;
  1425. int ret = 0;
  1426. int wret;
  1427. int double_split = 0;
  1428. struct btrfs_disk_key disk_key;
  1429. /* first try to make some room by pushing left and right */
  1430. wret = push_leaf_left(trans, root, path, data_size);
  1431. if (wret < 0)
  1432. return wret;
  1433. if (wret) {
  1434. wret = push_leaf_right(trans, root, path, data_size);
  1435. if (wret < 0)
  1436. return wret;
  1437. }
  1438. l_buf = path->nodes[0];
  1439. l = btrfs_buffer_leaf(l_buf);
  1440. /* did the pushes work? */
  1441. if (btrfs_leaf_free_space(root, l) >=
  1442. sizeof(struct btrfs_item) + data_size)
  1443. return 0;
  1444. if (!path->nodes[1]) {
  1445. ret = insert_new_root(trans, root, path, 1);
  1446. if (ret)
  1447. return ret;
  1448. }
  1449. slot = path->slots[0];
  1450. nritems = btrfs_header_nritems(&l->header);
  1451. mid = (nritems + 1)/ 2;
  1452. right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr, 0);
  1453. if (IS_ERR(right_buffer))
  1454. return PTR_ERR(right_buffer);
  1455. right = btrfs_buffer_leaf(right_buffer);
  1456. memset(&right->header, 0, sizeof(right->header));
  1457. btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
  1458. btrfs_set_header_generation(&right->header, trans->transid);
  1459. btrfs_set_header_owner(&right->header, root->root_key.objectid);
  1460. btrfs_set_header_level(&right->header, 0);
  1461. memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
  1462. sizeof(right->header.fsid));
  1463. if (mid <= slot) {
  1464. if (nritems == 1 ||
  1465. leaf_space_used(l, mid, nritems - mid) + space_needed >
  1466. BTRFS_LEAF_DATA_SIZE(root)) {
  1467. if (slot >= nritems) {
  1468. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1469. btrfs_set_header_nritems(&right->header, 0);
  1470. wret = insert_ptr(trans, root, path,
  1471. &disk_key,
  1472. bh_blocknr(right_buffer),
  1473. path->slots[1] + 1, 1);
  1474. if (wret)
  1475. ret = wret;
  1476. btrfs_block_release(root, path->nodes[0]);
  1477. path->nodes[0] = right_buffer;
  1478. path->slots[0] = 0;
  1479. path->slots[1] += 1;
  1480. return ret;
  1481. }
  1482. mid = slot;
  1483. double_split = 1;
  1484. }
  1485. } else {
  1486. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  1487. BTRFS_LEAF_DATA_SIZE(root)) {
  1488. if (slot == 0) {
  1489. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1490. btrfs_set_header_nritems(&right->header, 0);
  1491. wret = insert_ptr(trans, root, path,
  1492. &disk_key,
  1493. bh_blocknr(right_buffer),
  1494. path->slots[1], 1);
  1495. if (wret)
  1496. ret = wret;
  1497. btrfs_block_release(root, path->nodes[0]);
  1498. path->nodes[0] = right_buffer;
  1499. path->slots[0] = 0;
  1500. if (path->slots[1] == 0) {
  1501. wret = fixup_low_keys(trans, root,
  1502. path, &disk_key, 1);
  1503. if (wret)
  1504. ret = wret;
  1505. }
  1506. return ret;
  1507. }
  1508. mid = slot;
  1509. double_split = 1;
  1510. }
  1511. }
  1512. btrfs_set_header_nritems(&right->header, nritems - mid);
  1513. data_copy_size = btrfs_item_end(l->items + mid) -
  1514. leaf_data_end(root, l);
  1515. btrfs_memcpy(root, right, right->items, l->items + mid,
  1516. (nritems - mid) * sizeof(struct btrfs_item));
  1517. btrfs_memcpy(root, right,
  1518. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  1519. data_copy_size, btrfs_leaf_data(l) +
  1520. leaf_data_end(root, l), data_copy_size);
  1521. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  1522. btrfs_item_end(l->items + mid);
  1523. for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
  1524. u32 ioff = btrfs_item_offset(right->items + i);
  1525. btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
  1526. }
  1527. btrfs_set_header_nritems(&l->header, mid);
  1528. ret = 0;
  1529. wret = insert_ptr(trans, root, path, &right->items[0].key,
  1530. bh_blocknr(right_buffer), path->slots[1] + 1, 1);
  1531. if (wret)
  1532. ret = wret;
  1533. btrfs_mark_buffer_dirty(right_buffer);
  1534. btrfs_mark_buffer_dirty(l_buf);
  1535. BUG_ON(path->slots[0] != slot);
  1536. if (mid <= slot) {
  1537. btrfs_block_release(root, path->nodes[0]);
  1538. path->nodes[0] = right_buffer;
  1539. path->slots[0] -= mid;
  1540. path->slots[1] += 1;
  1541. } else
  1542. btrfs_block_release(root, right_buffer);
  1543. BUG_ON(path->slots[0] < 0);
  1544. check_node(root, path, 1);
  1545. if (!double_split)
  1546. return ret;
  1547. right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr, 0);
  1548. if (IS_ERR(right_buffer))
  1549. return PTR_ERR(right_buffer);
  1550. right = btrfs_buffer_leaf(right_buffer);
  1551. memset(&right->header, 0, sizeof(right->header));
  1552. btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
  1553. btrfs_set_header_generation(&right->header, trans->transid);
  1554. btrfs_set_header_owner(&right->header, root->root_key.objectid);
  1555. btrfs_set_header_level(&right->header, 0);
  1556. memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
  1557. sizeof(right->header.fsid));
  1558. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1559. btrfs_set_header_nritems(&right->header, 0);
  1560. wret = insert_ptr(trans, root, path,
  1561. &disk_key,
  1562. bh_blocknr(right_buffer),
  1563. path->slots[1], 1);
  1564. if (wret)
  1565. ret = wret;
  1566. if (path->slots[1] == 0) {
  1567. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1568. if (wret)
  1569. ret = wret;
  1570. }
  1571. btrfs_block_release(root, path->nodes[0]);
  1572. path->nodes[0] = right_buffer;
  1573. path->slots[0] = 0;
  1574. check_node(root, path, 1);
  1575. check_leaf(root, path, 0);
  1576. return ret;
  1577. }
  1578. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  1579. struct btrfs_root *root,
  1580. struct btrfs_path *path,
  1581. u32 new_size)
  1582. {
  1583. int ret = 0;
  1584. int slot;
  1585. int slot_orig;
  1586. struct btrfs_leaf *leaf;
  1587. struct buffer_head *leaf_buf;
  1588. u32 nritems;
  1589. unsigned int data_end;
  1590. unsigned int old_data_start;
  1591. unsigned int old_size;
  1592. unsigned int size_diff;
  1593. int i;
  1594. slot_orig = path->slots[0];
  1595. leaf_buf = path->nodes[0];
  1596. leaf = btrfs_buffer_leaf(leaf_buf);
  1597. nritems = btrfs_header_nritems(&leaf->header);
  1598. data_end = leaf_data_end(root, leaf);
  1599. slot = path->slots[0];
  1600. old_data_start = btrfs_item_offset(leaf->items + slot);
  1601. old_size = btrfs_item_size(leaf->items + slot);
  1602. BUG_ON(old_size <= new_size);
  1603. size_diff = old_size - new_size;
  1604. BUG_ON(slot < 0);
  1605. BUG_ON(slot >= nritems);
  1606. /*
  1607. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1608. */
  1609. /* first correct the data pointers */
  1610. for (i = slot; i < nritems; i++) {
  1611. u32 ioff = btrfs_item_offset(leaf->items + i);
  1612. btrfs_set_item_offset(leaf->items + i,
  1613. ioff + size_diff);
  1614. }
  1615. /* shift the data */
  1616. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1617. data_end + size_diff, btrfs_leaf_data(leaf) +
  1618. data_end, old_data_start + new_size - data_end);
  1619. btrfs_set_item_size(leaf->items + slot, new_size);
  1620. btrfs_mark_buffer_dirty(leaf_buf);
  1621. ret = 0;
  1622. if (btrfs_leaf_free_space(root, leaf) < 0)
  1623. BUG();
  1624. check_leaf(root, path, 0);
  1625. return ret;
  1626. }
  1627. int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1628. *root, struct btrfs_path *path, u32 data_size)
  1629. {
  1630. int ret = 0;
  1631. int slot;
  1632. int slot_orig;
  1633. struct btrfs_leaf *leaf;
  1634. struct buffer_head *leaf_buf;
  1635. u32 nritems;
  1636. unsigned int data_end;
  1637. unsigned int old_data;
  1638. unsigned int old_size;
  1639. int i;
  1640. slot_orig = path->slots[0];
  1641. leaf_buf = path->nodes[0];
  1642. leaf = btrfs_buffer_leaf(leaf_buf);
  1643. nritems = btrfs_header_nritems(&leaf->header);
  1644. data_end = leaf_data_end(root, leaf);
  1645. if (btrfs_leaf_free_space(root, leaf) < data_size)
  1646. BUG();
  1647. slot = path->slots[0];
  1648. old_data = btrfs_item_end(leaf->items + slot);
  1649. BUG_ON(slot < 0);
  1650. BUG_ON(slot >= nritems);
  1651. /*
  1652. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1653. */
  1654. /* first correct the data pointers */
  1655. for (i = slot; i < nritems; i++) {
  1656. u32 ioff = btrfs_item_offset(leaf->items + i);
  1657. btrfs_set_item_offset(leaf->items + i,
  1658. ioff - data_size);
  1659. }
  1660. /* shift the data */
  1661. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1662. data_end - data_size, btrfs_leaf_data(leaf) +
  1663. data_end, old_data - data_end);
  1664. data_end = old_data;
  1665. old_size = btrfs_item_size(leaf->items + slot);
  1666. btrfs_set_item_size(leaf->items + slot, old_size + data_size);
  1667. btrfs_mark_buffer_dirty(leaf_buf);
  1668. ret = 0;
  1669. if (btrfs_leaf_free_space(root, leaf) < 0)
  1670. BUG();
  1671. check_leaf(root, path, 0);
  1672. return ret;
  1673. }
  1674. /*
  1675. * Given a key and some data, insert an item into the tree.
  1676. * This does all the path init required, making room in the tree if needed.
  1677. */
  1678. int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1679. *root, struct btrfs_path *path, struct btrfs_key
  1680. *cpu_key, u32 data_size)
  1681. {
  1682. int ret = 0;
  1683. int slot;
  1684. int slot_orig;
  1685. struct btrfs_leaf *leaf;
  1686. struct buffer_head *leaf_buf;
  1687. u32 nritems;
  1688. unsigned int data_end;
  1689. struct btrfs_disk_key disk_key;
  1690. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  1691. /* create a root if there isn't one */
  1692. if (!root->node)
  1693. BUG();
  1694. ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
  1695. if (ret == 0) {
  1696. return -EEXIST;
  1697. }
  1698. if (ret < 0)
  1699. goto out;
  1700. slot_orig = path->slots[0];
  1701. leaf_buf = path->nodes[0];
  1702. leaf = btrfs_buffer_leaf(leaf_buf);
  1703. nritems = btrfs_header_nritems(&leaf->header);
  1704. data_end = leaf_data_end(root, leaf);
  1705. if (btrfs_leaf_free_space(root, leaf) <
  1706. sizeof(struct btrfs_item) + data_size) {
  1707. BUG();
  1708. }
  1709. slot = path->slots[0];
  1710. BUG_ON(slot < 0);
  1711. if (slot != nritems) {
  1712. int i;
  1713. unsigned int old_data = btrfs_item_end(leaf->items + slot);
  1714. /*
  1715. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1716. */
  1717. /* first correct the data pointers */
  1718. for (i = slot; i < nritems; i++) {
  1719. u32 ioff = btrfs_item_offset(leaf->items + i);
  1720. btrfs_set_item_offset(leaf->items + i,
  1721. ioff - data_size);
  1722. }
  1723. /* shift the items */
  1724. btrfs_memmove(root, leaf, leaf->items + slot + 1,
  1725. leaf->items + slot,
  1726. (nritems - slot) * sizeof(struct btrfs_item));
  1727. /* shift the data */
  1728. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1729. data_end - data_size, btrfs_leaf_data(leaf) +
  1730. data_end, old_data - data_end);
  1731. data_end = old_data;
  1732. }
  1733. /* setup the item for the new data */
  1734. btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
  1735. sizeof(struct btrfs_disk_key));
  1736. btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
  1737. btrfs_set_item_size(leaf->items + slot, data_size);
  1738. btrfs_set_header_nritems(&leaf->header, nritems + 1);
  1739. btrfs_mark_buffer_dirty(leaf_buf);
  1740. ret = 0;
  1741. if (slot == 0)
  1742. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1743. if (btrfs_leaf_free_space(root, leaf) < 0)
  1744. BUG();
  1745. check_leaf(root, path, 0);
  1746. out:
  1747. return ret;
  1748. }
  1749. /*
  1750. * Given a key and some data, insert an item into the tree.
  1751. * This does all the path init required, making room in the tree if needed.
  1752. */
  1753. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1754. *root, struct btrfs_key *cpu_key, void *data, u32
  1755. data_size)
  1756. {
  1757. int ret = 0;
  1758. struct btrfs_path *path;
  1759. u8 *ptr;
  1760. path = btrfs_alloc_path();
  1761. BUG_ON(!path);
  1762. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  1763. if (!ret) {
  1764. ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
  1765. path->slots[0], u8);
  1766. btrfs_memcpy(root, path->nodes[0]->b_data,
  1767. ptr, data, data_size);
  1768. btrfs_mark_buffer_dirty(path->nodes[0]);
  1769. }
  1770. btrfs_free_path(path);
  1771. return ret;
  1772. }
  1773. /*
  1774. * delete the pointer from a given node.
  1775. *
  1776. * If the delete empties a node, the node is removed from the tree,
  1777. * continuing all the way the root if required. The root is converted into
  1778. * a leaf if all the nodes are emptied.
  1779. */
  1780. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1781. struct btrfs_path *path, int level, int slot)
  1782. {
  1783. struct btrfs_node *node;
  1784. struct buffer_head *parent = path->nodes[level];
  1785. u32 nritems;
  1786. int ret = 0;
  1787. int wret;
  1788. node = btrfs_buffer_node(parent);
  1789. nritems = btrfs_header_nritems(&node->header);
  1790. if (slot != nritems -1) {
  1791. btrfs_memmove(root, node, node->ptrs + slot,
  1792. node->ptrs + slot + 1,
  1793. sizeof(struct btrfs_key_ptr) *
  1794. (nritems - slot - 1));
  1795. }
  1796. nritems--;
  1797. btrfs_set_header_nritems(&node->header, nritems);
  1798. if (nritems == 0 && parent == root->node) {
  1799. struct btrfs_header *header = btrfs_buffer_header(root->node);
  1800. BUG_ON(btrfs_header_level(header) != 1);
  1801. /* just turn the root into a leaf and break */
  1802. btrfs_set_header_level(header, 0);
  1803. } else if (slot == 0) {
  1804. wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
  1805. level + 1);
  1806. if (wret)
  1807. ret = wret;
  1808. }
  1809. btrfs_mark_buffer_dirty(parent);
  1810. return ret;
  1811. }
  1812. /*
  1813. * delete the item at the leaf level in path. If that empties
  1814. * the leaf, remove it from the tree
  1815. */
  1816. int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1817. struct btrfs_path *path)
  1818. {
  1819. int slot;
  1820. struct btrfs_leaf *leaf;
  1821. struct buffer_head *leaf_buf;
  1822. int doff;
  1823. int dsize;
  1824. int ret = 0;
  1825. int wret;
  1826. u32 nritems;
  1827. leaf_buf = path->nodes[0];
  1828. leaf = btrfs_buffer_leaf(leaf_buf);
  1829. slot = path->slots[0];
  1830. doff = btrfs_item_offset(leaf->items + slot);
  1831. dsize = btrfs_item_size(leaf->items + slot);
  1832. nritems = btrfs_header_nritems(&leaf->header);
  1833. if (slot != nritems - 1) {
  1834. int i;
  1835. int data_end = leaf_data_end(root, leaf);
  1836. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1837. data_end + dsize,
  1838. btrfs_leaf_data(leaf) + data_end,
  1839. doff - data_end);
  1840. for (i = slot + 1; i < nritems; i++) {
  1841. u32 ioff = btrfs_item_offset(leaf->items + i);
  1842. btrfs_set_item_offset(leaf->items + i, ioff + dsize);
  1843. }
  1844. btrfs_memmove(root, leaf, leaf->items + slot,
  1845. leaf->items + slot + 1,
  1846. sizeof(struct btrfs_item) *
  1847. (nritems - slot - 1));
  1848. }
  1849. btrfs_set_header_nritems(&leaf->header, nritems - 1);
  1850. nritems--;
  1851. /* delete the leaf if we've emptied it */
  1852. if (nritems == 0) {
  1853. if (leaf_buf == root->node) {
  1854. btrfs_set_header_level(&leaf->header, 0);
  1855. } else {
  1856. clean_tree_block(trans, root, leaf_buf);
  1857. wait_on_buffer(leaf_buf);
  1858. wret = del_ptr(trans, root, path, 1, path->slots[1]);
  1859. if (wret)
  1860. ret = wret;
  1861. wret = btrfs_free_extent(trans, root,
  1862. bh_blocknr(leaf_buf), 1, 1);
  1863. if (wret)
  1864. ret = wret;
  1865. }
  1866. } else {
  1867. int used = leaf_space_used(leaf, 0, nritems);
  1868. if (slot == 0) {
  1869. wret = fixup_low_keys(trans, root, path,
  1870. &leaf->items[0].key, 1);
  1871. if (wret)
  1872. ret = wret;
  1873. }
  1874. /* delete the leaf if it is mostly empty */
  1875. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  1876. /* push_leaf_left fixes the path.
  1877. * make sure the path still points to our leaf
  1878. * for possible call to del_ptr below
  1879. */
  1880. slot = path->slots[1];
  1881. get_bh(leaf_buf);
  1882. wret = push_leaf_left(trans, root, path, 1);
  1883. if (wret < 0 && wret != -ENOSPC)
  1884. ret = wret;
  1885. if (path->nodes[0] == leaf_buf &&
  1886. btrfs_header_nritems(&leaf->header)) {
  1887. wret = push_leaf_right(trans, root, path, 1);
  1888. if (wret < 0 && wret != -ENOSPC)
  1889. ret = wret;
  1890. }
  1891. if (btrfs_header_nritems(&leaf->header) == 0) {
  1892. u64 blocknr = bh_blocknr(leaf_buf);
  1893. clean_tree_block(trans, root, leaf_buf);
  1894. wait_on_buffer(leaf_buf);
  1895. wret = del_ptr(trans, root, path, 1, slot);
  1896. if (wret)
  1897. ret = wret;
  1898. btrfs_block_release(root, leaf_buf);
  1899. wret = btrfs_free_extent(trans, root, blocknr,
  1900. 1, 1);
  1901. if (wret)
  1902. ret = wret;
  1903. } else {
  1904. btrfs_mark_buffer_dirty(leaf_buf);
  1905. btrfs_block_release(root, leaf_buf);
  1906. }
  1907. } else {
  1908. btrfs_mark_buffer_dirty(leaf_buf);
  1909. }
  1910. }
  1911. return ret;
  1912. }
  1913. /*
  1914. * walk up the tree as far as required to find the next leaf.
  1915. * returns 0 if it found something or 1 if there are no greater leaves.
  1916. * returns < 0 on io errors.
  1917. */
  1918. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  1919. {
  1920. int slot;
  1921. int level = 1;
  1922. u64 blocknr;
  1923. struct buffer_head *c;
  1924. struct btrfs_node *c_node;
  1925. struct buffer_head *next = NULL;
  1926. while(level < BTRFS_MAX_LEVEL) {
  1927. if (!path->nodes[level])
  1928. return 1;
  1929. slot = path->slots[level] + 1;
  1930. c = path->nodes[level];
  1931. c_node = btrfs_buffer_node(c);
  1932. if (slot >= btrfs_header_nritems(&c_node->header)) {
  1933. level++;
  1934. continue;
  1935. }
  1936. blocknr = btrfs_node_blockptr(c_node, slot);
  1937. if (next)
  1938. btrfs_block_release(root, next);
  1939. if (path->reada)
  1940. reada_for_search(root, path, level, slot);
  1941. next = read_tree_block(root, blocknr);
  1942. break;
  1943. }
  1944. path->slots[level] = slot;
  1945. while(1) {
  1946. level--;
  1947. c = path->nodes[level];
  1948. btrfs_block_release(root, c);
  1949. path->nodes[level] = next;
  1950. path->slots[level] = 0;
  1951. if (!level)
  1952. break;
  1953. if (path->reada)
  1954. reada_for_search(root, path, level, slot);
  1955. next = read_tree_block(root,
  1956. btrfs_node_blockptr(btrfs_buffer_node(next), 0));
  1957. }
  1958. return 0;
  1959. }