rt2800pci.c 74 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331
  1. /*
  2. Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2800pci
  19. Abstract: rt2800pci device specific routines.
  20. Supported chipsets: RT2800E & RT2800ED.
  21. */
  22. #include <linux/crc-ccitt.h>
  23. #include <linux/delay.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/init.h>
  26. #include <linux/kernel.h>
  27. #include <linux/module.h>
  28. #include <linux/pci.h>
  29. #include <linux/platform_device.h>
  30. #include <linux/eeprom_93cx6.h>
  31. #include "rt2x00.h"
  32. #include "rt2x00pci.h"
  33. #include "rt2x00soc.h"
  34. #include "rt2800lib.h"
  35. #include "rt2800.h"
  36. #include "rt2800pci.h"
  37. #ifdef CONFIG_RT2800PCI_PCI_MODULE
  38. #define CONFIG_RT2800PCI_PCI
  39. #endif
  40. #ifdef CONFIG_RT2800PCI_WISOC_MODULE
  41. #define CONFIG_RT2800PCI_WISOC
  42. #endif
  43. /*
  44. * Allow hardware encryption to be disabled.
  45. */
  46. static int modparam_nohwcrypt = 1;
  47. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  48. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  49. static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
  50. {
  51. unsigned int i;
  52. u32 reg;
  53. for (i = 0; i < 200; i++) {
  54. rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
  55. if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
  56. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
  57. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
  58. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
  59. break;
  60. udelay(REGISTER_BUSY_DELAY);
  61. }
  62. if (i == 200)
  63. ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
  64. rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  65. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  66. }
  67. #ifdef CONFIG_RT2800PCI_WISOC
  68. static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  69. {
  70. u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
  71. memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
  72. }
  73. #else
  74. static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  75. {
  76. }
  77. #endif /* CONFIG_RT2800PCI_WISOC */
  78. #ifdef CONFIG_RT2800PCI_PCI
  79. static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  80. {
  81. struct rt2x00_dev *rt2x00dev = eeprom->data;
  82. u32 reg;
  83. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  84. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  85. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  86. eeprom->reg_data_clock =
  87. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  88. eeprom->reg_chip_select =
  89. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  90. }
  91. static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  92. {
  93. struct rt2x00_dev *rt2x00dev = eeprom->data;
  94. u32 reg = 0;
  95. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  96. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  97. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  98. !!eeprom->reg_data_clock);
  99. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  100. !!eeprom->reg_chip_select);
  101. rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
  102. }
  103. static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  104. {
  105. struct eeprom_93cx6 eeprom;
  106. u32 reg;
  107. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  108. eeprom.data = rt2x00dev;
  109. eeprom.register_read = rt2800pci_eepromregister_read;
  110. eeprom.register_write = rt2800pci_eepromregister_write;
  111. eeprom.width = !rt2x00_get_field32(reg, E2PROM_CSR_TYPE) ?
  112. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  113. eeprom.reg_data_in = 0;
  114. eeprom.reg_data_out = 0;
  115. eeprom.reg_data_clock = 0;
  116. eeprom.reg_chip_select = 0;
  117. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  118. EEPROM_SIZE / sizeof(u16));
  119. }
  120. static void rt2800pci_efuse_read(struct rt2x00_dev *rt2x00dev,
  121. unsigned int i)
  122. {
  123. u32 reg;
  124. rt2800_register_read(rt2x00dev, EFUSE_CTRL, &reg);
  125. rt2x00_set_field32(&reg, EFUSE_CTRL_ADDRESS_IN, i);
  126. rt2x00_set_field32(&reg, EFUSE_CTRL_MODE, 0);
  127. rt2x00_set_field32(&reg, EFUSE_CTRL_KICK, 1);
  128. rt2800_register_write(rt2x00dev, EFUSE_CTRL, reg);
  129. /* Wait until the EEPROM has been loaded */
  130. rt2800_regbusy_read(rt2x00dev, EFUSE_CTRL, EFUSE_CTRL_KICK, &reg);
  131. /* Apparently the data is read from end to start */
  132. rt2800_register_read(rt2x00dev, EFUSE_DATA3,
  133. (u32 *)&rt2x00dev->eeprom[i]);
  134. rt2800_register_read(rt2x00dev, EFUSE_DATA2,
  135. (u32 *)&rt2x00dev->eeprom[i + 2]);
  136. rt2800_register_read(rt2x00dev, EFUSE_DATA1,
  137. (u32 *)&rt2x00dev->eeprom[i + 4]);
  138. rt2800_register_read(rt2x00dev, EFUSE_DATA0,
  139. (u32 *)&rt2x00dev->eeprom[i + 6]);
  140. }
  141. static void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  142. {
  143. unsigned int i;
  144. for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8)
  145. rt2800pci_efuse_read(rt2x00dev, i);
  146. }
  147. #else
  148. static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  149. {
  150. }
  151. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  152. {
  153. }
  154. #endif /* CONFIG_RT2800PCI_PCI */
  155. /*
  156. * Firmware functions
  157. */
  158. static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  159. {
  160. return FIRMWARE_RT2860;
  161. }
  162. static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
  163. const u8 *data, const size_t len)
  164. {
  165. u16 fw_crc;
  166. u16 crc;
  167. /*
  168. * Only support 8kb firmware files.
  169. */
  170. if (len != 8192)
  171. return FW_BAD_LENGTH;
  172. /*
  173. * The last 2 bytes in the firmware array are the crc checksum itself,
  174. * this means that we should never pass those 2 bytes to the crc
  175. * algorithm.
  176. */
  177. fw_crc = (data[len - 2] << 8 | data[len - 1]);
  178. /*
  179. * Use the crc ccitt algorithm.
  180. * This will return the same value as the legacy driver which
  181. * used bit ordering reversion on the both the firmware bytes
  182. * before input input as well as on the final output.
  183. * Obviously using crc ccitt directly is much more efficient.
  184. */
  185. crc = crc_ccitt(~0, data, len - 2);
  186. /*
  187. * There is a small difference between the crc-itu-t + bitrev and
  188. * the crc-ccitt crc calculation. In the latter method the 2 bytes
  189. * will be swapped, use swab16 to convert the crc to the correct
  190. * value.
  191. */
  192. crc = swab16(crc);
  193. return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
  194. }
  195. static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
  196. const u8 *data, const size_t len)
  197. {
  198. unsigned int i;
  199. u32 reg;
  200. /*
  201. * Wait for stable hardware.
  202. */
  203. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  204. rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
  205. if (reg && reg != ~0)
  206. break;
  207. msleep(1);
  208. }
  209. if (i == REGISTER_BUSY_COUNT) {
  210. ERROR(rt2x00dev, "Unstable hardware.\n");
  211. return -EBUSY;
  212. }
  213. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
  214. rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
  215. /*
  216. * Disable DMA, will be reenabled later when enabling
  217. * the radio.
  218. */
  219. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  220. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  221. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  222. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  223. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  224. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  225. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  226. /*
  227. * enable Host program ram write selection
  228. */
  229. reg = 0;
  230. rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
  231. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
  232. /*
  233. * Write firmware to device.
  234. */
  235. rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  236. data, len);
  237. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
  238. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
  239. /*
  240. * Wait for device to stabilize.
  241. */
  242. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  243. rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
  244. if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
  245. break;
  246. msleep(1);
  247. }
  248. if (i == REGISTER_BUSY_COUNT) {
  249. ERROR(rt2x00dev, "PBF system register not ready.\n");
  250. return -EBUSY;
  251. }
  252. /*
  253. * Disable interrupts
  254. */
  255. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
  256. /*
  257. * Initialize BBP R/W access agent
  258. */
  259. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  260. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  261. return 0;
  262. }
  263. /*
  264. * Initialization functions.
  265. */
  266. static bool rt2800pci_get_entry_state(struct queue_entry *entry)
  267. {
  268. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  269. u32 word;
  270. if (entry->queue->qid == QID_RX) {
  271. rt2x00_desc_read(entry_priv->desc, 1, &word);
  272. return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
  273. } else {
  274. rt2x00_desc_read(entry_priv->desc, 1, &word);
  275. return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
  276. }
  277. }
  278. static void rt2800pci_clear_entry(struct queue_entry *entry)
  279. {
  280. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  281. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  282. u32 word;
  283. if (entry->queue->qid == QID_RX) {
  284. rt2x00_desc_read(entry_priv->desc, 0, &word);
  285. rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
  286. rt2x00_desc_write(entry_priv->desc, 0, word);
  287. rt2x00_desc_read(entry_priv->desc, 1, &word);
  288. rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
  289. rt2x00_desc_write(entry_priv->desc, 1, word);
  290. } else {
  291. rt2x00_desc_read(entry_priv->desc, 1, &word);
  292. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
  293. rt2x00_desc_write(entry_priv->desc, 1, word);
  294. }
  295. }
  296. static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
  297. {
  298. struct queue_entry_priv_pci *entry_priv;
  299. u32 reg;
  300. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  301. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  302. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  303. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  304. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  305. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  306. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  307. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  308. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  309. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  310. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  311. /*
  312. * Initialize registers.
  313. */
  314. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  315. rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
  316. rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
  317. rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
  318. rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
  319. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  320. rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
  321. rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
  322. rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
  323. rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
  324. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  325. rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
  326. rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
  327. rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
  328. rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
  329. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  330. rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
  331. rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
  332. rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
  333. rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
  334. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  335. rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
  336. rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
  337. rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
  338. rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
  339. /*
  340. * Enable global DMA configuration
  341. */
  342. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  343. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  344. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  345. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  346. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  347. rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
  348. return 0;
  349. }
  350. static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
  351. {
  352. u32 reg;
  353. unsigned int i;
  354. if (rt2x00_intf_is_pci(rt2x00dev))
  355. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
  356. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  357. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
  358. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
  359. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  360. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
  361. rt2800_register_read(rt2x00dev, BCN_OFFSET0, &reg);
  362. rt2x00_set_field32(&reg, BCN_OFFSET0_BCN0, 0xe0); /* 0x3800 */
  363. rt2x00_set_field32(&reg, BCN_OFFSET0_BCN1, 0xe8); /* 0x3a00 */
  364. rt2x00_set_field32(&reg, BCN_OFFSET0_BCN2, 0xf0); /* 0x3c00 */
  365. rt2x00_set_field32(&reg, BCN_OFFSET0_BCN3, 0xf8); /* 0x3e00 */
  366. rt2800_register_write(rt2x00dev, BCN_OFFSET0, reg);
  367. rt2800_register_read(rt2x00dev, BCN_OFFSET1, &reg);
  368. rt2x00_set_field32(&reg, BCN_OFFSET1_BCN4, 0xc8); /* 0x3200 */
  369. rt2x00_set_field32(&reg, BCN_OFFSET1_BCN5, 0xd0); /* 0x3400 */
  370. rt2x00_set_field32(&reg, BCN_OFFSET1_BCN6, 0x77); /* 0x1dc0 */
  371. rt2x00_set_field32(&reg, BCN_OFFSET1_BCN7, 0x6f); /* 0x1bc0 */
  372. rt2800_register_write(rt2x00dev, BCN_OFFSET1, reg);
  373. rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, 0x0000013f);
  374. rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
  375. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
  376. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  377. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL, 0);
  378. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
  379. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, 0);
  380. rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
  381. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
  382. rt2x00_set_field32(&reg, BCN_TIME_CFG_TX_TIME_COMPENSATE, 0);
  383. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  384. rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000000);
  385. rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
  386. rt2800_register_read(rt2x00dev, TX_LINK_CFG, &reg);
  387. rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB_LIFETIME, 32);
  388. rt2x00_set_field32(&reg, TX_LINK_CFG_MFB_ENABLE, 0);
  389. rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_UMFS_ENABLE, 0);
  390. rt2x00_set_field32(&reg, TX_LINK_CFG_TX_MRQ_EN, 0);
  391. rt2x00_set_field32(&reg, TX_LINK_CFG_TX_RDG_EN, 0);
  392. rt2x00_set_field32(&reg, TX_LINK_CFG_TX_CF_ACK_EN, 1);
  393. rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB, 0);
  394. rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFS, 0);
  395. rt2800_register_write(rt2x00dev, TX_LINK_CFG, reg);
  396. rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, &reg);
  397. rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_MPDU_LIFETIME, 9);
  398. rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_TX_OP_TIMEOUT, 10);
  399. rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg);
  400. rt2800_register_read(rt2x00dev, MAX_LEN_CFG, &reg);
  401. rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_MPDU, AGGREGATION_SIZE);
  402. if (rt2x00_rev(&rt2x00dev->chip) >= RT2880E_VERSION &&
  403. rt2x00_rev(&rt2x00dev->chip) < RT3070_VERSION)
  404. rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 2);
  405. else
  406. rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 1);
  407. rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_PSDU, 0);
  408. rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_MPDU, 0);
  409. rt2800_register_write(rt2x00dev, MAX_LEN_CFG, reg);
  410. rt2800_register_write(rt2x00dev, PBF_MAX_PCNT, 0x1f3fbf9f);
  411. rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
  412. rt2x00_set_field32(&reg, AUTO_RSP_CFG_AUTORESPONDER, 1);
  413. rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MMODE, 0);
  414. rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MREF, 0);
  415. rt2x00_set_field32(&reg, AUTO_RSP_CFG_DUAL_CTS_EN, 0);
  416. rt2x00_set_field32(&reg, AUTO_RSP_CFG_ACK_CTS_PSM_BIT, 0);
  417. rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
  418. rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
  419. rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_RATE, 8);
  420. rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_CTRL, 0);
  421. rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_NAV, 1);
  422. rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_CCK, 1);
  423. rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
  424. rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM20, 1);
  425. rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 1);
  426. rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF20, 1);
  427. rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF40, 1);
  428. rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
  429. rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
  430. rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_RATE, 8);
  431. rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL, 0);
  432. rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_NAV, 1);
  433. rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_CCK, 1);
  434. rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
  435. rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM20, 1);
  436. rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 1);
  437. rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF20, 1);
  438. rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF40, 1);
  439. rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
  440. rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
  441. rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, 0x4004);
  442. rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, 0);
  443. rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_NAV, 1);
  444. rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
  445. rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
  446. rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
  447. rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
  448. rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
  449. rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
  450. rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
  451. rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
  452. rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, 0x4084);
  453. rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, 0);
  454. rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_NAV, 1);
  455. rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
  456. rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
  457. rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
  458. rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
  459. rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
  460. rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
  461. rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
  462. rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
  463. rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, 0x4004);
  464. rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, 0);
  465. rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_NAV, 1);
  466. rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
  467. rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
  468. rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
  469. rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
  470. rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
  471. rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
  472. rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
  473. rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
  474. rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, 0x4084);
  475. rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, 0);
  476. rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_NAV, 1);
  477. rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
  478. rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
  479. rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
  480. rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
  481. rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
  482. rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
  483. rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
  484. rt2800_register_write(rt2x00dev, TXOP_CTRL_CFG, 0x0000583f);
  485. rt2800_register_write(rt2x00dev, TXOP_HLDR_ET, 0x00000002);
  486. rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
  487. rt2x00_set_field32(&reg, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT, 32);
  488. rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES,
  489. IEEE80211_MAX_RTS_THRESHOLD);
  490. rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_FBK_EN, 0);
  491. rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
  492. rt2800_register_write(rt2x00dev, EXP_ACK_TIME, 0x002400ca);
  493. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
  494. /*
  495. * ASIC will keep garbage value after boot, clear encryption keys.
  496. */
  497. for (i = 0; i < 4; i++)
  498. rt2800_register_write(rt2x00dev,
  499. SHARED_KEY_MODE_ENTRY(i), 0);
  500. for (i = 0; i < 256; i++) {
  501. u32 wcid[2] = { 0xffffffff, 0x00ffffff };
  502. rt2800_register_multiwrite(rt2x00dev, MAC_WCID_ENTRY(i),
  503. wcid, sizeof(wcid));
  504. rt2800_register_write(rt2x00dev, MAC_WCID_ATTR_ENTRY(i), 1);
  505. rt2800_register_write(rt2x00dev, MAC_IVEIV_ENTRY(i), 0);
  506. }
  507. /*
  508. * Clear all beacons
  509. * For the Beacon base registers we only need to clear
  510. * the first byte since that byte contains the VALID and OWNER
  511. * bits which (when set to 0) will invalidate the entire beacon.
  512. */
  513. rt2800_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
  514. rt2800_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
  515. rt2800_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
  516. rt2800_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
  517. rt2800_register_write(rt2x00dev, HW_BEACON_BASE4, 0);
  518. rt2800_register_write(rt2x00dev, HW_BEACON_BASE5, 0);
  519. rt2800_register_write(rt2x00dev, HW_BEACON_BASE6, 0);
  520. rt2800_register_write(rt2x00dev, HW_BEACON_BASE7, 0);
  521. rt2800_register_read(rt2x00dev, HT_FBK_CFG0, &reg);
  522. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS0FBK, 0);
  523. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS1FBK, 0);
  524. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS2FBK, 1);
  525. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS3FBK, 2);
  526. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS4FBK, 3);
  527. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS5FBK, 4);
  528. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS6FBK, 5);
  529. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS7FBK, 6);
  530. rt2800_register_write(rt2x00dev, HT_FBK_CFG0, reg);
  531. rt2800_register_read(rt2x00dev, HT_FBK_CFG1, &reg);
  532. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS8FBK, 8);
  533. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS9FBK, 8);
  534. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS10FBK, 9);
  535. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS11FBK, 10);
  536. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS12FBK, 11);
  537. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS13FBK, 12);
  538. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS14FBK, 13);
  539. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS15FBK, 14);
  540. rt2800_register_write(rt2x00dev, HT_FBK_CFG1, reg);
  541. rt2800_register_read(rt2x00dev, LG_FBK_CFG0, &reg);
  542. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS0FBK, 8);
  543. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS1FBK, 8);
  544. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS2FBK, 9);
  545. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS3FBK, 10);
  546. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS4FBK, 11);
  547. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS5FBK, 12);
  548. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS6FBK, 13);
  549. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS7FBK, 14);
  550. rt2800_register_write(rt2x00dev, LG_FBK_CFG0, reg);
  551. rt2800_register_read(rt2x00dev, LG_FBK_CFG1, &reg);
  552. rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS0FBK, 0);
  553. rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS1FBK, 0);
  554. rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS2FBK, 1);
  555. rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS3FBK, 2);
  556. rt2800_register_write(rt2x00dev, LG_FBK_CFG1, reg);
  557. /*
  558. * We must clear the error counters.
  559. * These registers are cleared on read,
  560. * so we may pass a useless variable to store the value.
  561. */
  562. rt2800_register_read(rt2x00dev, RX_STA_CNT0, &reg);
  563. rt2800_register_read(rt2x00dev, RX_STA_CNT1, &reg);
  564. rt2800_register_read(rt2x00dev, RX_STA_CNT2, &reg);
  565. rt2800_register_read(rt2x00dev, TX_STA_CNT0, &reg);
  566. rt2800_register_read(rt2x00dev, TX_STA_CNT1, &reg);
  567. rt2800_register_read(rt2x00dev, TX_STA_CNT2, &reg);
  568. return 0;
  569. }
  570. static int rt2800pci_wait_bbp_rf_ready(struct rt2x00_dev *rt2x00dev)
  571. {
  572. unsigned int i;
  573. u32 reg;
  574. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  575. rt2800_register_read(rt2x00dev, MAC_STATUS_CFG, &reg);
  576. if (!rt2x00_get_field32(reg, MAC_STATUS_CFG_BBP_RF_BUSY))
  577. return 0;
  578. udelay(REGISTER_BUSY_DELAY);
  579. }
  580. ERROR(rt2x00dev, "BBP/RF register access failed, aborting.\n");
  581. return -EACCES;
  582. }
  583. static int rt2800pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  584. {
  585. unsigned int i;
  586. u8 value;
  587. /*
  588. * BBP was enabled after firmware was loaded,
  589. * but we need to reactivate it now.
  590. */
  591. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  592. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  593. msleep(1);
  594. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  595. rt2800_bbp_read(rt2x00dev, 0, &value);
  596. if ((value != 0xff) && (value != 0x00))
  597. return 0;
  598. udelay(REGISTER_BUSY_DELAY);
  599. }
  600. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  601. return -EACCES;
  602. }
  603. static int rt2800pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  604. {
  605. unsigned int i;
  606. u16 eeprom;
  607. u8 reg_id;
  608. u8 value;
  609. if (unlikely(rt2800pci_wait_bbp_rf_ready(rt2x00dev) ||
  610. rt2800pci_wait_bbp_ready(rt2x00dev)))
  611. return -EACCES;
  612. rt2800_bbp_write(rt2x00dev, 65, 0x2c);
  613. rt2800_bbp_write(rt2x00dev, 66, 0x38);
  614. rt2800_bbp_write(rt2x00dev, 69, 0x12);
  615. rt2800_bbp_write(rt2x00dev, 70, 0x0a);
  616. rt2800_bbp_write(rt2x00dev, 73, 0x10);
  617. rt2800_bbp_write(rt2x00dev, 81, 0x37);
  618. rt2800_bbp_write(rt2x00dev, 82, 0x62);
  619. rt2800_bbp_write(rt2x00dev, 83, 0x6a);
  620. rt2800_bbp_write(rt2x00dev, 84, 0x99);
  621. rt2800_bbp_write(rt2x00dev, 86, 0x00);
  622. rt2800_bbp_write(rt2x00dev, 91, 0x04);
  623. rt2800_bbp_write(rt2x00dev, 92, 0x00);
  624. rt2800_bbp_write(rt2x00dev, 103, 0x00);
  625. rt2800_bbp_write(rt2x00dev, 105, 0x05);
  626. if (rt2x00_rev(&rt2x00dev->chip) == RT2860C_VERSION) {
  627. rt2800_bbp_write(rt2x00dev, 69, 0x16);
  628. rt2800_bbp_write(rt2x00dev, 73, 0x12);
  629. }
  630. if (rt2x00_rev(&rt2x00dev->chip) > RT2860D_VERSION)
  631. rt2800_bbp_write(rt2x00dev, 84, 0x19);
  632. if (rt2x00_intf_is_pci(rt2x00dev) &&
  633. rt2x00_rt(&rt2x00dev->chip, RT3052)) {
  634. rt2800_bbp_write(rt2x00dev, 31, 0x08);
  635. rt2800_bbp_write(rt2x00dev, 78, 0x0e);
  636. rt2800_bbp_write(rt2x00dev, 80, 0x08);
  637. }
  638. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  639. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  640. if (eeprom != 0xffff && eeprom != 0x0000) {
  641. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  642. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  643. rt2800_bbp_write(rt2x00dev, reg_id, value);
  644. }
  645. }
  646. return 0;
  647. }
  648. static u8 rt2800pci_init_rx_filter(struct rt2x00_dev *rt2x00dev,
  649. bool bw40, u8 rfcsr24, u8 filter_target)
  650. {
  651. unsigned int i;
  652. u8 bbp;
  653. u8 rfcsr;
  654. u8 passband;
  655. u8 stopband;
  656. u8 overtuned = 0;
  657. rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
  658. rt2800_bbp_read(rt2x00dev, 4, &bbp);
  659. rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * bw40);
  660. rt2800_bbp_write(rt2x00dev, 4, bbp);
  661. rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
  662. rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 1);
  663. rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
  664. /*
  665. * Set power & frequency of passband test tone
  666. */
  667. rt2800_bbp_write(rt2x00dev, 24, 0);
  668. for (i = 0; i < 100; i++) {
  669. rt2800_bbp_write(rt2x00dev, 25, 0x90);
  670. msleep(1);
  671. rt2800_bbp_read(rt2x00dev, 55, &passband);
  672. if (passband)
  673. break;
  674. }
  675. /*
  676. * Set power & frequency of stopband test tone
  677. */
  678. rt2800_bbp_write(rt2x00dev, 24, 0x06);
  679. for (i = 0; i < 100; i++) {
  680. rt2800_bbp_write(rt2x00dev, 25, 0x90);
  681. msleep(1);
  682. rt2800_bbp_read(rt2x00dev, 55, &stopband);
  683. if ((passband - stopband) <= filter_target) {
  684. rfcsr24++;
  685. overtuned += ((passband - stopband) == filter_target);
  686. } else
  687. break;
  688. rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
  689. }
  690. rfcsr24 -= !!overtuned;
  691. rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
  692. return rfcsr24;
  693. }
  694. static int rt2800pci_init_rfcsr(struct rt2x00_dev *rt2x00dev)
  695. {
  696. u8 rfcsr;
  697. u8 bbp;
  698. if (rt2x00_intf_is_pci(rt2x00dev)) {
  699. if (!rt2x00_rf(&rt2x00dev->chip, RF3020) &&
  700. !rt2x00_rf(&rt2x00dev->chip, RF3021) &&
  701. !rt2x00_rf(&rt2x00dev->chip, RF3022))
  702. return 0;
  703. }
  704. /*
  705. * Init RF calibration.
  706. */
  707. rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
  708. rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
  709. rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
  710. msleep(1);
  711. rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0);
  712. rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
  713. if (rt2x00_intf_is_pci(rt2x00dev)) {
  714. rt2800_rfcsr_write(rt2x00dev, 0, 0x50);
  715. rt2800_rfcsr_write(rt2x00dev, 1, 0x01);
  716. rt2800_rfcsr_write(rt2x00dev, 2, 0xf7);
  717. rt2800_rfcsr_write(rt2x00dev, 3, 0x75);
  718. rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
  719. rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
  720. rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
  721. rt2800_rfcsr_write(rt2x00dev, 7, 0x50);
  722. rt2800_rfcsr_write(rt2x00dev, 8, 0x39);
  723. rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
  724. rt2800_rfcsr_write(rt2x00dev, 10, 0x60);
  725. rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
  726. rt2800_rfcsr_write(rt2x00dev, 12, 0x75);
  727. rt2800_rfcsr_write(rt2x00dev, 13, 0x75);
  728. rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
  729. rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
  730. rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
  731. rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
  732. rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
  733. rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
  734. rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
  735. rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
  736. rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
  737. rt2800_rfcsr_write(rt2x00dev, 23, 0x31);
  738. rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
  739. rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
  740. rt2800_rfcsr_write(rt2x00dev, 26, 0x25);
  741. rt2800_rfcsr_write(rt2x00dev, 27, 0x23);
  742. rt2800_rfcsr_write(rt2x00dev, 28, 0x13);
  743. rt2800_rfcsr_write(rt2x00dev, 29, 0x83);
  744. }
  745. /*
  746. * Set RX Filter calibration for 20MHz and 40MHz
  747. */
  748. rt2x00dev->calibration[0] =
  749. rt2800pci_init_rx_filter(rt2x00dev, false, 0x07, 0x16);
  750. rt2x00dev->calibration[1] =
  751. rt2800pci_init_rx_filter(rt2x00dev, true, 0x27, 0x19);
  752. /*
  753. * Set back to initial state
  754. */
  755. rt2800_bbp_write(rt2x00dev, 24, 0);
  756. rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
  757. rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 0);
  758. rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
  759. /*
  760. * set BBP back to BW20
  761. */
  762. rt2800_bbp_read(rt2x00dev, 4, &bbp);
  763. rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 0);
  764. rt2800_bbp_write(rt2x00dev, 4, bbp);
  765. return 0;
  766. }
  767. /*
  768. * Device state switch handlers.
  769. */
  770. static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  771. enum dev_state state)
  772. {
  773. u32 reg;
  774. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  775. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
  776. (state == STATE_RADIO_RX_ON) ||
  777. (state == STATE_RADIO_RX_ON_LINK));
  778. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  779. }
  780. static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  781. enum dev_state state)
  782. {
  783. int mask = (state == STATE_RADIO_IRQ_ON);
  784. u32 reg;
  785. /*
  786. * When interrupts are being enabled, the interrupt registers
  787. * should clear the register to assure a clean state.
  788. */
  789. if (state == STATE_RADIO_IRQ_ON) {
  790. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  791. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  792. }
  793. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  794. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
  795. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
  796. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
  797. rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
  798. rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
  799. rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
  800. rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
  801. rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
  802. rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
  803. rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
  804. rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
  805. rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
  806. rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
  807. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
  808. rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
  809. rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
  810. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
  811. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
  812. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  813. }
  814. static int rt2800pci_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
  815. {
  816. unsigned int i;
  817. u32 reg;
  818. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  819. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  820. if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
  821. !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
  822. return 0;
  823. msleep(1);
  824. }
  825. ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n");
  826. return -EACCES;
  827. }
  828. static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  829. {
  830. u32 reg;
  831. u16 word;
  832. /*
  833. * Initialize all registers.
  834. */
  835. if (unlikely(rt2800pci_wait_wpdma_ready(rt2x00dev) ||
  836. rt2800pci_init_queues(rt2x00dev) ||
  837. rt2800pci_init_registers(rt2x00dev) ||
  838. rt2800pci_wait_wpdma_ready(rt2x00dev) ||
  839. rt2800pci_init_bbp(rt2x00dev) ||
  840. rt2800pci_init_rfcsr(rt2x00dev)))
  841. return -EIO;
  842. /*
  843. * Send signal to firmware during boot time.
  844. */
  845. rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0xff, 0, 0);
  846. /*
  847. * Enable RX.
  848. */
  849. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  850. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  851. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
  852. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  853. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  854. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
  855. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
  856. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
  857. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  858. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  859. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  860. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  861. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
  862. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  863. /*
  864. * Initialize LED control
  865. */
  866. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
  867. rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
  868. word & 0xff, (word >> 8) & 0xff);
  869. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
  870. rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
  871. word & 0xff, (word >> 8) & 0xff);
  872. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
  873. rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
  874. word & 0xff, (word >> 8) & 0xff);
  875. return 0;
  876. }
  877. static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  878. {
  879. u32 reg;
  880. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  881. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  882. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  883. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  884. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  885. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  886. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  887. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
  888. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
  889. rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
  890. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
  891. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  892. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  893. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  894. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  895. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  896. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  897. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  898. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  899. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  900. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  901. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  902. /* Wait for DMA, ignore error */
  903. rt2800pci_wait_wpdma_ready(rt2x00dev);
  904. }
  905. static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
  906. enum dev_state state)
  907. {
  908. /*
  909. * Always put the device to sleep (even when we intend to wakeup!)
  910. * if the device is booting and wasn't asleep it will return
  911. * failure when attempting to wakeup.
  912. */
  913. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
  914. if (state == STATE_AWAKE) {
  915. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
  916. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
  917. }
  918. return 0;
  919. }
  920. static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  921. enum dev_state state)
  922. {
  923. int retval = 0;
  924. switch (state) {
  925. case STATE_RADIO_ON:
  926. /*
  927. * Before the radio can be enabled, the device first has
  928. * to be woken up. After that it needs a bit of time
  929. * to be fully awake and then the radio can be enabled.
  930. */
  931. rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
  932. msleep(1);
  933. retval = rt2800pci_enable_radio(rt2x00dev);
  934. break;
  935. case STATE_RADIO_OFF:
  936. /*
  937. * After the radio has been disabled, the device should
  938. * be put to sleep for powersaving.
  939. */
  940. rt2800pci_disable_radio(rt2x00dev);
  941. rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
  942. break;
  943. case STATE_RADIO_RX_ON:
  944. case STATE_RADIO_RX_ON_LINK:
  945. case STATE_RADIO_RX_OFF:
  946. case STATE_RADIO_RX_OFF_LINK:
  947. rt2800pci_toggle_rx(rt2x00dev, state);
  948. break;
  949. case STATE_RADIO_IRQ_ON:
  950. case STATE_RADIO_IRQ_OFF:
  951. rt2800pci_toggle_irq(rt2x00dev, state);
  952. break;
  953. case STATE_DEEP_SLEEP:
  954. case STATE_SLEEP:
  955. case STATE_STANDBY:
  956. case STATE_AWAKE:
  957. retval = rt2800pci_set_state(rt2x00dev, state);
  958. break;
  959. default:
  960. retval = -ENOTSUPP;
  961. break;
  962. }
  963. if (unlikely(retval))
  964. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  965. state, retval);
  966. return retval;
  967. }
  968. /*
  969. * TX descriptor initialization
  970. */
  971. static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  972. struct sk_buff *skb,
  973. struct txentry_desc *txdesc)
  974. {
  975. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  976. __le32 *txd = skbdesc->desc;
  977. __le32 *txwi = (__le32 *)(skb->data - rt2x00dev->hw->extra_tx_headroom);
  978. u32 word;
  979. /*
  980. * Initialize TX Info descriptor
  981. */
  982. rt2x00_desc_read(txwi, 0, &word);
  983. rt2x00_set_field32(&word, TXWI_W0_FRAG,
  984. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  985. rt2x00_set_field32(&word, TXWI_W0_MIMO_PS, 0);
  986. rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
  987. rt2x00_set_field32(&word, TXWI_W0_TS,
  988. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  989. rt2x00_set_field32(&word, TXWI_W0_AMPDU,
  990. test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
  991. rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, txdesc->mpdu_density);
  992. rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->ifs);
  993. rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->mcs);
  994. rt2x00_set_field32(&word, TXWI_W0_BW,
  995. test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
  996. rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
  997. test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
  998. rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->stbc);
  999. rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
  1000. rt2x00_desc_write(txwi, 0, word);
  1001. rt2x00_desc_read(txwi, 1, &word);
  1002. rt2x00_set_field32(&word, TXWI_W1_ACK,
  1003. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  1004. rt2x00_set_field32(&word, TXWI_W1_NSEQ,
  1005. test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
  1006. rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size);
  1007. rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
  1008. test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
  1009. txdesc->key_idx : 0xff);
  1010. rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
  1011. skb->len - txdesc->l2pad);
  1012. rt2x00_set_field32(&word, TXWI_W1_PACKETID,
  1013. skbdesc->entry->queue->qid + 1);
  1014. rt2x00_desc_write(txwi, 1, word);
  1015. /*
  1016. * Always write 0 to IV/EIV fields, hardware will insert the IV
  1017. * from the IVEIV register when TXD_W3_WIV is set to 0.
  1018. * When TXD_W3_WIV is set to 1 it will use the IV data
  1019. * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
  1020. * crypto entry in the registers should be used to encrypt the frame.
  1021. */
  1022. _rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
  1023. _rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);
  1024. /*
  1025. * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
  1026. * must contains a TXWI structure + 802.11 header + padding + 802.11
  1027. * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
  1028. * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
  1029. * data. It means that LAST_SEC0 is always 0.
  1030. */
  1031. /*
  1032. * Initialize TX descriptor
  1033. */
  1034. rt2x00_desc_read(txd, 0, &word);
  1035. rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
  1036. rt2x00_desc_write(txd, 0, word);
  1037. rt2x00_desc_read(txd, 1, &word);
  1038. rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
  1039. rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
  1040. !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  1041. rt2x00_set_field32(&word, TXD_W1_BURST,
  1042. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  1043. rt2x00_set_field32(&word, TXD_W1_SD_LEN0,
  1044. rt2x00dev->hw->extra_tx_headroom);
  1045. rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
  1046. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
  1047. rt2x00_desc_write(txd, 1, word);
  1048. rt2x00_desc_read(txd, 2, &word);
  1049. rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
  1050. skbdesc->skb_dma + rt2x00dev->hw->extra_tx_headroom);
  1051. rt2x00_desc_write(txd, 2, word);
  1052. rt2x00_desc_read(txd, 3, &word);
  1053. rt2x00_set_field32(&word, TXD_W3_WIV,
  1054. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
  1055. rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
  1056. rt2x00_desc_write(txd, 3, word);
  1057. }
  1058. /*
  1059. * TX data initialization
  1060. */
  1061. static void rt2800pci_write_beacon(struct queue_entry *entry)
  1062. {
  1063. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1064. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  1065. unsigned int beacon_base;
  1066. u32 reg;
  1067. /*
  1068. * Disable beaconing while we are reloading the beacon data,
  1069. * otherwise we might be sending out invalid data.
  1070. */
  1071. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  1072. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
  1073. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  1074. /*
  1075. * Write entire beacon with descriptor to register.
  1076. */
  1077. beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
  1078. rt2800_register_multiwrite(rt2x00dev,
  1079. beacon_base,
  1080. skbdesc->desc, skbdesc->desc_len);
  1081. rt2800_register_multiwrite(rt2x00dev,
  1082. beacon_base + skbdesc->desc_len,
  1083. entry->skb->data, entry->skb->len);
  1084. /*
  1085. * Clean up beacon skb.
  1086. */
  1087. dev_kfree_skb_any(entry->skb);
  1088. entry->skb = NULL;
  1089. }
  1090. static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  1091. const enum data_queue_qid queue_idx)
  1092. {
  1093. struct data_queue *queue;
  1094. unsigned int idx, qidx = 0;
  1095. u32 reg;
  1096. if (queue_idx == QID_BEACON) {
  1097. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  1098. if (!rt2x00_get_field32(reg, BCN_TIME_CFG_BEACON_GEN)) {
  1099. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
  1100. rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
  1101. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
  1102. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  1103. }
  1104. return;
  1105. }
  1106. if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
  1107. return;
  1108. queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  1109. idx = queue->index[Q_INDEX];
  1110. if (queue_idx == QID_MGMT)
  1111. qidx = 5;
  1112. else
  1113. qidx = queue_idx;
  1114. rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
  1115. }
  1116. static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
  1117. const enum data_queue_qid qid)
  1118. {
  1119. u32 reg;
  1120. if (qid == QID_BEACON) {
  1121. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
  1122. return;
  1123. }
  1124. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  1125. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
  1126. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
  1127. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
  1128. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
  1129. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  1130. }
  1131. /*
  1132. * RX control handlers
  1133. */
  1134. static void rt2800pci_fill_rxdone(struct queue_entry *entry,
  1135. struct rxdone_entry_desc *rxdesc)
  1136. {
  1137. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1138. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  1139. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  1140. __le32 *rxd = entry_priv->desc;
  1141. __le32 *rxwi = (__le32 *)entry->skb->data;
  1142. u32 rxd3;
  1143. u32 rxwi0;
  1144. u32 rxwi1;
  1145. u32 rxwi2;
  1146. u32 rxwi3;
  1147. rt2x00_desc_read(rxd, 3, &rxd3);
  1148. rt2x00_desc_read(rxwi, 0, &rxwi0);
  1149. rt2x00_desc_read(rxwi, 1, &rxwi1);
  1150. rt2x00_desc_read(rxwi, 2, &rxwi2);
  1151. rt2x00_desc_read(rxwi, 3, &rxwi3);
  1152. if (rt2x00_get_field32(rxd3, RXD_W3_CRC_ERROR))
  1153. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1154. if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
  1155. /*
  1156. * Unfortunately we don't know the cipher type used during
  1157. * decryption. This prevents us from correct providing
  1158. * correct statistics through debugfs.
  1159. */
  1160. rxdesc->cipher = rt2x00_get_field32(rxwi0, RXWI_W0_UDF);
  1161. rxdesc->cipher_status =
  1162. rt2x00_get_field32(rxd3, RXD_W3_CIPHER_ERROR);
  1163. }
  1164. if (rt2x00_get_field32(rxd3, RXD_W3_DECRYPTED)) {
  1165. /*
  1166. * Hardware has stripped IV/EIV data from 802.11 frame during
  1167. * decryption. Unfortunately the descriptor doesn't contain
  1168. * any fields with the EIV/IV data either, so they can't
  1169. * be restored by rt2x00lib.
  1170. */
  1171. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  1172. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  1173. rxdesc->flags |= RX_FLAG_DECRYPTED;
  1174. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  1175. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  1176. }
  1177. if (rt2x00_get_field32(rxd3, RXD_W3_MY_BSS))
  1178. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1179. if (rt2x00_get_field32(rxd3, RXD_W3_L2PAD)) {
  1180. rxdesc->dev_flags |= RXDONE_L2PAD;
  1181. skbdesc->flags |= SKBDESC_L2_PADDED;
  1182. }
  1183. if (rt2x00_get_field32(rxwi1, RXWI_W1_SHORT_GI))
  1184. rxdesc->flags |= RX_FLAG_SHORT_GI;
  1185. if (rt2x00_get_field32(rxwi1, RXWI_W1_BW))
  1186. rxdesc->flags |= RX_FLAG_40MHZ;
  1187. /*
  1188. * Detect RX rate, always use MCS as signal type.
  1189. */
  1190. rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
  1191. rxdesc->rate_mode = rt2x00_get_field32(rxwi1, RXWI_W1_PHYMODE);
  1192. rxdesc->signal = rt2x00_get_field32(rxwi1, RXWI_W1_MCS);
  1193. /*
  1194. * Mask of 0x8 bit to remove the short preamble flag.
  1195. */
  1196. if (rxdesc->rate_mode == RATE_MODE_CCK)
  1197. rxdesc->signal &= ~0x8;
  1198. rxdesc->rssi =
  1199. (rt2x00_get_field32(rxwi2, RXWI_W2_RSSI0) +
  1200. rt2x00_get_field32(rxwi2, RXWI_W2_RSSI1)) / 2;
  1201. rxdesc->noise =
  1202. (rt2x00_get_field32(rxwi3, RXWI_W3_SNR0) +
  1203. rt2x00_get_field32(rxwi3, RXWI_W3_SNR1)) / 2;
  1204. rxdesc->size = rt2x00_get_field32(rxwi0, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
  1205. /*
  1206. * Set RX IDX in register to inform hardware that we have handled
  1207. * this entry and it is available for reuse again.
  1208. */
  1209. rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
  1210. /*
  1211. * Remove TXWI descriptor from start of buffer.
  1212. */
  1213. skb_pull(entry->skb, RXWI_DESC_SIZE);
  1214. skb_trim(entry->skb, rxdesc->size);
  1215. }
  1216. /*
  1217. * Interrupt functions.
  1218. */
  1219. static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
  1220. {
  1221. struct data_queue *queue;
  1222. struct queue_entry *entry;
  1223. struct queue_entry *entry_done;
  1224. struct queue_entry_priv_pci *entry_priv;
  1225. struct txdone_entry_desc txdesc;
  1226. u32 word;
  1227. u32 reg;
  1228. u32 old_reg;
  1229. unsigned int type;
  1230. unsigned int index;
  1231. u16 mcs, real_mcs;
  1232. /*
  1233. * During each loop we will compare the freshly read
  1234. * TX_STA_FIFO register value with the value read from
  1235. * the previous loop. If the 2 values are equal then
  1236. * we should stop processing because the chance it
  1237. * quite big that the device has been unplugged and
  1238. * we risk going into an endless loop.
  1239. */
  1240. old_reg = 0;
  1241. while (1) {
  1242. rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
  1243. if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
  1244. break;
  1245. if (old_reg == reg)
  1246. break;
  1247. old_reg = reg;
  1248. /*
  1249. * Skip this entry when it contains an invalid
  1250. * queue identication number.
  1251. */
  1252. type = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE) - 1;
  1253. if (type >= QID_RX)
  1254. continue;
  1255. queue = rt2x00queue_get_queue(rt2x00dev, type);
  1256. if (unlikely(!queue))
  1257. continue;
  1258. /*
  1259. * Skip this entry when it contains an invalid
  1260. * index number.
  1261. */
  1262. index = rt2x00_get_field32(reg, TX_STA_FIFO_WCID) - 1;
  1263. if (unlikely(index >= queue->limit))
  1264. continue;
  1265. entry = &queue->entries[index];
  1266. entry_priv = entry->priv_data;
  1267. rt2x00_desc_read((__le32 *)entry->skb->data, 0, &word);
  1268. entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1269. while (entry != entry_done) {
  1270. /*
  1271. * Catch up.
  1272. * Just report any entries we missed as failed.
  1273. */
  1274. WARNING(rt2x00dev,
  1275. "TX status report missed for entry %d\n",
  1276. entry_done->entry_idx);
  1277. txdesc.flags = 0;
  1278. __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
  1279. txdesc.retry = 0;
  1280. rt2x00lib_txdone(entry_done, &txdesc);
  1281. entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1282. }
  1283. /*
  1284. * Obtain the status about this packet.
  1285. */
  1286. txdesc.flags = 0;
  1287. if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS))
  1288. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  1289. else
  1290. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  1291. /*
  1292. * Ralink has a retry mechanism using a global fallback
  1293. * table. We setup this fallback table to try immediate
  1294. * lower rate for all rates. In the TX_STA_FIFO,
  1295. * the MCS field contains the MCS used for the successfull
  1296. * transmission. If the first transmission succeed,
  1297. * we have mcs == tx_mcs. On the second transmission,
  1298. * we have mcs = tx_mcs - 1. So the number of
  1299. * retry is (tx_mcs - mcs).
  1300. */
  1301. mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
  1302. real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
  1303. __set_bit(TXDONE_FALLBACK, &txdesc.flags);
  1304. txdesc.retry = mcs - min(mcs, real_mcs);
  1305. rt2x00lib_txdone(entry, &txdesc);
  1306. }
  1307. }
  1308. static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
  1309. {
  1310. struct rt2x00_dev *rt2x00dev = dev_instance;
  1311. u32 reg;
  1312. /* Read status and ACK all interrupts */
  1313. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  1314. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  1315. if (!reg)
  1316. return IRQ_NONE;
  1317. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1318. return IRQ_HANDLED;
  1319. /*
  1320. * 1 - Rx ring done interrupt.
  1321. */
  1322. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
  1323. rt2x00pci_rxdone(rt2x00dev);
  1324. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
  1325. rt2800pci_txdone(rt2x00dev);
  1326. return IRQ_HANDLED;
  1327. }
  1328. /*
  1329. * Device probe functions.
  1330. */
  1331. static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1332. {
  1333. u16 word;
  1334. u8 *mac;
  1335. u8 default_lna_gain;
  1336. /*
  1337. * Read EEPROM into buffer
  1338. */
  1339. switch(rt2x00dev->chip.rt) {
  1340. case RT2880:
  1341. case RT3052:
  1342. rt2800pci_read_eeprom_soc(rt2x00dev);
  1343. break;
  1344. case RT3090:
  1345. rt2800pci_read_eeprom_efuse(rt2x00dev);
  1346. break;
  1347. default:
  1348. rt2800pci_read_eeprom_pci(rt2x00dev);
  1349. break;
  1350. }
  1351. /*
  1352. * Start validation of the data that has been read.
  1353. */
  1354. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1355. if (!is_valid_ether_addr(mac)) {
  1356. random_ether_addr(mac);
  1357. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  1358. }
  1359. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1360. if (word == 0xffff) {
  1361. rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2);
  1362. rt2x00_set_field16(&word, EEPROM_ANTENNA_TXPATH, 1);
  1363. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2820);
  1364. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1365. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1366. } else if (rt2x00_rev(&rt2x00dev->chip) < RT2883_VERSION) {
  1367. /*
  1368. * There is a max of 2 RX streams for RT2860 series
  1369. */
  1370. if (rt2x00_get_field16(word, EEPROM_ANTENNA_RXPATH) > 2)
  1371. rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2);
  1372. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1373. }
  1374. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1375. if (word == 0xffff) {
  1376. rt2x00_set_field16(&word, EEPROM_NIC_HW_RADIO, 0);
  1377. rt2x00_set_field16(&word, EEPROM_NIC_DYNAMIC_TX_AGC, 0);
  1378. rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
  1379. rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
  1380. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1381. rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_BG, 0);
  1382. rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_A, 0);
  1383. rt2x00_set_field16(&word, EEPROM_NIC_WPS_PBC, 0);
  1384. rt2x00_set_field16(&word, EEPROM_NIC_BW40M_BG, 0);
  1385. rt2x00_set_field16(&word, EEPROM_NIC_BW40M_A, 0);
  1386. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1387. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1388. }
  1389. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
  1390. if ((word & 0x00ff) == 0x00ff) {
  1391. rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
  1392. rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE,
  1393. LED_MODE_TXRX_ACTIVITY);
  1394. rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0);
  1395. rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
  1396. rt2x00_eeprom_write(rt2x00dev, EEPROM_LED1, 0x5555);
  1397. rt2x00_eeprom_write(rt2x00dev, EEPROM_LED2, 0x2221);
  1398. rt2x00_eeprom_write(rt2x00dev, EEPROM_LED3, 0xa9f8);
  1399. EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
  1400. }
  1401. /*
  1402. * During the LNA validation we are going to use
  1403. * lna0 as correct value. Note that EEPROM_LNA
  1404. * is never validated.
  1405. */
  1406. rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word);
  1407. default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0);
  1408. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word);
  1409. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10)
  1410. rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0);
  1411. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10)
  1412. rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0);
  1413. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word);
  1414. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word);
  1415. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10)
  1416. rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0);
  1417. if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 ||
  1418. rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff)
  1419. rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1,
  1420. default_lna_gain);
  1421. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word);
  1422. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word);
  1423. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10)
  1424. rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0);
  1425. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10)
  1426. rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0);
  1427. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word);
  1428. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word);
  1429. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10)
  1430. rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0);
  1431. if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 ||
  1432. rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff)
  1433. rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2,
  1434. default_lna_gain);
  1435. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word);
  1436. return 0;
  1437. }
  1438. static int rt2800pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1439. {
  1440. u32 reg;
  1441. u16 value;
  1442. u16 eeprom;
  1443. /*
  1444. * Read EEPROM word for configuration.
  1445. */
  1446. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1447. /*
  1448. * Identify RF chipset.
  1449. */
  1450. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1451. rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
  1452. rt2x00_set_chip_rf(rt2x00dev, value, reg);
  1453. if (!rt2x00_rf(&rt2x00dev->chip, RF2820) &&
  1454. !rt2x00_rf(&rt2x00dev->chip, RF2850) &&
  1455. !rt2x00_rf(&rt2x00dev->chip, RF2720) &&
  1456. !rt2x00_rf(&rt2x00dev->chip, RF2750) &&
  1457. !rt2x00_rf(&rt2x00dev->chip, RF3020) &&
  1458. !rt2x00_rf(&rt2x00dev->chip, RF2020) &&
  1459. !rt2x00_rf(&rt2x00dev->chip, RF3021) &&
  1460. !rt2x00_rf(&rt2x00dev->chip, RF3022)) {
  1461. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1462. return -ENODEV;
  1463. }
  1464. /*
  1465. * Identify default antenna configuration.
  1466. */
  1467. rt2x00dev->default_ant.tx =
  1468. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH);
  1469. rt2x00dev->default_ant.rx =
  1470. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH);
  1471. /*
  1472. * Read frequency offset and RF programming sequence.
  1473. */
  1474. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
  1475. rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
  1476. /*
  1477. * Read external LNA informations.
  1478. */
  1479. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1480. if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
  1481. __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
  1482. if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
  1483. __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
  1484. /*
  1485. * Detect if this device has an hardware controlled radio.
  1486. */
  1487. if (rt2x00_get_field16(eeprom, EEPROM_NIC_HW_RADIO))
  1488. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1489. /*
  1490. * Store led settings, for correct led behaviour.
  1491. */
  1492. #ifdef CONFIG_RT2X00_LIB_LEDS
  1493. rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1494. rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
  1495. rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY);
  1496. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &rt2x00dev->led_mcu_reg);
  1497. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1498. return 0;
  1499. }
  1500. /*
  1501. * RF value list for rt2860
  1502. * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750)
  1503. */
  1504. static const struct rf_channel rf_vals[] = {
  1505. { 1, 0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b },
  1506. { 2, 0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f },
  1507. { 3, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b },
  1508. { 4, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f },
  1509. { 5, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b },
  1510. { 6, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f },
  1511. { 7, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b },
  1512. { 8, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f },
  1513. { 9, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b },
  1514. { 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f },
  1515. { 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b },
  1516. { 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f },
  1517. { 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b },
  1518. { 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 },
  1519. /* 802.11 UNI / HyperLan 2 */
  1520. { 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 },
  1521. { 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 },
  1522. { 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 },
  1523. { 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 },
  1524. { 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b },
  1525. { 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b },
  1526. { 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 },
  1527. { 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 },
  1528. { 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b },
  1529. { 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 },
  1530. { 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 },
  1531. { 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 },
  1532. /* 802.11 HyperLan 2 */
  1533. { 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
  1534. { 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
  1535. { 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
  1536. { 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
  1537. { 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
  1538. { 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
  1539. { 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
  1540. { 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 },
  1541. { 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 },
  1542. { 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 },
  1543. { 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b },
  1544. { 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 },
  1545. { 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b },
  1546. { 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 },
  1547. { 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b },
  1548. { 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 },
  1549. /* 802.11 UNII */
  1550. { 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 },
  1551. { 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 },
  1552. { 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f },
  1553. { 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f },
  1554. { 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 },
  1555. { 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 },
  1556. { 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 },
  1557. /* 802.11 Japan */
  1558. { 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b },
  1559. { 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 },
  1560. { 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b },
  1561. { 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 },
  1562. { 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 },
  1563. { 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b },
  1564. { 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 },
  1565. };
  1566. static int rt2800pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1567. {
  1568. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1569. struct channel_info *info;
  1570. char *tx_power1;
  1571. char *tx_power2;
  1572. unsigned int i;
  1573. u16 eeprom;
  1574. /*
  1575. * Initialize all hw fields.
  1576. */
  1577. rt2x00dev->hw->flags =
  1578. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1579. IEEE80211_HW_SIGNAL_DBM |
  1580. IEEE80211_HW_SUPPORTS_PS |
  1581. IEEE80211_HW_PS_NULLFUNC_STACK;
  1582. rt2x00dev->hw->extra_tx_headroom = TXWI_DESC_SIZE;
  1583. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1584. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1585. rt2x00_eeprom_addr(rt2x00dev,
  1586. EEPROM_MAC_ADDR_0));
  1587. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1588. /*
  1589. * Initialize hw_mode information.
  1590. */
  1591. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1592. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1593. if (rt2x00_rf(&rt2x00dev->chip, RF2820) ||
  1594. rt2x00_rf(&rt2x00dev->chip, RF2720) ||
  1595. rt2x00_rf(&rt2x00dev->chip, RF3020) ||
  1596. rt2x00_rf(&rt2x00dev->chip, RF3021) ||
  1597. rt2x00_rf(&rt2x00dev->chip, RF3022) ||
  1598. rt2x00_rf(&rt2x00dev->chip, RF2020) ||
  1599. rt2x00_rf(&rt2x00dev->chip, RF3052)) {
  1600. spec->num_channels = 14;
  1601. spec->channels = rf_vals;
  1602. } else if (rt2x00_rf(&rt2x00dev->chip, RF2850) ||
  1603. rt2x00_rf(&rt2x00dev->chip, RF2750)) {
  1604. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1605. spec->num_channels = ARRAY_SIZE(rf_vals);
  1606. spec->channels = rf_vals;
  1607. }
  1608. /*
  1609. * Initialize HT information.
  1610. */
  1611. spec->ht.ht_supported = true;
  1612. spec->ht.cap =
  1613. IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
  1614. IEEE80211_HT_CAP_GRN_FLD |
  1615. IEEE80211_HT_CAP_SGI_20 |
  1616. IEEE80211_HT_CAP_SGI_40 |
  1617. IEEE80211_HT_CAP_TX_STBC |
  1618. IEEE80211_HT_CAP_RX_STBC |
  1619. IEEE80211_HT_CAP_PSMP_SUPPORT;
  1620. spec->ht.ampdu_factor = 3;
  1621. spec->ht.ampdu_density = 4;
  1622. spec->ht.mcs.tx_params =
  1623. IEEE80211_HT_MCS_TX_DEFINED |
  1624. IEEE80211_HT_MCS_TX_RX_DIFF |
  1625. ((rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) - 1) <<
  1626. IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
  1627. switch (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH)) {
  1628. case 3:
  1629. spec->ht.mcs.rx_mask[2] = 0xff;
  1630. case 2:
  1631. spec->ht.mcs.rx_mask[1] = 0xff;
  1632. case 1:
  1633. spec->ht.mcs.rx_mask[0] = 0xff;
  1634. spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */
  1635. break;
  1636. }
  1637. /*
  1638. * Create channel information array
  1639. */
  1640. info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
  1641. if (!info)
  1642. return -ENOMEM;
  1643. spec->channels_info = info;
  1644. tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1);
  1645. tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2);
  1646. for (i = 0; i < 14; i++) {
  1647. info[i].tx_power1 = TXPOWER_G_FROM_DEV(tx_power1[i]);
  1648. info[i].tx_power2 = TXPOWER_G_FROM_DEV(tx_power2[i]);
  1649. }
  1650. if (spec->num_channels > 14) {
  1651. tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1);
  1652. tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2);
  1653. for (i = 14; i < spec->num_channels; i++) {
  1654. info[i].tx_power1 = TXPOWER_A_FROM_DEV(tx_power1[i]);
  1655. info[i].tx_power2 = TXPOWER_A_FROM_DEV(tx_power2[i]);
  1656. }
  1657. }
  1658. return 0;
  1659. }
  1660. static const struct rt2800_ops rt2800pci_rt2800_ops = {
  1661. .register_read = rt2x00pci_register_read,
  1662. .register_write = rt2x00pci_register_write,
  1663. .register_write_lock = rt2x00pci_register_write, /* same for PCI */
  1664. .register_multiread = rt2x00pci_register_multiread,
  1665. .register_multiwrite = rt2x00pci_register_multiwrite,
  1666. .regbusy_read = rt2x00pci_regbusy_read,
  1667. };
  1668. static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1669. {
  1670. int retval;
  1671. rt2x00_set_chip_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI);
  1672. rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops;
  1673. /*
  1674. * Allocate eeprom data.
  1675. */
  1676. retval = rt2800pci_validate_eeprom(rt2x00dev);
  1677. if (retval)
  1678. return retval;
  1679. retval = rt2800pci_init_eeprom(rt2x00dev);
  1680. if (retval)
  1681. return retval;
  1682. /*
  1683. * Initialize hw specifications.
  1684. */
  1685. retval = rt2800pci_probe_hw_mode(rt2x00dev);
  1686. if (retval)
  1687. return retval;
  1688. /*
  1689. * This device has multiple filters for control frames
  1690. * and has a separate filter for PS Poll frames.
  1691. */
  1692. __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
  1693. __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
  1694. /*
  1695. * This device requires firmware.
  1696. */
  1697. if (!rt2x00_rt(&rt2x00dev->chip, RT2880) &&
  1698. !rt2x00_rt(&rt2x00dev->chip, RT3052))
  1699. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  1700. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  1701. __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
  1702. if (!modparam_nohwcrypt)
  1703. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  1704. /*
  1705. * Set the rssi offset.
  1706. */
  1707. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1708. return 0;
  1709. }
  1710. /*
  1711. * IEEE80211 stack callback functions.
  1712. */
  1713. static void rt2800pci_get_tkip_seq(struct ieee80211_hw *hw, u8 hw_key_idx,
  1714. u32 *iv32, u16 *iv16)
  1715. {
  1716. struct rt2x00_dev *rt2x00dev = hw->priv;
  1717. struct mac_iveiv_entry iveiv_entry;
  1718. u32 offset;
  1719. offset = MAC_IVEIV_ENTRY(hw_key_idx);
  1720. rt2800_register_multiread(rt2x00dev, offset,
  1721. &iveiv_entry, sizeof(iveiv_entry));
  1722. memcpy(&iveiv_entry.iv[0], iv16, sizeof(iv16));
  1723. memcpy(&iveiv_entry.iv[4], iv32, sizeof(iv32));
  1724. }
  1725. static int rt2800pci_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
  1726. {
  1727. struct rt2x00_dev *rt2x00dev = hw->priv;
  1728. u32 reg;
  1729. bool enabled = (value < IEEE80211_MAX_RTS_THRESHOLD);
  1730. rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
  1731. rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES, value);
  1732. rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
  1733. rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
  1734. rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, enabled);
  1735. rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
  1736. rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
  1737. rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, enabled);
  1738. rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
  1739. rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
  1740. rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, enabled);
  1741. rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
  1742. rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
  1743. rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, enabled);
  1744. rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
  1745. rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
  1746. rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, enabled);
  1747. rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
  1748. rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
  1749. rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, enabled);
  1750. rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
  1751. return 0;
  1752. }
  1753. static int rt2800pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
  1754. const struct ieee80211_tx_queue_params *params)
  1755. {
  1756. struct rt2x00_dev *rt2x00dev = hw->priv;
  1757. struct data_queue *queue;
  1758. struct rt2x00_field32 field;
  1759. int retval;
  1760. u32 reg;
  1761. u32 offset;
  1762. /*
  1763. * First pass the configuration through rt2x00lib, that will
  1764. * update the queue settings and validate the input. After that
  1765. * we are free to update the registers based on the value
  1766. * in the queue parameter.
  1767. */
  1768. retval = rt2x00mac_conf_tx(hw, queue_idx, params);
  1769. if (retval)
  1770. return retval;
  1771. /*
  1772. * We only need to perform additional register initialization
  1773. * for WMM queues/
  1774. */
  1775. if (queue_idx >= 4)
  1776. return 0;
  1777. queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  1778. /* Update WMM TXOP register */
  1779. offset = WMM_TXOP0_CFG + (sizeof(u32) * (!!(queue_idx & 2)));
  1780. field.bit_offset = (queue_idx & 1) * 16;
  1781. field.bit_mask = 0xffff << field.bit_offset;
  1782. rt2800_register_read(rt2x00dev, offset, &reg);
  1783. rt2x00_set_field32(&reg, field, queue->txop);
  1784. rt2800_register_write(rt2x00dev, offset, reg);
  1785. /* Update WMM registers */
  1786. field.bit_offset = queue_idx * 4;
  1787. field.bit_mask = 0xf << field.bit_offset;
  1788. rt2800_register_read(rt2x00dev, WMM_AIFSN_CFG, &reg);
  1789. rt2x00_set_field32(&reg, field, queue->aifs);
  1790. rt2800_register_write(rt2x00dev, WMM_AIFSN_CFG, reg);
  1791. rt2800_register_read(rt2x00dev, WMM_CWMIN_CFG, &reg);
  1792. rt2x00_set_field32(&reg, field, queue->cw_min);
  1793. rt2800_register_write(rt2x00dev, WMM_CWMIN_CFG, reg);
  1794. rt2800_register_read(rt2x00dev, WMM_CWMAX_CFG, &reg);
  1795. rt2x00_set_field32(&reg, field, queue->cw_max);
  1796. rt2800_register_write(rt2x00dev, WMM_CWMAX_CFG, reg);
  1797. /* Update EDCA registers */
  1798. offset = EDCA_AC0_CFG + (sizeof(u32) * queue_idx);
  1799. rt2800_register_read(rt2x00dev, offset, &reg);
  1800. rt2x00_set_field32(&reg, EDCA_AC0_CFG_TX_OP, queue->txop);
  1801. rt2x00_set_field32(&reg, EDCA_AC0_CFG_AIFSN, queue->aifs);
  1802. rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMIN, queue->cw_min);
  1803. rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMAX, queue->cw_max);
  1804. rt2800_register_write(rt2x00dev, offset, reg);
  1805. return 0;
  1806. }
  1807. static u64 rt2800pci_get_tsf(struct ieee80211_hw *hw)
  1808. {
  1809. struct rt2x00_dev *rt2x00dev = hw->priv;
  1810. u64 tsf;
  1811. u32 reg;
  1812. rt2800_register_read(rt2x00dev, TSF_TIMER_DW1, &reg);
  1813. tsf = (u64) rt2x00_get_field32(reg, TSF_TIMER_DW1_HIGH_WORD) << 32;
  1814. rt2800_register_read(rt2x00dev, TSF_TIMER_DW0, &reg);
  1815. tsf |= rt2x00_get_field32(reg, TSF_TIMER_DW0_LOW_WORD);
  1816. return tsf;
  1817. }
  1818. static const struct ieee80211_ops rt2800pci_mac80211_ops = {
  1819. .tx = rt2x00mac_tx,
  1820. .start = rt2x00mac_start,
  1821. .stop = rt2x00mac_stop,
  1822. .add_interface = rt2x00mac_add_interface,
  1823. .remove_interface = rt2x00mac_remove_interface,
  1824. .config = rt2x00mac_config,
  1825. .configure_filter = rt2x00mac_configure_filter,
  1826. .set_key = rt2x00mac_set_key,
  1827. .get_stats = rt2x00mac_get_stats,
  1828. .get_tkip_seq = rt2800pci_get_tkip_seq,
  1829. .set_rts_threshold = rt2800pci_set_rts_threshold,
  1830. .bss_info_changed = rt2x00mac_bss_info_changed,
  1831. .conf_tx = rt2800pci_conf_tx,
  1832. .get_tx_stats = rt2x00mac_get_tx_stats,
  1833. .get_tsf = rt2800pci_get_tsf,
  1834. .rfkill_poll = rt2x00mac_rfkill_poll,
  1835. };
  1836. static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
  1837. .irq_handler = rt2800pci_interrupt,
  1838. .probe_hw = rt2800pci_probe_hw,
  1839. .get_firmware_name = rt2800pci_get_firmware_name,
  1840. .check_firmware = rt2800pci_check_firmware,
  1841. .load_firmware = rt2800pci_load_firmware,
  1842. .initialize = rt2x00pci_initialize,
  1843. .uninitialize = rt2x00pci_uninitialize,
  1844. .get_entry_state = rt2800pci_get_entry_state,
  1845. .clear_entry = rt2800pci_clear_entry,
  1846. .set_device_state = rt2800pci_set_device_state,
  1847. .rfkill_poll = rt2800_rfkill_poll,
  1848. .link_stats = rt2800_link_stats,
  1849. .reset_tuner = rt2800_reset_tuner,
  1850. .link_tuner = rt2800_link_tuner,
  1851. .write_tx_desc = rt2800pci_write_tx_desc,
  1852. .write_tx_data = rt2x00pci_write_tx_data,
  1853. .write_beacon = rt2800pci_write_beacon,
  1854. .kick_tx_queue = rt2800pci_kick_tx_queue,
  1855. .kill_tx_queue = rt2800pci_kill_tx_queue,
  1856. .fill_rxdone = rt2800pci_fill_rxdone,
  1857. .config_shared_key = rt2800_config_shared_key,
  1858. .config_pairwise_key = rt2800_config_pairwise_key,
  1859. .config_filter = rt2800_config_filter,
  1860. .config_intf = rt2800_config_intf,
  1861. .config_erp = rt2800_config_erp,
  1862. .config_ant = rt2800_config_ant,
  1863. .config = rt2800_config,
  1864. };
  1865. static const struct data_queue_desc rt2800pci_queue_rx = {
  1866. .entry_num = RX_ENTRIES,
  1867. .data_size = AGGREGATION_SIZE,
  1868. .desc_size = RXD_DESC_SIZE,
  1869. .priv_size = sizeof(struct queue_entry_priv_pci),
  1870. };
  1871. static const struct data_queue_desc rt2800pci_queue_tx = {
  1872. .entry_num = TX_ENTRIES,
  1873. .data_size = AGGREGATION_SIZE,
  1874. .desc_size = TXD_DESC_SIZE,
  1875. .priv_size = sizeof(struct queue_entry_priv_pci),
  1876. };
  1877. static const struct data_queue_desc rt2800pci_queue_bcn = {
  1878. .entry_num = 8 * BEACON_ENTRIES,
  1879. .data_size = 0, /* No DMA required for beacons */
  1880. .desc_size = TXWI_DESC_SIZE,
  1881. .priv_size = sizeof(struct queue_entry_priv_pci),
  1882. };
  1883. static const struct rt2x00_ops rt2800pci_ops = {
  1884. .name = KBUILD_MODNAME,
  1885. .max_sta_intf = 1,
  1886. .max_ap_intf = 8,
  1887. .eeprom_size = EEPROM_SIZE,
  1888. .rf_size = RF_SIZE,
  1889. .tx_queues = NUM_TX_QUEUES,
  1890. .rx = &rt2800pci_queue_rx,
  1891. .tx = &rt2800pci_queue_tx,
  1892. .bcn = &rt2800pci_queue_bcn,
  1893. .lib = &rt2800pci_rt2x00_ops,
  1894. .hw = &rt2800pci_mac80211_ops,
  1895. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1896. .debugfs = &rt2800_rt2x00debug,
  1897. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1898. };
  1899. /*
  1900. * RT2800pci module information.
  1901. */
  1902. static struct pci_device_id rt2800pci_device_table[] = {
  1903. { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1904. { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1905. { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1906. { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1907. { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1908. { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1909. { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1910. { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1911. { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1912. { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1913. { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1914. { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1915. { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1916. { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1917. { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1918. { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1919. { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1920. { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1921. { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1922. { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1923. { 0, }
  1924. };
  1925. MODULE_AUTHOR(DRV_PROJECT);
  1926. MODULE_VERSION(DRV_VERSION);
  1927. MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
  1928. MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
  1929. #ifdef CONFIG_RT2800PCI_PCI
  1930. MODULE_FIRMWARE(FIRMWARE_RT2860);
  1931. MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
  1932. #endif /* CONFIG_RT2800PCI_PCI */
  1933. MODULE_LICENSE("GPL");
  1934. #ifdef CONFIG_RT2800PCI_WISOC
  1935. #if defined(CONFIG_RALINK_RT288X)
  1936. __rt2x00soc_probe(RT2880, &rt2800pci_ops);
  1937. #elif defined(CONFIG_RALINK_RT305X)
  1938. __rt2x00soc_probe(RT3052, &rt2800pci_ops);
  1939. #endif
  1940. static struct platform_driver rt2800soc_driver = {
  1941. .driver = {
  1942. .name = "rt2800_wmac",
  1943. .owner = THIS_MODULE,
  1944. .mod_name = KBUILD_MODNAME,
  1945. },
  1946. .probe = __rt2x00soc_probe,
  1947. .remove = __devexit_p(rt2x00soc_remove),
  1948. .suspend = rt2x00soc_suspend,
  1949. .resume = rt2x00soc_resume,
  1950. };
  1951. #endif /* CONFIG_RT2800PCI_WISOC */
  1952. #ifdef CONFIG_RT2800PCI_PCI
  1953. static struct pci_driver rt2800pci_driver = {
  1954. .name = KBUILD_MODNAME,
  1955. .id_table = rt2800pci_device_table,
  1956. .probe = rt2x00pci_probe,
  1957. .remove = __devexit_p(rt2x00pci_remove),
  1958. .suspend = rt2x00pci_suspend,
  1959. .resume = rt2x00pci_resume,
  1960. };
  1961. #endif /* CONFIG_RT2800PCI_PCI */
  1962. static int __init rt2800pci_init(void)
  1963. {
  1964. int ret = 0;
  1965. #ifdef CONFIG_RT2800PCI_WISOC
  1966. ret = platform_driver_register(&rt2800soc_driver);
  1967. if (ret)
  1968. return ret;
  1969. #endif
  1970. #ifdef CONFIG_RT2800PCI_PCI
  1971. ret = pci_register_driver(&rt2800pci_driver);
  1972. if (ret) {
  1973. #ifdef CONFIG_RT2800PCI_WISOC
  1974. platform_driver_unregister(&rt2800soc_driver);
  1975. #endif
  1976. return ret;
  1977. }
  1978. #endif
  1979. return ret;
  1980. }
  1981. static void __exit rt2800pci_exit(void)
  1982. {
  1983. #ifdef CONFIG_RT2800PCI_PCI
  1984. pci_unregister_driver(&rt2800pci_driver);
  1985. #endif
  1986. #ifdef CONFIG_RT2800PCI_WISOC
  1987. platform_driver_unregister(&rt2800soc_driver);
  1988. #endif
  1989. }
  1990. module_init(rt2800pci_init);
  1991. module_exit(rt2800pci_exit);