setup.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568
  1. /*
  2. * arch/sh/kernel/setup.c
  3. *
  4. * This file handles the architecture-dependent parts of initialization
  5. *
  6. * Copyright (C) 1999 Niibe Yutaka
  7. * Copyright (C) 2002 - 2007 Paul Mundt
  8. */
  9. #include <linux/screen_info.h>
  10. #include <linux/ioport.h>
  11. #include <linux/init.h>
  12. #include <linux/initrd.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/console.h>
  15. #include <linux/seq_file.h>
  16. #include <linux/root_dev.h>
  17. #include <linux/utsname.h>
  18. #include <linux/nodemask.h>
  19. #include <linux/cpu.h>
  20. #include <linux/pfn.h>
  21. #include <linux/fs.h>
  22. #include <linux/mm.h>
  23. #include <linux/kexec.h>
  24. #include <linux/module.h>
  25. #include <linux/smp.h>
  26. #include <linux/err.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/crash_dump.h>
  29. #include <linux/mmzone.h>
  30. #include <linux/clk.h>
  31. #include <linux/delay.h>
  32. #include <asm/uaccess.h>
  33. #include <asm/io.h>
  34. #include <asm/page.h>
  35. #include <asm/elf.h>
  36. #include <asm/sections.h>
  37. #include <asm/irq.h>
  38. #include <asm/setup.h>
  39. #include <asm/clock.h>
  40. #include <asm/mmu_context.h>
  41. /*
  42. * Initialize loops_per_jiffy as 10000000 (1000MIPS).
  43. * This value will be used at the very early stage of serial setup.
  44. * The bigger value means no problem.
  45. */
  46. struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
  47. [0] = {
  48. .type = CPU_SH_NONE,
  49. .loops_per_jiffy = 10000000,
  50. },
  51. };
  52. EXPORT_SYMBOL(cpu_data);
  53. /*
  54. * The machine vector. First entry in .machvec.init, or clobbered by
  55. * sh_mv= on the command line, prior to .machvec.init teardown.
  56. */
  57. struct sh_machine_vector sh_mv = { .mv_name = "generic", };
  58. EXPORT_SYMBOL(sh_mv);
  59. #ifdef CONFIG_VT
  60. struct screen_info screen_info;
  61. #endif
  62. extern int root_mountflags;
  63. #define RAMDISK_IMAGE_START_MASK 0x07FF
  64. #define RAMDISK_PROMPT_FLAG 0x8000
  65. #define RAMDISK_LOAD_FLAG 0x4000
  66. static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
  67. static struct resource code_resource = {
  68. .name = "Kernel code",
  69. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  70. };
  71. static struct resource data_resource = {
  72. .name = "Kernel data",
  73. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  74. };
  75. static struct resource bss_resource = {
  76. .name = "Kernel bss",
  77. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  78. };
  79. unsigned long memory_start;
  80. EXPORT_SYMBOL(memory_start);
  81. unsigned long memory_end = 0;
  82. EXPORT_SYMBOL(memory_end);
  83. static struct resource mem_resources[MAX_NUMNODES];
  84. int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
  85. static int __init early_parse_mem(char *p)
  86. {
  87. unsigned long size;
  88. memory_start = (unsigned long)__va(__MEMORY_START);
  89. size = memparse(p, &p);
  90. if (size > __MEMORY_SIZE) {
  91. static char msg[] __initdata = KERN_ERR
  92. "Using mem= to increase the size of kernel memory "
  93. "is not allowed.\n"
  94. " Recompile the kernel with the correct value for "
  95. "CONFIG_MEMORY_SIZE.\n";
  96. printk(msg);
  97. return 0;
  98. }
  99. memory_end = memory_start + size;
  100. return 0;
  101. }
  102. early_param("mem", early_parse_mem);
  103. /*
  104. * Register fully available low RAM pages with the bootmem allocator.
  105. */
  106. static void __init register_bootmem_low_pages(void)
  107. {
  108. unsigned long curr_pfn, last_pfn, pages;
  109. /*
  110. * We are rounding up the start address of usable memory:
  111. */
  112. curr_pfn = PFN_UP(__MEMORY_START);
  113. /*
  114. * ... and at the end of the usable range downwards:
  115. */
  116. last_pfn = PFN_DOWN(__pa(memory_end));
  117. if (last_pfn > max_low_pfn)
  118. last_pfn = max_low_pfn;
  119. pages = last_pfn - curr_pfn;
  120. free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
  121. }
  122. #ifdef CONFIG_KEXEC
  123. static void __init reserve_crashkernel(void)
  124. {
  125. unsigned long long free_mem;
  126. unsigned long long crash_size, crash_base;
  127. void *vp;
  128. int ret;
  129. free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
  130. ret = parse_crashkernel(boot_command_line, free_mem,
  131. &crash_size, &crash_base);
  132. if (ret == 0 && crash_size) {
  133. if (crash_base <= 0) {
  134. vp = alloc_bootmem_nopanic(crash_size);
  135. if (!vp) {
  136. printk(KERN_INFO "crashkernel allocation "
  137. "failed\n");
  138. return;
  139. }
  140. crash_base = __pa(vp);
  141. } else if (reserve_bootmem(crash_base, crash_size,
  142. BOOTMEM_EXCLUSIVE) < 0) {
  143. printk(KERN_INFO "crashkernel reservation failed - "
  144. "memory is in use\n");
  145. return;
  146. }
  147. printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
  148. "for crashkernel (System RAM: %ldMB)\n",
  149. (unsigned long)(crash_size >> 20),
  150. (unsigned long)(crash_base >> 20),
  151. (unsigned long)(free_mem >> 20));
  152. crashk_res.start = crash_base;
  153. crashk_res.end = crash_base + crash_size - 1;
  154. insert_resource(&iomem_resource, &crashk_res);
  155. }
  156. }
  157. #else
  158. static inline void __init reserve_crashkernel(void)
  159. {}
  160. #endif
  161. #ifndef CONFIG_GENERIC_CALIBRATE_DELAY
  162. void __cpuinit calibrate_delay(void)
  163. {
  164. struct clk *clk = clk_get(NULL, "cpu_clk");
  165. if (IS_ERR(clk))
  166. panic("Need a sane CPU clock definition!");
  167. loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
  168. printk(KERN_INFO "Calibrating delay loop (skipped)... "
  169. "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
  170. loops_per_jiffy/(500000/HZ),
  171. (loops_per_jiffy/(5000/HZ)) % 100,
  172. loops_per_jiffy);
  173. }
  174. #endif
  175. void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
  176. unsigned long end_pfn)
  177. {
  178. struct resource *res = &mem_resources[nid];
  179. WARN_ON(res->name); /* max one active range per node for now */
  180. res->name = "System RAM";
  181. res->start = start_pfn << PAGE_SHIFT;
  182. res->end = (end_pfn << PAGE_SHIFT) - 1;
  183. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  184. if (request_resource(&iomem_resource, res)) {
  185. pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
  186. start_pfn, end_pfn);
  187. return;
  188. }
  189. /*
  190. * We don't know which RAM region contains kernel data,
  191. * so we try it repeatedly and let the resource manager
  192. * test it.
  193. */
  194. request_resource(res, &code_resource);
  195. request_resource(res, &data_resource);
  196. request_resource(res, &bss_resource);
  197. add_active_range(nid, start_pfn, end_pfn);
  198. }
  199. void __init setup_bootmem_allocator(unsigned long free_pfn)
  200. {
  201. unsigned long bootmap_size;
  202. /*
  203. * Find a proper area for the bootmem bitmap. After this
  204. * bootstrap step all allocations (until the page allocator
  205. * is intact) must be done via bootmem_alloc().
  206. */
  207. bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
  208. min_low_pfn, max_low_pfn);
  209. __add_active_range(0, min_low_pfn, max_low_pfn);
  210. register_bootmem_low_pages();
  211. node_set_online(0);
  212. /*
  213. * Reserve the kernel text and
  214. * Reserve the bootmem bitmap. We do this in two steps (first step
  215. * was init_bootmem()), because this catches the (definitely buggy)
  216. * case of us accidentally initializing the bootmem allocator with
  217. * an invalid RAM area.
  218. */
  219. reserve_bootmem(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET,
  220. (PFN_PHYS(free_pfn) + bootmap_size + PAGE_SIZE - 1) -
  221. (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET),
  222. BOOTMEM_DEFAULT);
  223. /*
  224. * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET.
  225. */
  226. if (CONFIG_ZERO_PAGE_OFFSET != 0)
  227. reserve_bootmem(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET,
  228. BOOTMEM_DEFAULT);
  229. sparse_memory_present_with_active_regions(0);
  230. #ifdef CONFIG_BLK_DEV_INITRD
  231. ROOT_DEV = Root_RAM0;
  232. if (LOADER_TYPE && INITRD_START) {
  233. unsigned long initrd_start_phys = INITRD_START + __MEMORY_START;
  234. if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) {
  235. reserve_bootmem(initrd_start_phys, INITRD_SIZE,
  236. BOOTMEM_DEFAULT);
  237. initrd_start = (unsigned long)__va(initrd_start_phys);
  238. initrd_end = initrd_start + INITRD_SIZE;
  239. } else {
  240. printk("initrd extends beyond end of memory "
  241. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  242. initrd_start_phys + INITRD_SIZE,
  243. (unsigned long)PFN_PHYS(max_low_pfn));
  244. initrd_start = 0;
  245. }
  246. }
  247. #endif
  248. reserve_crashkernel();
  249. }
  250. #ifndef CONFIG_NEED_MULTIPLE_NODES
  251. static void __init setup_memory(void)
  252. {
  253. unsigned long start_pfn;
  254. /*
  255. * Partially used pages are not usable - thus
  256. * we are rounding upwards:
  257. */
  258. start_pfn = PFN_UP(__pa(_end));
  259. setup_bootmem_allocator(start_pfn);
  260. }
  261. #else
  262. extern void __init setup_memory(void);
  263. #endif
  264. /*
  265. * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
  266. * is_kdump_kernel() to determine if we are booting after a panic. Hence
  267. * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
  268. */
  269. #ifdef CONFIG_CRASH_DUMP
  270. /* elfcorehdr= specifies the location of elf core header
  271. * stored by the crashed kernel.
  272. */
  273. static int __init parse_elfcorehdr(char *arg)
  274. {
  275. if (!arg)
  276. return -EINVAL;
  277. elfcorehdr_addr = memparse(arg, &arg);
  278. return 0;
  279. }
  280. early_param("elfcorehdr", parse_elfcorehdr);
  281. #endif
  282. void __init setup_arch(char **cmdline_p)
  283. {
  284. enable_mmu();
  285. ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
  286. printk(KERN_NOTICE "Boot params:\n"
  287. "... MOUNT_ROOT_RDONLY - %08lx\n"
  288. "... RAMDISK_FLAGS - %08lx\n"
  289. "... ORIG_ROOT_DEV - %08lx\n"
  290. "... LOADER_TYPE - %08lx\n"
  291. "... INITRD_START - %08lx\n"
  292. "... INITRD_SIZE - %08lx\n",
  293. MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
  294. ORIG_ROOT_DEV, LOADER_TYPE,
  295. INITRD_START, INITRD_SIZE);
  296. #ifdef CONFIG_BLK_DEV_RAM
  297. rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
  298. rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
  299. rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
  300. #endif
  301. if (!MOUNT_ROOT_RDONLY)
  302. root_mountflags &= ~MS_RDONLY;
  303. init_mm.start_code = (unsigned long) _text;
  304. init_mm.end_code = (unsigned long) _etext;
  305. init_mm.end_data = (unsigned long) _edata;
  306. init_mm.brk = (unsigned long) _end;
  307. code_resource.start = virt_to_phys(_text);
  308. code_resource.end = virt_to_phys(_etext)-1;
  309. data_resource.start = virt_to_phys(_etext);
  310. data_resource.end = virt_to_phys(_edata)-1;
  311. bss_resource.start = virt_to_phys(__bss_start);
  312. bss_resource.end = virt_to_phys(_ebss)-1;
  313. memory_start = (unsigned long)__va(__MEMORY_START);
  314. if (!memory_end)
  315. memory_end = memory_start + __MEMORY_SIZE;
  316. #ifdef CONFIG_CMDLINE_BOOL
  317. strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
  318. #else
  319. strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
  320. #endif
  321. /* Save unparsed command line copy for /proc/cmdline */
  322. memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
  323. *cmdline_p = command_line;
  324. parse_early_param();
  325. sh_mv_setup();
  326. /*
  327. * Find the highest page frame number we have available
  328. */
  329. max_pfn = PFN_DOWN(__pa(memory_end));
  330. /*
  331. * Determine low and high memory ranges:
  332. */
  333. max_low_pfn = max_pfn;
  334. min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
  335. nodes_clear(node_online_map);
  336. /* Setup bootmem with available RAM */
  337. setup_memory();
  338. sparse_init();
  339. #ifdef CONFIG_DUMMY_CONSOLE
  340. conswitchp = &dummy_con;
  341. #endif
  342. /* Perform the machine specific initialisation */
  343. if (likely(sh_mv.mv_setup))
  344. sh_mv.mv_setup(cmdline_p);
  345. paging_init();
  346. #ifdef CONFIG_SMP
  347. plat_smp_setup();
  348. #endif
  349. }
  350. static const char *cpu_name[] = {
  351. [CPU_SH7201] = "SH7201",
  352. [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263",
  353. [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
  354. [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
  355. [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
  356. [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
  357. [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720",
  358. [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729",
  359. [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S",
  360. [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751",
  361. [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760",
  362. [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
  363. [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770",
  364. [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781",
  365. [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785",
  366. [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3",
  367. [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103",
  368. [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723",
  369. [CPU_SH7366] = "SH7366", [CPU_SH_NONE] = "Unknown"
  370. };
  371. const char *get_cpu_subtype(struct sh_cpuinfo *c)
  372. {
  373. return cpu_name[c->type];
  374. }
  375. EXPORT_SYMBOL(get_cpu_subtype);
  376. #ifdef CONFIG_PROC_FS
  377. /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
  378. static const char *cpu_flags[] = {
  379. "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
  380. "ptea", "llsc", "l2", "op32", NULL
  381. };
  382. static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
  383. {
  384. unsigned long i;
  385. seq_printf(m, "cpu flags\t:");
  386. if (!c->flags) {
  387. seq_printf(m, " %s\n", cpu_flags[0]);
  388. return;
  389. }
  390. for (i = 0; cpu_flags[i]; i++)
  391. if ((c->flags & (1 << i)))
  392. seq_printf(m, " %s", cpu_flags[i+1]);
  393. seq_printf(m, "\n");
  394. }
  395. static void show_cacheinfo(struct seq_file *m, const char *type,
  396. struct cache_info info)
  397. {
  398. unsigned int cache_size;
  399. cache_size = info.ways * info.sets * info.linesz;
  400. seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
  401. type, cache_size >> 10, info.ways);
  402. }
  403. /*
  404. * Get CPU information for use by the procfs.
  405. */
  406. static int show_cpuinfo(struct seq_file *m, void *v)
  407. {
  408. struct sh_cpuinfo *c = v;
  409. unsigned int cpu = c - cpu_data;
  410. if (!cpu_online(cpu))
  411. return 0;
  412. if (cpu == 0)
  413. seq_printf(m, "machine\t\t: %s\n", get_system_type());
  414. seq_printf(m, "processor\t: %d\n", cpu);
  415. seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
  416. seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
  417. if (c->cut_major == -1)
  418. seq_printf(m, "cut\t\t: unknown\n");
  419. else if (c->cut_minor == -1)
  420. seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
  421. else
  422. seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
  423. show_cpuflags(m, c);
  424. seq_printf(m, "cache type\t: ");
  425. /*
  426. * Check for what type of cache we have, we support both the
  427. * unified cache on the SH-2 and SH-3, as well as the harvard
  428. * style cache on the SH-4.
  429. */
  430. if (c->icache.flags & SH_CACHE_COMBINED) {
  431. seq_printf(m, "unified\n");
  432. show_cacheinfo(m, "cache", c->icache);
  433. } else {
  434. seq_printf(m, "split (harvard)\n");
  435. show_cacheinfo(m, "icache", c->icache);
  436. show_cacheinfo(m, "dcache", c->dcache);
  437. }
  438. /* Optional secondary cache */
  439. if (c->flags & CPU_HAS_L2_CACHE)
  440. show_cacheinfo(m, "scache", c->scache);
  441. seq_printf(m, "bogomips\t: %lu.%02lu\n",
  442. c->loops_per_jiffy/(500000/HZ),
  443. (c->loops_per_jiffy/(5000/HZ)) % 100);
  444. return 0;
  445. }
  446. static void *c_start(struct seq_file *m, loff_t *pos)
  447. {
  448. return *pos < NR_CPUS ? cpu_data + *pos : NULL;
  449. }
  450. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  451. {
  452. ++*pos;
  453. return c_start(m, pos);
  454. }
  455. static void c_stop(struct seq_file *m, void *v)
  456. {
  457. }
  458. const struct seq_operations cpuinfo_op = {
  459. .start = c_start,
  460. .next = c_next,
  461. .stop = c_stop,
  462. .show = show_cpuinfo,
  463. };
  464. #endif /* CONFIG_PROC_FS */
  465. struct dentry *sh_debugfs_root;
  466. static int __init sh_debugfs_init(void)
  467. {
  468. sh_debugfs_root = debugfs_create_dir("sh", NULL);
  469. if (!sh_debugfs_root)
  470. return -ENOMEM;
  471. if (IS_ERR(sh_debugfs_root))
  472. return PTR_ERR(sh_debugfs_root);
  473. return 0;
  474. }
  475. arch_initcall(sh_debugfs_init);