super.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/blkdev.h>
  19. #include <linux/module.h>
  20. #include <linux/buffer_head.h>
  21. #include <linux/fs.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/highmem.h>
  24. #include <linux/time.h>
  25. #include <linux/init.h>
  26. #include <linux/seq_file.h>
  27. #include <linux/string.h>
  28. #include <linux/backing-dev.h>
  29. #include <linux/mount.h>
  30. #include <linux/mpage.h>
  31. #include <linux/swap.h>
  32. #include <linux/writeback.h>
  33. #include <linux/statfs.h>
  34. #include <linux/compat.h>
  35. #include <linux/parser.h>
  36. #include <linux/ctype.h>
  37. #include <linux/namei.h>
  38. #include <linux/miscdevice.h>
  39. #include <linux/magic.h>
  40. #include <linux/slab.h>
  41. #include <linux/cleancache.h>
  42. #include <linux/ratelimit.h>
  43. #include <linux/btrfs.h>
  44. #include "compat.h"
  45. #include "delayed-inode.h"
  46. #include "ctree.h"
  47. #include "disk-io.h"
  48. #include "transaction.h"
  49. #include "btrfs_inode.h"
  50. #include "print-tree.h"
  51. #include "xattr.h"
  52. #include "volumes.h"
  53. #include "version.h"
  54. #include "export.h"
  55. #include "compression.h"
  56. #include "rcu-string.h"
  57. #include "dev-replace.h"
  58. #include "free-space-cache.h"
  59. #define CREATE_TRACE_POINTS
  60. #include <trace/events/btrfs.h>
  61. static const struct super_operations btrfs_super_ops;
  62. static struct file_system_type btrfs_fs_type;
  63. static const char *btrfs_decode_error(int errno)
  64. {
  65. char *errstr = "unknown";
  66. switch (errno) {
  67. case -EIO:
  68. errstr = "IO failure";
  69. break;
  70. case -ENOMEM:
  71. errstr = "Out of memory";
  72. break;
  73. case -EROFS:
  74. errstr = "Readonly filesystem";
  75. break;
  76. case -EEXIST:
  77. errstr = "Object already exists";
  78. break;
  79. case -ENOSPC:
  80. errstr = "No space left";
  81. break;
  82. case -ENOENT:
  83. errstr = "No such entry";
  84. break;
  85. }
  86. return errstr;
  87. }
  88. static void save_error_info(struct btrfs_fs_info *fs_info)
  89. {
  90. /*
  91. * today we only save the error info into ram. Long term we'll
  92. * also send it down to the disk
  93. */
  94. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  95. }
  96. /* btrfs handle error by forcing the filesystem readonly */
  97. static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
  98. {
  99. struct super_block *sb = fs_info->sb;
  100. if (sb->s_flags & MS_RDONLY)
  101. return;
  102. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  103. sb->s_flags |= MS_RDONLY;
  104. btrfs_info(fs_info, "forced readonly");
  105. /*
  106. * Note that a running device replace operation is not
  107. * canceled here although there is no way to update
  108. * the progress. It would add the risk of a deadlock,
  109. * therefore the canceling is ommited. The only penalty
  110. * is that some I/O remains active until the procedure
  111. * completes. The next time when the filesystem is
  112. * mounted writeable again, the device replace
  113. * operation continues.
  114. */
  115. }
  116. }
  117. #ifdef CONFIG_PRINTK
  118. /*
  119. * __btrfs_std_error decodes expected errors from the caller and
  120. * invokes the approciate error response.
  121. */
  122. void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
  123. unsigned int line, int errno, const char *fmt, ...)
  124. {
  125. struct super_block *sb = fs_info->sb;
  126. const char *errstr;
  127. /*
  128. * Special case: if the error is EROFS, and we're already
  129. * under MS_RDONLY, then it is safe here.
  130. */
  131. if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
  132. return;
  133. errstr = btrfs_decode_error(errno);
  134. if (fmt) {
  135. struct va_format vaf;
  136. va_list args;
  137. va_start(args, fmt);
  138. vaf.fmt = fmt;
  139. vaf.va = &args;
  140. printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s (%pV)\n",
  141. sb->s_id, function, line, errno, errstr, &vaf);
  142. va_end(args);
  143. } else {
  144. printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s\n",
  145. sb->s_id, function, line, errno, errstr);
  146. }
  147. /* Don't go through full error handling during mount */
  148. save_error_info(fs_info);
  149. if (sb->s_flags & MS_BORN)
  150. btrfs_handle_error(fs_info);
  151. }
  152. static const char * const logtypes[] = {
  153. "emergency",
  154. "alert",
  155. "critical",
  156. "error",
  157. "warning",
  158. "notice",
  159. "info",
  160. "debug",
  161. };
  162. void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
  163. {
  164. struct super_block *sb = fs_info->sb;
  165. char lvl[4];
  166. struct va_format vaf;
  167. va_list args;
  168. const char *type = logtypes[4];
  169. int kern_level;
  170. va_start(args, fmt);
  171. kern_level = printk_get_level(fmt);
  172. if (kern_level) {
  173. size_t size = printk_skip_level(fmt) - fmt;
  174. memcpy(lvl, fmt, size);
  175. lvl[size] = '\0';
  176. fmt += size;
  177. type = logtypes[kern_level - '0'];
  178. } else
  179. *lvl = '\0';
  180. vaf.fmt = fmt;
  181. vaf.va = &args;
  182. printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
  183. va_end(args);
  184. }
  185. #else
  186. void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
  187. unsigned int line, int errno, const char *fmt, ...)
  188. {
  189. struct super_block *sb = fs_info->sb;
  190. /*
  191. * Special case: if the error is EROFS, and we're already
  192. * under MS_RDONLY, then it is safe here.
  193. */
  194. if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
  195. return;
  196. /* Don't go through full error handling during mount */
  197. if (sb->s_flags & MS_BORN) {
  198. save_error_info(fs_info);
  199. btrfs_handle_error(fs_info);
  200. }
  201. }
  202. #endif
  203. /*
  204. * We only mark the transaction aborted and then set the file system read-only.
  205. * This will prevent new transactions from starting or trying to join this
  206. * one.
  207. *
  208. * This means that error recovery at the call site is limited to freeing
  209. * any local memory allocations and passing the error code up without
  210. * further cleanup. The transaction should complete as it normally would
  211. * in the call path but will return -EIO.
  212. *
  213. * We'll complete the cleanup in btrfs_end_transaction and
  214. * btrfs_commit_transaction.
  215. */
  216. void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
  217. struct btrfs_root *root, const char *function,
  218. unsigned int line, int errno)
  219. {
  220. /*
  221. * Report first abort since mount
  222. */
  223. if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
  224. &root->fs_info->fs_state)) {
  225. WARN(1, KERN_DEBUG "btrfs: Transaction aborted (error %d)\n",
  226. errno);
  227. }
  228. trans->aborted = errno;
  229. /* Nothing used. The other threads that have joined this
  230. * transaction may be able to continue. */
  231. if (!trans->blocks_used) {
  232. const char *errstr;
  233. errstr = btrfs_decode_error(errno);
  234. btrfs_warn(root->fs_info,
  235. "%s:%d: Aborting unused transaction(%s).",
  236. function, line, errstr);
  237. return;
  238. }
  239. ACCESS_ONCE(trans->transaction->aborted) = errno;
  240. __btrfs_std_error(root->fs_info, function, line, errno, NULL);
  241. }
  242. /*
  243. * __btrfs_panic decodes unexpected, fatal errors from the caller,
  244. * issues an alert, and either panics or BUGs, depending on mount options.
  245. */
  246. void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
  247. unsigned int line, int errno, const char *fmt, ...)
  248. {
  249. char *s_id = "<unknown>";
  250. const char *errstr;
  251. struct va_format vaf = { .fmt = fmt };
  252. va_list args;
  253. if (fs_info)
  254. s_id = fs_info->sb->s_id;
  255. va_start(args, fmt);
  256. vaf.va = &args;
  257. errstr = btrfs_decode_error(errno);
  258. if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
  259. panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
  260. s_id, function, line, &vaf, errno, errstr);
  261. printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
  262. s_id, function, line, &vaf, errno, errstr);
  263. va_end(args);
  264. /* Caller calls BUG() */
  265. }
  266. static void btrfs_put_super(struct super_block *sb)
  267. {
  268. (void)close_ctree(btrfs_sb(sb)->tree_root);
  269. /* FIXME: need to fix VFS to return error? */
  270. /* AV: return it _where_? ->put_super() can be triggered by any number
  271. * of async events, up to and including delivery of SIGKILL to the
  272. * last process that kept it busy. Or segfault in the aforementioned
  273. * process... Whom would you report that to?
  274. */
  275. }
  276. enum {
  277. Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
  278. Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
  279. Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
  280. Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
  281. Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
  282. Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
  283. Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
  284. Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
  285. Opt_check_integrity, Opt_check_integrity_including_extent_data,
  286. Opt_check_integrity_print_mask, Opt_fatal_errors,
  287. Opt_err,
  288. };
  289. static match_table_t tokens = {
  290. {Opt_degraded, "degraded"},
  291. {Opt_subvol, "subvol=%s"},
  292. {Opt_subvolid, "subvolid=%d"},
  293. {Opt_device, "device=%s"},
  294. {Opt_nodatasum, "nodatasum"},
  295. {Opt_nodatacow, "nodatacow"},
  296. {Opt_nobarrier, "nobarrier"},
  297. {Opt_max_inline, "max_inline=%s"},
  298. {Opt_alloc_start, "alloc_start=%s"},
  299. {Opt_thread_pool, "thread_pool=%d"},
  300. {Opt_compress, "compress"},
  301. {Opt_compress_type, "compress=%s"},
  302. {Opt_compress_force, "compress-force"},
  303. {Opt_compress_force_type, "compress-force=%s"},
  304. {Opt_ssd, "ssd"},
  305. {Opt_ssd_spread, "ssd_spread"},
  306. {Opt_nossd, "nossd"},
  307. {Opt_noacl, "noacl"},
  308. {Opt_notreelog, "notreelog"},
  309. {Opt_flushoncommit, "flushoncommit"},
  310. {Opt_ratio, "metadata_ratio=%d"},
  311. {Opt_discard, "discard"},
  312. {Opt_space_cache, "space_cache"},
  313. {Opt_clear_cache, "clear_cache"},
  314. {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
  315. {Opt_enospc_debug, "enospc_debug"},
  316. {Opt_subvolrootid, "subvolrootid=%d"},
  317. {Opt_defrag, "autodefrag"},
  318. {Opt_inode_cache, "inode_cache"},
  319. {Opt_no_space_cache, "nospace_cache"},
  320. {Opt_recovery, "recovery"},
  321. {Opt_skip_balance, "skip_balance"},
  322. {Opt_check_integrity, "check_int"},
  323. {Opt_check_integrity_including_extent_data, "check_int_data"},
  324. {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
  325. {Opt_fatal_errors, "fatal_errors=%s"},
  326. {Opt_err, NULL},
  327. };
  328. /*
  329. * Regular mount options parser. Everything that is needed only when
  330. * reading in a new superblock is parsed here.
  331. * XXX JDM: This needs to be cleaned up for remount.
  332. */
  333. int btrfs_parse_options(struct btrfs_root *root, char *options)
  334. {
  335. struct btrfs_fs_info *info = root->fs_info;
  336. substring_t args[MAX_OPT_ARGS];
  337. char *p, *num, *orig = NULL;
  338. u64 cache_gen;
  339. int intarg;
  340. int ret = 0;
  341. char *compress_type;
  342. bool compress_force = false;
  343. cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
  344. if (cache_gen)
  345. btrfs_set_opt(info->mount_opt, SPACE_CACHE);
  346. if (!options)
  347. goto out;
  348. /*
  349. * strsep changes the string, duplicate it because parse_options
  350. * gets called twice
  351. */
  352. options = kstrdup(options, GFP_NOFS);
  353. if (!options)
  354. return -ENOMEM;
  355. orig = options;
  356. while ((p = strsep(&options, ",")) != NULL) {
  357. int token;
  358. if (!*p)
  359. continue;
  360. token = match_token(p, tokens, args);
  361. switch (token) {
  362. case Opt_degraded:
  363. printk(KERN_INFO "btrfs: allowing degraded mounts\n");
  364. btrfs_set_opt(info->mount_opt, DEGRADED);
  365. break;
  366. case Opt_subvol:
  367. case Opt_subvolid:
  368. case Opt_subvolrootid:
  369. case Opt_device:
  370. /*
  371. * These are parsed by btrfs_parse_early_options
  372. * and can be happily ignored here.
  373. */
  374. break;
  375. case Opt_nodatasum:
  376. printk(KERN_INFO "btrfs: setting nodatasum\n");
  377. btrfs_set_opt(info->mount_opt, NODATASUM);
  378. break;
  379. case Opt_nodatacow:
  380. if (!btrfs_test_opt(root, COMPRESS) ||
  381. !btrfs_test_opt(root, FORCE_COMPRESS)) {
  382. printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n");
  383. } else {
  384. printk(KERN_INFO "btrfs: setting nodatacow\n");
  385. }
  386. info->compress_type = BTRFS_COMPRESS_NONE;
  387. btrfs_clear_opt(info->mount_opt, COMPRESS);
  388. btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
  389. btrfs_set_opt(info->mount_opt, NODATACOW);
  390. btrfs_set_opt(info->mount_opt, NODATASUM);
  391. break;
  392. case Opt_compress_force:
  393. case Opt_compress_force_type:
  394. compress_force = true;
  395. /* Fallthrough */
  396. case Opt_compress:
  397. case Opt_compress_type:
  398. if (token == Opt_compress ||
  399. token == Opt_compress_force ||
  400. strcmp(args[0].from, "zlib") == 0) {
  401. compress_type = "zlib";
  402. info->compress_type = BTRFS_COMPRESS_ZLIB;
  403. btrfs_set_opt(info->mount_opt, COMPRESS);
  404. btrfs_clear_opt(info->mount_opt, NODATACOW);
  405. btrfs_clear_opt(info->mount_opt, NODATASUM);
  406. } else if (strcmp(args[0].from, "lzo") == 0) {
  407. compress_type = "lzo";
  408. info->compress_type = BTRFS_COMPRESS_LZO;
  409. btrfs_set_opt(info->mount_opt, COMPRESS);
  410. btrfs_clear_opt(info->mount_opt, NODATACOW);
  411. btrfs_clear_opt(info->mount_opt, NODATASUM);
  412. btrfs_set_fs_incompat(info, COMPRESS_LZO);
  413. } else if (strncmp(args[0].from, "no", 2) == 0) {
  414. compress_type = "no";
  415. info->compress_type = BTRFS_COMPRESS_NONE;
  416. btrfs_clear_opt(info->mount_opt, COMPRESS);
  417. btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
  418. compress_force = false;
  419. } else {
  420. ret = -EINVAL;
  421. goto out;
  422. }
  423. if (compress_force) {
  424. btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
  425. pr_info("btrfs: force %s compression\n",
  426. compress_type);
  427. } else
  428. pr_info("btrfs: use %s compression\n",
  429. compress_type);
  430. break;
  431. case Opt_ssd:
  432. printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
  433. btrfs_set_opt(info->mount_opt, SSD);
  434. break;
  435. case Opt_ssd_spread:
  436. printk(KERN_INFO "btrfs: use spread ssd "
  437. "allocation scheme\n");
  438. btrfs_set_opt(info->mount_opt, SSD);
  439. btrfs_set_opt(info->mount_opt, SSD_SPREAD);
  440. break;
  441. case Opt_nossd:
  442. printk(KERN_INFO "btrfs: not using ssd allocation "
  443. "scheme\n");
  444. btrfs_set_opt(info->mount_opt, NOSSD);
  445. btrfs_clear_opt(info->mount_opt, SSD);
  446. btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
  447. break;
  448. case Opt_nobarrier:
  449. printk(KERN_INFO "btrfs: turning off barriers\n");
  450. btrfs_set_opt(info->mount_opt, NOBARRIER);
  451. break;
  452. case Opt_thread_pool:
  453. intarg = 0;
  454. match_int(&args[0], &intarg);
  455. if (intarg)
  456. info->thread_pool_size = intarg;
  457. break;
  458. case Opt_max_inline:
  459. num = match_strdup(&args[0]);
  460. if (num) {
  461. info->max_inline = memparse(num, NULL);
  462. kfree(num);
  463. if (info->max_inline) {
  464. info->max_inline = max_t(u64,
  465. info->max_inline,
  466. root->sectorsize);
  467. }
  468. printk(KERN_INFO "btrfs: max_inline at %llu\n",
  469. (unsigned long long)info->max_inline);
  470. }
  471. break;
  472. case Opt_alloc_start:
  473. num = match_strdup(&args[0]);
  474. if (num) {
  475. mutex_lock(&info->chunk_mutex);
  476. info->alloc_start = memparse(num, NULL);
  477. mutex_unlock(&info->chunk_mutex);
  478. kfree(num);
  479. printk(KERN_INFO
  480. "btrfs: allocations start at %llu\n",
  481. (unsigned long long)info->alloc_start);
  482. }
  483. break;
  484. case Opt_noacl:
  485. root->fs_info->sb->s_flags &= ~MS_POSIXACL;
  486. break;
  487. case Opt_notreelog:
  488. printk(KERN_INFO "btrfs: disabling tree log\n");
  489. btrfs_set_opt(info->mount_opt, NOTREELOG);
  490. break;
  491. case Opt_flushoncommit:
  492. printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
  493. btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
  494. break;
  495. case Opt_ratio:
  496. intarg = 0;
  497. match_int(&args[0], &intarg);
  498. if (intarg) {
  499. info->metadata_ratio = intarg;
  500. printk(KERN_INFO "btrfs: metadata ratio %d\n",
  501. info->metadata_ratio);
  502. }
  503. break;
  504. case Opt_discard:
  505. btrfs_set_opt(info->mount_opt, DISCARD);
  506. break;
  507. case Opt_space_cache:
  508. btrfs_set_opt(info->mount_opt, SPACE_CACHE);
  509. break;
  510. case Opt_no_space_cache:
  511. printk(KERN_INFO "btrfs: disabling disk space caching\n");
  512. btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
  513. break;
  514. case Opt_inode_cache:
  515. printk(KERN_INFO "btrfs: enabling inode map caching\n");
  516. btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
  517. break;
  518. case Opt_clear_cache:
  519. printk(KERN_INFO "btrfs: force clearing of disk cache\n");
  520. btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
  521. break;
  522. case Opt_user_subvol_rm_allowed:
  523. btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
  524. break;
  525. case Opt_enospc_debug:
  526. btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
  527. break;
  528. case Opt_defrag:
  529. printk(KERN_INFO "btrfs: enabling auto defrag\n");
  530. btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
  531. break;
  532. case Opt_recovery:
  533. printk(KERN_INFO "btrfs: enabling auto recovery\n");
  534. btrfs_set_opt(info->mount_opt, RECOVERY);
  535. break;
  536. case Opt_skip_balance:
  537. btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
  538. break;
  539. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  540. case Opt_check_integrity_including_extent_data:
  541. printk(KERN_INFO "btrfs: enabling check integrity"
  542. " including extent data\n");
  543. btrfs_set_opt(info->mount_opt,
  544. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
  545. btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
  546. break;
  547. case Opt_check_integrity:
  548. printk(KERN_INFO "btrfs: enabling check integrity\n");
  549. btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
  550. break;
  551. case Opt_check_integrity_print_mask:
  552. intarg = 0;
  553. match_int(&args[0], &intarg);
  554. if (intarg) {
  555. info->check_integrity_print_mask = intarg;
  556. printk(KERN_INFO "btrfs:"
  557. " check_integrity_print_mask 0x%x\n",
  558. info->check_integrity_print_mask);
  559. }
  560. break;
  561. #else
  562. case Opt_check_integrity_including_extent_data:
  563. case Opt_check_integrity:
  564. case Opt_check_integrity_print_mask:
  565. printk(KERN_ERR "btrfs: support for check_integrity*"
  566. " not compiled in!\n");
  567. ret = -EINVAL;
  568. goto out;
  569. #endif
  570. case Opt_fatal_errors:
  571. if (strcmp(args[0].from, "panic") == 0)
  572. btrfs_set_opt(info->mount_opt,
  573. PANIC_ON_FATAL_ERROR);
  574. else if (strcmp(args[0].from, "bug") == 0)
  575. btrfs_clear_opt(info->mount_opt,
  576. PANIC_ON_FATAL_ERROR);
  577. else {
  578. ret = -EINVAL;
  579. goto out;
  580. }
  581. break;
  582. case Opt_err:
  583. printk(KERN_INFO "btrfs: unrecognized mount option "
  584. "'%s'\n", p);
  585. ret = -EINVAL;
  586. goto out;
  587. default:
  588. break;
  589. }
  590. }
  591. out:
  592. if (!ret && btrfs_test_opt(root, SPACE_CACHE))
  593. printk(KERN_INFO "btrfs: disk space caching is enabled\n");
  594. kfree(orig);
  595. return ret;
  596. }
  597. /*
  598. * Parse mount options that are required early in the mount process.
  599. *
  600. * All other options will be parsed on much later in the mount process and
  601. * only when we need to allocate a new super block.
  602. */
  603. static int btrfs_parse_early_options(const char *options, fmode_t flags,
  604. void *holder, char **subvol_name, u64 *subvol_objectid,
  605. struct btrfs_fs_devices **fs_devices)
  606. {
  607. substring_t args[MAX_OPT_ARGS];
  608. char *device_name, *opts, *orig, *p;
  609. int error = 0;
  610. int intarg;
  611. if (!options)
  612. return 0;
  613. /*
  614. * strsep changes the string, duplicate it because parse_options
  615. * gets called twice
  616. */
  617. opts = kstrdup(options, GFP_KERNEL);
  618. if (!opts)
  619. return -ENOMEM;
  620. orig = opts;
  621. while ((p = strsep(&opts, ",")) != NULL) {
  622. int token;
  623. if (!*p)
  624. continue;
  625. token = match_token(p, tokens, args);
  626. switch (token) {
  627. case Opt_subvol:
  628. kfree(*subvol_name);
  629. *subvol_name = match_strdup(&args[0]);
  630. break;
  631. case Opt_subvolid:
  632. intarg = 0;
  633. error = match_int(&args[0], &intarg);
  634. if (!error) {
  635. /* we want the original fs_tree */
  636. if (!intarg)
  637. *subvol_objectid =
  638. BTRFS_FS_TREE_OBJECTID;
  639. else
  640. *subvol_objectid = intarg;
  641. }
  642. break;
  643. case Opt_subvolrootid:
  644. printk(KERN_WARNING
  645. "btrfs: 'subvolrootid' mount option is deprecated and has no effect\n");
  646. break;
  647. case Opt_device:
  648. device_name = match_strdup(&args[0]);
  649. if (!device_name) {
  650. error = -ENOMEM;
  651. goto out;
  652. }
  653. error = btrfs_scan_one_device(device_name,
  654. flags, holder, fs_devices);
  655. kfree(device_name);
  656. if (error)
  657. goto out;
  658. break;
  659. default:
  660. break;
  661. }
  662. }
  663. out:
  664. kfree(orig);
  665. return error;
  666. }
  667. static struct dentry *get_default_root(struct super_block *sb,
  668. u64 subvol_objectid)
  669. {
  670. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  671. struct btrfs_root *root = fs_info->tree_root;
  672. struct btrfs_root *new_root;
  673. struct btrfs_dir_item *di;
  674. struct btrfs_path *path;
  675. struct btrfs_key location;
  676. struct inode *inode;
  677. u64 dir_id;
  678. int new = 0;
  679. /*
  680. * We have a specific subvol we want to mount, just setup location and
  681. * go look up the root.
  682. */
  683. if (subvol_objectid) {
  684. location.objectid = subvol_objectid;
  685. location.type = BTRFS_ROOT_ITEM_KEY;
  686. location.offset = (u64)-1;
  687. goto find_root;
  688. }
  689. path = btrfs_alloc_path();
  690. if (!path)
  691. return ERR_PTR(-ENOMEM);
  692. path->leave_spinning = 1;
  693. /*
  694. * Find the "default" dir item which points to the root item that we
  695. * will mount by default if we haven't been given a specific subvolume
  696. * to mount.
  697. */
  698. dir_id = btrfs_super_root_dir(fs_info->super_copy);
  699. di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
  700. if (IS_ERR(di)) {
  701. btrfs_free_path(path);
  702. return ERR_CAST(di);
  703. }
  704. if (!di) {
  705. /*
  706. * Ok the default dir item isn't there. This is weird since
  707. * it's always been there, but don't freak out, just try and
  708. * mount to root most subvolume.
  709. */
  710. btrfs_free_path(path);
  711. dir_id = BTRFS_FIRST_FREE_OBJECTID;
  712. new_root = fs_info->fs_root;
  713. goto setup_root;
  714. }
  715. btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
  716. btrfs_free_path(path);
  717. find_root:
  718. new_root = btrfs_read_fs_root_no_name(fs_info, &location);
  719. if (IS_ERR(new_root))
  720. return ERR_CAST(new_root);
  721. if (btrfs_root_refs(&new_root->root_item) == 0)
  722. return ERR_PTR(-ENOENT);
  723. dir_id = btrfs_root_dirid(&new_root->root_item);
  724. setup_root:
  725. location.objectid = dir_id;
  726. location.type = BTRFS_INODE_ITEM_KEY;
  727. location.offset = 0;
  728. inode = btrfs_iget(sb, &location, new_root, &new);
  729. if (IS_ERR(inode))
  730. return ERR_CAST(inode);
  731. /*
  732. * If we're just mounting the root most subvol put the inode and return
  733. * a reference to the dentry. We will have already gotten a reference
  734. * to the inode in btrfs_fill_super so we're good to go.
  735. */
  736. if (!new && sb->s_root->d_inode == inode) {
  737. iput(inode);
  738. return dget(sb->s_root);
  739. }
  740. return d_obtain_alias(inode);
  741. }
  742. static int btrfs_fill_super(struct super_block *sb,
  743. struct btrfs_fs_devices *fs_devices,
  744. void *data, int silent)
  745. {
  746. struct inode *inode;
  747. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  748. struct btrfs_key key;
  749. int err;
  750. sb->s_maxbytes = MAX_LFS_FILESIZE;
  751. sb->s_magic = BTRFS_SUPER_MAGIC;
  752. sb->s_op = &btrfs_super_ops;
  753. sb->s_d_op = &btrfs_dentry_operations;
  754. sb->s_export_op = &btrfs_export_ops;
  755. sb->s_xattr = btrfs_xattr_handlers;
  756. sb->s_time_gran = 1;
  757. #ifdef CONFIG_BTRFS_FS_POSIX_ACL
  758. sb->s_flags |= MS_POSIXACL;
  759. #endif
  760. sb->s_flags |= MS_I_VERSION;
  761. err = open_ctree(sb, fs_devices, (char *)data);
  762. if (err) {
  763. printk("btrfs: open_ctree failed\n");
  764. return err;
  765. }
  766. key.objectid = BTRFS_FIRST_FREE_OBJECTID;
  767. key.type = BTRFS_INODE_ITEM_KEY;
  768. key.offset = 0;
  769. inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
  770. if (IS_ERR(inode)) {
  771. err = PTR_ERR(inode);
  772. goto fail_close;
  773. }
  774. sb->s_root = d_make_root(inode);
  775. if (!sb->s_root) {
  776. err = -ENOMEM;
  777. goto fail_close;
  778. }
  779. save_mount_options(sb, data);
  780. cleancache_init_fs(sb);
  781. sb->s_flags |= MS_ACTIVE;
  782. return 0;
  783. fail_close:
  784. close_ctree(fs_info->tree_root);
  785. return err;
  786. }
  787. int btrfs_sync_fs(struct super_block *sb, int wait)
  788. {
  789. struct btrfs_trans_handle *trans;
  790. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  791. struct btrfs_root *root = fs_info->tree_root;
  792. trace_btrfs_sync_fs(wait);
  793. if (!wait) {
  794. filemap_flush(fs_info->btree_inode->i_mapping);
  795. return 0;
  796. }
  797. btrfs_wait_ordered_extents(root, 0);
  798. trans = btrfs_attach_transaction_barrier(root);
  799. if (IS_ERR(trans)) {
  800. /* no transaction, don't bother */
  801. if (PTR_ERR(trans) == -ENOENT)
  802. return 0;
  803. return PTR_ERR(trans);
  804. }
  805. return btrfs_commit_transaction(trans, root);
  806. }
  807. static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
  808. {
  809. struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
  810. struct btrfs_root *root = info->tree_root;
  811. char *compress_type;
  812. if (btrfs_test_opt(root, DEGRADED))
  813. seq_puts(seq, ",degraded");
  814. if (btrfs_test_opt(root, NODATASUM))
  815. seq_puts(seq, ",nodatasum");
  816. if (btrfs_test_opt(root, NODATACOW))
  817. seq_puts(seq, ",nodatacow");
  818. if (btrfs_test_opt(root, NOBARRIER))
  819. seq_puts(seq, ",nobarrier");
  820. if (info->max_inline != 8192 * 1024)
  821. seq_printf(seq, ",max_inline=%llu",
  822. (unsigned long long)info->max_inline);
  823. if (info->alloc_start != 0)
  824. seq_printf(seq, ",alloc_start=%llu",
  825. (unsigned long long)info->alloc_start);
  826. if (info->thread_pool_size != min_t(unsigned long,
  827. num_online_cpus() + 2, 8))
  828. seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
  829. if (btrfs_test_opt(root, COMPRESS)) {
  830. if (info->compress_type == BTRFS_COMPRESS_ZLIB)
  831. compress_type = "zlib";
  832. else
  833. compress_type = "lzo";
  834. if (btrfs_test_opt(root, FORCE_COMPRESS))
  835. seq_printf(seq, ",compress-force=%s", compress_type);
  836. else
  837. seq_printf(seq, ",compress=%s", compress_type);
  838. }
  839. if (btrfs_test_opt(root, NOSSD))
  840. seq_puts(seq, ",nossd");
  841. if (btrfs_test_opt(root, SSD_SPREAD))
  842. seq_puts(seq, ",ssd_spread");
  843. else if (btrfs_test_opt(root, SSD))
  844. seq_puts(seq, ",ssd");
  845. if (btrfs_test_opt(root, NOTREELOG))
  846. seq_puts(seq, ",notreelog");
  847. if (btrfs_test_opt(root, FLUSHONCOMMIT))
  848. seq_puts(seq, ",flushoncommit");
  849. if (btrfs_test_opt(root, DISCARD))
  850. seq_puts(seq, ",discard");
  851. if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
  852. seq_puts(seq, ",noacl");
  853. if (btrfs_test_opt(root, SPACE_CACHE))
  854. seq_puts(seq, ",space_cache");
  855. else
  856. seq_puts(seq, ",nospace_cache");
  857. if (btrfs_test_opt(root, CLEAR_CACHE))
  858. seq_puts(seq, ",clear_cache");
  859. if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
  860. seq_puts(seq, ",user_subvol_rm_allowed");
  861. if (btrfs_test_opt(root, ENOSPC_DEBUG))
  862. seq_puts(seq, ",enospc_debug");
  863. if (btrfs_test_opt(root, AUTO_DEFRAG))
  864. seq_puts(seq, ",autodefrag");
  865. if (btrfs_test_opt(root, INODE_MAP_CACHE))
  866. seq_puts(seq, ",inode_cache");
  867. if (btrfs_test_opt(root, SKIP_BALANCE))
  868. seq_puts(seq, ",skip_balance");
  869. if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
  870. seq_puts(seq, ",fatal_errors=panic");
  871. return 0;
  872. }
  873. static int btrfs_test_super(struct super_block *s, void *data)
  874. {
  875. struct btrfs_fs_info *p = data;
  876. struct btrfs_fs_info *fs_info = btrfs_sb(s);
  877. return fs_info->fs_devices == p->fs_devices;
  878. }
  879. static int btrfs_set_super(struct super_block *s, void *data)
  880. {
  881. int err = set_anon_super(s, data);
  882. if (!err)
  883. s->s_fs_info = data;
  884. return err;
  885. }
  886. /*
  887. * subvolumes are identified by ino 256
  888. */
  889. static inline int is_subvolume_inode(struct inode *inode)
  890. {
  891. if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
  892. return 1;
  893. return 0;
  894. }
  895. /*
  896. * This will strip out the subvol=%s argument for an argument string and add
  897. * subvolid=0 to make sure we get the actual tree root for path walking to the
  898. * subvol we want.
  899. */
  900. static char *setup_root_args(char *args)
  901. {
  902. unsigned len = strlen(args) + 2 + 1;
  903. char *src, *dst, *buf;
  904. /*
  905. * We need the same args as before, but with this substitution:
  906. * s!subvol=[^,]+!subvolid=0!
  907. *
  908. * Since the replacement string is up to 2 bytes longer than the
  909. * original, allocate strlen(args) + 2 + 1 bytes.
  910. */
  911. src = strstr(args, "subvol=");
  912. /* This shouldn't happen, but just in case.. */
  913. if (!src)
  914. return NULL;
  915. buf = dst = kmalloc(len, GFP_NOFS);
  916. if (!buf)
  917. return NULL;
  918. /*
  919. * If the subvol= arg is not at the start of the string,
  920. * copy whatever precedes it into buf.
  921. */
  922. if (src != args) {
  923. *src++ = '\0';
  924. strcpy(buf, args);
  925. dst += strlen(args);
  926. }
  927. strcpy(dst, "subvolid=0");
  928. dst += strlen("subvolid=0");
  929. /*
  930. * If there is a "," after the original subvol=... string,
  931. * copy that suffix into our buffer. Otherwise, we're done.
  932. */
  933. src = strchr(src, ',');
  934. if (src)
  935. strcpy(dst, src);
  936. return buf;
  937. }
  938. static struct dentry *mount_subvol(const char *subvol_name, int flags,
  939. const char *device_name, char *data)
  940. {
  941. struct dentry *root;
  942. struct vfsmount *mnt;
  943. char *newargs;
  944. newargs = setup_root_args(data);
  945. if (!newargs)
  946. return ERR_PTR(-ENOMEM);
  947. mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
  948. newargs);
  949. kfree(newargs);
  950. if (IS_ERR(mnt))
  951. return ERR_CAST(mnt);
  952. root = mount_subtree(mnt, subvol_name);
  953. if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
  954. struct super_block *s = root->d_sb;
  955. dput(root);
  956. root = ERR_PTR(-EINVAL);
  957. deactivate_locked_super(s);
  958. printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
  959. subvol_name);
  960. }
  961. return root;
  962. }
  963. /*
  964. * Find a superblock for the given device / mount point.
  965. *
  966. * Note: This is based on get_sb_bdev from fs/super.c with a few additions
  967. * for multiple device setup. Make sure to keep it in sync.
  968. */
  969. static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
  970. const char *device_name, void *data)
  971. {
  972. struct block_device *bdev = NULL;
  973. struct super_block *s;
  974. struct dentry *root;
  975. struct btrfs_fs_devices *fs_devices = NULL;
  976. struct btrfs_fs_info *fs_info = NULL;
  977. fmode_t mode = FMODE_READ;
  978. char *subvol_name = NULL;
  979. u64 subvol_objectid = 0;
  980. int error = 0;
  981. if (!(flags & MS_RDONLY))
  982. mode |= FMODE_WRITE;
  983. error = btrfs_parse_early_options(data, mode, fs_type,
  984. &subvol_name, &subvol_objectid,
  985. &fs_devices);
  986. if (error) {
  987. kfree(subvol_name);
  988. return ERR_PTR(error);
  989. }
  990. if (subvol_name) {
  991. root = mount_subvol(subvol_name, flags, device_name, data);
  992. kfree(subvol_name);
  993. return root;
  994. }
  995. error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
  996. if (error)
  997. return ERR_PTR(error);
  998. /*
  999. * Setup a dummy root and fs_info for test/set super. This is because
  1000. * we don't actually fill this stuff out until open_ctree, but we need
  1001. * it for searching for existing supers, so this lets us do that and
  1002. * then open_ctree will properly initialize everything later.
  1003. */
  1004. fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
  1005. if (!fs_info)
  1006. return ERR_PTR(-ENOMEM);
  1007. fs_info->fs_devices = fs_devices;
  1008. fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
  1009. fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
  1010. if (!fs_info->super_copy || !fs_info->super_for_commit) {
  1011. error = -ENOMEM;
  1012. goto error_fs_info;
  1013. }
  1014. error = btrfs_open_devices(fs_devices, mode, fs_type);
  1015. if (error)
  1016. goto error_fs_info;
  1017. if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
  1018. error = -EACCES;
  1019. goto error_close_devices;
  1020. }
  1021. bdev = fs_devices->latest_bdev;
  1022. s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
  1023. fs_info);
  1024. if (IS_ERR(s)) {
  1025. error = PTR_ERR(s);
  1026. goto error_close_devices;
  1027. }
  1028. if (s->s_root) {
  1029. btrfs_close_devices(fs_devices);
  1030. free_fs_info(fs_info);
  1031. if ((flags ^ s->s_flags) & MS_RDONLY)
  1032. error = -EBUSY;
  1033. } else {
  1034. char b[BDEVNAME_SIZE];
  1035. strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
  1036. btrfs_sb(s)->bdev_holder = fs_type;
  1037. error = btrfs_fill_super(s, fs_devices, data,
  1038. flags & MS_SILENT ? 1 : 0);
  1039. }
  1040. root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
  1041. if (IS_ERR(root))
  1042. deactivate_locked_super(s);
  1043. return root;
  1044. error_close_devices:
  1045. btrfs_close_devices(fs_devices);
  1046. error_fs_info:
  1047. free_fs_info(fs_info);
  1048. return ERR_PTR(error);
  1049. }
  1050. static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
  1051. {
  1052. spin_lock_irq(&workers->lock);
  1053. workers->max_workers = new_limit;
  1054. spin_unlock_irq(&workers->lock);
  1055. }
  1056. static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
  1057. int new_pool_size, int old_pool_size)
  1058. {
  1059. if (new_pool_size == old_pool_size)
  1060. return;
  1061. fs_info->thread_pool_size = new_pool_size;
  1062. printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
  1063. old_pool_size, new_pool_size);
  1064. btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
  1065. btrfs_set_max_workers(&fs_info->workers, new_pool_size);
  1066. btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
  1067. btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
  1068. btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
  1069. btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
  1070. btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
  1071. btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
  1072. btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
  1073. btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
  1074. btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
  1075. btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
  1076. btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
  1077. btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
  1078. new_pool_size);
  1079. }
  1080. static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
  1081. {
  1082. set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
  1083. }
  1084. static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
  1085. unsigned long old_opts, int flags)
  1086. {
  1087. if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
  1088. (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
  1089. (flags & MS_RDONLY))) {
  1090. /* wait for any defraggers to finish */
  1091. wait_event(fs_info->transaction_wait,
  1092. (atomic_read(&fs_info->defrag_running) == 0));
  1093. if (flags & MS_RDONLY)
  1094. sync_filesystem(fs_info->sb);
  1095. }
  1096. }
  1097. static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
  1098. unsigned long old_opts)
  1099. {
  1100. /*
  1101. * We need cleanup all defragable inodes if the autodefragment is
  1102. * close or the fs is R/O.
  1103. */
  1104. if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
  1105. (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
  1106. (fs_info->sb->s_flags & MS_RDONLY))) {
  1107. btrfs_cleanup_defrag_inodes(fs_info);
  1108. }
  1109. clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
  1110. }
  1111. static int btrfs_remount(struct super_block *sb, int *flags, char *data)
  1112. {
  1113. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1114. struct btrfs_root *root = fs_info->tree_root;
  1115. unsigned old_flags = sb->s_flags;
  1116. unsigned long old_opts = fs_info->mount_opt;
  1117. unsigned long old_compress_type = fs_info->compress_type;
  1118. u64 old_max_inline = fs_info->max_inline;
  1119. u64 old_alloc_start = fs_info->alloc_start;
  1120. int old_thread_pool_size = fs_info->thread_pool_size;
  1121. unsigned int old_metadata_ratio = fs_info->metadata_ratio;
  1122. int ret;
  1123. btrfs_remount_prepare(fs_info);
  1124. ret = btrfs_parse_options(root, data);
  1125. if (ret) {
  1126. ret = -EINVAL;
  1127. goto restore;
  1128. }
  1129. btrfs_remount_begin(fs_info, old_opts, *flags);
  1130. btrfs_resize_thread_pool(fs_info,
  1131. fs_info->thread_pool_size, old_thread_pool_size);
  1132. if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
  1133. goto out;
  1134. if (*flags & MS_RDONLY) {
  1135. /*
  1136. * this also happens on 'umount -rf' or on shutdown, when
  1137. * the filesystem is busy.
  1138. */
  1139. sb->s_flags |= MS_RDONLY;
  1140. btrfs_dev_replace_suspend_for_unmount(fs_info);
  1141. btrfs_scrub_cancel(fs_info);
  1142. ret = btrfs_commit_super(root);
  1143. if (ret)
  1144. goto restore;
  1145. } else {
  1146. if (fs_info->fs_devices->rw_devices == 0) {
  1147. ret = -EACCES;
  1148. goto restore;
  1149. }
  1150. if (fs_info->fs_devices->missing_devices >
  1151. fs_info->num_tolerated_disk_barrier_failures &&
  1152. !(*flags & MS_RDONLY)) {
  1153. printk(KERN_WARNING
  1154. "Btrfs: too many missing devices, writeable remount is not allowed\n");
  1155. ret = -EACCES;
  1156. goto restore;
  1157. }
  1158. if (btrfs_super_log_root(fs_info->super_copy) != 0) {
  1159. ret = -EINVAL;
  1160. goto restore;
  1161. }
  1162. ret = btrfs_cleanup_fs_roots(fs_info);
  1163. if (ret)
  1164. goto restore;
  1165. /* recover relocation */
  1166. ret = btrfs_recover_relocation(root);
  1167. if (ret)
  1168. goto restore;
  1169. ret = btrfs_resume_balance_async(fs_info);
  1170. if (ret)
  1171. goto restore;
  1172. ret = btrfs_resume_dev_replace_async(fs_info);
  1173. if (ret) {
  1174. pr_warn("btrfs: failed to resume dev_replace\n");
  1175. goto restore;
  1176. }
  1177. sb->s_flags &= ~MS_RDONLY;
  1178. }
  1179. out:
  1180. btrfs_remount_cleanup(fs_info, old_opts);
  1181. return 0;
  1182. restore:
  1183. /* We've hit an error - don't reset MS_RDONLY */
  1184. if (sb->s_flags & MS_RDONLY)
  1185. old_flags |= MS_RDONLY;
  1186. sb->s_flags = old_flags;
  1187. fs_info->mount_opt = old_opts;
  1188. fs_info->compress_type = old_compress_type;
  1189. fs_info->max_inline = old_max_inline;
  1190. mutex_lock(&fs_info->chunk_mutex);
  1191. fs_info->alloc_start = old_alloc_start;
  1192. mutex_unlock(&fs_info->chunk_mutex);
  1193. btrfs_resize_thread_pool(fs_info,
  1194. old_thread_pool_size, fs_info->thread_pool_size);
  1195. fs_info->metadata_ratio = old_metadata_ratio;
  1196. btrfs_remount_cleanup(fs_info, old_opts);
  1197. return ret;
  1198. }
  1199. /* Used to sort the devices by max_avail(descending sort) */
  1200. static int btrfs_cmp_device_free_bytes(const void *dev_info1,
  1201. const void *dev_info2)
  1202. {
  1203. if (((struct btrfs_device_info *)dev_info1)->max_avail >
  1204. ((struct btrfs_device_info *)dev_info2)->max_avail)
  1205. return -1;
  1206. else if (((struct btrfs_device_info *)dev_info1)->max_avail <
  1207. ((struct btrfs_device_info *)dev_info2)->max_avail)
  1208. return 1;
  1209. else
  1210. return 0;
  1211. }
  1212. /*
  1213. * sort the devices by max_avail, in which max free extent size of each device
  1214. * is stored.(Descending Sort)
  1215. */
  1216. static inline void btrfs_descending_sort_devices(
  1217. struct btrfs_device_info *devices,
  1218. size_t nr_devices)
  1219. {
  1220. sort(devices, nr_devices, sizeof(struct btrfs_device_info),
  1221. btrfs_cmp_device_free_bytes, NULL);
  1222. }
  1223. /*
  1224. * The helper to calc the free space on the devices that can be used to store
  1225. * file data.
  1226. */
  1227. static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
  1228. {
  1229. struct btrfs_fs_info *fs_info = root->fs_info;
  1230. struct btrfs_device_info *devices_info;
  1231. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  1232. struct btrfs_device *device;
  1233. u64 skip_space;
  1234. u64 type;
  1235. u64 avail_space;
  1236. u64 used_space;
  1237. u64 min_stripe_size;
  1238. int min_stripes = 1, num_stripes = 1;
  1239. int i = 0, nr_devices;
  1240. int ret;
  1241. nr_devices = fs_info->fs_devices->open_devices;
  1242. BUG_ON(!nr_devices);
  1243. devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
  1244. GFP_NOFS);
  1245. if (!devices_info)
  1246. return -ENOMEM;
  1247. /* calc min stripe number for data space alloction */
  1248. type = btrfs_get_alloc_profile(root, 1);
  1249. if (type & BTRFS_BLOCK_GROUP_RAID0) {
  1250. min_stripes = 2;
  1251. num_stripes = nr_devices;
  1252. } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
  1253. min_stripes = 2;
  1254. num_stripes = 2;
  1255. } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
  1256. min_stripes = 4;
  1257. num_stripes = 4;
  1258. }
  1259. if (type & BTRFS_BLOCK_GROUP_DUP)
  1260. min_stripe_size = 2 * BTRFS_STRIPE_LEN;
  1261. else
  1262. min_stripe_size = BTRFS_STRIPE_LEN;
  1263. list_for_each_entry(device, &fs_devices->devices, dev_list) {
  1264. if (!device->in_fs_metadata || !device->bdev ||
  1265. device->is_tgtdev_for_dev_replace)
  1266. continue;
  1267. avail_space = device->total_bytes - device->bytes_used;
  1268. /* align with stripe_len */
  1269. do_div(avail_space, BTRFS_STRIPE_LEN);
  1270. avail_space *= BTRFS_STRIPE_LEN;
  1271. /*
  1272. * In order to avoid overwritting the superblock on the drive,
  1273. * btrfs starts at an offset of at least 1MB when doing chunk
  1274. * allocation.
  1275. */
  1276. skip_space = 1024 * 1024;
  1277. /* user can set the offset in fs_info->alloc_start. */
  1278. if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
  1279. device->total_bytes)
  1280. skip_space = max(fs_info->alloc_start, skip_space);
  1281. /*
  1282. * btrfs can not use the free space in [0, skip_space - 1],
  1283. * we must subtract it from the total. In order to implement
  1284. * it, we account the used space in this range first.
  1285. */
  1286. ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
  1287. &used_space);
  1288. if (ret) {
  1289. kfree(devices_info);
  1290. return ret;
  1291. }
  1292. /* calc the free space in [0, skip_space - 1] */
  1293. skip_space -= used_space;
  1294. /*
  1295. * we can use the free space in [0, skip_space - 1], subtract
  1296. * it from the total.
  1297. */
  1298. if (avail_space && avail_space >= skip_space)
  1299. avail_space -= skip_space;
  1300. else
  1301. avail_space = 0;
  1302. if (avail_space < min_stripe_size)
  1303. continue;
  1304. devices_info[i].dev = device;
  1305. devices_info[i].max_avail = avail_space;
  1306. i++;
  1307. }
  1308. nr_devices = i;
  1309. btrfs_descending_sort_devices(devices_info, nr_devices);
  1310. i = nr_devices - 1;
  1311. avail_space = 0;
  1312. while (nr_devices >= min_stripes) {
  1313. if (num_stripes > nr_devices)
  1314. num_stripes = nr_devices;
  1315. if (devices_info[i].max_avail >= min_stripe_size) {
  1316. int j;
  1317. u64 alloc_size;
  1318. avail_space += devices_info[i].max_avail * num_stripes;
  1319. alloc_size = devices_info[i].max_avail;
  1320. for (j = i + 1 - num_stripes; j <= i; j++)
  1321. devices_info[j].max_avail -= alloc_size;
  1322. }
  1323. i--;
  1324. nr_devices--;
  1325. }
  1326. kfree(devices_info);
  1327. *free_bytes = avail_space;
  1328. return 0;
  1329. }
  1330. static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
  1331. {
  1332. struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
  1333. struct btrfs_super_block *disk_super = fs_info->super_copy;
  1334. struct list_head *head = &fs_info->space_info;
  1335. struct btrfs_space_info *found;
  1336. u64 total_used = 0;
  1337. u64 total_free_data = 0;
  1338. int bits = dentry->d_sb->s_blocksize_bits;
  1339. __be32 *fsid = (__be32 *)fs_info->fsid;
  1340. int ret;
  1341. /* holding chunk_muext to avoid allocating new chunks */
  1342. mutex_lock(&fs_info->chunk_mutex);
  1343. rcu_read_lock();
  1344. list_for_each_entry_rcu(found, head, list) {
  1345. if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
  1346. total_free_data += found->disk_total - found->disk_used;
  1347. total_free_data -=
  1348. btrfs_account_ro_block_groups_free_space(found);
  1349. }
  1350. total_used += found->disk_used;
  1351. }
  1352. rcu_read_unlock();
  1353. buf->f_namelen = BTRFS_NAME_LEN;
  1354. buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
  1355. buf->f_bfree = buf->f_blocks - (total_used >> bits);
  1356. buf->f_bsize = dentry->d_sb->s_blocksize;
  1357. buf->f_type = BTRFS_SUPER_MAGIC;
  1358. buf->f_bavail = total_free_data;
  1359. ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
  1360. if (ret) {
  1361. mutex_unlock(&fs_info->chunk_mutex);
  1362. return ret;
  1363. }
  1364. buf->f_bavail += total_free_data;
  1365. buf->f_bavail = buf->f_bavail >> bits;
  1366. mutex_unlock(&fs_info->chunk_mutex);
  1367. /* We treat it as constant endianness (it doesn't matter _which_)
  1368. because we want the fsid to come out the same whether mounted
  1369. on a big-endian or little-endian host */
  1370. buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
  1371. buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
  1372. /* Mask in the root object ID too, to disambiguate subvols */
  1373. buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
  1374. buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
  1375. return 0;
  1376. }
  1377. static void btrfs_kill_super(struct super_block *sb)
  1378. {
  1379. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1380. kill_anon_super(sb);
  1381. free_fs_info(fs_info);
  1382. }
  1383. static struct file_system_type btrfs_fs_type = {
  1384. .owner = THIS_MODULE,
  1385. .name = "btrfs",
  1386. .mount = btrfs_mount,
  1387. .kill_sb = btrfs_kill_super,
  1388. .fs_flags = FS_REQUIRES_DEV,
  1389. };
  1390. MODULE_ALIAS_FS("btrfs");
  1391. /*
  1392. * used by btrfsctl to scan devices when no FS is mounted
  1393. */
  1394. static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
  1395. unsigned long arg)
  1396. {
  1397. struct btrfs_ioctl_vol_args *vol;
  1398. struct btrfs_fs_devices *fs_devices;
  1399. int ret = -ENOTTY;
  1400. if (!capable(CAP_SYS_ADMIN))
  1401. return -EPERM;
  1402. vol = memdup_user((void __user *)arg, sizeof(*vol));
  1403. if (IS_ERR(vol))
  1404. return PTR_ERR(vol);
  1405. switch (cmd) {
  1406. case BTRFS_IOC_SCAN_DEV:
  1407. ret = btrfs_scan_one_device(vol->name, FMODE_READ,
  1408. &btrfs_fs_type, &fs_devices);
  1409. break;
  1410. case BTRFS_IOC_DEVICES_READY:
  1411. ret = btrfs_scan_one_device(vol->name, FMODE_READ,
  1412. &btrfs_fs_type, &fs_devices);
  1413. if (ret)
  1414. break;
  1415. ret = !(fs_devices->num_devices == fs_devices->total_devices);
  1416. break;
  1417. }
  1418. kfree(vol);
  1419. return ret;
  1420. }
  1421. static int btrfs_freeze(struct super_block *sb)
  1422. {
  1423. struct btrfs_trans_handle *trans;
  1424. struct btrfs_root *root = btrfs_sb(sb)->tree_root;
  1425. trans = btrfs_attach_transaction_barrier(root);
  1426. if (IS_ERR(trans)) {
  1427. /* no transaction, don't bother */
  1428. if (PTR_ERR(trans) == -ENOENT)
  1429. return 0;
  1430. return PTR_ERR(trans);
  1431. }
  1432. return btrfs_commit_transaction(trans, root);
  1433. }
  1434. static int btrfs_unfreeze(struct super_block *sb)
  1435. {
  1436. return 0;
  1437. }
  1438. static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
  1439. {
  1440. struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
  1441. struct btrfs_fs_devices *cur_devices;
  1442. struct btrfs_device *dev, *first_dev = NULL;
  1443. struct list_head *head;
  1444. struct rcu_string *name;
  1445. mutex_lock(&fs_info->fs_devices->device_list_mutex);
  1446. cur_devices = fs_info->fs_devices;
  1447. while (cur_devices) {
  1448. head = &cur_devices->devices;
  1449. list_for_each_entry(dev, head, dev_list) {
  1450. if (dev->missing)
  1451. continue;
  1452. if (!first_dev || dev->devid < first_dev->devid)
  1453. first_dev = dev;
  1454. }
  1455. cur_devices = cur_devices->seed;
  1456. }
  1457. if (first_dev) {
  1458. rcu_read_lock();
  1459. name = rcu_dereference(first_dev->name);
  1460. seq_escape(m, name->str, " \t\n\\");
  1461. rcu_read_unlock();
  1462. } else {
  1463. WARN_ON(1);
  1464. }
  1465. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  1466. return 0;
  1467. }
  1468. static const struct super_operations btrfs_super_ops = {
  1469. .drop_inode = btrfs_drop_inode,
  1470. .evict_inode = btrfs_evict_inode,
  1471. .put_super = btrfs_put_super,
  1472. .sync_fs = btrfs_sync_fs,
  1473. .show_options = btrfs_show_options,
  1474. .show_devname = btrfs_show_devname,
  1475. .write_inode = btrfs_write_inode,
  1476. .alloc_inode = btrfs_alloc_inode,
  1477. .destroy_inode = btrfs_destroy_inode,
  1478. .statfs = btrfs_statfs,
  1479. .remount_fs = btrfs_remount,
  1480. .freeze_fs = btrfs_freeze,
  1481. .unfreeze_fs = btrfs_unfreeze,
  1482. };
  1483. static const struct file_operations btrfs_ctl_fops = {
  1484. .unlocked_ioctl = btrfs_control_ioctl,
  1485. .compat_ioctl = btrfs_control_ioctl,
  1486. .owner = THIS_MODULE,
  1487. .llseek = noop_llseek,
  1488. };
  1489. static struct miscdevice btrfs_misc = {
  1490. .minor = BTRFS_MINOR,
  1491. .name = "btrfs-control",
  1492. .fops = &btrfs_ctl_fops
  1493. };
  1494. MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
  1495. MODULE_ALIAS("devname:btrfs-control");
  1496. static int btrfs_interface_init(void)
  1497. {
  1498. return misc_register(&btrfs_misc);
  1499. }
  1500. static void btrfs_interface_exit(void)
  1501. {
  1502. if (misc_deregister(&btrfs_misc) < 0)
  1503. printk(KERN_INFO "btrfs: misc_deregister failed for control device\n");
  1504. }
  1505. static int __init init_btrfs_fs(void)
  1506. {
  1507. int err;
  1508. err = btrfs_init_sysfs();
  1509. if (err)
  1510. return err;
  1511. btrfs_init_compress();
  1512. err = btrfs_init_cachep();
  1513. if (err)
  1514. goto free_compress;
  1515. err = extent_io_init();
  1516. if (err)
  1517. goto free_cachep;
  1518. err = extent_map_init();
  1519. if (err)
  1520. goto free_extent_io;
  1521. err = ordered_data_init();
  1522. if (err)
  1523. goto free_extent_map;
  1524. err = btrfs_delayed_inode_init();
  1525. if (err)
  1526. goto free_ordered_data;
  1527. err = btrfs_auto_defrag_init();
  1528. if (err)
  1529. goto free_delayed_inode;
  1530. err = btrfs_delayed_ref_init();
  1531. if (err)
  1532. goto free_auto_defrag;
  1533. err = btrfs_interface_init();
  1534. if (err)
  1535. goto free_delayed_ref;
  1536. err = register_filesystem(&btrfs_fs_type);
  1537. if (err)
  1538. goto unregister_ioctl;
  1539. btrfs_init_lockdep();
  1540. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1541. btrfs_test_free_space_cache();
  1542. #endif
  1543. printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
  1544. return 0;
  1545. unregister_ioctl:
  1546. btrfs_interface_exit();
  1547. free_delayed_ref:
  1548. btrfs_delayed_ref_exit();
  1549. free_auto_defrag:
  1550. btrfs_auto_defrag_exit();
  1551. free_delayed_inode:
  1552. btrfs_delayed_inode_exit();
  1553. free_ordered_data:
  1554. ordered_data_exit();
  1555. free_extent_map:
  1556. extent_map_exit();
  1557. free_extent_io:
  1558. extent_io_exit();
  1559. free_cachep:
  1560. btrfs_destroy_cachep();
  1561. free_compress:
  1562. btrfs_exit_compress();
  1563. btrfs_exit_sysfs();
  1564. return err;
  1565. }
  1566. static void __exit exit_btrfs_fs(void)
  1567. {
  1568. btrfs_destroy_cachep();
  1569. btrfs_delayed_ref_exit();
  1570. btrfs_auto_defrag_exit();
  1571. btrfs_delayed_inode_exit();
  1572. ordered_data_exit();
  1573. extent_map_exit();
  1574. extent_io_exit();
  1575. btrfs_interface_exit();
  1576. unregister_filesystem(&btrfs_fs_type);
  1577. btrfs_exit_sysfs();
  1578. btrfs_cleanup_fs_uuids();
  1579. btrfs_exit_compress();
  1580. }
  1581. module_init(init_btrfs_fs)
  1582. module_exit(exit_btrfs_fs)
  1583. MODULE_LICENSE("GPL");